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Abstract. A global AOD retrieval product from the Particulate Observing Scanning Polarimeter (POSP) has been proposed. 

We have validated the AOD from the early stages of on-orbit operation and achieved high accuracy, but we lack an 

understanding of the retrieval accuracy over longer time scales from a systematic validation and analysis of POSP-retrieved 15 

AOD. The objectives of the current study are: 1) To ensure the reliability of POSP AOD products and explore the potential 

factors influencing their performance; 2) To provide a valuable reference for the enhancement of these products in future 

developments. To achieve these objectives, POSP AOD products have been validated using Aerosol Robotic Network 

(AERONET) measurements (over 276 sites) as reference. The results from 19314 collocations show a high accuracy, with 

correlation coefficients (R) of 0.914, a root mean square error (RMSE) of 0.085, and the fraction within the expected error 20 

(EE) of 78.5%. In addition, the validation at individual sites indicates that the performance of POSP products is better than 

that of MODIS (Deep Blue and Dark Target) AOD. Further error analysis indicates that the accuracy of POSP AOD exhibits 

a clear seasonal variation, being lower in the autumn and winter than in the spring and summer. Additionally, the uncertainty 

in AOD increases as NDVI decreases. Globally, the spatial variability of the quarterly averaged AOD has been analysed. 

Although, tThe results show that the validation metrics of POSP and MODIS AOD are comparable, although over North Africa 25 

and the Arabian Peninsula POSP AOD is in better agreement with MAIAC AOD, while over other regions it is in better 

agreement with DB/DT AOD. 

1 Introduction 

Aerosols consist of particulate matter (referred to as particles) suspended in the atmosphere. Aerosols have increasingly 

attracted attention because of the air pollution caused by the rise in global industrial activity in recent years (Wei et al., 2023). 30 

Due to the large variation of sources, atmospheric aerosols have a wide variety of effects (de Leeuw et al., 2011). Aerosols can 
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directly and indirectly affect the radiative forcing of the Earth’ climate (Stocker et al., 2013). Aerosol particles scatter solar 

radiation, thus reducing the amount of radiation that reaches the Earth's surface, thereby causing a cooling effect. In contrast, 

absorbing aerosols can absorb solar radiation, leading to a local warming effect (Guo et al., 2016). Aerosol particles can also 

act as cloud condensation nuclei (CCN), which in high relative humidity conditions can be activated and grow into cloud 35 

droplets. By influencing the CCN, aerosol particles can indirectly alter the microphysical properties of clouds (Myhre et al., 

2007; Rosenfeld et al., 2014). Both effects depend on the size of the aerosol particles and on their composition. However, 

knowledge of the effects of atmospheric aerosols on climate is limited (Altieri et al., 2025). As a consequence, the 

Intergovernmental Panel on Climate Change (IPCC) considers aerosols to be one of the largest sources of uncertainty in global 

warming (Lee et al., 2023). Furthermore, aerosols are also harmful to human health (He and Huang, 2018; Li et al., 2017b). 40 

At the same time, high concentrations of aerosols significantly reduce near-surface visibility, crop production, etc (Hidy, 2019).  

Traditionally, the study of aerosol properties has mainly relied on ground-based observations. Through long-term investments 

and developments by various countries and their research institutions, a large number of ground-based observation sites have 

been established, providing optical and microphysical aerosol properties in key research areas (Dubovik et al., 2002; Levy et 

al., 2007). Examples include NASA's AErosol RObotic NETwork (AERONET) (Holben et al., 1998), Europe's PHOtométrie 45 

pour le Traitement Opérationnel de Normalisation Satellitaire (PHOTONS) (Goloub et al., 2008), China's Sun–sky radiometer 

Observation NETwork (SONET) (Li et al., 2018b), the China Aerosol Remote Sensing NETwork (CARSNET) (Che et al., 

2015), etc. In addition to these ground-based remote sensing activities, a wide variety of ground-based in situ networks have 

been established on global (Moreno, 2023; Yuba et al., 2023), continental (Tørseth et al., 2012), and national (Bai et al., 

2020; Beig et al., 2021; Cobourn, 2007; Hoff et al., 2006; Wu et al., 2018) scales. However, ground-based observations 50 

cannot provide data on global or regional scales and lack coverage in difficult accessible areas. This gap can be filled by 

satellite observations, providing characterization of aerosols on regional to global scales, but with lower accuracy. From the 

perspective of sustainable development, the Chinese government has actively responded to the call for global environmental 

governance by launching numerous satellites for atmospheric environment monitoring (Chen et al., 2021; Wang et al., 2021; 

Xian et al., 2021; Zhao et al., 2017). Among these, the Particulate Observation Scanning Polarimeter (POSP), mounted on the 55 

Gaofen-5(02) satellite, was successfully launched in July 2021. POSP is a single-view multispectral polarimeter with a nadir 

resolution of 6.4 km.  

Aerosol Optical Depth (AOD) is the primary parameter used to assess the atmospheric aerosol content by remote sensing 

methods. Observations from POSP provide valuable information for the retrieval of aerosol properties (Li et al., 2022). An 

aerosol retrieval algorithm for application to POSP data was initially developed by Shi et al. (2023), who developed a method 60 

for the reconstruction of the land surface reflectance for the use in aerosol retrieval. Then, Ji et al. (2025) proposed a more 

accurate aerosol algorithm that takes into account the directional properties of the surface. By exploring the empirical 

relationships between adjacent blue bands, the inversion of AOD has been realized with this new algorithm by jointly using 

multiple blue bands. An optimization algorithm has also been used to incorporate boundary constraints, which simultaneously 
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accounts for errors in the surface constraint and the satellite observations. Thus, POSP AOD products are successfully retrieved 65 

with high accuracy.  

 

We have validated the retrievals from the early stages of on-orbit operation (November 2021 to April 2022) and achieved high 

accuracy, but lack an understanding of the retrieval accuracy over longer time scales. To further validate the accuracy of the 

POSP AOD product and to identify the direction of further improvement, we validated the AOD product for a longer time 70 

series from December 2021 to November 2022. Comparisons of POSP AOD with AERONET AOD show a high degree of 

consistency, and its accuracy surpasses that of MODIS AOD for the same time period (Ji et al., 2025).  

This study is dedicated to a comprehensive evaluation of POSP AOD products, delving into the exploration of potential factors 

influencing their performance. The ultimate goal is to provide a valuable reference for the further improvement of these 

products in future developments. The definitions of the statistical metrics used are presented in Section 2. The matchup 75 

strategies and data preprocessing are presented in Section 3. The validation of the results is presented in Section 4. Section 5 

discusses the error analysis of POSP AOD in different seasons and over different land cover surface types, characterized by 

land cover (LC), the comparison of POSP and MODIS AOD, and the time-series analysis over some of the most polluted cities. 

Conclusions are presented in Section 6. 

2 Materials 80 

2.1 POSP AOD products 

The Particulate Observation Scanning Polarimeter (POSP) was launched on board the GF-5(02) satellite in July 2021. It has a 

field of view of ±50° with a swath width of ~1850 km, and provides global observations in nine spectral bands spanning 

wavelengths from 380 to 2250 nm (Lei et al., 2023). The local time of the descending node for GF-5(02) is 10:30 a.m. The 

POSP is equipped with a comprehensive onboard calibration system (the radiometric calibration accuracy is within 5%, and 85 

the polarimetric calibration accuracy is within 0.005).  

Ji et al. (2025) developed an enhanced AOD retrieval algorithm using POSP data. Due to the limited number of observations, 

POSP faces an ill-posed inversion problem when the directional characteristics of the surface are taken into account. To reduce 

the discrepancy between the number of observations and the number of retrieval parameters, the following chances have been 

made to the algorithm presented in Ji et al. (2025). For aerosol parameters, the global aerosol distribution from the MODIS 90 

Dark Target algorithm has been used, but  aerosol models over northern India and central Africa have been updated to achieve 

more accurate retrievals. For surface parameters, the bidirectional reflectance distribution function (BRDF) from MODIS 

(MCD43) was used to account for the directional reflectance characteristics of the surface during the inversion (Schaaf et al., 

2002). The MODIS BRDF comprises an isotropic kernel (reflectance from Lambertian surface), a volumetric kernel 

(reflectance from multiple scattering within vegetation canopies), and a geometric-optical kernel (reflectance from object 95 

shadowing). . Thus, the MODIS BRDF products (MCD43) have been used. To eliminate the differences in spectral response 
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between POSP and MODIS, spectral reconstruction was performed using the Singular Value Decomposition (SVD) technique. 

The algorithm only retrieves the isotropic kernel to reduce the number of parameters to be inverted. Therefore, after spectral 

reconstruction, monthly averaged values Ross-Thick and Li-Sparse kernel parameters  were applied as the Ross-Thick and Li-

Sparse kernel parameters to account for the surface directional characteristics. Finally, the new aerosol models and surface 100 

directional characteristics waswere incorporated into anthe algorithm developed by Ji et al. (2025), and AOD was successfully 

retrieved  AODAOD was successfully retrieved. TheyJi et al. (2025)  also Ji et al. (2025) presented the preliminary validation 

(from November 2021 to April 2022), the results show that the AOD retrievals have high accuracy . 

2.2 MODIS products 

The MODIS AOD product has been operationally available for many years, with several updates to the most recent C6.1 105 

released in 2017 (Sayer et al., 2017). MODIS AOD products have demonstrated stability through extensive validation (Levy 

et al., 2013; Sayer et al., 2013). In this study, we selected the MODIS/Terra C6.1 aerosol products (Level 2.0) with a spatial 

resolution of 10 km from the Deep Blue (DB) and Dark Target (DT) algorithms for comparison. Furthermore, the MODIS 

AOD products (MOD04) have quality flags (QA), with QA=3 representing the highest quality. In the cross-validation with 

MODIS, we only used data with QA=3.  110 

To quantitatively assess the accuracy of the POSP AOD algorithm over different surface types, the land cover (LC) product 

MCD12Q1 in 2022  was used in this study (Sulla-Menashe and Friedl, 2018). The International Geosphere-Biosphere 

Programme (IGBP) classification scheme was applied, which has been widely used in climate and environmental studies as a 

global classification standard for describing land cover types. The global IGBP classification results for 2022 are depicted in 

Figure 1. To match the POSP pixel size, the MCD12Q1 results were resampled to 0.005°×0.005°. Then the IGBP type for each 115 

AERONET station was obtained within a 40×40 pixels window centred on the AERONET station. The LC type with the 

highest occurrence in this window was selected as representative for each AERONET station. Because only a few sites have 

homogeneous LC type in their surrounding areas; therefore, we use the LC type with the highest occurrence to represent the 

LC type within that spatial window. (MODIS products are available from https://ladsweb.modaps.eosdis.nasa.gov/). 
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 120 

Figure 1: The distribution of selected AERONET sites globally. The red points represent inland sites. The background is the 
MCD12C1 land cover classification product (IGBP) in 2022. (Light Blue: Water Bodies (WB); Dark Olive Green: Evergreen 
Needleleaf Forests (ENF); Forest Green: Evergreen Broadleaf Forests (EBF); Dark Green: Deciduous Needleleaf Forests (DNF); 
Bright Green: Deciduous Broadleaf Forests (DBF); Light Forest Green: Mixed Forests (MF); Brick Red: Closed Shrubland (CS); 
Tan: Open Shrublands (OS); Light Brown: Woody Savannas (WS); Light Orange: Savannas (Sa); Oliver Green: Grasslands (Gr); 125 
Deep Blue: Permanent Wetlands (PW); Mustard Yellow: Croplands (Cr); Bright Red: Urban and Built up Lands (UB); Dark Olive: 
Cropland Natural Vegetation  Mosaics (CNVM); Light Grey: Permanent Snow and Ice (SI); Pale Yellow: Barren (Ba)). 

2.3 AERONET data 

AERONET provides aerosol products with low uncertainties: 0.01 in the VIS range and 0.02 in the UV range (Eck et al., 1999; 

Giles et al., 2019). AERONET AOD is extensively used as reference for satellite validation (Che et al., 2016; Chu et al., 2002; 130 

Levy et al., 2010; Sayer et al., 2013; Xie et al., 2019). AERONET V3 provides AOD datasets at three quality levels: Level 1.0 

following pre-screening, Level 1.5 after cloud identification and instrument anomaly monitoring, and Level 2.0 after cloud 

identification, instrument anomaly monitoring, and quality control screening (https://aeronet.gsfc.nasa.gov/). In this study, 

Level 1.5 data is chosen as the ground-based validation data to minimize validation errors. 

Since POSP AOD products are produced at a wavelength of 550 nm, which is not available from AERONET, AERONET 135 

AOD data were interpolated to 550 nm using observation at 440 and 675 nm and the Ångström Exponent (AE) (Ångström, 

1929). 

ቊ
𝜏ఒ ൌ β𝜆ିఈ

𝛼 ൌ െ൫ln൫𝜏ఒభ/𝜏ఒమ൯൯/ሺ𝜆ଵ/𝜆ଶሻ
𝜏ఒ ൌ β𝜆ିఈ ,         

   (1) 

where 𝜆 is the specified wavelength in nm, 𝜏ఒ is the AOD at wavelength λ, and 𝛼 is the Ångström Exponent (AE). In order 140 

toAE is calculated AE, using the AOD at different wavelengths  is needed, 𝜆ଵ (440 nm) and 𝜆ଶ are denote the 440 and (675 

nm), respectively. 
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The POSP AOD algorithm is only applicable over land and cannot provide aerosol data over the ocean and in coastal regions. 

In this study, stations within 20 km from the coastline are defined as coastal stations and are excluded from the validation to 

ensure reliability of the results. As a result, 276 sites remain for validation. 145 

3 Methods 

3.1 Matchup strategy 

For the collocation of satellite and AERONET AOD data, various spatial and temporal matchup strategies have been proposed 

(Chu et al., 2002; Ichoku et al., 2002; Sayer et al., 2013; Virtanen et al., 2018). In this study, considering the 6.4 km spatial 

resolution of the POSP, the following strategies to matchup POSP and AERONET AOD data have been devised to ensure 150 

reliable AOD validation results while accounting for spatial consistency: satellite data are averaged over a window of 3 × 3 

pixels  centred on the AERONET site, and ground-based observations are averaged over 30 minutes before and after the time 

of the satellite overpass. To mitigate the uncertainty associated with averaging data, a minimum of two or more ground-based 

observations are required in the temporal matchup window, and the spatial-temporal matchup window must encompass more 

than three valid satellite pixels (Chu et al., 2002). The POSP and MODIS AOD matchup data pairs at the same AERONET 155 

site on the same day were used for comparison. To investigate the influence of land cover (LC) on the POSP AOD retrieval, 

the validation was repeated for sub-sets of POSP data over different IGBP types. The number of matchups over forested areas 

(evergreen broadleaf forest, evergreen needleleaf forest, deciduous broadleaf forest, and mixed forest) was too small to achieve 

statistical significance and therefore they were merged into the "Forest" category. Likewise, for shrublands with low vegetation 

(woody savannas, grassland, and savanna) the data were merged into the "Grassland" category.  160 

3.2 Statistical metrics 

To quantitatively assess the accuracy of the retrieval results and the applicability of the retrieval algorithms over different 

surface types, statistical metrics were calculated for the validation. These metrics include the Pearson correlation coefficient 

(R), which reflects the degree of agreement between the satellite retrieval results and the ground-based reference data. 

R ൌ
∑ ൫ ஺ை஽ಲಶೃೀಿಶ೅,೔ି஺ை஽ಲಶೃೀಿಶ೅തതതതതതതതതതതതതതതതതതതത൯൫஺ை஽ೄೌ೟೐೗೗೔೟೐,೔ି஺ை஽ೄೌ೟೐೗೗ഢ೟೐തതതതതതതതതതതതതതതതതത൯೙
೔సభ

ට∑ ൫ ஺ை஽ಲಶೃೀಿಶ೅,೔ି஺ை஽ಲಶೃೀಿಶ೅തതതതതതതതതതതതതതതതതതതത൯
మ೙

೔సభ ∑ ൫ ஺ை஽ೄೌ೟೐೗೗೔೟೐,೔ି஺ை஽ೄೌ೟೐೗೗ഢ೟೐തതതതതതതതതതതതതതതതതത൯
మ೙

೔సభ

 ,      (2) 165 

where 𝐴𝑂𝐷஺ாோைோ்,௜ denotes the AERONET reference data, 𝐴𝑂𝐷ௌ௔௧௘௟௟௜௧௘,௜ denotes the satellite retrieval data, 𝑛 denotes the 

number of collocations, and 𝐴𝑂𝐷஺ாோைோ்തതതതതതതതതതതതതതതതand 𝐴𝑂𝐷ௌ௔௧௘௟௟ప௧௘തതതതതതതതതതതതതതത denote the averages of ground and satellite results, respectively. 

R² (R-squared), also known as the coefficient of determination, represents the difference between the satellite retrievals and 

the ground-based reference data. Its value ranges from 0 to 1, with values closer to 1 or 0 indicating the difference between 

them is small or large, respectively. 170 

𝑅ଶ ൌ 1 െ
∑ ൫ ஺ை஽ಲಶೃೀಿಶ೅,೔ି஺ை஽ೄೌ೟೐೗೗೔೟೐൯

మ೙
೔సభ

∑ ൫ ஺ை஽ಲಶೃೀಿಶ೅,೔ି஺ை஽ಲಶೃೀಿಶ೅തതതതതതതതതതതതതതതതതതതത൯
మ೙

೔సభ

 ,         (3) 
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Root Mean Square Error (RMSE) presents the uncertainty in the results of the satellite retrievals reference to the ground-based 

reference data. 

𝑅𝑀𝑆𝐸 ൌ ටଵ

௡
∑ ൫ 𝐴𝑂𝐷ௌ௔௧௘௟௟௜௧௘,௜ െ 𝐴𝑂𝐷஺ாோைோ்,௜൯

ଶ௡
௜ୀଵ  ,        (4) 

Mean Absolute Error (MAE) indicates the overall estimation of accuracy of the retrieval results. 175 

𝑀𝐴𝐸 ൌ
ଵ

௡
∑ ห𝐴𝑂𝐷ௌ௔௧௘௟௟௜௧௘,௜ െ 𝐴𝑂𝐷஺ாோைோ்,௜ห
௡
௜ୀଵ ,        (5) 

Bias is a measure of underestimation or overestimation with respect to the reference data. 

𝐵𝑖𝑎𝑠 ൌ
ଵ

௡
∑ ൫𝐴𝑂𝐷ௌ௔௧௘௟௟௜௧௘,௜ െ 𝐴𝑂𝐷஺ாோைோ்,௜൯
௡
௜ୀଵ ,        (6) 

Furthermore, the accuracy of the AOD retrievals is assessed in this study using a combination of absolute and relative errors, 

referred to as the expected error (EE). EE represents the theoretically expected standard deviation of the AOD product and 180 

thus indicates the boundaries within which 67% of the matchup data pairs should fall (Xie et al., 2019). In this study, we adopt 

the EE, which applies to the MODIS Collection 6.1 (C6.1) AOD products, enabling a comparison of accuracy with MODIS 

AOD products using the same criteria (Levy et al., 2010, 2013): 

 𝐸𝐸 ൌ േሺ0.05 ൅ 0.15 ∗ 𝐴𝑂𝐷ሻ,          (7) 

We also implemented the criteria proposed by the Global Climate Observing System (GCOS), which have been adopted in the 185 

Aerosol_cci study (Popp et al., 2016; Secretariat, 2006). 

𝐺𝐶𝑂𝑆 ൌ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚ሺ0.03, 0.1 ൈ  𝐴𝑂𝐷ሻ,         (8) 

3.3 Data preprocessing 

As an optical sensor, POSP observations are inherently susceptible to cloud interference. To mitigate cloud contamination, it 

is essential to filter out cloud-affected pixels before retrieval. Given the single-angle observation method of POSP, this study 190 

adopts cloud detection strategies from MODIS, which have been extensively validated (Frey et al., 2008). Specifically, two 

methods are employed: the apparent reflectance threshold method and the apparent reflectance spatial variation detection 

method (Martins et al., 2002). The former effectively identifies optically thick clouds with high reflectance or substantial water 

vapor content, while the latter is particularly useful for detecting cloud edges, shadows, thin clouds, and dispersed cloud 

formations.  195 

The land surface exhibits low reflectance in the blue band, whereas clouds have high reflectance. Therefore, a pixel is identified 

as a cloud when its reflectance at the 443 nm band exceeds a certain threshold. The 1380 nm band lies within a strong water 

vapor absorption region, where the reflectances of from land surfaces and low clouds atmosphere are generally low. As a result, 

only high clouds, mostly above the heights where atmospheric water vapor is located, are visible in this band. Pixels with high 

reflectance at 1380 nm are therefore typically classified as high clouds. Furthermore, cloud edges typically exhibit high spatial 200 

variability due to mixed pixels and partial cloud coverage. The spatial variation characteristics of the 443 nm and 1380 nm 
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bands can effectively identify cloud-edge pixels. The combination of their spatial differences helps reduce misclassification at 

cloud boundaries and improves the accuracy of cloud detection.  

Surface conditions such as snow and water also affect the inversion. Since the retrieval algorithm is explicitly designed for 

clear-sky over non-ice land surfaces, pixels over water, ice, and snow must be excluded. The detection of water and snow 205 

pixels is achieved using the Normalized Difference Water Index (NDWI) and the Normalized Difference Snow/Ice Index 

(NDSI), respectively, with specific identification thresholds presented in Table 1Table 1. 

𝑁𝐷𝑊𝐼 ൌ
𝜌଺଻଴ െ 𝜌଼଺ହ
𝜌଺଻଴ ൅ 𝜌଼଺ହ

ሺ9ሻ 

𝑁𝐷𝑆𝐼 ൌ
𝜌଺଻଴ െ 𝜌ଶଶହ଴
𝜌଺଻଴ ൅ 𝜌ଶଶହ଴

ሺ10ሻ 

While the aforementioned cloud detection strategy provides a foundation for minimizing cloud contamination, potential for 210 

further improvement remains. Given the relatively coarse spatial resolution of POSP (6.4 km) and its limited spectral coverage, 

certain pixels that contain residual clouds may remain undetected. The simulation analysis by Kassianov and Ovtchinnikov 

(2008) pointed out that multiple scattering of clouds can lead to overestimated AOD retrievals when the residual clouds are 

not fully screened. Sogacheva et al. (2017) further removed the cloud-contaminated pixels using a cloud post-processing 

scheme. To enhance cloud-mask accuracy, a dedicated cloud detection algorithm for POSP is still needed. We aim to further 215 

enhance the cloud detection algorithm in future work. 

Table 1 Summary of screening thresholds. 

Items Purpose 

𝜌ସସଷ ൏ 0.02 𝑜𝑟 𝜌ସସଷ ൐ 0.4 Cloud 
𝜎ସସଷ ൐ 0.038 Cloud 

𝜌ଵଷ଼଴ ൐ 0.02 𝑎𝑛𝑑 𝐻𝑒𝑖𝑔ℎ𝑡 ൏ 1500 Cloud 
𝜎ଵଷ଼଴ ൐ 0.005 Cloud 
𝑁𝐷𝑊𝐼 ൐ 0 Water 
𝑁𝐷𝑆𝐼 ൐ 0.4 Snow/Ice 

4 Results 

4.1 Overall validation 

Figure 2 (A) shows the validation of POSP AOD in 2022 using AERONET AOD as reference, with R of 0.914, R2 of 0.825, 220 

RMSE of 0.086, MAE of 0.054, and the fraction within EE is 78.45%. 

The probability density functions of differences (POSP-AERONET) are presented in Figure 2 (B). The results show that the 

POSP algorithm underestimates the AOD as aerosol loading increases. For low AOD (AOD < 0.2), POSP's bias is 0.01. For 

moderate AOD (0.2 ≤ AOD ≤ 0.7), POSP's bias increases to -0.03, and for high AOD (AOD > 0.7), POSP's bias further 

increases to -0.04. These biases may be attributed to the increasing aerosol model error. As AOD increases, the impact of 225 
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discrepancies between the assumed aerosol model and the actual aerosol model is amplified, leading to an increase in retrieval 

uncertainty (Hou et al., 2018; Li et al., 2018a). Box plots of differences between POSP and AERONET AOD against 

AERONET AOD in Figure 2 (C) show how the AOD bias is distributed across different AOD intervals. With the increase in 

aerosol loading, the AOD bias overall increases (more negative) but exhibits an anomaly at high AOD, spiking from negative 

to positive values. Except for the aerosol model error, the possible reason for this anomaly may be that the frequency of high 230 

AOD decreases with increasing AOD, and the smaller statistical sample introduces a greater uncertainty. Further research is 

needed on this phenomena when results are available for a longer period of time. 

 

Figure 2: (A) Scatter density plot of POSP AOD versus AERONET AOD, where N—number of collocated data pairs, R—Pearson 
correlation coefficient, RMSE—root mean square error, MRE—mean relative error, and EE—data fraction within EE. The black 235 
dotted line represented the one-to-one line. The red line represents the linear regression fit, and the black dashed lines are EE lines. 
The magenta points indicate the mean values of the satellite AOD binned in AERONET AOD intervals varying from 0.01 for small 
AOD to 0.25 for the larger AOD up to 2.0. The magenta lines are the ±2σ of the retrieved in each AERONET bin. (B) Probability 
density plots of differences (POSP-AERONET). The black, blue, green, and red solid lines indicate different AOD conditions: all 
AOD, AOD < 0.2, 0.2 ≤ AOD ≤ 0.7, and AOD > 0.7, respectively. (C) Box plots of the differences between POSP AOD and AERONET 240 
AOD. The blue dots and error bars represent the median, 25th percentiles, and 75th percentiles of the AOD bias. 

4.2 Validation of POSP AOD in different seasons 

Atmospheric and aerosol conditions vary with the seasons (Bergametti et al., 1989; Rabha and Saikia, 2020). Thus, the 

difficulties of AOD retrieval also change between seasons (Che et al., 2016; Fan et al., 2023; He et al., 2016). Figure 3 shows 

that POSP AOD is more accurate in SON (September, October, November) and DJF (December, January, February) than in 245 

the MAM (March, April, May) and JJA (June, July, August). For comparison, similar plots for the MODIS DB/DT AOD 

product are presented in Figures S1 and S2, showing the MODIS AOD accuracy in SON and DJF is significantly better than 

in MAM and JJA. The validation of POSP AOD during different seasons shows that POSP AOD has the highest accuracy in 

DJF, with the fraction within EE being 82.13%. SON is second best, with the fraction within EE of 79.85%. JJA has the lowest 

accuracy, with the fraction within EE being 75.98%. The POSP AOD has a very  low bias during all seasons. The higher 250 

accuracy of both POSP AOD and MODIS AOD during DJF and SON compared to MAM and JJA may be attributed to the 

fact that most of the AERONET sites used for validation are located in the Northern Hemisphere (see Figure 1). DJF and SON 

correspond to winter in the Northern Hemisphere, a period when surface changes are slower, and sudden pollution events are 

less frequent. As a result, the empirical constraints used in the retrieval process are more effective compared to those applied 
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during the summer. The number of collocations is smallest in DJF (N=3834) and highest in JJA (N=5454). A possible reason 255 

for the difference between winter (DJF) and summer (JJA) is that snow and ice cover reduce the number of successful retrievals 

in the winter in the Northern Hemisphere. 

 

Figure 3: Upper panels show scatter density plots of POSP AOD versus AERONET AOD for different seasons: (A) DJF, (B) MAM, 
(C) JJA, and (D) SON. Middle panels show the probability density functions of differences (POSP-AERONET). Lower panels show 260 
box plots of the difference between POSP AOD and AERONET AOD. See Figure 3 caption for further explanation of the various 
features plotted.  

4.3 Validation of POSP AOD over different surface types 

Kaufman et al. (1997) pointed out that a small error of 0.01 in surface reflectance can lead to a 0.1 uncertainty in the retrieved 

AOD. To evaluate the influence of surface type, the validation results of POSP AOD over four different groups of LC types,  265 

city, cropland, grassland and forest are plotted in Figure 4. The results show that the validation metrics vary with LC type. 

Over forest, the RMSE is lowest and the fraction within EE (79.92%) is highest, but the AOD range is limited and high AOD 

cases are lacking, while also R is lowest (0.85). Over Cropland, Grassland, and Forest, the statistical metrics are similar, while 

City has the lowest accuracy. In addition,  the AOD over Cropland, Grassland, and Forest  is nearly unbiased (less than 0.01), 

while the AOD over City shows a positive bias. The reasons for the lower accuracy over City than other surface types will be 270 

discussed in Section 5.1.3. 
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Figure 4: POSP AOD validation results over four different land cover types: (a) city, (b) cropland, (c) grassland, and (d) forest. See 
Figure 3 caption for further explanation of the various features plotted. 

4.4 Site-specific validation metrics 275 

To evaluate the reliability of the POSP AOD product over different regions, the values of four validation metrics (R, RMSE, 

bias and GCOS) are plotted on global maps in Figure 5 (similar maps for MODIS DB/DT AOD are presented in Figures S3 

and S4). For most sites, the accuracy of the POSP AOD is high. As indicated in Table 2, 24%, 50%, and 78% of the sites have 

RMSEs less than 0.05, 0.07, and 0.1, respectively. Additionally, 22%, 57%, and 86% of the sites have GCOS fractions greater 

than 60%, 45%, and 30%, respectively. Figure 5 (A) shows that in North America and Europe R is slightly lower than in other 280 

regions. However, Figure 5 (B) shows that in North America and Europe the RMSE is closer to zero than in other regions. 

Figure 5 (D) indicates that in these regions the GCOS fraction is much higher than in other parts of the world. Additionally, 

Figure 5 (C) shows that the sites in North America and Europe have a slightly positive bias. This is because the AOD in these 

regions is low, and the lower spatial resolution of the POSP results may be affected by residual clouds, leading to 

overestimation. The sites in Africa and India with deep colour show larger positive bias than in North America and Europe. 285 

This is attributed to the higher aerosol loading in these regions, which results in increased retrieval uncertainty. 

On the other hand, in heavily polluted regions such as northern India, central and western Africa, and central South America, 

POSP AOD shows high consistency with AERONET AOD, although the GCOS fraction is lower. This is because, a fixed 

aerosol model is used to improve the stability of the inversion, which however may not accurately represent the actual aerosol 
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types. Such discrepancies introduce greater uncertainties in the retrieval as the aerosol loading increases. Thus, using a fixed 290 

aerosol model inevitably affects the retrieval accuracy (Levy et al., 2013). This is one of the inherent challenges of aerosol 

retrieval using single-angle observations, and we aim to address this issue in future algorithm improvements. 

 

Figure 5: Global maps showing site-specific metrics for the validation of POSP AOD using AERONET AOD as reference: (A) R, (B) 
RMSE, (C) bias, and (D) the fraction within GCOS. 295 

Table 2: Percentages of exceedance of discrete values of POSP AOD validation metrics . 

R 
> 0.7 > 0.6 > 0.5 

123 (45%) 173 (64%) 216 (79%) 

RMSE 
< 0.05 < 0.07 < 0.1 

65 (24%) 137(50%) 213 (78%) 

|Bias| 
< 0.04 < 0.02 < 0.01 

226(83%) 182(77%) 109(40%) 

GCOS 
>60% >45% >30% 

61(22%) 154(57%) 266(86%) 

5 Discussion 

5.1 Error Analysis 

5.1.1 Error analysis of AOD bias in different seasons 

To further assess the impact of different factors on the accuracy of POSP AOD retrievals, Figure 6 shows the variation of AOD 300 

bias with the AE evaluated from AOD at 670 nm and 865 nm (AE670-865), scattering angle and Normalized Difference 
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Vegetation Index (NDVI), for each of the four seasons. For AE670-865 varying between  0.25 and 1.55, the values of the mean 

bias are all similar, in any of the seasons, indicating that the algorithm performs well regardless of the particle sizes. However, 

the 25 and 75 percentiles show that substantial variations occur and that these variations are largest for both the lowest and 

highest AE values shown. The bias decreases somewhat with increasing NDVI, with the largest decrease for the larger NDVI 305 

values. Furthermore, the bias uncertainty, represented by the length of the error bars. decreases as NDVI increases. The latter 

indicates that the POSP AODs are more accurate over densely vegetated areas than over low-vegetated areas. The AOD bias 

varies somewhat with the scattering angle and increases at the largest scattering angles. The bias uncertainty increases with 

increasing scattering angle, for all seasons except in DJF and SON when it decreases at scattering angles of 170° and 180°. 

The data in Fig. 6 show that the variations in bias with AE670-865), scattering angle and NDVI are not significantly influenced 310 

by seasonal changes. 

 

Figure 6: Box and whisker plots of AOD bias as a function of (1) AERONET AE440–870, (2) POSP NDVI, (3) scattering angle, in (A) 
DJF, (B) MAM, (C) JJA, and (D) SON. The black dots and error bars represent the median, 25th percentiles, and 75th percentiles 
of the AOD bias. 315 
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5.1.2 Error analysis of AOD bias over different surface land cover types 

Figure 7 shows the AOD bias over surfaces with different LC types using the data from the full study period (The conclusion 

from the section 5.1.1 indicates that the seasonal  influence of season on the retrieval bias is negligible). The patterns for AE670-

865 and NDVI are similar for all four types of LC. The AOD bias is unaffected by the particle sizes, and the uncertainty 

decreases as NDVI increases. In contrast, the effect of the scattering angle is much larger over city than over the other three 320 

areas, especially for scattering angles larger than 135o, where the AOD is substantially overestimated. This is because the 

hotspot effect becomes more pronounced with increasing scattering angle (Jiao et al., 2016), where . Tthe hotspot effect refers 

to an anisotropic scattering phenomenon characterized by a notable increase in observed reflectance when the solar 

illumination and sensor viewing directions coincide (Bréon et al., 2002). As a consequence, an error in the surface reflectance 

results in an increased uncertainty in the AOD retrievals. It is important to note that the hotspot effect was not considered when 325 

estimating surface reflectance. Therefore, as the scattering angle increases, the uncertainty increases significantly. This effect 

is more pronounced over city than over other surface because a city has more complex surfaces and varied pollution 

components (Bilal et al., 2022; Wong et al., 2011).  Hence, This indicates that the error sources for AOD retrieval over cities 

are more diverse and complicated than over other land cover types. The impact of neglecting surface directional reflectance 

characteristics over urban areas will be discussed in Section 5.1.3. 330 
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Figure 7: Box and whisker plots of the POSP AOD bias versus AERONET AE670-865, POSP NDVI, and scattering angle for four 
different land cover types: (A) city, (B) cropland, (C) grassland, and (D) forest. 

5.1.3 The impact of neglecting surface directional reflectance characteristics over city areas on the retrieval 335 

To further explore the impact of urban surface reflectance anisotropy on aerosol retrieval, synthetic experiments have been 

made. Section 2.1 has provided Following the a detailed description of how the spectral reconstruction forof BRDF kernel 

coefficients was performedin Section 2.1, here . This section further filters the BRDF kernel coefficients are filtered further 

specificfor urban  to LC  for urban using the global IGBP classification product MCD12C1 (The MCD12C1 product was 

resampled to match the spatial resolution of the BRDF results). It should be noted that tThe number of BRDF kernel 340 

coefficients obtained over LC for urban LC is quite large, making it impractical to compute TOA reflectance under different 

observation geometries and aerosol conditions for each individual case. To simplify the computation while retaining the 

representativeness of BRDF kernel coefficients over urban areas, we applied the K-means clustering method to extract 

representative BRDF kernel coefficients representative for urban areas in 2022 (tests showed that seven clusters are sufficient 

to represent the urban BRDF kernel coefficients). The results are presented in Table 3 presents the BRDF kernel coefficients 345 

over urban areas in 2022. 

Then, to evaluate the effect of ignoring surface directional characteristics over urban areas whenon the retrievinged aerosol 

properties, the non-Lambertian radiative transfer model (RTM) and Lambertian RTM are used for creating synthetic TOA 

reflectances (𝜌′) and AOD retrieval results, respectively. In the retrieval process, the Lambertian RTM is used to calculate the 



16 
 

TOA reflectance (ρ*),.  and tThe AOD corresponding to the best match between ρ* and ρ′ areis taken as the retrieval results. 350 

By comparing the retrieval bias, the effect of ignoring surface anisotropy on AOD retrieval over urban areas was assessed. 

The calculation of TOA reflectance requires consideration of three aspects: For the aerosol properties, To simulate aerosol 

conditions over urbans, we used a mixture of continental and polluted aerosol types in equal proportions (Omar et al., 2009). 

And AOD was set to range from 0 to 1.5. Furthermore, in order to reduce the influence of errors introduced by aerosol model 

uncertainty, the aerosol model used in the retrieval are the same as those used in the creation of synthetic data set. For the 355 

surface reflectance, we used the seven representative BRDF kernel coefficients derived from the above clustering process. 

When calculating TOA reflectance using the non-Lambertian RTM, all three BRDF kernel coefficients from Table 3 are used 

to estimate the surface reflectance. In contrast, when using the Lambertian RTM, only the isotropic kernel coefficient from 

Table 3 is used as the surface reflectance. For the observation geometries, the solar zenith angle, viewing zenith angle, and 

relative azimuth angle were set to range from 10° to 70°, 0° to 60°, and 0° to 360°, respectively. Notably, bothThe observation 360 

geometry and AOD weare both randomly sampled following a Gaussian distribution. To account for real-world observational 

conditions, we introduced random errors to the simulated reflectances consistent with calibration accuracy. 

First, to eliminate the differences in spectral response between POSP and MODIS, spectral reconstruction was performed by 

Ji et al. (2025) using the SVD technique. Then, we used the global IGBP classification product MCD12C1 to extract the BRDF 

kernel coefficients after spectral reconstruction over city areas. Before selecting the IGBP class representingative for a city, 365 

the MCD12C1 product wais resampled to match the spatial resolution of the BRDF results. Finally, to avoid redundancy in 

the BRDF results, we applied the K-means clustering method to obtain representative urban BRDF kernel coefficients (tests 

showed that seven clusters are sufficient to capture the variability of urban BRDFs). Table 3 presents the BRDF results over 

urban areas in 2022.  

Figures 8 and 9 show polar diagrams of the surface reflectances, calculated using the MODIS BRDF model (by Eqs. S1 to S9,  370 

(with the solar zenith angle set at 30°), for each of the seven7 LC for urban  types, as well the scattering angle . These 

calculations were made for wavelengths used in the POSP retrieval algorithm, i.e. at 443 nm (Fig 8) and 490 nm (Fig. 9). The 

simulations show that the surface reflectance increases significantly for viewing zenith angles larger than approximately 75°. 

In the retrieval algorithm this issue is avoided by restricting the viewing zenith angles to smaller than 60°. Furthermore, surface 

reflectance increases notably substantially when the viewing zenith angle approaches the solar zenith angle, corresponding to 375 

the maximum scattering angle. This explains the high uncertainty over urban areas at large scattering angles discussed in 

Section 5.1.2.  

Table 3 BRDF kernel coefficients statistics over urban areas for different types. 

Kernal name 
Band 
(nm) 

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 

Isotropic 
443 0.068 0.044 0.053 0.104 0.076 0.049 0.127 

490 0.083 0.055 0.065 0.123 0.091 0.060 0.150 

volumetric 
443 0.017 0.021 0.017 0.028 0.041 0.036 0.058 

490 0.021 0.024 0.022 0.033 0.048 0.042 0.067 
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geometric-optical 
443 0.016 0.010 0.011 0.023 0.014 0.007 0.020 

490 0.020 0.013 0.013 0.027 0.017 0.009 0.023 
 

 380 

Figure 8: Polar diagrams of the BRDF distribution for the 7 types of clustered results. (A)-(F) The result of surface reflectance at 
443 nm, and (G) The scattering angle plot. In this polar plot, the radius denotes a change in viewing zenith angle from 0° to 90°, and 
the polar angle represents a change in relative azimuth angle from 0° to 360°. The simulations are performed for a solar zenith angle 
of 30°. The colors in (A)–(F) and (G) represent surface reflectance and scattering angle magnitude, respectively.And what are the 
colors indicating? 385 
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Figure 99: As Figure 8, but for a wavelength of 490 nm. 

 

A synthetic data set for the TOA reflectance is created using Based on tthe representative urban simulated BRDF results 

obtained above, this study usesin a non-Lambertian radiative transfer model to simulate the reflectance at ToA. This synthetic 390 

data set is subsequently used to invert AOD with theThen, the radiative transfer model assuming a Lambertian surface is used 

for retrieval, and.  the resulting retrieval errors are used to assess the impact of surface anisotropy on AOD retrieval over city 

areas. 

For simulations of the TOA reflectance at ToA, both observation geometry and AOD are randomly sampled following a 

Gaussian distribution (solar zenith angle from 10° to 70°; viewing zenith angle from 0° to 60°; relative azimuth angle from 0° 395 

to 360°; AOD from 0 to 1.5). To simulate aerosol conditions over cities, we used a mixture of continental and polluted aerosol 

types in equal proportions (Omar et al., 2009). Notably, to account for real-world observational conditions, we introduced 

random errors to the simulated reflectance consistent with calibration accuracy. 

First, the reflectances are calculated using the non-Lambertian forward radiative transfer model, Eqs. S10 and S11. Then, the 

AOD is retrieved using the Lambertian forward radiative transfer model, Eq. S12. To isolate the effect of surface reflectance 400 

anisotropy on inversion, we used the aerosol model in the retrieval that was also used in the forward simulation. 

Figures 10 and S7 show the AOD bias as function of scattering angle for 7 different surface types to illustrate how retrieval 

errors caused by neglecting surface anisotropy vary with scattering angle and aerosol loading, respectively. Because of 

overestimation of the simulated reflectance using the Lambertian forward radiative transfer model, the retrieved AOD is 

underestimated. For types 4 and 7, which have the highest reflectance, the AOD underestimation is most pronounced, 405 

confirming that the higher the surface reflectance, the greater the impact of ignoring surface anisotropy on retrieval accuracy. 
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For types 2 and 3, which have the lowest reflectance surfaces, the retrieval error caused by neglecting surface anisotropy is 

nearly constant across different aerosol loadings (Figure S7), but slightly increases as the scattering angle increases. Overall, 

as AOD increases, the impact of ignoring surface anisotropy on retrievals diminishes, and as surface reflectance increase. 

Therefore, for aerosol retrieval over urban areas, the effect of surface anisotropy on the retrieval result is non-negligible in 410 

regions with high surface reflectance. 

 

Figure 10: AOD bias as a function of scattering angle for the 7 different types of urban LC clusters  clustered LC for urban surface 
types. 

5.2 Comparison of POSP and MODIS AOD 415 

5.2.1 Overall validation 

Figure 11 shows comparisons of the POSP/GF-5(02) and MODIS/Terra AOD versus AERONET data, where the MODIS 

AOD includes DB (11,010 collocations) and DT (9,211 collocations). The number of DB and DT collocations are different 

because DT does not provide retrieval results over bright surfaces (The validation for DB/DT is presented in Figures S1-S2, 

respectively).  420 

The comparison in Figure 11 shows that the POSP/GF-5(02) AOD has a higher accuracy than the MODIS/Terra DB AOD, 

with the fractions within EE of 82.5% and 77.3%, respectively. Likewise, POSP/GF-5(02) has higher accuracy than 

MODIS/Terra DT AOD, with the fractions within EE of 80.7% and 73.9%, respectively. The probability distribution functions 

in Figure 11 show that POSP and DB are nearly unbiased, while DT slightly overestimates AOD. These results show that the 

accuracy of POSP/GF-5(02) AOD is overall better than that of MODIS/Terra AOD for both DB and DT. 425 
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Figure 11:The upper panels show scatter density plots of satellite AOD versus AERONET reference data, where POSP AOD is 
plotted in red and MODIS AOD in blue; The lower panels show the probability distribution functions for the differences between 
satellite AOD and AERONET AOD. The left column represents the results for the DB algorithm (A) and the right column represents 
the DT algorithm (B). 430 

5.2.2 Validation over different surface types 

The comparison of POSP/GF-5(02) and MODIS/Terra AOD over four different land cover types (city, cropland, grassland, 

and forest) is presented in Figure 12 for DB and in Figure 13 for DT. The accuracy of POSP is higher than that of both DB 

and DT over cropland, grassland, and city. However, over Forest, the accuracy of POSP/GF-5(02) AOD is lower than that of 

DB (Figure 12). Specifically, in terms of R², RMSE, and Bias, the metrics are better for POSP AOD than for DB, but not for 435 

other accuracy metrics. The comparison of bias histograms over different land cover types indicates that the POSP AOD is 

nearly unbiased over all surface types, whereas DB shows a positive bias over city, and DT shows a positive bias over city, 

cropland, and forest.  
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Figure 12: Same as Figure 11, for AOD from POSP/GF-5(02) and MODIS/TERRA DB, but over different land cover types: (A) city, 440 
(B) cropland, (C) grassland, and (D) forest. 

 

Figure 13: Same as Figure 12, but for DT. 

5.2.3 Comparison of the spatial distributions of AOD from POSP and MODIS/Terra 

Figure 14 shows the spatial distributions of seasonally averaged AOD from POSP/GF-5(02) and MODIS/Terra, for MAIAC, 445 

DB and DT (top to bottom). Difference plots between the seasonally averaged POSP/GF-5(02) and MODIS/Terra AOD are 

presented in Figure S5. During DJF, AOD could not be retrieved over high-latitude regions due to the presence of snow and 

ice. In addition, the low solar zenith angle over high-latitude regions will also affect the inversion. The seasonal variation of 
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the spatial characteristics are similar to those of other satellite products (Chen et al., 2020; Fan et al., 2023). In 2022, AOD 

was higher during MMA and JJA than during DJF and SON. In addition, AOD is lower due to stable atmospheric conditions 450 

and reduced atmospheric vertical convective activity during winter (Liu et al., 2022; Zhao et al., 2018). Frequent biomass 

burning events contribute to elevated AOD in south-central Africa (Tummon et al., 2010). Furthermore, high AOD persists in 

eastern China and northern India due to active industrial production and biomass burning events (de Leeuw et al., 2018; Gupta 

et al., 2021). 

POSP AOD is slightly lower than MODIS DB AOD over North Africa and the Arabian Peninsula, while it is much closer to 455 

MODIS MAIAC AOD in these regions. Overall, POSP AOD shows similar features as MAIAC AOD over North Africa and 

the Arabian Peninsula, while it is more consistent with DB AOD over other regions. Furthermore, compared to MODIS DB, 

the spatial differences between POSP AOD and MODIS DT are smaller. In general, the results indicate a high degree of 

agreement between POSP and MODIS AOD, with differences predominantly within the (-0.2, 0.2) range. 

 460 

Figure 14: Maps of the seasonally averaged AOD derived from POSP, MODIS MAIAC, MODIS DB and MODIS DT, for the winter 
(DJF: December–January–February), spring (MAM: March–April-May,) summer (JJA: June–July–August), and autumn (SON: 
September–October–November). 
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5.3 Time-series analysis 

Time series of POSP AOD are presented in Figure 15 for four polluted regions, together with MODIS/TERRA DB and 465 

AERONET AOD data, for the whole year 2022. Figure 15 (A) shows these time series over the Beijing_CAMS site in Beijing 

in the North China Plain (NCP), which is a key region for aerosol research due to its unique economic and geographical 

characteristicsTime series of POSP AOD are presented in Figure 15 for four polluted regions, together with MODIS/TERRA 

DB and AERONET AOD data, for the whole year 2022. Figure 15 (A) shows these time series over the Beijing_CAMS site 

in Beijing in the North China Plain (NCP), which is a key region for aerosol research due to its unique economic and 470 

geographical characteristics (Deng et al., 2011; Li et al., 2017a; Liu et al., 2011). The Beijing_CAMS site is located within 

Beijing. For POSP AOD the RMSE lower than for MODIS DB AOD and POSP has more valid retrievals. Severe pollution 

events (AOD > 1.5) were recorded in the Beijing area at the end of April and September. Figure 15 (B) shows AOD time series 

for Seoul (Korea), which is located downwind of East Asia and therefore is an important  crucial region for studying aerosols 

and their transport (Kim et al., 2007; Oh et al., 2015). As shown in Figure 15 (B), Seoul National University (Seoul_SNU) is 475 

located within the Seoul metropolitan area. In 2022, severe pollution events occurred in April and May. The RMSE for POSP 

AOD is lower than for MODIS DB and more valid retrievals were obtained. Figure 15 (C) shows AOD time series for the 

India, which is one of the most severely air-polluted countries in the world, especially in the northern plains (Vellalassery et 

al., 2021). As illustrated in Figure 15 (C), Amity University is located in the western part of northern India. In 2022, severe 

pollution events occurred in May and November. POSP successfully retrieved AOD in April, June, and October, while DB 480 

failed to provide results during these periods. This advantage may be attributed to the updated aerosol model for India. Across 

all stations, the RMSE of POSP is comparable with that for DB AOD. At Beijing_CAMS, the RMSE of POSP AOD (0.12) 

was significantly lower than that of MODIS DB AOD (0.20), highlighting the enhanced precision of POSP in this region. 
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Figure 15: Time series of the POSP (green diamonds), DB (red triangles) and AERONET AOD (blue circle) over (A) Beijing-CAMS, 485 
(B) Amity University, and (C) Seoul University, for January – December 2022.  

6 Conclusions 

This study focuses on the validation of the newly developed POSP AOD product, processed for the year 2022. To this end, 

data from 276 global AERONET sites and MODIS/Terra AOD products were used. The POSP AOD was evaluated and 

analysed in different ways: 1) direct validation versus AERONET reference data at seasonal, regional, and site-specific scales; 490 

2) comparison with similar results for MODIS DT and DB AOD; 3) Effect of land cover types on the AOD retrieval results; 

4) evaluation of spatial distribution differences. The principal findings are as follows: 

1. The validation of POSP AOD shows good consistency with AERONET AOD, with an R of 0.914, and the fraction within 

the EE of 78.45%. Global site-scale validation results show that POSP AOD is more consistent with AERONET AOD in 

high AOD regions than in low AOD regions. The bias is positive in Europe and negative in Asia. The fraction within the 495 

GCOS requirements is smaller in high aerosol loading regions than in low aerosol loading regions.  
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2. The accuracy of the POSP AOD varies significantly across different seasons, with the highest accuracy in the DJF (R² of 

0.854, RMSE of 0.080) and the lowest in the JJA (R² of 0.667, RMSE of 0.083). The accuracy of the POSP AOD is more 

higher over densely vegetated areas than over low-vegetated areas, with croplands achieving the highest accuracy (R² of 

0.859, RMSE of 0.093). Moreover, the error analysis shows that the accuracy of POSP AOD is mainly influenced by 500 

surface vegetation cover and observation geometry. As NDVI or scattering angle increases, the uncertainty of POSP AOD 

decreases. POSP AOD consistently provides results with low bias irrespective of the values of NDVI or scattering angles. 

For aerosol retrieval over urban areas, the effect of surface anisotropy on retrieval accuracy is non-negligible in regions 

with high surface reflectance. 

3. The comparison of MODIS and POSP AOD products shows that POSP AOD is in good agreement with MAIAC AOD 505 

over North Africa and the Arabian Peninsula, while it compares better with DB AOD over other regions. Cross-validation 

shows that the accuracy of the POSP AOD is higher than that of MODIS AOD. The comparison metrics for DB versus 

POSP are as follows: R² of 0.853/0.791, RMSE of 0.075/0.090, fraction within EE of 82.51%/77.25% (POSP/DB); and for 

DT: R² of 0.862/0.770, RMSE of 0.080/0.103, fraction within EE of 80.72%/73.90% (POSP/DT). Comparison over 

different surface types shows that POSP AOD is more accurate than DB over City, Cropland, and Grassland areas, and 510 

better than DT under all surface types. 
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