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Abstract. Extreme rainfall-events-Rainfall Events (EREs) and resulting flash floods in Saudi Arabia eause-significantrisks;
inctuding-easualties-and-pose major threats, frequently causing fatalities and significant economic losses. Accurate ERE sim-
ulations are crucial for weather forecasting, climate projeetionschange assessment, and disaster management. This study eval-
uates planetary boundary layer (BEPBL) and cloud microphysics (MP) schemes to simulate EREs in the Arabian Peninsula
(AP) using the Advanced Research version of the Weather Research and Forecasting (WRE)-medelWRF-ARW) model V4.4.
Thirty-six combinations of four BE-PBL and nine MP schemes were tested across 17 EREs at a conveetive-permitting
convection-permitting 3-km resolution ;-and compared with IMERG gridded satellite data for rainfall and station observa-
tions for temperature, humidity, and wind speed. Performanee-was-assessed-using-The Kling-Gupta Efficiency (KGE), which
incorporates correlation, variability, and everall-biasbias, was used as performance metric. We found goed-—visaal-a good
agreement between observed and simulated rainfall patternsdespite-, though some over- and underestimations —AmonrgBE

schemes;-the-were present. Among the PBL schemes, Yonsei University (YSU)-scheme-stood-out-as-the-best-performers—;
BL1) tended to perform best in terms of rainfall, while Thompson (MP8) ranked the highest among the MP schemes. Goddard

(MP7) also delivered strong results. Fhe-Among all 36 combinations, the Thompson-YSU eembination—yielded-(MP8_BL1
combination consistently produced the highest mean KGE across the 17 EREs for rainfall, performing statistically signifi-

cantly better than 21 other combinations. FarthermoereWhile MP8_BL1 also performed best for the other three meteorological

variables, performance rankings varied across mete

neeessarily correlate with-an-overalb-more-aceurate simulation-yariables, likely because different physical processes govern the
simulation of different variables. This study highlights the ehallenges-complexity of scheme evaluation and the importance of
analyzing many-EREs-while-usingreliable-multiple EREs with high-quality reference data. It-offers-guidance-for-selecting-the
most-appropriate-schemes-and-tays-The results offer practical guidance for scheme selection and lay the foundation for future
improving ERE forecasting and etimate-modeling-improvementsin-artd-regionsregional climate modeling over the AP.
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1 Introduction

Extreme rainfat-events-Rainfall Events (EREs) are episodes of intense preeipitationrainfall over a short duration, often result-

ing in flash floods, landslides, and-severe-infrastructure-damage-severe damage to infrastructure and property, and loss of life
(Easterling et al., 2000; Houze Jr, 2012; Kundzewicz et al., 2014; Srinivas et al., 2018). These events are becoming more fre-

quent and intense as atmospheric moisture increases by about 7% per degree of Warming, following Clausius-Clapeyron scaling

) Although S . S .

Tn-eontrast, EREs can intensify by as much as 6-10%

W increases at a slower rate of 2-3% per degree-

ing on their spatial and temporal scales

Saudi—Arabia;—despite-Despite its arid desert climate and low annual preeipitation;—rainfall, Saudi Arabia regularly ex-
periences significant EREs (Almazroui, 2011; Haggag and El-Badry, 2013; Deng et al., 2015; Yesubabu et al., 2016; Al-
mazroui et al., 2018; Atif et al., 2020; Attada et al., 2022)that-eftenlead-to-dangerous—{flash-flooeds, particularly during the
rainy season from November to April. These events are eften-linked-to-the-intrusion-of-frequently associated with intrusions

of an intensified subtropical jet streamand-, mid-latitude cyclonic disturbancestowards—the-peninsula,—combined—with-, and

the low-level advection of warm, moist air from nearby water bodies, including the Red Sea, Persian—Arabian Gulf, and

Arabian Sea

. Though infrequent, these EREs cause substantial damage (Al Saud, 2010; Youssef et al., 2016), making accurate forecasting

and projection

disaster management, early warning systems, a

in the region

measures(Hijji et al., 2013; Abosuliman et al., 2014).

WRE-Advanced Research version of the Weather Research and Forecasting (WRF-ARW:Skamarock et al., 2019) is a widely
used numerteat-Numerical Weather Prediction (NWP) model in the APAIMIVVWVVEQI\I/IVWWHSUM(WO simulate and forecast EREs

Deng et al., 2015; Almazroui et al., 2018; Taraphd
. These models are subject to various sources of uncertainty, particularly due to parameterizations. Two key parameterization

schemes inelude-the-that strongly influence ERE simulations include the Planetary Boundary Layer (BEPBL) and cloud mi-
crophysics (MP) schemes. The-BL-
The PBL scheme governs the vertical exchange of momentum, heat, and moisture between the surface and the atmosphere,

whichis-essential-to-simulate-playing a critical role in simulating near-surface conditions. The- MP-scheme—-on-the-otherhand;
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—Aeeurate-representation—of-It regulates vertical mixing and turbulence, which are essential for atmospheric instability and
2008). The selection of an

rocesses that directly impact rainfall development (Kumar et al.,

appropriate PBL scheme is especially important in arid and arid regions such as the AP, as intense surface heating in desert

convective initiation — ke

environments leads to the formation of unusually deep PBLs, sometimes extending up to 5 km during the day (Gamo, 1996; Marsham et al.,

- This necessitates the use of a scheme capable of accurately modeling the vertical distribution of heat, moisture, and momentum
within such a deep layer. Furthermore, deserts are characterized by complex thermodynamic profiles, including sharp temperature
gradients and significant humidity variations, which complicate the modeling process. Strong diurnal temperature variations
also require a PBL scheme capable of effectively capturing short-term fluctuations in energy and moisture fluxes.

The MP scheme governs the
On-the-other-hand;-MP-schemes-simulate-the-evolution of cloud particles, including cloud droplets, rain, snow, and ice, which

are essential to determine the intensity and duration of rainfall (Dudhia, 2014). It controls cloud formation, rainfall processes

and interactions between different water phases. It also influences radiative transfer by affecting cloud optical properties such
as droplet size distribution, phase, and concentration (Stull, 1988; Garratt, 1994; Stull, 2012; Dudhia, 2014). Additionall

schemes govern key hydrometeor processes like condensation and coalescence, which directly impact the timing, intensit
and spatial distribution of rainfall. Both single-moment and double-moment schemes exist; the latter provide a more detailed

representation by also predicting number concentrations of hydrometeors (see, e.g., Kessler, 1969; Chen and Sun, 2002; Hong et al., 2004

)

Although several previous studies have evaluated different sehemes-in-WRF-ARW parameterization schemes in the AP (e.g.,
Deng et al., 2015; Schwitalla et al., 2020; Attada et al., 2022; Abida et al., 2022) and in other arid and semi-arid regions (e.g.,
Zittis et al., 2014; Tian et al., 2017; Liu et al., 2021; Messmer et al., 2021; Khansalari et al., 2021; Mekawy et al., 2022;

Pegahfar et al., 2022), they have typically focused on individual eases-orperformed-limited-sensitivity-analyzes-with-a-narrow

range-EREs and conducted limited sensitivity analyses using a small number of parameterization schemes (Table 1). The case-
specific nature of these studies often limits-restricts the generalizability of the-results-aeross—multiple-events-their results to

other EREs and varying conditions, which-reduces-reducing their broader applicability for predicting EREs in the complex
climate dynamics of the AP.

Our study addresses this gap by conducting an extensive evaluation of BE-WRF-ARW PBL and MP schemes for simulat-
ing EREs in the AP at convection-permitting resolution (3 km) to establish-determine the best combination of Bl-and-MP
parameterization-PBL and MP schemes that consistently perferm-performs well across different EREs. We conduct-sensitivity

expertments-onanalyze 17 ERE-eases-spanning-EREs from 2010 to 2022 across the AP, testing 36 different combinations of
BLE-PBL and MP schemes to identify the optimal setup-configuration for ERE simulation in the AP. We simulate the +7-extreme

rainfall-cases-EREs using a two-way nested domain configuration with 53 vertical levels and horizontal resolutions of 9 km

and 3km— km. While our primary focus is on the evaluation of rainfall, we also examine air temperature, relative humidity, and
wind speed..

To guide the reader, the paper is structured according to ten-nine key questions:
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a. Which BE-PBL scheme performs best in terms of rainfall?

b. Which MP scheme performs best in terms of rainfall?

c. Which component of the Kling-Gupta Efficiency (KGE) affects the final seererainfall scores the most?

d. How statistically significant are the differences in performance between scheme combinations in terms of rainfall?
e. How consistent are the temporal and spatial performance assessments for rainfall?

f. How consistent is the performance ranking among different variables?

g. What do the spatial patterns in simulated and observed rainfall look like for the eventsEREs?

h. How well does the model perform in terms of the other variables?

i. Whieh-BE-How do the PBL and MP schemes were-used in previous studies foeusing-on-the-Middle-East?-

j. Hew-generalizable-are-ourfindingscompare with those identified as optimal in our evaluation?

2 Physical geography and climatic description of the study area

Saudi Arabia, covering 80% of the AP, spans tatitidesfrom 16°N to 33°N and tengitudes-34°E to 56°E, with an area of approx-
imately 2,+49:696-2.1 million km?, making it the largest country in the Middle East and the 12th largest globally. The terrain
includes highlands, volcanic fields, mountain ranges, and the vast Arabian desert, featuring the Rub’ al Khali, the world’s largest
continuous sand desert. Despite lacking permanent rivers, it has many wadis, alluvial deposits (Vincent, 2008; WeatherOnline,
2024), and about 1,300 islands in the Arabian Gulf and the Red Sea. The central plateau stretches from the Red Sea to the Ara-
bian Gulf, while the Asir province reaches 3,002meters- m above sea level at Jabal Ferwa, and the Hejaz region contains approx-
imately 2,000 extinct volcanoes across 180,000 km?. The climate is characterized by vast deserts, rugged mountains, and an-arie

1a_hyper-arid climate, with
extreme summer temperatures of 45-54°€-45-54°C and winters rarely below 0°C (Climate-com;2648)—Minimal-rainfat

De Vries et al., 2016; El Kenawy et al., 2014; Mostamandi et al., 2022; Ukhov et al., 2020). The average annual rainfall over
the region is about 63 mm, except in the seuthsouthwest, where monsoons bring areund-over 300 mm of rain from October to

March Hasaneanand-Almazreut; 205)—The-averase-annualrainfall-over the restonis-abeu 4-mm-(El- Kenawy-et-al; 2044

—Fhe-(Wang et al., 2025b).

The primary mechanisms driving preeipitationrainfall vary between the eastern and western coasts. On the western coast, the

Asir mountain chains play a significant role in capturing moist northwesterly winds along the Red Sea coast, particularly during
winter, extending up to the Bab el-Mandeb Strait (Pedgley, 1974; El Kenawy et al., 2014; Mostamandi et al., 2022). From East
Africa through the Red Sea towards the eastern Mediterranean, the Red Sea Trough (RST) creates a geographical environment

conducive to forming strong low-pressure systems over the central Red Sea. These systems can generate substantial rainfall



Table 1. Previous studies evaluating WRFE-WRF-ARW physics schemes in the Middle East.

Region Kind of schemes Number of Model layer/ Conclusion Reference
Events Vertical levels
used
Jeddah, Microphysics schemes: ~ Three flash Deng et al.
Saudi Lin, Eta Ferrier floods events Fhe WRF0_ The WRE-ARW Model effectively (2015)
Arabia simulates flash floods in Jeddah, with 1
km resolution improving rainfall
accuracy and 5 km requiring careful
parameterization due to observed
spatial displacement.
AP Cumulus schemes: KF, ~ Winter Selecting subgrid convective Attada et al.
BMIJ, GF simulation 2 parameterization is crucial for accurate  (2020)
from 2001 to high-resolution rainfall simulations
2016 over the AP.
AP MP schemes: Case study on Schwitalla
Thompson 2-moment, July 14, 2015 Fhebestresults  The best performance was obtained. et al. (2020)
Thompson were-achieved  using a convection-permitting model
aerosol-aware and using-100_ resolution with acrosol-aware
WDM6 and BE-PBL Thompson mierophysies-with- MY NN
schemes: MYNN fevet PBLeffectively-eapturing
Level 2.5 and YSU precipitationMP combined with the.
Middle Single year run Gray-zone simulations enhance Taraphdar et al.
East BEPBL schemes: for 2017 82 precipitation rainfall modeling but are  (2021)
ACM2, QNSE, MYNN highly dependent on resolution and the
Level 2.3 selection of physics schemes.
AP Cumulus schemes: KF, Winter Attada et al.
BMJ. GF simulation Extreme-winter ~ ERE is best simulated using the KF (2022)
from 2001 to rainfat-52 scheme, highlighting the importance of

2016

cumulus parameterization in WRE

WRF-ARW for reliable modeling in
the hyperarid-hyper-arid AP region.

120 within the region (De Vries et al., 2013; El Kenawy et al., 2014). In contrast, the eastern coast, influenced by the Hajar

Mountains and its proximity to the Arabian Sea, receives convective preeipitationrainfall driven by the summer monsoon and

moisture-laden winds from the Indian Ocean (Babu et al., 2016).
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3 Data and Methods
3.1 Selection of Historical Extreme Rainfall Cases

We selected 17 EREs tha i afpage—a AStH - : b across from
2010 to 2022 that caused significant damage to infrastructure and property, as well as loss of life, and received widespread
media coverage. Table 2 lists the EREs analyzed in this study. We eensidered-included 17 cases to increase eur—chanee-the
likelihood of obtalnmg statlstlcally s1gn1ﬁcant results —We%mﬁeel—%%wmbe%ef—ea%es—te—avmd—e*ee&m%emp&a&eﬁa}
tmeregarding the
relative performance of different schemes. We did not analyze more cases due to the significant processing, storage, and
computational demands.

3.2 Initial and Boundary Conditions

ERAS ressure-level data (with 37 levels, extending up to approximately 30 km altitude; 0.25° reselution:
Hersbach-et-al5-2020spatial resolution) was utilized to provide initial and boundary conditions for each 3-hour time step to

run WRF-ARW. The-ERAS data-was-obtained-via-is the most reliable reanalysis currently available and was therefore used
for this purpose (Hersbach et al., 2020). The data were obtained from the Copernicus Climate Data Store (CDS https //cds.

climate.copernicus.eu)

3.3 Observations

As a reference for our assessment, we used rainfall estimates from the microwave-based-satellite-based Integrated Multi-
satellite Retrievals for GPM (IMERG) Final V07 product (Huffman et al., 2023). The product covers 2000 to the present, has
a 30-minute 0.1° resolution, and was aggregated to hourly for our analysis.

‘We also used #a

inelading-2-m air temperature (°C), 2-m relative humidity (%), and 10-m wind speed (m/s) -was-obtained-observations from the

IOWA Environmental Mesonet (METAR) data provided by Iowa State University (https://mesonet.agron.iastate.edu/request/
download.phtml?network=SA__ASOS:; for locations, see Supplement Fig. S1).

3.4 WRF-WRF-ARW Model Configuration

This study uses the Advanced-Research-version-of-Weather Research-andForecasting(WRF-ARW )-medel-versionmodel

version 4.4, a non-hydrostatic, fully compressible model with a terrain-following coordinate system (Skamarock et al., 2019).

The model is configured with two-way nested domains ;—with-with horizontal grid dimensions of 493 x 418 for the parent
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domain (DO1) and 1012 x 889 for the nested domain (D02), and a model top pressure of 30 hPa, comprising 53 vertical hybrid

sigma levels and a horizontal resolution of 3 km in the innermost domain, as shown in FigureFig. 1. The AP-DO1 domain covers
a vast region of the AP from 21°E to 65°E in the zonal direction and from 2°N to 40°N in the meridional direction, allowing for
the representation of large-scale atmospheric features and internal dynamics. FThe-study-performed-We conducted 612 distinet

onc—easch—vwath-a-epe = [ and NMD cochama ormbimnation o-tho

configurations-simulations, spanning all 36 possible PBL-MP scheme combinations, to assess their joint performance across
17 EREs. The WRF model used-inthis study explicitly-simulates convection-within the inner domain-at a m-resolution

Convection is explicitl
resolved in D02, while DO1 uses the Kain-Fritsch parameterization (Kain and Fritsch, 1993) for sub-grid convective processes

(Snook et al., 2019).

We considered 36 combinations involving nine MP and four BE-PBL schemes. The BE-PBL schemes tested include
Mellor-Yamada Nakanishi Niino (MYNN) Level 2.5 and Level 3 (BL5, BL6; Nakanishi and Niino, 2006), Yonsei Univer-
sity (YSU; BL1; Hong et al., 2006), and Bougeault-Lacarrere (BouLac; BL8; Bougeault and Lacarrere, 1989), while the MP
schemes include Kessler (MP1; Kessler, 1969), Purdue Lin (MP2; Chen and Sun, 2002), WRF Single-Moment 3-class and
5-class (MP3 and MP4, respectively; (Hong et al., 2004)), Eta Ferrier, (MPS5; Rogers et al., 2001), WRF Single-Moment 6-
class (MP6; Hong and Lim, 2006), Goddard (MP7; Tao et al., 2016), Thompson (MP8; Thompson et al., 2008), and Mor-
rison 2-Moment (MP10; Morrison et al., 2009). These combinations were selected based on their compatibility with the

surface layer physics Revised MMS5 scheme (Jiménez et al., 2012), and additional schemes were not included due to the

higher computational and storage demands. Previous studies focusing on the AP have also utilized these schemes, includ-

Initial and boundary conditions were extracted from ERAS reanalysis data at 3-hour intervals with a 0.25° resolution. The

All model simulations were run-conducted for 84 hours, including a 48-hour spin-up with-the-analysisfoeused-on-the-period
to_ensure model stability and reduce initialization biases. The analysis was focused on a 24-hour event-windowfor-each
ERE~window corresponding to the peak rainfall period of each ERE (Table 2). Our study specifically targets short-duration,
event-based simulations of ERE. In such cases, the primary drivers are typically large-scale atmospheric instabilities and
moisture advection rather than slower processes like land—surface interactions. Consequently, a 48-hour spin-up period is
sufficient to allow the model to dynamically and thermodynamically adjust to the initial and boundary conditions. Refer to

Table 2 for the simulation start dates and Table 3 for the model configuration.
3.5 Model Assessment Approach

Each combination of MP and BIPBL schemes was extensively evaluated using the Kling-Gupta Efficiency (KGE; Gupta et al.,

2009; Kling et al., 2012). KGEis-a-metricused-as-acomprehensive-measure-thatanalyzes The KGE is an aggregate performance
metric that integrates correlation, bias ratio, and variability between—simutated-and-observed-data—ratio into a single score,
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Fig. 1. WRF-ARW domain for the AP region showing the elevation in the backgroundand-radiesende-. METAR locations as+ed-are indicated

with blue markers.

roviding a holistic assessment of model performance. Several studies have successfully used KGE for spatial performance

., Gupta et al., 2009; Patil and Stieglitz, 2015; Beck et al., 2019a; Nguyen et al.,

assessment of hydrometeorological models (e.

2022; Tud:

lication in our analysis. The formula for KGE is given by:

190 KGE—1- V(i - 17+ (-1 + (- 1%, .

where r is Pearson’s correlation coefficient between the observed and simulated data, 3 is the ratio of the mean simulated

data to the mean observed data, assessing the bias, and 7 is the ratio of the coefficients of variation of the simulated and

observed data, evaluating the variability. A perfect but unattainable KGE score is 1, indicating complete agreement between

simulated and observed data. A hypothetical simulation predicting only the observed mean would achieve a KGE of —0.41
195 (Knobenetal., 2019).

For rainfall, the KGE was calculated separately in space and in time. For the temporal KGE (Fig. 2), we first calculated, for
each hour of the event day (refer-te-Table 2), the spatial average of observed and simulated rainfall across Pemain2+D02 3
Figure(Fig. 1). The KGE was derived from these 24 pairs of observed and simulated spatially averaged values. For the spatial
KGE, for each grid cell within D02, the daily mean of observed and simulated rainfall was computed —(Supplement Fig. S2)

200 The KGE was subsequently calculated using these observed and simulated grid-eel-grid-cell daily means. Theformulafor



205

210

215

220

225

230

KGE=1—/(r— 1)+ (B— 12+ (7 — 1%,

To enable a consistent grid-cell-to-grid-cell comparison with IMERG observations, we resampled the WRF-ARW simulated
rainfall data to the mean e : is—the—rati he-coefficien iation Hratate

ity:0.17 IMERG grid using averaging. This

resampling was performed using the xarray package in Python (Hoyer and Hamman, 2017)._
Additionally, to determine whether the performance is significantly different between scheme combinations for rainfall,
we calculated AKGE scores by subtracting the mean KGE across EREs from the KGE values, thereby eliminating systematic
differences in scores among EREs. We then tested whether the distributions of AKGE values for different scheme combinations

are statistically similar or different usin

For 2-meter-temperature;2-meter-2-m air temperature, 2-m relative humidity, and 10-m wind speed, KGE was calculated

from hourly METAR observations from the IOWA Mesonet and corresponding simulations from the nearest model grid-cell

for the day of each eventERE.

4 Results and Discussion

4.1 Which BE-PBL scheme performs best in terms of rainfall?

FigureFig. 2 presents the-temporal KGE scores in-for 36 combinations-of B-MP-and-the - PBL-MP combinations across
17 EREs. As spatial KGE scores (Supplement Fig. S2) exhibit comparable patterns, the analysis here focuses on the temporal
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scores. The mean temporal and spatial KGE for the BE-PBL schemes—YSUABL 1); MYNN-Level2:5-¢, BLS ;- MYNN-Level
3+, BL6);and-Boukae(, and BL8)—are summarized in Table 4. Among these, the YSUABL1 )-scheme showed superior
performance among the BE—schemes-PBL schemes (mean KGE of 0.43). Notably, ¥SU~BLI1 }is the only scheme with a
non-local approach, unlike the other schemes, which are all local. This non-local mixing likely explains Y-SUBL1’s superior
performance, enabling enhanced vertical mixing across the entire BEPBL. Non-local schemes like Y-SU-BL1 )-can represent
large eddy structures and transport heat, moisture, and momentum over considerable vertical distances, a capability that is
particularly crucial in arid environments with intense surface heating and sharp thermal gradients, such as Saudi Arabia (Hong
et al., 2006; Hu et al., 2010). In contrast, local schemes like the MYNN-Eevel2:5(BL5);-MYNN-Level 3+, BL6)-andBoukae
¢,and BL8 (mean KGE values of 0.38, 0.26, and 0.41, respectively) rely on gradients at specific vertical levels and small-scale
turbulence, which restricts their ability to simulate deep convection and rapid vertical mixing (Nakanishi and Niino, 2006;
Bougeault and Lacarrere, 1989).

Previous research has shown that non-local schemes, including ¥SEH«BL 1), yield a deeper and more accurately structured Bl
PBL than local schemes, especially in the presence of strong surface heating and convective activity, which are characteristic of
desert climates (Xie et al., 2012; Cohen et al., 2015). Specifically, ¥SUBL1’s non-local treatment of BI-PBL processes allows
it to develop a deeper BE-PBL during the daytime, a typical feature in arid regions, enhancing the scheme’s ability to capture
severe convective activity (Cohen et al., 2015).

The-Y¥SU-scheme’s(BL+)-performance-in-representing BL-The performance of BLI in representing PBL processes is
especially advantageous in regions where convection is often triggered by advancing frontal systems, as is common in the AP. In
a case study using the WRE-WRF-ARW model, Cohen et al. (2015) demonstrated that ¥SEBL1’s non-local treatment improves
the BEPBL’s response to cold fronts, triggering convection more realistically and enhancing features like the formation of
double lines of intense convection. This improvement arises because ¥SU«BL1 }-minimizes the dilution of moist air by dry
air entrainment, maintaining a higher moisture concentration within the BEPBL. This "fuel” is crucial for sustaining severe
convection when fronts initiate it, particularly in desert regions, where dry air entrainment can otherwise weaken or inhibit
intense convective activity and thus reduce the accuracy of ERE simulations.

In contrast, local schemes like MYNNABL5 and 6)-and-Beulac(BL6 and BL8 )-are optimized for stable or stratified
BEsPBLs, typically performing well by simulating small-scale turbulence. However, these schemes often struggle in unsta-
ble, highly convective environments like those in Saudi Arabia, where larger eddy structures dominate and require extensive

vertical mixing to capture intense updrafts and

Performanee-is-consistenthydowerrainfall (Hu et al., 2013; Cohen et al., 2015). Performance is particularly low for the BL6
scheme (Meler-YamadaNakanishi-Niino-Level-3:-mean KGE of 0.26; Figure-2Table 4) scheme, and-it-consistently-showed

tower-and-sometimes-sometimes showing negative KGE scores across different MP schemes —(Fig. 2). The scheme’s higher-

order local closure approach can lead to over-diffusion, dampening essential vertical motions and limiting its ability to capture

10



coherent eddies and large-scale vertical transport—critical for effective moisture and heat distribution needed for convective
rainfall (Nakanishi and Niino, 2006; Shin and Hong, 2011). Meanwhile;-

Nevertheless, Schwitalla et al. (2020) reported the best performance with the MP8-BL5 scheme combination in their convection-

simulation over the AP for a single ERE on 14 July 2015 (Table 1), which contrasts with our findings. This contrast may be
due to differences in the characteristics of that particular ERE, model setup, or surface properties. In particular, their use of
a higher vertical resolution (100 levels) may have favored the performance of BLS, a local scheme that strongly depends on
accurately resolved vertical gradients. Similarly, the relatively weaker performance of the BES(Bougeault-Lacarrere)and BES
275 iMeHor-Yamada Nakanishi-Niino-Levelb 2.5 —MYNNwchemes tmean KGR of 041 BLO and 038 respectivelvs Fignre 2rabso

270

essentiat(Hu-etal;2040)BL8 schemes in our simulations may be partly attributed to the coarser vertical resolution. However,
unlike their single-event study, the present research evaluates 17 EREs across the AP spanning multiple seasons and years.
280 This multi-ERE approach is particularly important for identifying parameterization schemes that are consistently reliable
under a range of conditions. Since future climate projections cannot be directly validated against observations, selecting robust
configurations based on a diverse set of past EREs is essential for improving model confidence in future applications.

4.2 Which MP scheme performs best in terms of rainfall?

FigureFig. 2 presents temporal KGE scores aeross—for 36 BE-MP-combinations—and-the PBL-MP combinations across 17

285 EREs. Since spatial KGE scores (Supplement Fig. S2) demonstrate similar values, the discussion is limited to temporal scores.
The mean temporal and spatial KGE for various MP schemes, including &esstertMP 1), Purdue Lin-{, MP2)-WSM3-, MP3);
WSMS-, MP4);EtaFerrier, MP5);-WSM6-, MP6)-Goddard-, MP7);-Thompsen<, MP8);-and-Merrison<, and MP10), are
presented in Table 4. The Geddard(MP7 )-and-Thempson-(and MP8 )-schemes achieved the highest mean KGE scores. This
is likely due to their sophisticated handling of cloud MPmicrophysics, especially in representing mixed-phase and ice-phase

290 processes essential for simulating EREs in arid regions like Saudi Arabia. Though Geddard-MP7 is a single-moment scheme,
it includes detailed processes for ice, snow, and graupel, making it effective for capturing intense convective storms driven
by complex thermodynamics and rapid cloud development (Tao, 2003). Its optimized treatment of rain formation and melting
allows it to handle the rapid updrafts and temperature variations characteristic of desert climates, where efficient particle
formation and fallout are crucial for high-intensity rainfal-eventsEREs.

295 As a double-moment approach, the Thompsen-scheme{(MP8 )-scheme further enhances these capabilities by dynamically
adjusting particle size distributions, including cloud droplets, rain, ice and snow. This adaptability allows it to respond ef-
fectively to environmental changes typical of desert frontal systems, where intense updrafts can quickly alter particle sizes
(Thompson et al., 2008). The double-moment structure offers flexibility in tracking a broad range of particle sizes, enabling
Thempson-MP8 to simulate light and heavy preeipitationrainfall effectively. This capability is crucial in arid regions, where

300 rapid shifts between intense preeipitationrainfall and dry conditions are common, and tracking both mass and concentration

enhances the accuracy of these transitions.
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Fig. 2. Temporal KGE scores for rainfall derived from 36 WRF-ARW scheme combinations across 17 EREs. The scores were calculated b

comparing hourly WRF-ARW simulated rainfall against IMERG V7 satellite rainfall data over the 24-hour event day.

The superior performance of these schemes over simpler single-moment models, like Kessler(MP1);-PurdueLin, MP2);
or-WSM3-sehemes, or MP3), underscores the importance of advanced microphysical processes —including graupel and hail
processes, multiple ice-phase species, prognostic treatment of various hydrometeors, and more complex interactions between

305 cloud and rainfall particles — for capturing ERE variability and intensity. Simpler schemes lack adaptability to evolving particle
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size distributions, limiting their effectiveness in highly convective environments with rapid shifts. Notably, despite its advanced
double-moment structure, Morrison underperformed, possibly due to sensitivities-interactions with other model components
that may hinder accuracy in arid, convective conditions—a point warranting further study-beyond-thisseepe—Fhese-research
beyond this study. Overall, our results highlight the importance of selecting MP schemes with detailed ice and mixed-phase

processes when modeling EREs in desert regions.

4.3 Which component of the Kling-Gupta Efficiency (KGE) affects the final rainfall scores the most?

44

FigureFig. 3a presents the values of KGE and its components — correlation, bias, and variability (r, 7, and 3, respectively;
Eq. 1) —for all 17 events EREs for the best performing Fhompson-YSt-scheme(MP8_BL1 }orrainfat-scheme combination
for rainfall (Fig. 2 and Table 4). In the interest of conciseness, we focus only on the temporal KGE results here, as the spatial
KGE results are quite consistent (see Seetion-Sections 4.land-, 4.2and-, and 4.5, and Table 4).

Correlation is sensitive to the timing of eventsERES, variability ratio is sensitive to the distribution, and bias reflects the mean.
For the best secheme-(Thompsen-¥SU;-combination (MP8_BL1), the mean temporal KGE score for preeipitation-rainfall across
17 eventsEREs is 0.48. Decomposing this score into the three components, expressed as |r—1|, |3—1| and |y—1]| to make them
comparable, yields mean absolute values of 0.33, 0.23, 0.25, respectively, where values closer to 0 indicate better performance.
Among the three KGE components, the scheme thus performed worst in terms of correlation, and this subcomponent thus
exerted the dominant influence on the final KGE scores. This suggests that in order to get an improved KGE score, the most
important component score to improve is the correlation, which, in eur-evaluationthe temporal assessment, is related to the
timing of eventsEREs. The mean KGE value across all other schemes and events-EREs is 0.36, and the mean values for |r — 1],
|6 — 1| and |y — 1| are 0.34, 0.29, and 0.24, respectively. This suggests that the correlation also tends to exert the dominant
influence for the other scheme combinations, while bias also plays a role. The mean KGE score for the worst-performing
scheme combination —Merrison-MYNN-MP10_BL6 y—is 0.13, while the mean values of the three KGE components
|r—1[, |8 —1]|, and |y — 1| are 0.33, 0.57, and 0.36, respectively. This scheme thus performs particularly poorly in terms of

bias.

4.4 How statistically significant are the differences in performance between-among scheme combinations in terms of

rainfall?

The differences in KGE between different scheme combinations for rainfall are generally relatively small. For example,
the best-performing scheme combination (Thempsen—¥-SU:-MP8_BL1) achieved a mean KGE of 0.48, while the seecend
best-performing-second-best-performing scheme combination ( Geddard-¥SU;-MP7_BL1) achieved a mean KGE of 0.44
(Figurelig. 2). Furthermore, the corresponding standard deviations across events-EREs are 0.20 and 0.24, respectively, indi-

cating substantial variability in scores among eventsEREs. Additionally, the consistency in performance ranking among events
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Fig. 3. Correlation coefficient (), fong-termr-bias (3), and variability ratio () values used to calculate the KGE values for the best-performing
seheme-combination across 17 EREs for (a) preeipitationRainfall, (b) 2-m air temperature, (c) 2-m relative humidity, and (d) 10-m wind

speed. Panel (a) uses IMERG V7 as reference and panels (b—d) METAR observations over each 24-hour event day. The letters (A, B, ....Q)
indicate the 17 different EREs (Table 2).

EREs is fairly low (FigureFig. 5). This raises the question of-whether the observed differences in performance between scheme

combinations are statistically significant and, hence, whether our evaluation approach is adequate for determining the relative

340 performance of different scheme combinations, which is the primary objective of this study.
To-address—this—question—in-the—econtext-of rainfall,-we-—ealeulated-Fig, 4 presents a 36x36 matrix of pairwise p-values
from independent t-tests comparing AKGE distributions of 36 scheme combinations for rainfall. AKGE seores-values were
calculated by subtracting the mean KGE across events-EREs from the KGE values presented in Figure-2to-eliminate-Fig. 2,
Wsystemaﬁc differences in scores among events—We-then-tested-whether-the-distributions-of AKGE-values

345

%%Mmmhat the best—perforrmng scheme combination (Theﬂ}pseﬂ-ﬁLSH
MP8_BL1) significantly eutperformed-outperforms 21 other scheme combinations (at a p-tevel-p-level of 0.1), whereas the
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Fig. 4. Pairwise p-values—p-values from independent t-tests comparing the AKGE distributions of 36 scheme combinations for rainfall.
AKGE values were calculated by subtracting the mean KGE across events-EREs from the KGE values presented in FigareFig. 2. A p-valae

p threshold of 0.1 was used to identify statistically significant differences between scheme combinations.

worst-performing scheme combination (Merrison-MYNN:-MP10_BL6) performed significantly worse than 28 other scheme
combinations (also at a p-level-p-level of 0.1). These results confirm that our assessment provides meaningful and statisti-
cally significant insights into the relative performance of different scheme combinations. However, our assessment does not

definitively identify a single best-performing scheme but instead highlights groups of better- and worse-performing schemes.
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The ability of an assessment such as this to detect significant differences in performance between schemes depends on

the mean and standard deviation of the AKGE distribution. Assuming a standard deviation of 0.15 (equivalent to that of
Thempson-—Y¥-SU;-MP8_BL1), the current sample size of 17 events-EREs requires a mean AKGE difference greater than 0.06
between schemes to yield a statistically significant difference at a p-level-p-level of 0.1. Analyzing a larger sample of events
EREs would reduce the required mean difference, making it easier to detect significant differences in performance between
schemes. For example, if we were to analyze 50 eventsEREs, the required difference in mean AKGE would be just 0.03
(assuming again a standard deviation of 0.15). However, analyzing a larger number of events-EREs is computationally more
expensive.

The standard deviation (i.e., the variability in AKGE among events)-and—-EREs) and hence the number of events-EREs
required to detect significant performance differences between schemes is-are partly influenced by the quality of the reference
data. In this study, we used a microwave satellite-based preeipitation—dataset-rainfall product (IMERG-Final V07), which
was-1s associated with greater uncertainty than otherreference-datasets—such-asradar-data-gauge-radar-based datasets (Beck
et al., 2019b). This increased uncertainty may have contributed to higher variability in KGE scores (Evans and Imran, 2024).
Unfortunately, radar data are net-only commercially available in Saudi Arabia. Due to the strong correlation between different
(Xie et al., 2019) — and the fact that IMERG-Final V7 significantly outperforms other datasets-(Wang-et-al52025a)satellite
datasets (Wang et al., 2025b), we were unable to quantify the uncertainty arising from the choice of reference data as done by

Evans and Imran (2024).

4.5 How consistent are the temporal and spatial performance assessments for rainfall?

We calculated KGE scores both temporally and spatially to assess the performance of the 36 BE-MP-PBL-MP scheme com-
binations across the 17 EREs. The temporal KGE results for rainfall are presented in FigureFig. 2, while the spatial KGE
results for rainfall are provided in Supplement FigureFig. S2. The mean KGE values categorized by MP and BE=PBL schemes,
for both temporal and spatial assessments, are summarized in Table 4. The overall mean temporal KGE across all schemes
and events-EREs for rainfall is 0.37, whereas the overall mean spatial KGE is 0.26. This indicates that the simulations are

more effective at capturing temporal variations in rainfall than spatial variations. This is expected as rainfall-in-the-region

elyaccurately simulatin
the location of localized convective systems remains a major challenge. Overall, we found a strong consistency in the over-

all ranking of schemes between the temporal and spatial assessments, with a Spearman rank correlation of 0.65 (p-value-of
G%TLSVQ,QVOVL) between the mean temporal and spatial KGE values for the scheme combinations. In-both-the-temporal-and
The MP7 y-and-Thempsen-(and MP8 yMP-schemes;-particularly-when-paired-with-the- YSU
tschemes, when combined with BL1)-BE-scheme;-consistently emerged-as-superior;, consistently ranked highest across both
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temporal and spatial KGE assessments (Fig. 2; Supplement Fig. S2; Table 4). Conversely, the Kessler(MP1 )scheme-with
MYNN-evel-3(scheme with BL6 )-scheme performed worst in both assessments.

4.6 How consistent is the performance ranking among different variables?
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Fig. 5. (a) Mean Spearman correlation coefficients and (b) corresponding median p-vaties—p-values calculated among mean KGE scores for
different meteorological variables, indicating the degree of consistency in performance rankings among variables. Variable definitions: 2-m

relative humidity = RH; 2-m air temperature = T; 10-m wind speed = WS; and preeipitationrainfall = PepRF.

Ideally, if our conclusions about the performance of various MP and BE-PBL scheme combinations regarding rainfall are
valid, and if this superior performance truly reflects a model that better represents reality (i.e., we are “getting the right results
for the right reasons>; Kirchner, 2006a), then the performance ranking for rainfall should align with those of othervariables—To
investigate-thisthe other variables (2-m air temperature, 2-m relative humidity, and 10-m wind speed). Indeed, for all variables
MPS8 BL1 provided the highest mean temporal KGE (Fig. 2 and Table 4), tentatively suggesting that this particular scheme

combination does indeed yield a more robust model in all respects.
Additionally, we calculated Spearman rank correlations and corresponding p-values between the temporal mean KGE scores

for the different variables (Figﬂfefvigﬁ)mdteafmgw the degree of consistency in performance rankings among these

the variables. Most variable pairs exhibited insignificant correlations except for temperature and relative humidity, which are
intrinsically linked through the Clausius-Clapeyron relationship as temperature controls saturation vapor pressure and, thus,
relative humidity. The lack of significant correlations might have three potential explanations. First, altheugh-we-considered
Mﬁ%%ﬂ%%%%m%@mm% discrepancies in model per-
; the significant uncertainty

in IMERG for rainfall (Wang et al., 2025b), along with the difficulty of comparing point-based IOWA Environmental Mesonet
data to WRF-ARW grid cells for other variables—, makes this explanation fess-ikelyplausible. Second, although MP and BE
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PBL schemes strongly influence preeipitation-rainfall simulation, other model components like land surface schemes, which
affect soil moisture and heat fluxes, and radiation schemes, which affect surface and atmospheric energy balances, may have
a more pronounced impact on variables such as temperature and wind speed. Third, there might be compensatory behavior
within the model, where improvements in simulating one variable do not necessarily result in a more realistic simulation and
may yield reduced performance in others.

This phenomenon, where models achieve the right results for the wrong reasons, is not uncommon in geosciences and poses

significant challenges in model evaluation and improvement (Kirchner, 2006b; Parker, 2006; Knutti, 2010; Hourdin et al.,
2017; Broecker, 2017; Krantz et al., 2021).

Resolving this requires examining model structure and variable interactions more closely to determine if improvements reflect

real accuracy or trade-offs, which is beyond the scope of the current paper;-the-authers-intend-to-explore-these-questions—in

4.7 What do the spatial patterns in simulated and observed rainfall look like for the eventsEREs?

Figures-

Figs. 6 and 7, respectively, present observed IMERG-Final V07) and simulated (WRF)24-h+ WRF-ARW) 24-hour rainfall
accumulations for the 17 selected rainfat-events—Fhe-WRE-EREs. The WRF-ARW model simulations were generated using
the best-performing scheme (Thompson-¥SU;-MP8_BL1). Overall, WRE-WRF-ARW generally seems to capture reasonably
well the location, extent, and amounts indicated by IMERG. For example, the strong convective systems with high-intensity
localized rainfall exceeding 120 mm on events-EREs like 20-Nov-2013 and 28-Jan-2019 are captured well. However, the
model overestimates rainfall in-several-events-for several EREs (e.g., 08-Feb-2019) and underestimates rainfall in-for others
(e.g., 28-Oct-2015). While WRF-WRF-ARW generally captures the broad patterns, the lack of a better match is attributable
to several reasons. First, potential deficiencies in the MP, BL, and convection schemesand-other-model-simplificationslead

to—potential-, along with other modeling limitations, can lead to inaccuracies in moisture convergence and convective up-
drafts (Taraphdar et al., 2021; Attada et al., 2022). These limitations include simplified representations of land—atmosphere
interactions, unresolved sub-grid processes, and the use of prescribed lateral bound conditions updated every 6 hours

which may not fully capture fast-evolving or small-scale features entering the domain. Second, we used ERAS as boundary
conditions to force the model, and while ERAS is the best reanalysis currently available, it nonetheless is subject to ran-

dom errors and bias (Hersbach et al., 2020; Soci et al., 2024). Third, we did not include data assimilation or nudging (Lei

and Hacker, 2015; Feng et al., 2021), two important techniques to improve the simulations. Fourth and finally, the IMERG
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Fig. 6. Daily accumulated rainfall from our observation-based data source (IMERG-Final VO07) for the 17 extreme-eventsEREs.

data, though found to perform relatively well in precipitation product evaluations (Abbas-et-al;2025a;-Wang-et-al52025¢)
Abbas et al., 2025b; Wang et al., 2025b), nonetheless carries significant uncertainty in the region.

4.8 How well does the model perform in terms of the other variables?

While the previous subsections primarityfeeused-focused primarily on rainfall, it is worthwhile to investigate how the model

performs in terms of other meteorological variables. To this end we analyzed the KGE components for F-RH;-and-W-S-2-m air
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Fig. 7. Daily accumulated rainfall from WRE-WRF-ARW using the best performing scheme combination (fhempsen—¥St;-MP8_BL1) for
the 17 extreme-events:EREs

temperature, 2-m relative humidity, and 10-m wind speed as presented in FigureFigs. 3bto-3d-Figure, 3¢, and 3d, respectively.
Fig. 3b presents values-of-the KGE and its components (r, v, and [;+Eg—t-Guptaetals2009; Kling-etal52012) for all 17
events-for-the-best performing scheme BRES for temperature using the best-performing combination (MP8_BL1)for+For-the
best-, For this scheme, the mean KGE-seereforTF-across-temporal KGE score across the 17 events-EREs is 0.47, while-the
mean-seores:which is similar to that obtained for rainfall (0.48). This is somewhat unexpected, as temperature is constrained by

surface energy balance processes, resulting in smoother variations and less extreme variability compared to rainfall. The mean
values for |r —1|, |8 —1| and |y — 1] for temperature are 0.32, 0.06, and 0.33, respectively. Among the three KGE components,
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the scheme thus performed worst in terms of correlation and variability, and-these-two-components-thus-which therefore exert

the dominant influence on the final KGE scores. This-suegests-thatto-eet-animproved KGE-seore-of T-the-most-impe

FigureFig. 3c presents the values-of-KGE and its components
for-al-for the 17 events—for-EREs for relative humidity using the best performing scheme (thompsen—Y-SU;-MP8_BL1)for
RH-—~For-the-best-, For this scheme, the mean KGE-seore-forRH-temporal KGE score across 17 events-EREs is 0.31, while

the-mean-seores—which is lower than that obtained for rainfall and temperature. This may reflect relative humidity’s nonlinear

dependence on both temperature and moisture in addition to the high spatio-temporal variability. The mean values for |r — 1],
|6 — 1] and |y — 1] are 0.47, 0.18, 0.33, respectively. Among the three KGE components, the scheme thus performed worst in
terms of correlation, followed by variability, and-these-two-compenents-thus-which therefore exert the dominant influence on

the final KGE scores. Fhis-suggests-thatin-orderto-get-animproved KGE-score-of RH;the-mest-impertant-component-score

FigureFig. 3d presents the values-of- KGE and its components
abH-for the 17 eventsfor EREs for wind speed using the best performing scheme (Thompson-Y-SU;:-MP8_BL1)for-WSFer-the
best-, For this scheme, the mean KGE-seore-for-WS-across-temporal KGE score across the 17 events-EREs is 0.29, while-the
mean-seores-the lowest among the four variables, likely due to the influence of fine-scale topography and surface roughness
variability on wind speed. The mean values for |r — 1|, |8 — 1| and |y — 1| are 0.52, 0.28, 0.30, respectively. Among the three
KGE components, the scheme thus performed worst in terms of correlationand-variability-and-these-two-components-thus-exert
. which therefore exerts the dominant influence on the final KGE scores. Fhis-suggests-that-to-get-an-improved-KGE-score-of

4.9 Whieh-BL-How do the PBL and MP schemes were-used in previous studies focusing-on-the- Middle Eastcompare
with those identified as optimal in our evaluation?

Although our findings are subject to uncertainty and must be interpreted with caution, as highlighted in the previous sub-
sections, they provide a useful basis for evaluating schemes used in previous WRFE-WRF-ARW studies in the region. Our
review of these studies (Table 5) reveals varying choices of BE-PBL and MP schemes, with mixed alignment to the results
of this study. Several studies, such as those by Abida et al. (2022), Almazroui et al. (2018), and Patlakas et al. (2023), used
the ¥SYU-BE-—seheme+BL1 )scheme, which our results confirm as the best-performing scheme for capturing the unique con-
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vective dynamics in arid climates. These studies highlighted ¥SUBL1’s robust vertical mixing capabilities and adaptability to
desert environments. On the other hand, studies like Attada et al. (2020) and Taraphdar et al. (2021), which employed MYNN
Eevel 3«(BL6 y-and QNSE (BL4), respectively, used local turbulence schemes that our findings show may be less suited for
unstable, highly convective conditions typical in the region. Similarly, while MP schemes like Thompson{(MP8 y-and-Goddard
tand MP7), identified in our study as well-performing, were used in some cases (Taraphdar et al., 2021; Attada et al., 2020),
other studies, such as Deng et al. (2015), relied on simpler MP schemes like Ein(MP2 j-and-EtaFerrier(and MP5), which

may lack the sophistication needed to capture mixed-phase processes in intense convective systems fully. Thus, while several

employed schemes previousl
shown to perform well in similar regional contexts, others might have improved simulation accuracy by incorporating the BL1
scheme and advanced MP schemes to-enhance-the-aceuracy-of ERE-simulations—in-this-regionidentified as effective in our

study. However, we would like to reiterate that our findings are subject to uncertainty, and these conclusions should therefore

studies use

be interpreted with caution.

4.10 Hewgeneralizable-are-ourfindings?

5 Conclusion

EREs-This study evaluated the performance of PBL and MP parameterizations for simulating EREs in the AP using the
WRF-ARW model at a convection-permitting resolution, serving as a verification study for hydrometeorology in the region.

Gadinecofth dyvaren - ciontfieantforrestonswith mata con diti oo - othocein-the-AP In-dese

RE_AR

region—Our-The results show that the model captures temporal rainfall variations (mean KGE = 0.37) more effectively than
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520  spatial patterns (mean KGE = 0.26), reflecting the localized nature of rainfall in the region. Nonetheless, a strong correlation
(Spearman rank correlation of 0.63, p-value = 0.00) between temporal and spatial KGE rankings highlights consistency in
scheme performance. This verification is crucial for improving confidence in hydrometeorological modeling and forecasting,
particularly for regions prone to flash floods and extreme rainfall, Thus, the findings guide model selection and a vital validation
benchmark for future hydrometeorological research and operational forecasting in desert climates. The answers to the questions

525 posed in the introduction, each addressed in detail in the Results and Discussion, are as follows:

a. Which BE-PBL scheme performs best in terms of rainfall?

The ¥SUABLI1 )scheme-eutperformed-otherscheme outperformed the other PBL schemes, achieving a mean temporal

KGE of 0.43 and a mean spatial KGE of 0.29. This superior performance is attributed to non-local mixing, which
enhances vertical transport and convective processes —Fhis-and makes it particularly effective for simulating extreme
530 ratnfall-ERE in arid regions like Saudi-Arabiathe AP. In contrast, local schemes such as MYNN-and-Boulac-BLS,
BL6, and BL8 performed worse because they rely on small-scale turbulence, which limits the representation of deep

convection.

b. Which MP scheme performs best in terms of rainfall?

The Goddard(MP7 y-and-Thompson—and MP8 )-schemesperformed-the-schemes performed best, achieving a mean
535 temporal KGE of 0.42, with mean spatial KGEs of 0.33 and 0.31, respectively. Their strong performance is attributed

to their advanced mixed-phase and ice-phase MP-—TFhompson microphysics. MP8’s double-moment structure enhances
adaptability, while Geddard"MP7’s optimized ice and graupel processes improve convective simulations. These results

highlight the impertanee-benefit of advanced MP schemes for accurately modeling EREs in arid regions.

c. Which component of the Kling-Gupta Efficiency (KGE) affects the final seererainfall scores the most?

540 Among the cemponents-of-the KKGE—three KGE components (correlation, bias ratio, and variability), correlation and

variability significantly-influenced IKGEseoresforpreeipitationexerted the strongest influence on the temporal rainfall
KGE scores. Enhancing these components eeutd-should be prioritized to further improve the accuracy of ERE simula-

tions.

d. How statistically significant are the differences in performance between scheme combinations in terms of rainfall?

545 Pairwise statistical tests between distributions of temporal KGE scores obtained by the scheme combinations revealed
that the ¥YSUABL1)-and-Thempsen<_MP8 )}-combination significantly outperformed 21 other scheme combinations,

while the poorest-performing seheme; Merrison-MYNN-(combination, MP10_BL6), was statistically inferior to 28 other
combinations. This-eonfirms-that-the-seleetion-of-schemes-plays-a-eritical-role-in-medel-aceuracyThus, we could not
statistically identify a single best- or worst-performing combination, despite the large sample of 17 EREs.

550 e. How consistent are the temporal and spatial performance assessments for rainfall?
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The assessment reveals that the-Goddard(BL1_MP7 )-and-Thempson(MP8)-MP-schemes;combined-with-the-¥YSU
tand BL1)-BlL-scheme_MPS8 performed best in both the temporal and spatial KGE-evaluationsassessment for rainfall.

The higher mean temporal KGE (0.37) compared to the mean spatial KGE (0.26) for all 36 combinations indicates that

the model captures rainfall variability ever-time-more-effectively-than-its-spatial-distributionmore effectively over time
than across space. Although spatial KGE values were lower, the erder-of-sehemeranking of combination performance

remained consistent (Spearman rank correlation of 0.65).

. How consistent is the performance ranking among different variables?

We-The MP8_BL1 combination provided the best performance for all variables (rainfall, 22m air temperature, 2-m
relative humidity, and 10-m wind speed). However, we obtained weak correlations between rainfall-performance-and
other-performance rankings across the variables, indicating poor consistency. This suggest-thatis likely because different
physical processes govern the simulations of different variables. White- MP-and-Bl-schemes-influence preeipitation That

is, while MP and PBL schemes influence rainfall, other components, such as land surface and radiation schemes, may
affect temperature and wind. This underseeres-underlines the complexity of model parameterizationand-, particularly as

cloud evolution is influenced not only by PBL and MP schemes but also by radiative processes, emphasizing the need
for further integrated research.

. What do the spatial patterns in simulated and observed rainfall look like for the eventsEREs?

The-For the best-performing physics combination (MP8_BL1), the spatial patterns of simulated and observed rain-
fall eaptured-wel-but-exhibited-were generally well captured, although occasional overestimations and underestima-
tions were noted. These discrepancies are likely due—to-boundary—condittontimitations—attributable to limitations in
the boundary conditions (the ERAS forcing)-and-satellite-data-reanalysis) and uncertainties in the IMERG-reference

. How well does the model perform in terms of the other variables?

fes&}ts—feﬁaddf&eﬂal—vaﬂab}e&—me}udmg—}mefeﬁempef&mfe Q-mefeﬁelraﬂve&mmidﬁy—aﬂd—wmd—speed—ﬂﬂs—s&ggeﬁs
w-air temperature showed
a mean temporal KGE score of 0.47, similar to that of rainfall (0.48), with performance limited mainly by correlation
and variability. Relative humidity had a lower mean temporal KGE score (0.31), like due to its nonlinear dependence on
temperature and moisture, with correlation as the dominant error source. Wind speed had the poorest performance (mean
temporal KGE of 0.29), likely due to unresolved fine-scale topographic and surface roughness effects.

i. Whieh-BE-How do the PBL and MP schemes were-used in previous studies foeusing-on-the-Middle-Eastcompare with

those identified as optimal in our evaluation?

M&ﬂyLOur findings align with several previous studies in the Middle East haveefﬂp}%fed—BL—&ﬂd—MP—sehemes—tha{—ahgﬂ
astthat employed
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the BL1 scheme, reinforcing its effectiveness for simulating regional atmospheric dynamics. At the same time, our
results suggest that studies using simpler MP schemes ;-sueh-as-Ein{— such as MP2 yand-EtaFerrier(or MP5 );-may

have-benefited-from—— may achieve improved simulation accuracy by adopting more advanced schemes like Thompson
{MP8)for-improved-simulation-aceuraey.

By identifying the optimal BI=PBL and MP combination from 36 tested configurations across 17 EREs, the-study-establishes
we established a strong foundation for improving the accuracy of ERE prejectionssimulations across the AP, a region that

remains understudied despite frequent flash floods and significant casualties. As the most comprehensive evaluation of BE-PBL
and MP schemes in Saudi-Arabia-the AP to date, thisresearch-provides-valuable-insights-into-how parameterization-choiee

findings-serve-our study emphasizes the importance of parameterization choices on ERE simulation performance, serving as a
key reference for future modeling efforts. Fheresttts-Our results may guide researchers and forecasters in selecting the most

effective parameterization schemes, ultimately contributing to more reliable forecasting and enhanced disaster preparedness in

arid environments. To further advance ERE simulation fidelity, future work should extend beyond PBL and MP schemes to
systematically evaluate the impact of land surface schemes, radiation parameterizations, and data assimilation techniques.

Code availability. The code used to generate the results of this study is available from the corresponding author upon request.

Data availability. The IMERG rainfall data are available via NASA GES DISC(https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_07/
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Table 2. Extreme rainfal-eventsin-EREs across the ArabianPeninsuta-AP selected to determine the effieaey-performance of different MP and

BE-PBL scheme combinations. Simulation start times are provided in UTC. IMERG rainfall values represent 24-hour totals from simulation
start for the 0.1° grid-cell with the highest amount for each ERE. Abbreviations: N=north, E=east, S=south, W=west, and-P=people.

Event Date  Location Simulation Start Reported IMERG Fatalities / Impact  Source
Rainfall Rainfall
24-11-2022  Jeddah, Makkabh, 179 mm 2 P died in flooding  FloodList  (www.
. 22-H-2022-0022-11- : .
and—western—Saudi 22-:11-2022 00:00 120 mm floodlist.com)
Arabia (W)
27-04-2021  Makkah (W) Unknown Severe flooding re-  FloodList
25-04-2021-0625-04-2021 00:00 32 mm
AR AR~ ported
04-02-2021  Tabuk (NW), Hafr 7 P died; 1,100 P General Directorate
. 02-02-2021-0002-02-2621-68:600in—30 ..
Al-Batin (E) 02-02-26216¢ 60 mm affected of Civil Defense
min-unknown (CDD)
27-10-2019  Hafr Al-Batin (E) 43 mm in 30 FloodList
25-10-2049-0625-10-2019 00:00 7-30 mm 18 P died, 11 P in-
A~ RNAAAA ~
jured +—31100—P
affected
23-05-2019  Jazan, Najran (SW) Unknown 1 P missing in FloodList
24-05-2049-0621-05-2019 00:00 33 mm
RANRAANN AN~ floods
08-02-2019  Madinah W), 36.6 mm in 24 4 P died; many res-  FloodList
06-62-2019-6006-02- :
Tabuk (NW), 06-02-2019 00:00 20 mm cued
Riyadh (E) ;ethers-
28-01-2019  Tabuk (NW), Unknown 1P died; 30 Pevac- CDD
. 26-61-2049-6026-01- :
Riyadh (C), Jeddah 26:01-2019 00:00 41 mm uated
W-ethers-
20-11-2017  Jeddah, Hail (W) 115.5 mm/hr 4 P died; 481 res- FloodList
+8-+H-2047-6018-11-2017 00:00 73 mm
AAAANAANAAS AAAANAA cued
14-02-2017  Asir (SW), 90 mm in 24 hrs 1 P died; 10 P in- CDD
| - N .
Dammam (E) - 12-02-2047-6012-02-2017 00:00 97 mm jured
others-
28-11-2016  Asir (SW), Riyadh Unknown 8 P died; 120 evac-  FloodList
26-H-2016-0026-11- :
(©) —others 26-11:2016 00:00 aom e
08-04-2016  Asir, Baha, Taif (S) Unknown 3 P died & FloodList
06-04-26+6-6606-04-2016 00:00 36 mm Baidhani-val
24-11-2015  Riyadh, Al-Qassim Unknown 1P died FloodList
22-H-2045-0022:11-2015 00:00 35 mm_
28-10-2015 Unknown 6 P died FloodList
Neorthern——Saudi ~ 26-16-2645-6626-10-2015 00:00 24 mm
Arabia (N)
23-03-2015  Riyadh (C), Al Ba- Unkngyn 11 P died; 300 P  FloodList
24+-03-2045-6021-03- :
hah (NW) 21-03-2015 00:00 29 mm rescued
20-11-2013  Riyadh (C), Arar Unknown 4 P died CDD

10 11 M¢MN12N01Q 11 "Y1 2NN -0\

A


www.floodlist.com
www.floodlist.com

Table 3. WRF-ARW (Version 4.4) model configuration used in this study.

Configuration Parameter

Details

Dynamics
Boundary and initial conditions

Data Interval

Grid size.
Resolution

Map Projection

Horizontal—grid—system—Model _top
pressure

Land category

Integration time step

Vertical coordinates

Time integration scheme
Spatial differencing scheme

Microphysics Parameterization (MP)

Cumulus Parameterization (CU)
Planetary Boundary Layer (BEPBL)

Parameterization

Surface layer parameterization

citepchen2001couplin,
Surface Layer Physics

Short wave radiation (ra_sw_physics)

Long wave radiation (ra_lw_physics)

Non-hydrostatics
ERAS reanalysis

3 hours

DO1 (116 x 101) x 53, D02: (187 x 181) x 53

DO1 9 km and d02 3 km

Mercator
Arakawa-Cgrid-30 hPa
USGS 1)

30s

Terrain-following hydrostatic pressure vertical coordinate with 53 vertical lev-
els

3rd-order Runge-Kutta Scheme

6th-order centre differencing

Kessler (MP1), Purdue Lin (MP2), WRF Single-moment 3-class (WSM3;
MP3), WRF Single-moment 5-class (WSMS5; MP4), Eta (Ferrier;MP5), WRF
Single-moment 6-class (WSM6; MP6), Goddard (MP7), Thompson graupel
(MP8), Morrison 2-moment (MP10)

DO1 (Kain Fritsch), D02 (no physies-CU scheme used)

Yonsei University Scheme (YSU; BL1), Mellor-Yamada Nakanishi and Niino
Level 2.5 (BL5), Mellor-Yamada Nakanishi and Niino Level 3 ;Beulac(BL6),

Boul.ac (BL8
Noah Land Surface Scheme

Revised MMS5 (Jiménez et al., 2012)
RRTMG scheme (Iacono et al., 2008)
RRTMG scheme
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Table 4. Mean KGE values for temporal and spatial assessments of MP and BE-PBL schemes.

Scheme Temporal KGE Spatial KGE
MP Schemes

Kessler (MP1) 0.26 0.05
Purdue Lin (MP2) 0.35 0.27
WREF Single-Moment 3-class (WSM3; MP3) 0.41 0.30
WREF Single-Moment 5-class (WSMS5; MP4) 0.39 0.25
Eta Ferrier (MP5) 0.39 0.28
WREF Single-Moment 6-class (WSM6; MP6) 0.36 0.28
Goddard (MP7) 0.42 0.33
Thompson (MP8) 0.42 0.31
Morrison (MP10) 0.30 0.29
BE-PBL Schemes

YSU (BL1) 0.43 0.29
Mellor-Yamada Nakanishi Niino Level 2.5 (MYNN Level 2.5; BL5) 0.38 0.27
Mellor-Yamada Nakanishi Niino Level 3 (MYNN =Level 3; BL6) 0.26 0.21
Boulac (BLS8) 0.41 0.27
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Table 5. Studies simulating EREs in the Middle East using WRFWRF-ARW.

Study MP Scheme BE-PBL Scheme Key Findings
Luong et al. (2020) Morrison (MP10) Mellor- Yamada-Janjic Evaluated urbanization impacts on ERE over Jeddah;
(MYJ; BL2) high-resolution models essential for urban storm simu-
lation.
Francis et al. (2024) Thompson aerosol-  Quasi-Normal  Scale Enhanced performance in capturing preeipitation
aware (MP28) Elimination ~ (QNSE; patternsforevents-rainfall patterns for EREs involving
BL4) atmospheric rivers in the Middle East.

Deng et al. (2015)

Lin (MP2), Eta Ferrier
(MP5)

Mellor- Yamada-Janjic

(MYJ; BL2)

Demonstrated role of different MP schemes in captur-

ing Jeddah flash-flood events.

Attada et al. (2020) Thompson (MP8) MYNN Level 3 (BL6)

Censistent-performanee-Demonstrates consistent skill
in simulating rainfall eventsfor AP EREsinaridregions

Taraphdar et al. (2021) Thompson (MP8) Quasi-Normal ~ Scale ~ Optimal pairing for preeipitationrainfall simulation un-

Elimination  (QNSE; der 9-km resolution, balancing accuracy and efficiency
BL4) in UAE simulations.

Abida et al. (2022) WSM 3-class (MP3) YSU (BL1) Best performance in hyper-arid coastal regions, enhanc-
ing temperature, humidity, and wind accuracy at BNPP
site.

Almazroui et al. (2018)  Eta Ferrier (MP5) YSU (BL1) Highlighted YSU’s reliability for Bl—dynamies—in
extreme-storam-PBL dynamics in ERE conditions (e.g.,
Jeddah 2009 event).

Patlakas et al. (2023) Single-moment six- YSU (BL1) YSU’s adoption in operational forecasting at the Saudi

class (MP6)

National Center for Meteorology for its robustness in

arid climates.
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