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Abstract. Extreme rainfall events
:::::::
Rainfall

::::::
Events (EREs) and resulting flash floods in Saudi Arabia cause significant risks,

including casualties and
::::
pose

:::::
major

::::::
threats,

:::::::::
frequently

:::::::
causing

:::::::
fatalities

:::
and

:::::::::
significant

:
economic losses. Accurate

::::
ERE sim-

ulations are crucial for
::::::
weather forecasting, climate projections

:::::
change

::::::::::
assessment, and disaster management. This study eval-

uates
:::::::
planetary

:
boundary layer (BL

:::
PBL) and cloud microphysics (MP) schemes to simulate EREs in the Arabian Peninsula

(AP) using the
::::::::
Advanced

::::::::
Research

:::::::
version

::
of

:::
the Weather Research and Forecasting (WRF) model

::::::::::
WRF-ARW)

::::::
model

::::
V4.4.5

Thirty-six combinations of four BL
:::
PBL

:
and nine MP schemes were tested across 17 EREs at a convective-permitting

::::::::::::::::::
convection-permitting 3-km resolution ,

:::
and

:
compared with IMERG gridded satellite data for rainfall and station observa-

tions for temperature, humidity, and wind speed. Performance was assessed using
:::
The

:
Kling-Gupta Efficiency (KGE),

::::::
which

incorporates correlation, variability, and overall bias
::::
bias,

::::
was

::::
used

:::
as

:::::::::::
performance

::::::
metric. We found good visual

:
a
:::::
good

agreement between observed and simulated rainfall patternsdespite
:
,
::::::
though

:
some over- and underestimations . Among BL10

schemes, the
::::
were

:::::::
present.

:::::::
Among

:::
the

::::
PBL

::::::::
schemes,

:
Yonsei University (YSU) scheme stood out as the best performers

:
;

::::
BL1)

::::::
tended

::
to

:::::::
perform

::::
best in terms of rainfall, while Thompson (MP8) ranked the highest among the MP schemes. Goddard

(MP7) also delivered strong results. The
::::::
Among

:::
all

::
36

::::::::::::
combinations,

:::
the

:
Thompson-YSU combination yielded

::::::::::
(MP8_BL1)

::::::::::
combination

::::::::::
consistently

::::::::
produced

:
the highest mean KGE

:::::
across

:::
the

:::
17

:::::
EREs

:::
for

::::::
rainfall, performing statistically signifi-

cantly better than 21 other combinations. Furthermore
:::::
While

:::::::::
MP8_BL1

::::
also

:::::::::
performed

:::
best

:::
for

:::
the

:::::
other

::::
three

:::::::::::::
meteorological15

:::::::
variables, performance rankings varied across meteorological variables, suggesting that superior rainfall performance does not

necessarily correlate with an overall more accurate simulation
:::::::
variables,

:::::
likely

:::::::
because

::::::::
different

:::::::
physical

::::::::
processes

::::::
govern

:::
the

::::::::
simulation

:::
of

:::::::
different

::::::::
variables. This study highlights the challenges

:::::::::
complexity

:
of scheme evaluation and the importance of

analyzing many EREs while using reliable
:::::::
multiple

:::::
EREs

::::
with

:::::::::::
high-quality reference data. It offers guidance for selecting the

most appropriate schemes and lays
:::
The

:::::
results

:::::
offer

:::::::
practical

::::::::
guidance

:::
for

::::::
scheme

::::::::
selection

:::
and

:::
lay

:
the foundation for future20

::::::::
improving

:
ERE forecasting and climate modeling improvements in arid regions

::::::
regional

:::::::
climate

::::::::
modeling

::::
over

:::
the

:::
AP.
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1 Introduction

Extreme rainfall events
::::::
Rainfall

::::::
Events

:
(EREs) are episodes of intense precipitation

::::::
rainfall

:
over a short duration, often result-

ing in flash floods, landslides, and severe infrastructure damage
:::::
severe

:::::::
damage

::
to

:::::::::::
infrastructure

:::
and

::::::::
property,

::::
and

:::
loss

::
of
::::

life

(Easterling et al., 2000; Houze Jr, 2012; Kundzewicz et al., 2014; Srinivas et al., 2018). These events are becoming more fre-25

quent and intense as atmospheric moisture increases by about 7% per degree of warming, following Clausius-Clapeyron scaling

(e.g., Held and Soden, 2006; O’Gorman and Schneider, 2009
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Held and Soden, 2006; O’Gorman and Schneider, 2009; Muller and Takayabu, 2020; Fowler et al., 2021; Neelin et al., 2022

). Although this rise in moisture is significant, mean precipitation
::::
mean

::::::
rainfall

:
increases at a slower rate of 2–3% per degree.

In contrast, EREs can intensify by as much as 6–10% (e.g., Allan and Soden, 2008; O’Gorman and Schneider, 2009), depend-

ing on their spatial and temporal scales , significantly increasing the potential for devastating impactson vulnerable regions.30

Accurate prediction of EREs is critical for disaster planning, early warning systems, and water resource management, especially

in places with a rising trend of EREs (Luong et al., 2020; Attada et al., 2020).
::::
(e.g.,

:::::::::::::::::::::::::::::::::::::::::::::
Allan and Soden, 2008; O’Gorman and Schneider, 2009

:
),
:::::::::::
significantly

::::::::
increasing

::::
their

::::::::
potential

:::
for

:::::::::
destructive

:::::::
impacts.

:

Saudi Arabia, despite
::::::
Despite

:
its arid desert climate and low annual precipitation,

:::::::
rainfall,

:::::
Saudi

::::::
Arabia

:
regularly ex-

periences significant EREs (Almazroui, 2011; Haggag and El-Badry, 2013; Deng et al., 2015; Yesubabu et al., 2016; Al-35

mazroui et al., 2018; Atif et al., 2020; Attada et al., 2022)that often lead to dangerous flash floods, particularly during the

rainy season from November to April. These events are often linked to the intrusion of
::::::::
frequently

:::::::::
associated

::::
with

:::::::::
intrusions

::
of

::
an

:
intensified subtropical jet streamand

:
,
:
mid-latitude cyclonic disturbancestowards the peninsula, combined with ,

::::
and

the low-level advection of warm, moist air from nearby water bodies, including the Red Sea, Persian
::::::
Arabian

:
Gulf, and

Arabian Sea (Evans et al., 2004; Barth and Steinkohl, 2004; Evans and Smith, 2006; De Vries et al., 2013, 2016). The EREs,40

though infrequent, cause significant damage to infrastructure, agriculture, and communities. This makes
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Evans et al., 2004; Barth and Steinkohl, 2004; Evans and Smith, 2006; De Vries et al., 2013, 2016)

:
.
::::::
Though

:::::::::
infrequent,

:::::
these

:::::
EREs

:::::
cause

:::::::::
substantial

:::::::
damage

::::::::::::::::::::::::::::::
(Al Saud, 2010; Youssef et al., 2016)

:
,
::::::
making

:
accurate forecasting

and projection of EREs critical for effective disaster managementin the region. Reliable predictions can inform
:::::::
essential

:::
for

::::::
disaster

::::::::::::
management, early warning systems, aid in the reanalysis of past events, and support climate change assessments.

Given the increasing frequency and intensity of EREs, numerical simulation plays a central role
:::
and

:::::::
climate

:::::::::
adaptation45

in the region ’s climate adaptation strategies, helping to improve early warning systems and inform long-term adaptation

measures
:::::::::::::::::::::::::::::::::::
(Hijji et al., 2013; Abosuliman et al., 2014).

WRF
::::::::
Advanced

::::::::
Research

::::::
version

::
of

:::
the

:::::::
Weather

::::::::
Research

:::
and

::::::::::
Forecasting

:::::::::::::::::::::::::::::
(WRF-ARW;Skamarock et al., 2019

:
) is a widely

used numerical
::::::::
Numerical

:::::::
Weather

:::::::::
Prediction

::::::
(NWP)

:
model in the AP

:::::::
Arabian

::::::::
Peninsula

::::
(AP)

:
to simulate and forecast EREs

(Deng et al., 2015; Almazroui et al., 2018; Taraphdar et al., 2021; Risanto et al., 2024)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Deng et al., 2015; Almazroui et al., 2018; Taraphdar et al., 2021; Risanto et al., 2024; Luong et al., 2025; Taraphdar et al., 2025; Francis et al., 2025)50

. These models are subject to various sources of uncertainty, particularly due to parameterizations. Two key parameterization

schemes include the
:::
that

:::::::
strongly

::::::::
influence

::::
ERE

::::::::::
simulations

:::::::
include

:::
the

::::::::
Planetary Boundary Layer (BL

::::
PBL) and cloud mi-

crophysics (MP) schemes. The BL

:::
The

::::
PBL

:
scheme governs the vertical exchange of momentum, heat, and moisture between the surface and the atmosphere,

which is essential to simulate
::::::
playing

:
a
::::::
critical

::::
role

::
in

:::::::::
simulating near-surface conditions. The MP scheme , on the other hand,55
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controls cloud formation , precipitation processes, and interactions between water phases (Stull, 1988; Garratt, 1994; Stull, 2012; Dudhia, 2014)

. Accurate representation of
::
It

::::::::
regulates

::::::
vertical

:::::::
mixing

:::
and

::::::::::
turbulence,

:::::
which

:::
are

::::::::
essential

:::
for

::::::::::
atmospheric

:::::::::
instability

::::
and

::::::::
convective

:::::::::
initiation

::
—

::::
key

::::::::
processes

::::
that

:::::::
directly

::::::
impact

:::::::
rainfall

:::::::::::
development

:::::::::::::::::
(Kumar et al., 2008)

:
.
::::
The

::::::::
selection

::
of

:::
an

:::::::::
appropriate

::::
PBL

:::::::
scheme

::
is

:::::::::
especially

::::::::
important

::
in

::::
arid

:::
and

::::
arid

:::::::
regions

::::
such

::
as

:::
the

::::
AP,

::
as

::::::
intense

:::::::
surface

::::::
heating

::
in

::::::
desert

:::::::::::
environments

::::
leads

::
to

:::
the

::::::::
formation

::
of

:::::::::
unusually

::::
deep

:::::
PBLs,

:::::::::
sometimes

::::::::
extending

:::
up

::
to

:
5
:::
km

:::::
during

:::
the

::::
day

:::::::::::::::::::::::::::::::::::::::::::::::
(Gamo, 1996; Marsham et al., 2008; Ntoumos et al., 2023)60

:
.
:::
This

::::::::::
necessitates

:::
the

:::
use

::
of

::
a

::::::
scheme

::::::
capable

::
of

:::::::::
accurately

::::::::
modeling

:::
the

::::::
vertical

::::::::::
distribution

::
of

::::
heat,

::::::::
moisture,

:::
and

::::::::::
momentum

:::::
within

::::
such

:
a
:::::
deep

::::
layer.

:::::::::::
Furthermore,

::::::
deserts

:::
are

:::::::::::
characterized

::
by

::::::::
complex

:::::::::::::
thermodynamic

::::::
profiles,

::::::::
including

:::::
sharp

::::::::::
temperature

:::::::
gradients

::::
and

:::::::::
significant

::::::::
humidity

:::::::::
variations,

:::::
which

:::::::::
complicate

::::
the

::::::::
modeling

:::::::
process.

::::::
Strong

::::::
diurnal

::::::::::
temperature

:::::::::
variations

:::
also

::::::
require

::
a
::::
PBL

::::::
scheme

:::::::
capable

::
of

:::::::::
effectively

::::::::
capturing

:::::::::
short-term

::::::::::
fluctuations

::
in

::::::
energy

:::
and

::::::::
moisture

:::::
fluxes.

:

:::
The

::::
MP

::::::
scheme

:::::::
governs the BL is particularly crucial for convective systems that often lead to EREs (Kumar et al., 2008).65

On the other hand, MP schemes simulate the evolution of cloud particles, including cloud droplets, rain, snow, and ice, which

are essential to determine the intensity and duration of rainfall (Dudhia, 2014).
:
It

:::::::
controls

:::::
cloud

:::::::::
formation,

::::::
rainfall

:::::::::
processes,

:::
and

::::::::::
interactions

:::::::
between

:::::::
different

:::::
water

:::::::
phases.

:
It
::::
also

:::::::::
influences

:::::::
radiative

:::::::
transfer

::
by

::::::::
affecting

:::::
cloud

::::::
optical

:::::::::
properties

::::
such

::
as

::::::
droplet

:::
size

:::::::::::
distribution,

:::::
phase,

:::
and

::::::::::::
concentration

::::::::::::::::::::::::::::::::::::::::::::
(Stull, 1988; Garratt, 1994; Stull, 2012; Dudhia, 2014).

:::::::::::
Additionally,

::::
MP

:::::::
schemes

::::::
govern

:::
key

:::::::::::
hydrometeor

:::::::::
processes

:::
like

::::::::::::
condensation

:::
and

:::::::::::
coalescence,

:::::
which

:::::::
directly

::::::
impact

:::
the

:::::::
timing,

::::::::
intensity,70

:::
and

::::::
spatial

:::::::::
distribution

:::
of

::::::
rainfall.

:::::
Both

::::::::::::
single-moment

::::
and

:::::::::::::
double-moment

::::::::
schemes

::::
exist;

:::
the

:::::
latter

:::::::
provide

:
a
:::::
more

:::::::
detailed

:::::::::::
representation

:::
by

:::
also

:::::::::
predicting

::::::
number

::::::::::::
concentrations

::
of

::::::::::::
hydrometeors

::::
(see,

::::
e.g.,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Kessler, 1969; Chen and Sun, 2002; Hong et al., 2004; Rogers et al., 2001; Hong and Lim, 2006; Tao et al., 2016; Thompson et al., 2008; Morrison et al., 2009

:
).
:

Although several previous studies have evaluated different schemes in
:::::::::
WRF-ARW

::::::::::::::
parameterization

:::::::
schemes

::
in
:::
the

:
AP (e.g.

:
,

Deng et al., 2015; Schwitalla et al., 2020; Attada et al., 2022; Abida et al., 2022) and
:
in

:
other arid and semi-arid regions (e.g.

:
,75

Zittis et al., 2014; Tian et al., 2017; Liu et al., 2021; Messmer et al., 2021; Khansalari et al., 2021; Mekawy et al., 2022;

Pegahfar et al., 2022), they have typically focused on individual cases or performed limited sensitivity analyzes with a narrow

range
::::
EREs

::::
and

:::::::::
conducted

::::::
limited

::::::::
sensitivity

::::::::
analyses

::::
using

::
a
:::::
small

::::::
number

:
of parameterization schemes (Table 1). The case-

specific nature of these studies often limits
::::::
restricts

:
the generalizability of the results across multiple events

::::
their

::::::
results

::
to

::::
other

:::::
EREs

:
and varying conditions, which reduces

:::::::
reducing

:
their broader applicability for predicting EREs in the complex80

climate dynamics of the AP.

Our study addresses this gap by conducting an extensive evaluation of BL
:::::::::
WRF-ARW

::::
PBL

:
and MP schemes for simulat-

ing EREs
::
in

:::
the

:::
AP

:
at convection-permitting resolution (3

:
km) to establish

::::::::
determine

:
the best combination of BL and MP

parameterization
::::
PBL

:::
and

:::
MP

:
schemes that consistently perform

:::::::
performs well across different EREs. We conduct sensitivity

experiments on
::::::
analyze

:
17 ERE cases spanning

:::::
EREs from 2010 to 2022 across the AP, testing 36 different combinations of85

BL
::::
PBL and MP schemes to identify the optimal setup

::::::::::
configuration

:
for ERE simulation in the AP. We simulate the 17 extreme

rainfall cases
:::::
EREs using a two-way nested domain configuration with 53 vertical levels and horizontal resolutions of 9 km

and 3km.
:::
km.

::::::
While

:::
our

:::::::
primary

::::
focus

::
is
:::
on

:::
the

::::::::
evaluation

::
of

:::::::
rainfall,

:::
we

::::
also

:::::::
examine

::
air

:::::::::::
temperature,

::::::
relative

::::::::
humidity,

::::
and

::::
wind

:::::::
speed.

To guide the reader, the paper is structured according to ten
:::
nine

:
key questions:90
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a. Which BL
::::
PBL scheme performs best in terms of rainfall?

b. Which MP scheme performs best in terms of rainfall?

c. Which component of the Kling-Gupta Efficiency (KGE) affects the final score
::::::
rainfall

:::::
scores

:
the most?

d. How statistically significant are the differences in performance between scheme combinations in terms of rainfall?

e. How consistent are the temporal and spatial performance assessments for rainfall?95

f. How consistent is the performance ranking among different variables?

g. What do the spatial patterns in simulated and observed rainfall look like for the events
::::
EREs?

h. How well does the model perform in terms of the other variables?

i. Which BL
::::
How

::
do

:::
the

::::
PBL

:
and MP schemes were used in previous studies focusing on the Middle East?

j. How generalizable are our findings
:::::::
compare

::::
with

:::::
those

::::::::
identified

::
as

:::::::
optimal

::
in

:::
our

:::::::::
evaluation?100

2 Physical geography and climatic description of the study area

Saudi Arabia, covering 80% of the AP, spans latitudes
::::
from 16°

::
N to 33°N and longitudes 34°

:
E to 56°E, with an area of approx-

imately 2,149,690
:::
2.1

::::::
million km2, making it the largest country in the Middle East and the 12th largest globally. The terrain

includes highlands, volcanic fields, mountain ranges, and the vast Arabian desert, featuring the Rub’ al Khali, the world’s largest

continuous sand desert. Despite lacking permanent rivers, it has many wadis, alluvial deposits (Vincent, 2008; WeatherOnline,105

2024), and about 1,300 islands in the Arabian Gulf and the Red Sea. The central plateau stretches from the Red Sea to the Ara-

bian Gulf, while the Asir province reaches 3,002meters
::
m

:::::
above

:::
sea

::::
level

:
at Jabal Ferwa, and the Hejaz region contains approx-

imately 2,000 extinct volcanoes across 180,000
:
km2. The climate is characterized by vast deserts, rugged mountains, and an arid

climate(De Vries et al., 2016; El Kenawy et al., 2014; Mostamandi et al., 2022; Ukhov et al., 2020)
:
a
:::::::::

hyper-arid
:::::::

climate, with

extreme summer temperatures of 45–54°C
:::::::
45–54°C

::::
and

:
winters rarely below 0°C (Climate.com, 2018). Minimal rainfall110

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(De Vries et al., 2016; El Kenawy et al., 2014; Mostamandi et al., 2022; Ukhov et al., 2020)

:
.
::::
The

::::::
average

::::::
annual

:::::::
rainfall

::::
over

::
the

::::::
region

::
is

:::::
about

::
63

::::
mm,

:
except in the south

::::::::
southwest, where monsoons bring around

:::
over

:
300 mm of rain from October to

March (Hasanean and Almazroui, 2015). The average annual rainfall over the region is about 114 mm (El Kenawy et al., 2014)

. The
::::::::::::::::
(Wang et al., 2025b).

:

:::
The

:
primary mechanisms driving precipitation

::::::
rainfall vary between the eastern and western coasts. On the western coast, the115

Asir mountain chains play a significant role in capturing moist northwesterly winds along the Red Sea coast, particularly during

winter, extending up to the Bab el-Mandeb Strait (Pedgley, 1974; El Kenawy et al., 2014; Mostamandi et al., 2022). From East

Africa through the Red Sea towards the eastern Mediterranean, the Red Sea Trough (RST) creates a geographical environment

conducive to forming strong low-pressure systems over the central Red Sea. These systems can generate substantial rainfall

4



Table 1. Previous studies evaluating WRF
::::::::
WRF-ARW

:
physics schemes in the Middle East.

Region Kind of schemes Number of

Events
:::::
Model

:::::
layer/

::::::
Vertical

:::::
levels

::::
used

Conclusion Reference

Jeddah,

Saudi

Arabia

Microphysics schemes:

Lin, Eta Ferrier

Three flash

floods events The WRF
:
50

: :::
The

:::::::::
WRF-ARW Model effectively

simulates flash floods in Jeddah, with 1

km resolution improving rainfall

accuracy and 5 km requiring careful

parameterization due to observed

spatial displacement.

Deng et al.

(2015)

AP Cumulus schemes: KF,

BMJ, GF

Winter

simulation

from 2001 to

2016

::
52

Selecting subgrid convective

parameterization is crucial for accurate

high-resolution rainfall simulations

over the AP.

Attada et al.

(2020)

AP MP schemes:

Thompson 2-moment,

Thompson

aerosol-aware and

WDM6 and BL
:::
PBL

schemes: MYNN level

::::
Level 2.5 and YSU

Case study on

July 14, 2015 The best results

were achieved

using
:::
100

:

:::
The

:::
best

::::::::::
performance

:::
was

:::::::
obtained

::::
using

:
a
::::::::::::::::
convection-permitting

:::::
model

:::::::
resolution

::::
with aerosol-aware

Thompson microphysics with MYNN

PBL, effectively capturing

precipitation
:::
MP

:::::::
combined

::::
with

:::
the

:::::
MYNN

:::::
Level

:::
2.5

:::
PBL

:::::::
scheme,

:::::
which

::::::::
effectively

::::::
captured

::::::
rainfall.

Schwitalla

et al. (2020)

Middle

East BL
:::
PBL

:
schemes:

ACM2, QNSE, MYNN

::::
Level

:::
2.5

Single year run

for 2017 ::
45

Gray-zone simulations enhance

precipitation
:::::

rainfall modeling but are

highly dependent on resolution and the

selection of physics schemes.

Taraphdar et al.

(2021)

AP Cumulus schemes: KF,

BMJ, GF

Winter

simulation

from 2001 to

2016

Extreme winter

rainfall
:
52

:

:::
ERE

:
is best simulated using the KF

scheme, highlighting the importance of

cumulus parameterization in WRF

:::::::::
WRF-ARW for reliable modeling in

the hyperarid
:::::::
hyper-arid

:
AP region.

Attada et al.

(2022)

within the region (De Vries et al., 2013; El Kenawy et al., 2014). In contrast, the eastern coast, influenced by the Hajar120

Mountains and its proximity to the Arabian Sea, receives convective precipitation
::::::
rainfall driven by the summer monsoon and

moisture-laden winds from the Indian Ocean (Babu et al., 2016).
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3 Data and Methods

3.1 Selection of Historical Extreme Rainfall Cases

We selected 17 EREs that led to significant damage and casualties, resulting in widespread media attention
:::::
across

:::::
from125

::::
2010

::
to

:::::
2022

::::
that

::::::
caused

:::::::::
significant

::::::
damage

:::
to

:::::::::::
infrastructure

::::
and

:::::::
property,

:::
as

::::
well

::
as

::::
loss

::
of

::::
life,

::::
and

:::::::
received

::::::::::
widespread

:::::
media

::::::::
coverage. Table 2 lists the EREs analyzed in this study. We considered

:::::::
included

:
17 cases to increase our chance

:::
the

::::::::
likelihood

:
of obtaining statistically significant results . We limited the number of cases to avoid excessive computational

demand, as high-resolution simulations for each event require substantial processingpower, storageand time
:::::::
regarding

::::
the

::::::
relative

:::::::::::
performance

::
of

::::::::
different

::::::::
schemes.

:::
We

::::
did

:::
not

:::::::
analyze

:::::
more

:::::
cases

:::
due

:::
to

:::
the

:::::::::
significant

::::::::::
processing,

:::::::
storage,

::::
and130

:::::::::::
computational

::::::::
demands.

3.2 Initial and Boundary Conditions

ERA5 reanalysis data (
:::::::::::
pressure-level

::::
data

::
(
:::
with

:::
37

::::::
levels,

::::::::
extending

:::
up

::
to

::::::::::::
approximately

:::
30

:::
km

:::::::
altitude;

:
0.25° resolution;

Hersbach et al., 2020
:::::
spatial

:::::::::
resolution) was utilized to provide initial and boundary conditions for each 3-hour time step to

run WRF-ARW. The ERA5 data was obtained via
::
is

:::
the

::::
most

:::::::
reliable

:::::::::
reanalysis

::::::::
currently

:::::::
available

::::
and

::::
was

:::::::
therefore

:::::
used135

::
for

::::
this

:::::::
purpose

:::::::::::::::::::
(Hersbach et al., 2020).

::::
The

::::
data

::::
were

::::::::
obtained

:::::
from the Copernicus Climate Data Store (CDS; https://cds.

climate.copernicus.eu)from the European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 is the most reliable

reanalysis currently available and was used to derive the initial and boundary conditions.
:
.

3.3 Observations

As a reference for our assessment, we used rainfall estimates from the microwave-based
:::::::::::
satellite-based

:
Integrated Multi-140

satellite Retrievals for GPM (IMERG) Final V07
::::::
product

:
(Huffman et al., 2023). The product covers 2000 to the present, has

a 30-minute 0.1° resolution, and was aggregated
::
to hourly for our analysis.

We also used radiosonde data to examine the vertical structures at different time steps (Supplement Figure ??). The 00:00 and

12:00 UTC radiosonde data were collected from the University of Wyoming () for several stations, providing relative humidity

(%), temperature (°C), and wind speed (m/s). Additionally, surface meteorological information (Supplement Figure S1),145

including 2-m
::
air temperature (°C),

::::
2-m relative humidity (%), and

::::
10-m

:
wind speed (m/s) , was obtained

::::::::::
observations from the

IOWA Environmental Mesonet
::::::::
(METAR) data provided by Iowa State University (https://mesonet.agron.iastate.edu/request/

download.phtml?network=SA__ASOS
:
;
:::
for

::::::::
locations,

:::
see

::::::::::
Supplement

::::
Fig.

::
S1).

3.4 WRF
::::::::::
WRF-ARW Model Configuration

This study uses the Advanced Research version of Weather Research and Forecasting (WRF-ARW ) model version
:::::
model150

::::::
version 4.4, a non-hydrostatic, fully compressible model with a terrain-following coordinate system (Skamarock et al., 2019).

The model is configured with two-way nested domains , with
::::
with

:::::::::
horizontal

::::
grid

:::::::::
dimensions

:::
of

:::
493

::
×
::::
418

:::
for

:::
the

::::::
parent

6
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::::::
domain

:::::
(D01)

::::
and

::::
1012

::
×

:::
889

:::
for

:::
the

:::::
nested

:::::::
domain

::::::
(D02),

:::
and

:
a
::::::
model

:::
top

:::::::
pressure

::
of

:::
30

::::
hPa,

:::::::::
comprising

:
53 vertical hybrid

sigma levels and a horizontal resolution of 3 km in the innermost domain, as shown in Figure
:::
Fig. 1. The AP

::::
D01 domain covers

a vast region
::
of

:::
the

:::
AP from 21°E to 65°E in the zonal direction and from 2°N to 40°N in the meridional direction, allowing for155

the representation of large-scale atmospheric features and internal dynamics. The study performed
:::
We

:::::::::
conducted 612 distinct

simulations, each with a specific BL and MP scheme combination, to thoroughly evaluate the combined performance of these

configurations
::::::::::
simulations,

::::::::
spanning

::
all

:::
36

:::::::
possible

::::::::
PBL–MP

:::::::
scheme

:::::::::::
combinations,

:::
to

:::::
assess

::::
their

::::
joint

:::::::::::
performance

:
across

17 EREs. The WRF model used in this study explicitly simulates convection within the inner domain at a 3 km resolution

(convection-permitting). In contrast, the outer domain relies on a convection parameterization scheme
:::::::::
Convection

::
is

::::::::
explicitly160

:::::::
resolved

::
in

::::
D02,

:::::
while

::::
D01

::::
uses

:::
the

:::::::::::
Kain-Fritsch

:::::::::::::
parameterization

:::::::::::::::::::::
(Kain and Fritsch, 1993)

::
for

::::::::
sub-grid

:::::::::
convective

::::::::
processes

(Snook et al., 2019).

We considered 36 combinations involving nine MP and four BL
::::
PBL

:
schemes. The BL

::::
PBL

:
schemes tested include

Mellor-Yamada Nakanishi Niino (MYNN) Level 2.5 and Level 3 (BL5, BL6; Nakanishi and Niino, 2006), Yonsei Univer-

sity (YSU; BL1; Hong et al., 2006), and Bougeault-Lacarrère (BouLac; BL8; Bougeault and Lacarrere, 1989), while the MP165

schemes include Kessler (MP1; Kessler, 1969), Purdue Lin (MP2; Chen and Sun, 2002), WRF Single-Moment 3-class and

5-class (MP3 and MP4, respectively; (Hong et al., 2004)), Eta Ferrier, (MP5; Rogers et al., 2001), WRF Single-Moment 6-

class (MP6; Hong and Lim, 2006), Goddard (MP7; Tao et al., 2016), Thompson (MP8; Thompson et al., 2008), and Mor-

rison 2-Moment (MP10; Morrison et al., 2009). These combinations were selected based on their compatibility with the

surface layer physics Revised MM5 scheme (Jiménez et al., 2012), and additional schemes were not included due to the170

higher computational and storage demands. Previous studies focusing on the AP have also utilized these schemes, includ-

ing (Deng et al., 2015; Attada et al., 2022; Luong et al., 2020; Schwitalla et al., 2020). Each combination was examined for its

ability to reproduce severe rainfall occurrences in various Saudi Arabian areas correctly.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Deng et al. (2015); Attada et al. (2022); Luong et al. (2020); Schwitalla et al. (2020)

:
.

Initial and boundary conditions were extracted from ERA5 reanalysis data at 3-hour intervals with a 0.25° resolution. The175

:::
All model simulations were run

::::::::
conducted

:
for 84 hours, including a 48-hour spin-up , with the analysis focused on the

:::::
period

::
to

::::::
ensure

:::::
model

::::::::
stability

:::
and

::::::
reduce

:::::::::::
initialization

::::::
biases.

::::
The

::::::::
analysis

:::
was

:::::::
focused

:::
on

::
a
:
24-hour event window for each

ERE .
:::::::
window

::::::::::::
corresponding

::
to

:::
the

::::
peak

:::::::
rainfall

:::::
period

::
of

:::::
each

::::
ERE

::::::
(Table

::
2).

::::
Our

:::::
study

:::::::::
specifically

::::::
targets

:::::::::::::
short-duration,

:::::::::
event-based

::::::::::
simulations

:::
of

:::::
ERE.

::
In

:::::
such

:::::
cases,

::::
the

:::::::
primary

::::::
drivers

:::
are

::::::::
typically

:::::::::
large-scale

:::::::::::
atmospheric

::::::::::
instabilities

::::
and

:::::::
moisture

:::::::::
advection

:::::
rather

::::
than

::::::
slower

:::::::::
processes

:::
like

:::::::::::
land–surface

:::::::::::
interactions.

::::::::::::
Consequently,

::
a
:::::::
48-hour

:::::::
spin-up

::::::
period

::
is180

:::::::
sufficient

:::
to

:::::
allow

:::
the

:::::
model

:::
to

::::::::::
dynamically

::::
and

::::::::::::::::
thermodynamically

:::::
adjust

:::
to

:::
the

:::::
initial

::::
and

::::::::
boundary

:::::::::
conditions.

:
Refer to

Table 2 for the simulation start dates and Table 3 for the model configuration.

3.5 Model Assessment Approach

Each combination of MP and BL
::::
PBL

:
schemes was extensively evaluated using the Kling-Gupta Efficiency (KGE; Gupta et al.,

2009; Kling et al., 2012). KGE is a metric used as a comprehensive measure that analyzes
:::
The

::::
KGE

::
is

::
an

::::::::
aggregate

:::::::::::
performance185

:::::
metric

::::
that

::::::::
integrates

:
correlation, bias

:::
ratio, and variability between simulated and observed data.

:::
ratio

::::
into

::
a
:::::
single

::::::
score,
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Fig. 1. WRF-ARW domain for the AP region showing the elevation in the backgroundand radiosonde .
:::::::
METAR locations as red

::
are

:::::::
indicated

:::
with

::::
blue markers.

::::::::
providing

:
a
:::::::
holistic

:::::::::
assessment

:::
of

:::::
model

::::::::::::
performance.

::::::
Several

::::::
studies

:::::
have

::::::::::
successfully

::::
used

:::::
KGE

:::
for

::::::
spatial

:::::::::::
performance

:::::::::
assessment

::
of

:::::::::::::::::
hydrometeorological

::::::
models

:::::
(e.g.,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Gupta et al., 2009; Patil and Stieglitz, 2015; Beck et al., 2019a; Nguyen et al., 2022; Tudaji et al., 2025

:
),
:::::::::
supporting

:::
its

:::::::::
application

::
in

:::
our

::::::::
analysis.

:::
The

:::::::
formula

:::
for

:::::
KGE

:
is
:::::
given

:::
by:

:

KGE = 1−
√
(r− 1)2 +(β− 1)2 +(γ− 1)2,

:::::::::::::::::::::::::::::::::::::
(1)190

:::::
where

::
r

::
is

::::::::
Pearson’s

:::::::::
correlation

:::::::::
coefficient

::::::::
between

:::
the

::::::::
observed

:::
and

:::::::::
simulated

::::
data,

::
β
::
is
:::
the

:::::
ratio

::
of

:::
the

:::::
mean

:::::::::
simulated

:::
data

:::
to

:::
the

:::::
mean

::::::::
observed

::::
data,

:::::::::
assessing

:::
the

::::
bias,

::::
and

::
γ

::
is

:::
the

::::
ratio

:::
of

:::
the

::::::::::
coefficients

::
of

::::::::
variation

::
of

::::
the

::::::::
simulated

::::
and

:::::::
observed

:::::
data,

::::::::
evaluating

::::
the

:::::::::
variability.

::
A

::::::
perfect

:::
but

::::::::::
unattainable

:::::
KGE

:::::
score

::
is

::
1,

:::::::::
indicating

::::::::
complete

::::::::
agreement

::::::::
between

::::::::
simulated

:::
and

::::::::
observed

:::::
data.

::
A

::::::::::
hypothetical

::::::::::
simulation

::::::::
predicting

:::::
only

:::
the

:::::::
observed

::::::
mean

:::::
would

:::::::
achieve

:
a
:::::

KGE
:::
of

:::::
–0.41

:::::::::::::::::
(Knoben et al., 2019)

:
.195

For rainfall, the KGE was calculated separately in space and in time. For the temporal KGE
::::
(Fig.

::
2), we first calculated, for

each hour of the event day (refer to Table 2), the spatial average of observed and simulated rainfall across Domain 2 (D02 ;

Figure
::::
(Fig. 1). The KGE was derived from these 24 pairs of observed and simulated spatially averaged values. For the spatial

KGE, for each grid cell within D02, the daily mean of observed and simulated rainfall was computed .
::::::::::
(Supplement

::::
Fig.

::::
S2).

The KGE was subsequently calculated using these observed and simulated grid cell
:::::::
grid-cell

:
daily means. The formula for200

8



KGE is given by:

KGE = 1−
√
(r− 1)2 +(β− 1)2 +(γ− 1)2,

where r is Pearson’s correlation coefficient between the observed and simulated data, β is the ratio of the mean simulated

::
To

::::::
enable

:
a
:::::::::
consistent

:::::::::::::::::
grid-cell-to-grid-cell

::::::::::
comparison

::::
with

:::::::
IMERG

:::::::::::
observations,

:::
we

:::::::::
resampled

:::
the

::::::::::
WRF-ARW

:::::::::
simulated

::::::
rainfall

:
data to the mean observed data, assessing the bias, and γ is the ratio of the coefficient of variation of simulated205

data to that of the coefficient of variation of observed data, evaluating the variability.
:::
0.1◦

:::::::
IMERG

::::
grid

:::::
using

:::::::::
averaging.

::::
This

:::::::::
resampling

:::
was

:::::::::
performed

:::::
using

:::
the

::::::
xarray

:::::::
package

::
in

::::::
Python

:::::::::::::::::::::::
(Hoyer and Hamman, 2017).

:

::::::::::
Additionally,

:::
to

:::::::::
determine

:::::::
whether

:::
the

:::::::::::
performance

::
is

::::::::::
significantly

::::::::
different

:::::::
between

:::::::
scheme

::::::::::::
combinations

:::
for

:::::::
rainfall,

::
we

:::::::::
calculated

::::::
∆KGE

::::::
scores

::
by

::::::::::
subtracting

:::
the

::::
mean

:::::
KGE

::::::
across

:::::
EREs

::::
from

:::
the

:::::
KGE

::::::
values,

::::::
thereby

::::::::::
eliminating

:::::::::
systematic

:::::::::
differences

::
in

:::::
scores

::::::
among

:::::
EREs.

::::
We

:::
then

:::::
tested

:::::::
whether

:::
the

::::::::::
distributions

:::
of

::::::
∆KGE

:::::
values

:::
for

:::::::
different

:::::::
scheme

:::::::::::
combinations210

::
are

::::::::::
statistically

::::::
similar

::
or

::::::::
different

::::
using

::::::::
pairwise

::::::::::
independent

:::::
t-tests

:::::::::::
(Supplement

::::
Fig.

:::
S3).

:

For 2-meter temperature, 2-meter
:::
2-m

:::
air

::::::::::
temperature,

::::
2-m

:
relative humidity, and

::::
10-m

:
wind speed, KGE was calculated

from hourly METAR observations from the IOWA Mesonet and corresponding simulations from the nearest model grid-cell

for the day of each event
::::
ERE.

4 Results and Discussion215

4.1 Which BL
::::
PBL scheme performs best in terms of rainfall?

The selection of an appropriate BL scheme is crucial for accurately simulating extreme rainfall in subtropical desert regions,

such as Saudi Arabia, due to unique environmental factors (e.g., Taraphdar et al., 2021).Intense surface heating in deserts leads

to the development of extremely deep BLs, reaching up to 5 km during the day (e.g., Gamo, 1996; Marsham et al., 2008; Ntoumos et al., 2023

). This necessitates a scheme capable of accurately modeling the vertical distribution of heat, moisture, and momentum in a220

deeper BL. Complex thermodynamic profiles, with sharp temperature gradients and significant humidity variations, further

complicate modeling. Accurately capturing these conditions is essential for simulating extreme rainfall. Deserts also experience

strong diurnal temperature variations, necessitating a BL scheme that effectively handles short-term fluctuations in energy and

moisture fluxes between the surface and the atmosphere (e.g., Taraphdar et al., 2021).

Rainfall in the AP typically occurs during the winter months. It is driven by the interaction of frontal systems, formed225

between cold, dry extratropical air and hot, moist air from nearby seas (e.g., Taraphdar et al., 2021). EREs are frequently linked

to mesoscale convective systems (MCS), initiated by either frontal passages or orographic lifting in mountainous regions (e.g.,

De Vries et al., 2016; El Kenawy and McCabe, 2016; Yesubabu et al., 2016; Luong et al., 2020). These convective systems rely

heavily on properly representing turbulence and mixing within the BL. Desert regions are also characterized by rapid changes

in atmospheric conditions over short time scales, which requires the use of advanced BL schemes.230

Figure
:::
Fig. 2 presents the temporal KGE scores in

:::
for 36 combinations of BL-MP and the

::::::::
PBL-MP

:::::::::::
combinations

::::::
across

17 EREs.
::
As

::::::
spatial

:::::
KGE

:::::
scores

:::::::::::
(Supplement

::::
Fig.

:::
S2)

::::::
exhibit

::::::::::
comparable

:::::::
patterns,

:::
the

:::::::
analysis

::::
here

:::::::
focuses

::
on

:::
the

::::::::
temporal

9



:::::
scores.

:
The mean temporal and spatial KGE for the BL

:::
PBL

:
schemes—YSU (BL1), MYNN Level 2.5 (

:
, BL5), MYNN Level

3 (
:
,
:
BL6), and BouLac (

:
,
:::
and

:
BL8)—are summarized in Table 4. Among these, the YSU (BL1 ) scheme showed superior

performance among the BL schemes
::::
PBL

:::::::
schemes

::::::
(mean

::::
KGE

:::
of

:::::
0.43). Notably, YSU (BL1 ) is the only scheme with a235

non-local approach, unlike the other schemes, which are all local. This non-local mixing likely explains YSU
:::
BL1’s superior

performance, enabling enhanced vertical mixing across the entire BL
:::
PBL. Non-local schemes like YSU (BL1 ) can represent

large eddy structures and transport heat, moisture, and momentum over considerable vertical distances, a capability that is

particularly crucial in arid environments with intense surface heating and sharp thermal gradients, such as Saudi Arabia (Hong

et al., 2006; Hu et al., 2010). In contrast, local schemes like the MYNN Level 2.5 (BL5), MYNN Level 3 (
:
, BL6) and BouLac240

(,
::::
and BL8

:::::
(mean

:::::
KGE

:::::
values

::
of

:::::
0.38,

::::
0.26,

::::
and

::::
0.41,

::::::::::
respectively) rely on gradients at specific vertical levels and small-scale

turbulence, which restricts their ability to simulate deep convection and rapid vertical mixing (Nakanishi and Niino, 2006;

Bougeault and Lacarrere, 1989).

Previous research has shown that non-local schemes, including YSU (BL1), yield a deeper and more accurately structured BL

::::
PBL than local schemes, especially in the presence of strong surface heating and convective activity, which are characteristic of245

desert climates (Xie et al., 2012; Cohen et al., 2015). Specifically, YSU
:::
BL1’s non-local treatment of BL

::::
PBL processes allows

it to develop a deeper BL
::::
PBL during the daytime, a typical feature in arid regions, enhancing the scheme’s ability to capture

severe convective activity (Cohen et al., 2015).

The YSU scheme’s (BL1) performance in representing BL
:::
The

:::::::::::
performance

::
of

:::::
BL1

::
in

:::::::::::
representing

::::
PBL

:
processes is

especially advantageous in regions where convection is often triggered by advancing frontal systems, as is common in the AP. In250

a case study using the WRF
::::::::::
WRF-ARW model, Cohen et al. (2015) demonstrated that YSU

::::
BL1’s non-local treatment improves

the BL
:::
PBL’s response to cold fronts, triggering convection more realistically and enhancing features like the formation of

double lines of intense convection. This improvement arises because YSU (BL1 ) minimizes the dilution of moist air by dry

air entrainment, maintaining a higher moisture concentration within the BL
:::
PBL. This "fuel" is crucial for sustaining severe

convection when fronts initiate it, particularly in desert regions, where dry air entrainment can otherwise weaken or inhibit255

intense convective activity and thus reduce the accuracy of ERE simulations.

In contrast, local schemes like MYNN (BL5 and 6) and BouLac (
::::
BL6

:::
and

:
BL8 ) are optimized for stable or stratified

BLs,
:::::
PBLs,

::::::::
typically

:
performing well by simulating small-scale turbulence. However, these schemes often struggle in unsta-

ble, highly convective environments like those in Saudi Arabia, where larger eddy structures dominate and require extensive

vertical mixing to capture intense updrafts and precipitation (Hu et al., 2013; Cohen et al., 2015). Therefore, YSU’s non-local260

approach, with its integrated vertical mixing and responsiveness to strong surface heating likely contributed to its superior

performance in simulating EREs, capturing the necessary BL transitions and intense convective plumes critical for accurate

ERE representation in the desert regions of Saudi Arabia.

Performance is consistently lower
:::::
rainfall

::::::::::::::::::::::::::::::
(Hu et al., 2013; Cohen et al., 2015).

:::::::::::
Performance

::
is

:::::::::
particularly

::::
low for the BL6

scheme (Mellor-Yamada Nakanishi Niino Level 3; mean KGE of 0.26; Figure 2
::::
Table

::
4) scheme, and it consistently showed265

lower and sometimes
::::::::
sometimes

:::::::
showing

:
negative KGE scores across different MP schemes .

::::
(Fig.

:::
2). The scheme’s higher-

order local closure approach can lead to over-diffusion, dampening essential vertical motions and limiting its ability to capture

10



coherent eddies and large-scale vertical transport—critical for effective moisture and heat distribution needed for convective

rainfall (Nakanishi and Niino, 2006; Shin and Hong, 2011). Meanwhile,

:::::::::::
Nevertheless,

:::::::::::::::::::
Schwitalla et al. (2020)

:::::::
reported

:::
the

:::
best

:::::::::::
performance

::::
with

:::
the

::::::::
MP8-BL5

::::::
scheme

:::::::::::
combination

::
in

::::
their

::::::::::::::::::
convection-permitting270

::::::::
simulation

:::::
over

:::
the

:::
AP

:::
for

:
a
::::::
single

::::
ERE

::
on

:::
14

::::
July

:::::
2015

:::::
(Table

:::
1),

:::::
which

::::::::
contrasts

::::
with

::::
our

:::::::
findings.

::::
This

:::::::
contrast

::::
may

:::
be

:::
due

::
to

::::::::::
differences

::
in

:::
the

::::::::::::
characteristics

::
of

::::
that

::::::::
particular

:::::
ERE,

::::::
model

:::::
setup,

::
or

:::::::
surface

:::::::::
properties.

::
In

:::::::::
particular,

::::
their

:::
use

:::
of

:
a
::::::
higher

::::::
vertical

:::::::::
resolution

::::
(100

::::::
levels)

::::
may

::::
have

:::::::
favored

:::
the

:::::::::::
performance

::
of

:::::
BL5,

:
a
:::::
local

::::::
scheme

::::
that

:::::::
strongly

:::::::
depends

:::
on

::::::::
accurately

:::::::
resolved

:::::::
vertical

::::::::
gradients.

::::::::
Similarly,

:::
the

::::::::
relatively

::::::
weaker

:::::::::::
performance

::
of

:
the BL8 (Bougeault-Lacarrère) and BL5

(Mellor-Yamada Nakanishi Niino Level 2.5 — MYNN)schemes (mean KGE of 0.41
::::
BL6 and 0.38, respectively; Figure 2) also275

show reasonable but lower performance than YSU (BL1) , indicating that their local turbulence closures may similarly restrict

effective representation of key atmospheric dynamics, particularly in arid environments where accurate BL processes are

essential (Hu et al., 2010)
:::
BL8

:::::::
schemes

::
in
::::
our

:::::::::
simulations

::::
may

:::
be

:::::
partly

::::::::
attributed

::
to

:::
the

::::::
coarser

:::::::
vertical

:::::::::
resolution.

::::::::
However,

:::::
unlike

::::
their

:::::::::::
single-event

:::::
study,

:::
the

:::::::
present

:::::::
research

::::::::
evaluates

:::
17

:::::
EREs

:::::
across

::::
the

:::
AP

::::::::
spanning

:::::::
multiple

:::::::
seasons

:::
and

::::::
years.

::::
This

:::::::::
multi-ERE

::::::::
approach

::
is
::::::::::

particularly
:::::::::

important
:::
for

::::::::::
identifying

::::::::::::::
parameterization

:::::::
schemes

::::
that

::::
are

::::::::::
consistently

:::::::
reliable280

:::::
under

:
a
:::::
range

::
of

:::::::::
conditions.

:::::
Since

:::::
future

:::::::
climate

:::::::::
projections

::::::
cannot

::
be

:::::::
directly

::::::::
validated

::::::
against

:::::::::::
observations,

:::::::
selecting

::::::
robust

:::::::::::
configurations

:::::
based

:::
on

:
a
:::::::
diverse

::
set

::
of
::::
past

:::::
EREs

::
is

:::::::
essential

:::
for

:::::::::
improving

::::::
model

:::::::::
confidence

::
in

:::::
future

::::::::::
applications.

4.2 Which MP scheme performs best in terms of rainfall?

Figure
:::
Fig. 2 presents temporal KGE scores across

:::
for 36 BL-MP combinations and the

::::::::
PBL–MP

:::::::::::
combinations

::::::
across

:
17

EREs.
::::
Since

::::::
spatial

::::
KGE

::::::
scores

::::::::::
(Supplement

::::
Fig.

:::
S2)

::::::::::
demonstrate

:::::::
similar

::::::
values,

::
the

:::::::::
discussion

::
is

::::::
limited

::
to

::::::::
temporal

::::::
scores.285

The mean temporal and spatial KGE for various MP schemes, including Kessler (MP1), Purdue Lin (
:
, MP2), WSM3 (,

:
MP3),

WSM5 (,
:

MP4), Eta Ferrier (,
:
MP5), WSM6 (

:
, MP6), Goddard (

:
, MP7), Thompson (

:
, MP8), and Morrison (

:
,
:::
and

:
MP10), are

presented in Table 4. The Goddard (MP7 ) and Thompson (
:::
and

:
MP8 ) schemes achieved the highest mean KGE scores. This

is likely due to their sophisticated handling of cloud MP
:::::::::::
microphysics, especially in representing mixed-phase and ice-phase

processes essential for simulating EREs in arid regions like Saudi Arabia. Though Goddard
::::
MP7 is a single-moment scheme,290

it includes detailed processes for ice, snow, and graupel, making it effective for capturing intense convective storms driven

by complex thermodynamics and rapid cloud development (Tao, 2003). Its optimized treatment of rain formation and melting

allows it to handle the rapid updrafts and temperature variations characteristic of desert climates, where efficient particle

formation and fallout are crucial for high-intensity rainfall events
:::::
EREs.

As a double-moment approach, the Thompson scheme (MP8 )
::::::
scheme

:
further enhances these capabilities by dynamically295

adjusting particle size distributions, including cloud droplets, rain, ice and snow. This adaptability allows it to respond ef-

fectively to environmental changes typical of desert frontal systems, where intense updrafts can quickly alter particle sizes

(Thompson et al., 2008). The double-moment structure offers flexibility in tracking a broad range of particle sizes, enabling

Thompson
::::
MP8

:
to simulate light and heavy precipitation

::::::
rainfall effectively. This capability is crucial in arid regions, where

rapid shifts between intense precipitation
::::::
rainfall and dry conditions are common, and tracking both mass and concentration300

enhances the accuracy of these transitions.
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Fig. 2.
:::::::
Temporal

::::
KGE

:::::
scores

:::
for

:::::
rainfall

::::::
derived

::::
from

::
36

:::::::::
WRF-ARW

::::::
scheme

::::::::::
combinations

:::::
across

:::
17

:::::
EREs.

:::
The

:::::
scores

::::
were

:::::::
calculated

:::
by

::::::::
comparing

:::::
hourly

:::::::::
WRF-ARW

:::::::
simulated

::::::
rainfall

::::::
against

::::::
IMERG

::
V7

::::::
satellite

::::::
rainfall

::::
data

:::
over

:::
the

::::::
24-hour

::::
event

::::
day.

The superior performance of these schemes over simpler single-moment models, like Kessler (MP1), Purdue Lin (,
:
MP2),

or WSM3 schemes (
:
,
::
or

:
MP3), underscores the importance of advanced microphysical processes

:::::::::
—including

:::::::
graupel

:::
and

::::
hail

::::::::
processes,

:::::::
multiple

::::::::
ice-phase

:::::::
species,

:::::::::
prognostic

::::::::
treatment

:::
of

::::::
various

::::::::::::
hydrometeors,

::::
and

::::
more

::::::::
complex

::::::::::
interactions

:::::::
between

::::
cloud

::::
and

::::::
rainfall

:::::::
particles

::
—

:
for capturing ERE variability and intensity. Simpler schemes lack adaptability to evolving particle305
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size distributions, limiting their effectiveness in highly convective environments with rapid shifts. Notably, despite its advanced

double-moment structure, Morrison underperformed, possibly due to sensitivities
:::::::::
interactions

::::
with

:::::
other

:::::
model

:::::::::::
components

that may hinder accuracy in arid, convective conditions—a point warranting further study beyond this scope. These
:::::::
research

::::::
beyond

:::
this

::::::
study.

:::::::
Overall,

:::
our

:
results highlight the importance of selecting MP schemes with detailed ice and mixed-phase

processes when modeling EREs in desert regions.310

Temporal KGE scores for precipitation of 36 schemes combined for 17 EREs.

4.3
:::::

Which
::::::::::
component

::
of

:::
the

::::::::::::
Kling-Gupta

:::::::::
Efficiency

::::::
(KGE)

::::::
affects

:::
the

:::::
final

::::::
rainfall

::::::
scores

:::
the

::::::
most?

4.4 Which component of the Kling-Gupta Efficiency (KGE) affects the final score the most?

Figure
:::
Fig. 3a presents the values of KGE and its components — correlation, bias, and variability (r, γ, and β, respectively;

Eq. 1) — for all 17 events
:::::
EREs for the best performing Thompson-YSU scheme (MP8_BL1 ) for rainfall .

::::::
scheme

:::::::::::
combination315

::
for

:::::::
rainfall

::::
(Fig.

::
2

:::
and

:::::
Table

:::
4). In the interest of conciseness, we focus only on the temporal KGE results here, as the spatial

KGE results are quite consistent (see Section
:::::::
Sections

:
4.1and ,

:
4.2and ,

:::
and

::::
4.5,

:::
and

:
Table 4).

Correlation is sensitive to the timing of events
:::::
EREs, variability ratio is sensitive to the distribution, and bias reflects the mean.

For the best scheme (Thompson-YSU;
::::::::::
combination

:
(MP8_BL1), the mean

:::::::
temporal KGE score for precipitation

:::::
rainfall

:
across

17 events
::::
EREs

:
is 0.48. Decomposing this score into the three components, expressed as |r−1|, |β−1| and |γ−1| to make them320

comparable, yields mean
:::::::
absolute values of 0.33, 0.23, 0.25, respectively, where values closer to 0 indicate better performance.

Among the three KGE components, the scheme thus performed worst in terms of correlation, and this subcomponent thus

exerted the dominant influence on the final KGE scores. This suggests that in order to get an improved KGE score, the most

important component score to improve is the correlation, which, in our evaluation
:::
the

:::::::
temporal

::::::::::
assessment, is related to the

timing of events
::::
EREs. The mean KGE value across all other schemes and events

::::
EREs

:
is 0.36, and the mean values for |r−1|,325

|β− 1| and |γ− 1| are 0.34, 0.29, and 0.24, respectively. This suggests that the correlation also tends to exert the dominant

influence for the other scheme combinations, while bias also plays a role. The mean KGE score for the worst-performing

scheme combination — Morrison-MYNN (MP10_BL6 ) — is 0.13, while the mean values of the three KGE components

|r− 1|, |β− 1|,
:

and |γ− 1| are 0.33, 0.57, and 0.36, respectively. This scheme thus performs particularly poorly in terms of

bias.330

4.4 How statistically significant are the differences in performance between
::::::
among scheme combinations in terms of

rainfall?

The differences in KGE between different scheme combinations
::
for

:::::::
rainfall are generally relatively small. For example,

the best-performing scheme combination (Thompson-YSU; MP8_BL1) achieved a mean KGE of 0.48, while the second

best-performing
:::::::::::::::::::
second-best-performing

:
scheme combination ( Goddard-YSU; MP7_BL1) achieved a mean KGE of 0.44335

(Figure
:::
Fig. 2). Furthermore, the corresponding standard deviations across events

:::::
EREs are 0.20 and 0.24, respectively, indi-

cating substantial variability in scores among events
:::::
EREs. Additionally, the consistency in performance ranking among events
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Fig. 3. Correlation coefficient (r), long-term bias (β), and variability ratio (γ)
:::::
values used to calculate the KGE values for the best-performing

scheme
:::::::::
combination

:
across 17 EREs for (a) precipitation

::::::
Rainfall, (b) 2-m

::
air

:
temperature, (c) 2-m relative humidity, and (d)

::::
10-m wind

speed.
::::
Panel

::
(a)

::::
uses

::::::
IMERG

:::
V7

::
as

:::::::
reference

:::
and

:::::
panels

::::
(b–d)

:::::::
METAR

::::::::::
observations

:::
over

::::
each

::::::
24-hour

::::
event

::::
day. The letters (A, B, . . . ,Q)

indicate the 17 different EREs
:::::
(Table

::
2).

:::::
EREs is fairly low (Figure

:::
Fig. 5). This raises the question of whether the observed differences in performance between scheme

combinations are statistically significant and, hence, whether our evaluation approach is adequate for determining the relative

performance of different scheme combinations, which is the primary objective of this study.340

To address this question in the context of rainfall, we calculated
:::
Fig.

::
4
:::::::
presents

::
a
::::::

36x36
::::::
matrix

:::
of

:::::::
pairwise

::::::::
p-values

::::
from

::::::::::
independent

::::::
t-tests

:::::::::
comparing ∆

::::
KGE

:::::::::::
distributions

::
of

:::
36

::::::
scheme

::::::::::::
combinations

:::
for

:::::::
rainfall.

::
∆KGE scores

:::::
values

:::::
were

::::::::
calculated

:
by subtracting the mean KGE across events

::::
EREs

:
from the KGE values presented in Figure 2to eliminate

::::
Fig.

::
2,

::::::
thereby

::::::::::
eliminating systematic differences in scores among events. We then tested whether the distributions of ∆KGE values

for different scheme combinations are statistically similar or different using pairwise independent t-tests. Figure 4 presents a345

36x36 matrix of p-values, which reveals
:::::
EREs.

:::
The

::::::
results

:::::
reveal

:
that the best-performing scheme combination (Thompson-YSU;

MP8_BL1) significantly outperformed
::::::::::
outperforms 21 other scheme combinations (at a p-level

::::::
p-level of 0.1), whereas the

14



Fig. 4. Pairwise p-values
::::::
p-values

:
from independent t-tests comparing the ∆KGE distributions of 36 scheme combinations for rainfall.

∆KGE values were calculated by subtracting the mean KGE across events
::::
EREs

:
from the KGE values presented in Figure

:::
Fig. 2. A p-value

:
p threshold of 0.1 was used to identify statistically significant differences between scheme combinations.

worst-performing scheme combination (Morrison-MYNN; MP10_BL6) performed significantly worse than 28 other scheme

combinations (also at a p-level
:::::
p-level

:
of 0.1). These results confirm that our assessment provides meaningful and statisti-

cally significant insights into the relative performance of different scheme combinations. However, our assessment does not350

definitively identify a single best-performing scheme but instead highlights groups of better- and worse-performing schemes.

We further analyzed the spatial variation of ∆KGE, as illustrated in Supplement Figure S3. The 36×36 p-value matrix

provides a statistical comparison of scheme combinations, highlighting their relative performance. The results indicate that the

best-performing scheme combination (Thompson-YSU; MP8_BL1) exhibits significantly higher skill than 21 other scheme

combinations at a statistical significance p level of 0.1. Similarly, the worst-performing scheme combination (Morrison-MYNN;355

MP10_BL6) demonstrates significantly lower skill than 28 other scheme combinations at the same significance p level 0.1.
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These findings align with the temporal variation of delta KGE analysis, reaffirming the robustness of Thompson-YSU (MP8_BL1)

and the limitations of Morrison-MYNN (MP10_BL6) in accurately simulating precipitation dynamics.

The ability of an assessment such as this to detect significant differences in performance between schemes depends on

the mean and standard deviation of the ∆KGE distribution. Assuming a standard deviation of 0.15 (equivalent to that of360

Thompson-YSU; MP8_BL1), the current sample size of 17 events
::::
EREs

:
requires a mean ∆KGE difference greater than 0.06

between schemes to yield a statistically significant difference at a p-level
:::::
p-level

:
of 0.1. Analyzing a larger sample of events

:::::
EREs would reduce the required mean difference, making it easier to detect significant differences in performance between

schemes. For example, if we were to analyze 50 events
:::::
EREs, the required difference in mean ∆KGE would be just 0.03

(assuming again a standard deviation of 0.15). However, analyzing a larger number of events
:::::
EREs is computationally more365

expensive.

The standard deviation (i.e., the variability in ∆KGE among events) and ,
::::::
EREs)

:::
and

:
hence the number of events

:::::
EREs

required to detect significant performance differences between schemes is
::
are

:
partly influenced by the quality of the reference

data. In this study, we used a
:::::::::
microwave

:
satellite-based precipitation dataset

::::::
rainfall

:::::::
product

:
(IMERG-Final V07), which

was
:
is

:
associated with greater uncertainty than other reference datasets , such as radar data

::::::::::::::
gauge-radar-based

:::::::
datasets

:
(Beck370

et al., 2019b). This increased uncertainty may have contributed to higher variability in KGE scores (Evans and Imran, 2024).

Unfortunately, radar data are not
:::
only

::::::::::::
commercially available in Saudi Arabia. Due to the strong correlation between different

datasets
:::::::::
microwave

::::::::::::
satellite-based

::::::
rainfall

:::::::
datasets

:::
—

::::
such

:::
as

:::::::
IMERG,

:::::::
GSMaP

::::::::::::::::::
(Kubota et al., 2024),

::::
and

::::::::::::::
CMORPH-CDR

::::::::::::::
(Xie et al., 2019)

::
—

:
and the fact that IMERG-Final

::
V7

:
significantly outperforms other datasets (Wang et al., 2025a)

::::::
satellite

::::::
datasets

:::::::::::::::::
(Wang et al., 2025b), we were unable to quantify the uncertainty arising from the choice of reference data

::
as

::::
done

:::
by375

:::::::::::::::::::
Evans and Imran (2024).

4.5 How consistent are the temporal and spatial performance assessments for rainfall?

We calculated KGE scores
::::
both temporally and spatially to assess the performance of the 36 BL-MP

:::::::
PBL-MP

:
scheme com-

binations across the 17 EREs. The temporal KGE results for rainfall are presented in Figure
:::
Fig. 2, while the spatial KGE

results for rainfall are provided in Supplement Figure
::::
Fig. S2. The mean KGE values categorized by MP and BL

::::
PBL schemes,380

for both temporal and spatial assessments, are summarized in Table 4. The overall mean temporal KGE across all schemes

and events
:::::
EREs

:
for rainfall is 0.37, whereas the overall mean spatial KGE is 0.26. This indicates that the simulations are

more effective at capturing temporal variations in rainfall than spatial variations. This is expected, as rainfall in the region

is highly localized, and models often struggle to replicate the spatial distribution of events precisely
:::::::::
accurately

:::::::::
simulating

::
the

::::::::
location

::
of

::::::::
localized

:::::::::
convective

:::::::
systems

:::::::
remains

:
a
:::::
major

:::::::::
challenge. Overall, we found a strong consistency in the over-385

all ranking of schemes between the temporal and spatial assessments, with a Spearman rank correlation of 0.65 (p-value of

0.00
::::::::
p < 0.001) between the mean temporal and spatial KGE values for the scheme combinations. In both the temporal and

spatial assessments, the Goddard (
::::
The MP7 ) and Thompson (

:::
and MP8 ) MP schemes, particularly when paired with the YSU

(
:::::::
schemes,

:::::
when

::::::::
combined

::::
with

:
BL1) BL scheme, consistently emerged as superior.,

:::::::::::
consistently

::::::
ranked

::::::
highest

::::::
across

::::
both
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:::::::
temporal

::::
and

::::::
spatial

::::
KGE

:::::::::::
assessments

::::
(Fig.

::
2;

:::::::::::
Supplement

:::
Fig.

::::
S2;

:::::
Table

:::
4). Conversely, the Kessler (MP1 ) scheme with390

MYNN level 3 (
::::::
scheme

::::
with

:
BL6 ) scheme performed worst in both assessments.

4.6 How consistent is the performance ranking among different variables?

Fig. 5. (a) Mean Spearman correlation coefficients and (b) corresponding median p values
:::::::
p-values calculated among mean KGE scores for

different meteorological variables, indicating the degree of consistency in performance rankings among variables. Variable definitions:
:::
2-m

relative humidity = RH;
:::
2-m

::
air temperature = T;

::::
10-m wind speed = WS; and precipitation

::::::
rainfall = Pcp

::
RF.

Ideally, if our conclusions about the performance of various MP and BL
::::
PBL

:
scheme combinations regarding rainfall are

valid, and if this superior performance truly reflects a model that better represents reality (i.e., we are ‘getting the right results

for the right reasons’;
::::::::::::::
Kirchner, 2006a), then the performance ranking for rainfall should align with those of other variables. To395

investigate this
:::
the

::::
other

::::::::
variables

::::
(2-m

:::
air

::::::::::
temperature,

::::
2-m

::::::
relative

::::::::
humidity,

::::
and

::::
10-m

:::::
wind

::::::
speed).

::::::
Indeed,

:::
for

:::
all

::::::::
variables,

::::::::
MP8_BL1

::::::::
provided

:::
the

:::::::
highest

:::::
mean

:::::::
temporal

:::::
KGE

:::::
(Fig.

:
2
::::
and

:::::
Table

::
4),

:::::::::
tentatively

::::::::::
suggesting

:::
that

::::
this

::::::::
particular

:::::::
scheme

::::::::::
combination

::::
does

::::::
indeed

::::
yield

::
a
::::
more

::::::
robust

:::::
model

:::
in

::
all

:::::::
respects.

:

::::::::::
Additionally, we calculated Spearman rank correlations and corresponding p-values between the temporal mean KGE scores

for
::
the

:
different variables (Figure

::::
Fig. 5)indicating

:
,
::
to

:::::::
examine the degree of consistency in performance rankings among these400

variables. The meteorological variables considered were relative humidity, temperature, wind speed, and precipitation.

::
the

:::::::::
variables. Most variable pairs exhibited insignificant correlations except for temperature and relative humidity, which are

intrinsically linked through the Clausius-Clapeyron relationship as temperature controls saturation vapor pressure and, thus,

relative humidity. The lack of significant correlations might have three potential explanations. First, although we considered

the possibility of unreliable reference data causing
:::::::::::
uncertainties

::
in

:::
the

::::::::
reference

::::
data

::::
may

:::::
cause discrepancies in model per-405

formance, the robustness of our reference datasets — IMERG for precipitation, radiosonde, and ;
:::
the

:::::::::
significant

::::::::::
uncertainty

::
in

::::::
IMERG

:::
for

:::::::
rainfall

::::::::::::::::
(Wang et al., 2025b)

:
,
:::::
along

::::
with

:::
the

:::::::
difficulty

:::
of

:::::::::
comparing

:::::::::
point-based

:
IOWA Environmental Mesonet

data
:
to
::::::::::
WRF-ARW

::::
grid

::::
cells

:
for other variables— ,

:
makes this explanation less likely

:::::::
plausible. Second, although MP and BL
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::::
PBL schemes strongly influence precipitation

::::::
rainfall

:
simulation, other model components like land surface schemes, which

affect soil moisture and heat fluxes, and radiation schemes, which affect surface and atmospheric energy balances, may have410

a more pronounced impact on variables such as temperature and wind speed. Third, there might be compensatory behavior

within the model, where improvements in simulating one variable do not necessarily result in a more realistic simulation and

may yield reduced performance in others.

This phenomenon, where models achieve the right results for the wrong reasons, is not uncommon in geosciences and poses

significant challenges in model evaluation and improvement (Kirchner, 2006b; Parker, 2006; Knutti, 2010; Hourdin et al.,415

2017; Broecker, 2017; Krantz et al., 2021).

Studies have shown that the choice of parameterization schemes significantly affects model performance across different

variables and regions. For example, a high-resolution regional climate model physics ensemble over Europe demonstrated

that optimal configurations vary depending on the specific climate variable and region under consideration (Laux et al., 2021)

. WRF model has indicated that its performance is highly sensitive to the selection of physical parameterization schemes,420

particularly in regions with complex terrain and variable climates (Pervin and Gan, 2021). Therefore, a more detailed analysis

of the model’s performance in simulating the various processes contributing to rainfall in each case is necessary. While this is

::::::::
Resolving

:::
this

:::::::
requires

:::::::::
examining

::::::
model

:::::::
structure

::::
and

:::::::
variable

:::::::::
interactions

:::::
more

::::::
closely

::
to

:::::::::
determine

:
if
::::::::::::
improvements

::::::
reflect

:::
real

::::::::
accuracy

::
or

:::::::::
trade-offs,

:::::
which

::
is
:

beyond the scope of the current paper, the authors intend to explore these questions in

future research
::::
study.425

4.7 What do the spatial patterns in simulated and observed rainfall look like for the events
:::::
EREs?

Figures

::::
Figs. 6 and 7, respectively, present observed (IMERG-Final V07) and simulated (WRF) 24-hr

:::::::::::
WRF-ARW)

::::::
24-hour

:
rainfall

accumulations for the 17 selected rainfall events. The WRF
:::::
EREs.

:::
The

:::::::::::
WRF-ARW

:::::
model

:
simulations were generated using

the best-performing scheme (Thompson-YSU; MP8_BL1). Overall, WRF
::::::::::
WRF-ARW generally seems to capture reasonably430

well the location, extent, and amounts indicated by IMERG. For example, the strong convective systems with high-intensity

localized rainfall exceeding 120 mm on events
:::::
EREs

:
like 20-Nov-2013 and 28-Jan-2019 are captured well. However, the

model overestimates rainfall in several events
::
for

::::::
several

:::::
EREs

:
(e.g., 08-Feb-2019) and underestimates rainfall in

::
for

:
others

(e.g., 28-Oct-2015). While WRF
::::::::::
WRF-ARW generally captures the broad patterns, the lack of a better match is attributable

to several reasons. First, potential deficiencies in the MP, BL
:
, and convection schemesand other model simplifications lead435

to potential
:
,
:::::
along

::::
with

:::::
other

::::::::
modeling

::::::::::
limitations,

::::
can

::::
lead

::
to

:
inaccuracies in moisture convergence and convective up-

drafts (Taraphdar et al., 2021; Attada et al., 2022).
:::::
These

:::::::::
limitations

:::::::
include

::::::::
simplified

:::::::::::::
representations

::
of

:::::::::::::::
land–atmosphere

::::::::::
interactions,

:::::::::
unresolved

::::::::
sub-grid

:::::::::
processes,

:::
and

::::
the

:::
use

:::
of

:::::::::
prescribed

:::::
lateral

:::::::::
boundary

:::::::::
conditions

:::::::
updated

:::::
every

::
6
::::::
hours,

:::::
which

::::
may

:::
not

:::::
fully

::::::
capture

:::::::::::
fast-evolving

::
or

::::::::::
small-scale

:::::::
features

:::::::
entering

:::
the

:::::::
domain.

:
Second, we used ERA5 as boundary

conditions to force the model, and while ERA5 is the best reanalysis currently available, it nonetheless is subject to ran-440

dom errors and bias (Hersbach et al., 2020; Soci et al., 2024). Third, we did not include data assimilation or nudging (Lei

and Hacker, 2015; Feng et al., 2021), two important techniques to improve the simulations. Fourth and finally, the IMERG
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Fig. 6. Daily accumulated rainfall from our observation-based data source (IMERG-Final V07) for the 17 extreme events
::::
EREs.

data, though found to perform relatively well in precipitation product evaluations (Abbas et al., 2025a; Wang et al., 2025c)

:::::::::::::::::::::::::::::::::
(Abbas et al., 2025b; Wang et al., 2025b), nonetheless carries significant uncertainty in the region.

4.8 How well does the model perform in terms of the other variables?445

While the previous subsections primarily focused
:::::::
focused

::::::::
primarily on rainfall, it is worthwhile to investigate how the model

performs in terms of other meteorological variables. To this end we analyzed the KGE components for T, RH, and WS
:::
2-m

:::
air
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Fig. 7. Daily accumulated rainfall from WRF
:::::::::
WRF-ARW using the

:::
best

:
performing scheme combination (Thompson-YSU; MP8_BL1) for

the 17 extreme events.
::::
EREs

.
:

::::::::::
temperature,

::::
2-m

::::::
relative

::::::::
humidity,

::::
and

::::
10-m

:::::
wind

:::::
speed as presented in Figure

::::
Figs. 3bto 3d. Figure,

:::
3c,

:::
and

:::
3d,

:::::::::::
respectively.

:::
Fig. 3b presents values of

::
the

:
KGE and its components (r, γ, and β; Eq. 1; Gupta et al., 2009; Kling et al., 2012) for all 17

events for the best performing scheme
::::
EREs

:::
for

::::::::::
temperature

:::::
using

:::
the

:::::::::::::
best-performing

:::::::::::
combination (MP8_BL1)for T. For the450

best .
::::
For

:::
this

:
scheme, the mean KGE score for T across

:::::::
temporal

:::::
KGE

:::::
score

:::::
across

:::
the

:
17 events

:::::
EREs

:
is 0.47, while the

mean scores
:::::
which

::
is

::::::
similar

::
to

:::
that

::::::::
obtained

::
for

:::::::
rainfall

:::::
(0.48).

::::
This

::
is
:::::::::
somewhat

::::::::::
unexpected,

::
as

::::::::::
temperature

::
is

:::::::::
constrained

:::
by

::::::
surface

::::::
energy

::::::
balance

:::::::::
processes,

:::::::
resulting

::
in
::::::::
smoother

:::::::::
variations

:::
and

::::
less

::::::
extreme

:::::::::
variability

:::::::::
compared

::
to

::::::
rainfall.

::::
The

:::::
mean

:::::
values

:
for |r−1|, |β−1| and |γ−1|

:::
for

::::::::::
temperature are 0.32, 0.06,

:::
and 0.33, respectively. Among the three KGE components,
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the scheme thus performed worst in terms of correlation and variability, and these two components thus
:::::
which

:::::::
therefore

:
exert455

the dominant influence on the final KGE scores. This suggests that to get an improved KGE score of T, the most important

component scores to improve are correlation and variability. If we look at mean KGE values across all other schemes across

17 EREs is 0.45, and the mean scores for |r− 1|, |β− 1| and |γ− 1| are 0.35, 0.06, 0.34, respectively. This suggests that, for

all other scheme combinations, the correlation and variability components dominate the KGE values.

Figure
:::
Fig. 3c presents the values of KGE and its components (r, γ, and β; Eq. 1; Gupta et al., 2009; Kling et al., 2012)460

for all
::
for

:::
the

:
17 events for

:::::
EREs

:::
for

::::::
relative

::::::::
humidity

:::::
using

:
the best performing scheme (Thompson-YSU; MP8_BL1)for

RH. For the best
:
.
:::
For

::::
this scheme, the mean KGE score for RH

:::::::
temporal

:::::
KGE

:::::
score

:
across 17 events

::::
EREs

:
is 0.31, while

the mean scores
:::::
which

::
is
:::::
lower

::::
than

::::
that

:::::::
obtained

:::
for

::::::
rainfall

::::
and

::::::::::
temperature.

:::::
This

::::
may

:::::
reflect

:::::::
relative

:::::::::
humidity’s

::::::::
nonlinear

:::::::::
dependence

:::
on

::::
both

::::::::::
temperature

::::
and

:::::::
moisture

::
in

:::::::
addition

::
to

:::
the

::::
high

:::::::::::::
spatio-temporal

:::::::::
variability.

::::
The

:::::
mean

::::::
values for |r− 1|,

|β− 1| and |γ− 1| are 0.47, 0.18, 0.33, respectively. Among the three KGE components, the scheme thus performed worst in465

terms of correlation,
:
followed by variability, and these two components thus

:::::
which

::::::::
therefore exert the dominant influence on

the final KGE scores. This suggests that in order to get an improved KGE score of RH, the most important component score

to improve is the correlation and, the next is the variability. The mean KGE value across all other schemes for the 17 EREs is

0.20, with mean scores of 0.54, 0.18, and 0.43 for |r− 1|, |β− 1|, and |γ− 1|, respectively. This indicates that, for all other

scheme combinations, correlation and variability components predominantly influence the KGE values.470

Figure
:::
Fig. 3d presents the values of KGE and its components (r, γ, and β; Eq. 1; Gupta et al., 2009; Kling et al., 2012) for

all
::
for

:::
the 17 events for

:::::
EREs

:::
for

::::
wind

:::::
speed

:::::
using the best performing scheme (Thompson-YSU; MP8_BL1)for WS. For the

best .
::::
For

:::
this

:
scheme, the mean KGE score for WS across

:::::::
temporal

:::::
KGE

::::
score

::::::
across

:::
the

:
17 events

::::
EREs

:
is 0.29, while the

mean scores
::
the

::::::
lowest

::::::
among

:::
the

::::
four

::::::::
variables,

:::::
likely

::::
due

::
to

:::
the

::::::::
influence

::
of

::::::::
fine-scale

::::::::::
topography

::::
and

::::::
surface

:::::::::
roughness

::::::::
variability

:::
on

::::
wind

::::::
speed.

:::
The

:::::
mean

::::::
values for |r− 1|, |β− 1| and |γ− 1| are 0.52, 0.28, 0.30, respectively. Among the three475

KGE components, the scheme thus performed worst in terms of correlationand variability, and these two components thus exert

:
,
:::::
which

::::::::
therefore

:::::
exerts

:
the dominant influence on the final KGE scores. This suggests that to get an improved KGE score of

WS, the most important component scores to improve are correlation and variability. The mean KGE value across all other

schemes for the 17 EREs is 0.26, with mean scores of 0.57, 0.27, and 0.29 for |r− 1|, |β− 1|, and |γ− 1|, respectively. These

results indicate that, for all other scheme combinations, the correlation and variability components have the most significant480

influence on the KGE values.

4.9 Which BL
::::
How

::
do

::::
the

::::
PBL and MP schemes were used in previous studies focusing on the Middle East

::::::::
compare

::::
with

:::::
those

::::::::
identified

:::
as

:::::::
optimal

::
in

:::
our

::::::::::
evaluation?

Although our findings are subject to uncertainty and must be interpreted with caution, as highlighted in the previous sub-

sections, they provide a useful basis for evaluating schemes used in previous WRF
::::::::::
WRF-ARW

:
studies in the region. Our485

review of these studies (Table 5) reveals varying choices of BL
::::
PBL

:
and MP schemes, with mixed alignment to the results

of this study. Several studies, such as those by Abida et al. (2022), Almazroui et al. (2018), and Patlakas et al. (2023), used

the YSU BL scheme (BL1 )
::::::
scheme, which our results confirm as the best-performing scheme for capturing the unique con-
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vective dynamics in arid climates. These studies highlighted YSU
:::
BL1’s robust vertical mixing capabilities and adaptability to

desert environments. On the other hand, studies like Attada et al. (2020) and Taraphdar et al. (2021), which employed MYNN490

Level 3 (BL6 ) and QNSE (BL4), respectively, used local turbulence schemes that our findings show may be less suited for

unstable, highly convective conditions typical in the region. Similarly, while MP schemes like Thompson (MP8 ) and Goddard

(
:::
and MP7), identified in our study as well-performing, were used in some cases (Taraphdar et al., 2021; Attada et al., 2020),

other studies, such as Deng et al. (2015), relied on simpler MP schemes like Lin (MP2 ) and Eta Ferrier (
:::
and MP5), which

may lack the sophistication needed to capture mixed-phase processes in intense convective systems fully. Thus, while several495

studies used high-performing schemes , others could have benefitted from incorporating YSU
::::::::
employed

::::::::
schemes

:::::::::
previously

:::::
shown

::
to

:::::::
perform

::::
well

::
in

::::::
similar

:::::::
regional

::::::::
contexts,

:::::
others

:::::
might

::::
have

:::::::::
improved

::::::::
simulation

::::::::
accuracy

:::
by

:::::::::::
incorporating

:::
the

::::
BL1

::::::
scheme

:
and advanced MP schemes to enhance the accuracy of ERE simulations in this region

:::::::
identified

:::
as

:::::::
effective

::
in
::::

our

::::
study. However, we would like to reiterate that our findings are subject to uncertainty, and these conclusions should therefore

be interpreted with caution.500

4.10 How generalizable are our findings?

5
::::::::::
Conclusion

We conducted the most comprehensive assessment of BL and MP schemes ever undertaken in the Saudi Arabia region. This

study analyzed 17 EREs across the country and tested 36 different scheme combinations. In contrast, most prior studies focused

on single events with a limited number of scheme combinations (Table 1). By conducting such an extensive evaluation, we505

were able to quantify the uncertainty in our results and highlight the challenges associated with these kinds of assessments.

Additionally, our study represents a foundational reference for selecting the most suitable BL and MP schemes for simulating

EREs
::::
This

:::::
study

::::::::
evaluated

::::
the

::::::::::
performance

:::
of

::::
PBL

::::
and

::::
MP

:::::::::::::::
parameterizations

:::
for

:::::::::
simulating

:::::
EREs

:::
in

:::
the

:::
AP

:::::
using

::::
the

::::::::::
WRF-ARW

:::::
model

::
at

:
a
:::::::::::::::::::
convection-permitting

:::::::::
resolution,

::::::
serving

::
as

:
a
::::::::::
verification

:::::
study

:::
for

:::::::::::::::
hydrometeorology

:
in the region.

The findings of this study are particularly significant for regions with climate conditions similar to those in the AP. In desert510

regions with comparable features—such as low moisture availability, deep boundary layers, storms often driven by the passage

of subtropical or polar jet streams, significant temperature variability, and unique land surface interactions—the combination

of the YSU BL scheme with the Goddard and Thompson MP schemes is likely to perform effectively. This parameterization

set could be a valuable test option for other arid or semi-arid regions with similar characteristics. However, further research

may be necessary to fine-tune parameterization choices for accurate weather simulations in other areas.515

6 Conclusion

This study evaluates the optimal combination of BL and MP parameterizations for simulating EREs at a convection-permitting

resolution in the AP using the WRF-ARW model. 36 BL-MP combinations were evaluated over 17 ERE cases across the

region. Our
:::
The

::::::
results

:::::
show

:::
that

:::
the

::::::
model

:::::::
captures

::::::::
temporal

::::::
rainfall

:::::::::
variations

::::::
(mean

::::
KGE

::
=
:::::
0.37)

:::::
more

:::::::::
effectively

::::
than
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:::::
spatial

:::::::
patterns

::::::
(mean

::::
KGE

::
=
:::::
0.26),

::::::::
reflecting

:::
the

::::::::
localized

::::::
nature

::
of

::::::
rainfall

::
in
:::

the
:::::::

region.
::::::::::
Nonetheless,

::
a
:::::
strong

::::::::::
correlation520

:::::::::
(Spearman

::::
rank

:::::::::
correlation

:::
of

::::
0.65,

:::::::
p-value

::
=

:::::
0.00)

:::::::
between

::::::::
temporal

:::
and

::::::
spatial

:::::
KGE

::::::::
rankings

::::::::
highlights

::::::::::
consistency

:::
in

::::::
scheme

:::::::::::
performance.

::::
This

::::::::::
verification

::
is

::::::
crucial

:::
for

:::::::::
improving

:::::::::
confidence

::
in

:::::::::::::::::
hydrometeorological

::::::::
modeling

::::
and

::::::::::
forecasting,

:::::::::
particularly

:::
for

::::::
regions

:::::
prone

::
to

::::
flash

::::::
floods

:::
and

:::::::
extreme

::::::
rainfall.

:::::
Thus,

:::
the

:::::::
findings

:::::
guide

:::::
model

::::::::
selection

:::
and

:
a
::::
vital

:::::::::
validation

:::::::::
benchmark

:::
for

:::::
future

:::::::::::::::::
hydrometeorological

:::::::
research

:::
and

::::::::::
operational

:::::::::
forecasting

::
in

:::::
desert

::::::::
climates.

:::
The

:
answers to the questions

posed in the introduction,
:::::
each

::::::::
addressed

::
in

:::::
detail

::
in

:::
the

::::::
Results

::::
and

::::::::::
Discussion, are as follows:525

a. Which BL
::::
PBL scheme performs best in terms of rainfall?

The YSU (BL1 ) scheme outperformed other
::::::
scheme

:::::::::::
outperformed

:::
the

:::::
other

::::
PBL schemes, achieving a

::::
mean

:
temporal

KGE of 0.43 and a
::::
mean

:
spatial KGE of 0.29. This superior performance is attributed to non-local mixing, which

enhances vertical transport and convective processes . This
:::
and makes it particularly effective for simulating extreme

rainfall
::::
ERE

:
in arid regions like Saudi Arabia

:::
the

:::
AP. In contrast, local schemes such as MYNN and BouLac

::::
BL5,530

::::
BL6,

::::
and

::::
BL8

:
performed worse because they rely on small-scale turbulence, which limits the representation of deep

convection.

b. Which MP scheme performs best in terms of rainfall?

The Goddard (MP7 ) and Thompson (
::
and

:
MP8 ) schemes performed the

::::::
schemes

:::::::::
performed

:
best, achieving a

:::::
mean

temporal KGE of 0.42, with
::::
mean spatial KGEs of 0.33 and 0.31, respectively. Their strong performance is attributed535

to their advanced mixed-phase and ice-phase MP. Thompson’
:::::::::::
microphysics.

:::::
MP8’s double-moment structure enhances

adaptability, while Goddard’
:::::
MP7’s optimized ice and graupel processes improve convective simulations. These results

highlight the importance
::::::
benefit of advanced MP schemes for accurately modeling EREs in arid regions.

c. Which component of the Kling-Gupta Efficiency (KGE) affects the final score
::::::
rainfall

:::::
scores

:
the most?

Among the components of the KGE ,
::::
three

:::::
KGE

::::::::::
components

:::::::::::
(correlation,

::::
bias

::::
ratio,

::::
and

::::::::::
variability),

:
correlation and540

variability significantly influenced KGE scoresfor precipitation
::::::
exerted

:::
the

::::::::
strongest

::::::::
influence

:::
on

:::
the

:::::::
temporal

:::::::
rainfall

::::
KGE

::::::
scores. Enhancing these components could

:::::
should

:::
be

:::::::::
prioritized

::
to further improve the accuracy of ERE simula-

tions.

d. How statistically significant are the differences in performance between scheme combinations in terms of rainfall?

Pairwise statistical tests
::::::
between

:::::::::::
distributions

::
of

::::::::
temporal

:::::
KGE

:::::
scores

::::::::
obtained

::
by

:::
the

:::::::
scheme

:::::::::::
combinations

:
revealed545

that the YSU (BL1) and Thompson (
:
_MP8 ) combination significantly outperformed 21 other scheme combinations,

while the poorest-performing scheme, Morrison-MYNN (
::::::::::
combination,

:
MP10_BL6), was statistically inferior to 28 other

combinations. This confirms that the selection of schemes plays a critical role in model accuracy
::::
Thus,

:::
we

:::::
could

::::
not

:::::::::
statistically

:::::::
identify

:
a
:::::
single

:::::
best-

::
or

:::::::::::::::
worst-performing

:::::::::::
combination,

::::::
despite

:::
the

::::
large

::::::
sample

:::
of

::
17

:::::
EREs.

e. How consistent are the temporal and spatial performance assessments for rainfall?550
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The assessment reveals that the Goddard (
::::
BL1_MP7 ) and Thompson (MP8) MP schemes, combined with the YSU

(
:::
and BL1) BL scheme,

:::::
_MP8

:
performed best in both

:::
the

:
temporal and spatial KGE evaluations

:::::::::
assessment

:::
for

::::::
rainfall.

The higher mean temporal KGE (0.37) compared to the
:::::
mean spatial KGE (0.26)

::
for

:::
all

::
36

::::::::::::
combinations indicates that

the model captures rainfall variability over time more effectively than its spatial distribution
::::
more

::::::::::
effectively

::::
over

::::
time

:::
than

::::::
across

:::::
space. Although spatial KGE values were lower, the order of scheme

::::::
ranking

::
of

:::::::::::
combination

:
performance555

remained consistent
:::::::::
(Spearman

::::
rank

:::::::::
correlation

::
of
:::::
0.65).

f. How consistent is the performance ranking among different variables?

We
::::
The

:::::::::
MP8_BL1

:::::::::::
combination

:::::::
provided

::::
the

::::
best

::::::::::
performance

::::
for

::
all

::::::::
variables

::::::::
(rainfall,

::::
2-m

:::
air

:::::::::::
temperature,

::::
2-m

::::::
relative

::::::::
humidity,

::::
and

:::::
10-m

::::
wind

:::::::
speed).

::::::::
However,

:::
we

:
obtained weak correlations between rainfall performance and

other
::::::::::
performance

:::::::
rankings

:::::
across

:::
the

:
variables, indicating poor consistency. This suggest that

::
is

:::::
likely

::::::
because

:
different560

physical processes govern the simulations of different variables. While MP and BL schemes influence precipitation
::::
That

::
is,

:::::
while

:::
MP

::::
and

::::
PBL

:::::::
schemes

::::::::
influence

:::::::
rainfall, other components, such as land surface and radiation schemes, may

affect temperature and wind. This underscores
::::::::
underlines the complexity of model parameterizationand

:
,
::::::::::
particularly

::
as

::::
cloud

:::::::::
evolution

:
is
:::::::::

influenced
::::
not

::::
only

::
by

:::::
PBL

:::
and

:::
MP

::::::::
schemes

:::
but

::::
also

::
by

::::::::
radiative

:::::::::
processes,

::::::::::
emphasizing

:
the need

for further
::::::::
integrated research.565

g. What do the spatial patterns in simulated and observed rainfall look like for the events
::::
EREs?

The
:::
For

:::
the

::::::::::::::
best-performing

::::::
physics

:::::::::::
combination

:::::::::::
(MP8_BL1),

:::
the

:
spatial patterns of simulated and observed rain-

fall captured well but exhibited
::::
were

:::::::::
generally

::::
well

::::::::
captured,

:::::::
although

:
occasional overestimations and underestima-

tions
::::
were

:::::
noted. These discrepancies are likely due to boundary condition limitations (

:::::::::
attributable

::
to

:::::::::
limitations

:::
in

::
the

:::::::::
boundary

:::::::::
conditions

::::
(the ERA5 forcing) and satellite data

::::::::
reanalysis)

::::
and

:
uncertainties in the IMERG reference570

dataset
::::::::::
observations

:::
(the

:::::::
IMERG

::::::::::::
satellite-based

::::::
rainfall

::::::::
product).

h. How well does the model perform in terms of the other variables?

The Thompson-YSU
:::::
Using

:::
the

::::::::::::::
best-performing

:::::::
scheme

::::::::::
combination

:
(MP8_BL1)scheme provided the best overall

results for additional variables, including 2-meter temperature , 2-meter relative humidity, and wind speed. This suggests

that it is a robust scheme choice for broader meteorological applications in desert environments.
::
air

::::::::::
temperature

:::::::
showed575

:
a
:::::
mean

::::::::
temporal

::::
KGE

:::::
score

::
of

:::::
0.47,

::::::
similar

::
to

::::
that

::
of

:::::::
rainfall

::::::
(0.48),

::::
with

::::::::::
performance

:::::::
limited

::::::
mainly

::
by

::::::::::
correlation

:::
and

:::::::::
variability.

:::::::
Relative

::::::::
humidity

:::
had

:
a
:::::
lower

:::::
mean

::::::::
temporal

::::
KGE

:::::
score

::::::
(0.31),

:::
like

::::
due

::
to

::
its

::::::::
nonlinear

::::::::::
dependence

:::
on

::::::::::
temperature

:::
and

::::::::
moisture,

::::
with

:::::::::
correlation

::
as

:::
the

::::::::
dominant

::::
error

::::::
source.

:::::
Wind

:::::
speed

::::
had

::
the

:::::::
poorest

::::::::::
performance

::::::
(mean

:::::::
temporal

:::::
KGE

::
of

:::::
0.29),

:::::
likely

:::
due

:::
to

:::::::::
unresolved

::::::::
fine-scale

::::::::::
topographic

:::
and

:::::::
surface

::::::::
roughness

:::::::
effects.

i. Which BL
::::
How

::
do

:::
the

:::::
PBL and MP schemes were used in previous studies focusing on the Middle East

:::::::
compare

::::
with580

::::
those

::::::::
identified

::
as

:::::::
optimal

::
in

:::
our

:::::::::
evaluation?

Many
:::
Our

:::::::
findings

:::::
align

::::
with

::::::
several previous studies in the Middle East have employed BL and MP schemes that align

with our findings, confirming the robustness of the YSU schemefor BL dynamics. However, some past
:::
that

:::::::::
employed
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::
the

:::::
BL1

:::::::
scheme,

::::::::::
reinforcing

::
its

:::::::::::
effectiveness

::::
for

:::::::::
simulating

:::::::
regional

:::::::::::
atmospheric

:::::::::
dynamics.

::
At

::::
the

::::
same

:::::
time,

::::
our

:::::
results

:::::::
suggest

:::
that

:
studies using simpler MP schemes , such as Lin (

::
—

::::
such

::
as

:
MP2 ) and Eta Ferrier (

::
or MP5 ), may585

have benefited from
::
—

::::
may

:::::::
achieve

::::::::
improved

:::::::::
simulation

:::::::
accuracy

:::
by adopting more advanced schemes like Thompson

(MP8) for improved simulation accuracy.

j. How generalizable are our findings?

With an extensive evaluation of 36 scheme combinations across 17 EREs, this study serves as a foundational reference for

selecting BL-MP schemes in desert environments. The results mainly apply to regions with similar climatic conditions,590

characterized by deep BLs, intense surface heating, and moisture-limited convection, significantly influencing precipitation

processes. Future studies incorporating radar data would refine these insights and enhance model accuracy.

By identifying the optimal BL
::::
PBL and MP combination from 36 tested configurations across 17 EREs, the study establishes

::
we

::::::::::
established

:
a strong foundation for improving the accuracy of ERE projections

:::::::::
simulations

::::::
across

:::
the

::::
AP,

:
a
::::::
region

::::
that

::::::
remains

:::::::::::
understudied

::::::
despite

:::::::
frequent

::::
flash

::::::
floods

:::
and

:::::::::
significant

::::::::
casualties. As the most comprehensive evaluation of BL

::::
PBL595

and MP schemes in Saudi Arabia
::
the

:::
AP

:
to date, this research provides valuable insights into how parameterization choices

affect ERE simulations. In a region that remains underexplored despite frequent flash floods and significant casualties, these

findings serve
::
our

:::::
study

::::::::::
emphasizes

:::
the

:::::::::
importance

::
of
::::::::::::::
parameterization

:::::::
choices

::
on

:::::
ERE

:::::::::
simulation

:::::::::::
performance,

::::::
serving

:
as a

key reference for future modeling efforts. The results
::::
Our

:::::
results

::::
may

:
guide researchers and forecasters in selecting

::
the

:::::
most

effective parameterization schemes, ultimately contributing to more reliable forecasting and enhanced disaster preparedness in600

arid environments.
::
To

::::::
further

:::::::
advance

::::
ERE

:::::::::
simulation

:::::::
fidelity,

::::::
future

::::
work

::::::
should

::::::
extend

:::::::
beyond

::::
PBL

::::
and

:::
MP

::::::::
schemes

::
to

:::::::::::
systematically

::::::::
evaluate

::
the

::::::
impact

:::
of

::::
land

::::::
surface

::::::::
schemes,

:::::::
radiation

:::::::::::::::
parameterizations,

::::
and

::::
data

::::::::::
assimilation

:::::::::
techniques.

:
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Table 2. Extreme rainfall events in
::::
EREs

:::::
across the Arabian Peninsula

::
AP selected to determine the efficacy

:::::::::
performance

:
of different MP and

BL
:::
PBL scheme combinations.

::::::::
Simulation

:::
start

:::::
times

::
are

:::::::
provided

::
in

::::
UTC.

:::::::
IMERG

:::::
rainfall

:::::
values

:::::::
represent

::::::
24-hour

:::::
totals

::::
from

::::::::
simulation

:::
start

:::
for

::
the

::::
0.1◦

::::::
grid-cell

::::
with

:::
the

:::::
highest

::::::
amount

:::
for

::::
each

::::
ERE. Abbreviations: N=north, E=east, S=south, W=west, and P=people.

Event Date Location Simulation Start
:::::::
Reported

Rainfall
::::::
IMERG

::::::
Rainfall

Fatalities / Impact Source

24-11-2022 Jeddah, Makkah,

and western Saudi

Arabia (W)

22-11-2022-00
::::::::
22-11-2022

::
00:00

179 mm

:::
120

:::
mm

2 P died in flooding FloodList (www.

floodlist.com)

27-04-2021 Makkah (W)
25-04-2021-00

::::::::
25-04-2021

::
00:00

Unknown

::
32

:::
mm

:

Severe flooding re-

ported

FloodList

04-02-2021 Tabuk (NW), Hafr

Al-Batin (E) 02-02-2021-00
::::::::
02-02-2021

::
00:0043 mm in 30

min
:::::::
unknown

::
60

:::
mm

:

7 P died; 1,100 P

affected

General Directorate

of Civil Defense

(CDD)

27-10-2019 Hafr Al-Batin (E)
25-10-2019-00

::::::::
25-10-2019

::
00:00

43 mm in 30

min 7
::
30

:::
mm

: ::
18 P died, 11 P in-

jured ; 1,100 P

affected

FloodList

23-05-2019 Jazan, Najran (SW)
21-05-2019-00

::::::::
21-05-2019

::
00:00

Unknown

::
33

:::
mm

:

1 P missing in

floods

FloodList

08-02-2019 Madinah (W),

Tabuk (NW),

Riyadh (E) , others

06-02-2019-00
::::::::
06-02-2019

::
00:00

36.6 mm in 24

hrs ::
20

:::
mm

:

4 P died; many res-

cued

FloodList

28-01-2019 Tabuk (NW),

Riyadh (C), Jeddah

(W), others

26-01-2019-00
::::::::
26-01-2019

::
00:00

Unknown

::
41

:::
mm

:

1 P died; 30 P evac-

uated

CDD

20-11-2017 Jeddah, Hail (W)
18-11-2017-00

::::::::
18-11-2017

::
00:00

115.5 mm/hr

::
73

:::
mm

:

4 P died; 481 res-

cued

FloodList

14-02-2017 Asir (SW),

Dammam (E) ,

others

12-02-2017-00
::::::::
12-02-2017

::
00:00

90 mm in 24 hrs

::
97

:::
mm

:

1 P died; 10 P in-

jured

CDD

28-11-2016 Asir (SW), Riyadh

(C) , others 26-11-2016-00
::::::::
26-11-2016

::
00:00

Unknown

::
47

:::
mm

:

8 P died; 120 evac-

uated

FloodList

08-04-2016 Asir, Baha, Taif (S)
06-04-2016-00

::::::::
06-04-2016

::
00:00

Unknown

::
36

:::
mm

:

3 P died in

Al-Baidhani valley

FloodList

24-11-2015 Riyadh, Al-Qassim
22-11-2015-00

::::::::
22-11-2015

::
00:00

Unknown

::
35

:::
mm

:

1P died FloodList

28-10-2015
Northern Saudi

Arabia (N)

26-10-2015-00
::::::::
26-10-2015

::
00:00

Unknown

::
24

:::
mm

:

6 P died FloodList

23-03-2015 Riyadh (C), Al Ba-

hah (NW) 21-03-2015-00
::::::::
21-03-2015

::
00:00

Unknown

::
29

:::
mm

:

11 P died; 300 P

rescued

FloodList

20-11-2013 Riyadh (C), Arar

(N) 18-11-2013-00
::::::::
18-11-2013

::
00:00

Unknown

::
42

:::
mm

:

4 P died CDD

14-01-2011 Jeddah (W)
12-01-2011-00

::::::::
12-01-2011

::
00:00

110 mm in 3 hrs

:::
101

:::
mm

10 P died ; 1,500 P

missing

CDD

30-12-2010 Jeddah (W)
28-12-2010-00

::::::::
28-12-2010

::
00:00

Unknown

::
46

:::
mm

:

No data CDD
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Table 3. WRF-ARW (Version 4.4) model configuration used in this study.

Configuration Parameter Details

Dynamics Non-hydrostatics

Boundary and initial conditions ERA5 reanalysis

Data Interval 3 hours

:::
Grid

::::
size

:::
D01

::::::::::::::
(116× 101)× 53,

::::
D02:

:::::::::::::
(187× 181)× 53

Resolution D01 9 km and d02 3 km

Map Projection Mercator

Horizontal grid system
:::::
Model

:::
top

::::::
pressure

Arakawa-C grid
::
30

:::
hPa

::::
Land

::::::
category

: :::::
USGS

:::
(21)

Integration time step 30 s

Vertical coordinates Terrain-following hydrostatic pressure vertical coordinate with 53 vertical lev-

els

Time integration scheme 3rd-order Runge-Kutta Scheme

Spatial differencing scheme 6th-order centre differencing

Microphysics Parameterization (MP) Kessler
:::::
(MP1), Purdue Lin

::::
(MP2), WRF Single-moment 3-class (WSM3

:
;

::::
MP3), WRF Single-moment 5-class (WSM5;

::::
MP4), Eta (Ferrier

::::
;MP5), WRF

Single-moment 6-class (WSM6
:
;
::::
MP6), Goddard

:::::
(MP7), Thompson graupel

:::::
(MP8), Morrison 2–moment

:::::
(MP10)

Cumulus Parameterization (CU) D01 (Kain Fritsch), D02 (no physics
::
CU

::::::
scheme

:
used)

Planetary Boundary Layer (BL
:::
PBL)

Parameterization

Yonsei University Scheme (YSU
:
;
:::
BL1), Mellor-Yamada Nakanishi and Niino

Level 2.5
:::::
(BL5), Mellor-Yamada Nakanishi and Niino Level 3 , BouLac

:::::
(BL6),

::::::
BouLac

:::::
(BL8)

Surface layer parameterization Noah Land Surface Scheme

:::
citep

::::::::::::::
chen2001coupling

Surface Layer Physics Revised MM5 (Jiménez et al., 2012)

Short wave radiation (ra_sw_physics) RRTMG scheme (Iacono et al., 2008)

Long wave radiation (ra_lw_physics) RRTMG scheme
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Table 4. Mean KGE values for temporal and spatial assessments of MP and BL
:::
PBL schemes.

Scheme Temporal KGE Spatial KGE

MP Schemes

Kessler (MP1) 0.26 0.05

Purdue Lin (MP2) 0.35 0.27

WRF Single-Moment 3-class (WSM3; MP3) 0.41 0.30

WRF Single-Moment 5-class (WSM5; MP4) 0.39 0.25

Eta Ferrier (MP5) 0.39 0.28

WRF Single-Moment 6-class (WSM6; MP6) 0.36 0.28

Goddard (MP7) 0.42 0.33

Thompson (MP8) 0.42 0.31

Morrison (MP10) 0.30 0.29

BL
::::
PBL Schemes

YSU (BL1) 0.43 0.29

Mellor-Yamada Nakanishi Niino Level 2.5 (MYNN
::::
Level

:::
2.5; BL5) 0.38 0.27

Mellor-Yamada Nakanishi Niino Level 3 (MYNN :
::::
Level

:
3;
:
BL6) 0.26 0.21

Boulac (BL8) 0.41 0.27

36



Table 5. Studies simulating EREs in the Middle East using WRF
::::::::
WRF-ARW.

Study MP Scheme BL
:::
PBL

:
Scheme Key Findings

Luong et al. (2020) Morrison (MP10) Mellor-Yamada-Janjic

(MYJ; BL2)

Evaluated urbanization impacts on ERE over Jeddah;

high-resolution models essential for urban storm simu-

lation.

Francis et al. (2024) Thompson aerosol-

aware (MP28)

Quasi-Normal Scale

Elimination (QNSE;

BL4)

Enhanced performance in capturing precipitation

patterns for events
:::::
rainfall

::::::
patterns

:::
for

:::::
EREs involving

atmospheric rivers in the Middle East.

Deng et al. (2015) Lin (MP2), Eta Ferrier

(MP5)

Mellor-Yamada-Janjic

(MYJ; BL2)

Demonstrated role of different MP schemes in captur-

ing Jeddah flash-flood events.

Attada et al. (2020) Thompson (MP8) MYNN Level 3 (BL6)
Consistent performance

::::::::::
Demonstrates

::::::::
consistent

::::
skill

in simulating rainfall events for AP EREs in arid regions

.
:::::::
associated

::::
with

::::
EREs

::::
over

:::
arid

::::::
regions

::
of

:::
the

::
AP

:

Taraphdar et al. (2021) Thompson (MP8) Quasi-Normal Scale

Elimination (QNSE;

BL4)

Optimal pairing for precipitation
:::::
rainfall simulation un-

der 9-km resolution, balancing accuracy and efficiency

in UAE simulations.

Abida et al. (2022) WSM 3-class (MP3) YSU (BL1) Best performance in hyper-arid coastal regions, enhanc-

ing temperature, humidity, and wind accuracy at BNPP

site.

Almazroui et al. (2018) Eta Ferrier (MP5) YSU (BL1) Highlighted YSU’s reliability for BL dynamics in

extreme storm
:::
PBL

::::::::
dynamics

::
in

::::
ERE conditions (e.g.,

Jeddah 2009 event).

Patlakas et al. (2023) Single-moment six-

class (MP6)

YSU (BL1) YSU’s adoption in operational forecasting at the Saudi

National Center for Meteorology for its robustness in

arid climates.
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