Response to RC1: 'Comment on egusphere-2025-91 ', Anonymous Referee #1, 11 Mar 2025

Review of Manuscript egusphere-2025-91 entitled ‘Global validation of the Particulate Observing
Scanning Polarimeter (POSP) Aerosol Optical Depth products over land’ by Zhe Ji, Zhengqiang Li,
Gerrit de Leeuw, Zihan Zhang, Yan Ma, Zheng Shi, Cheng Fan, and Qian Yao

On behalf of all co-authors, we thank Referee #1 for the insightful and extensive comments which
certainly contribute to the substantial improvement of the manuscript (MS). Below we respond to each
of the general, major and specific comments which are copied below (in black). In addition to the
numbered major and specific comments, we have numbered the general comments as GC1-GC5. After
each comment we provide our response, in red, together with changes in the revised MS. Line numbers
(indicated by L) mentioned by Referee #1 refer to the original MS as published in the AMT discussion

Section and revisions are quoted with line numbers (indicated by LR) referring to the revised MS.

GC1: The specific data quality control procedures for POSP (e.g., cloud detection, outlier removal) remin
unclear in the manuscript, potentially affecting result reproducibility. It is recommended to supplement
detailed descriptions of POSP data preprocessing steps (e.g., cloud masking, pixel screening criteria) and

clarify their impacts on the matching strategy.

Response to GC1: Thank you for pointing this out. We overlooked the description of the data
preprocessing step, and we appreciate your reminder, which is very helpful in improving the quality of
the manuscript. Since the algorithm proposed in this study is specifically designed for cloud-free land
pixels, we removed land pixels that might contain clouds or ice/snow before retrieval. When retrieval
pixels contain potential cloud contamination, the results tend to be significantly overestimated. A strict
cloud detection process can effectively mitigate this issue. Additionally, to ensure the reliability of the

validation, we adopted the following matching strategies:

“In this study, considering the 6.4 km spatial resolution of the POSP, the following strategies to match
POSP and AERONET AOD data have been devised to ensure reliable AOD validation results while
accounting for spatial consistency: satellite data are averaged over a window of 3 x 3 pixels centred on
the AERONET site, and ground-based observations are averaged over 30 minutes before and after the
time of the satellite overpass. To mitigate the uncertainty associated with averaging data, a minimum of
two or more ground-based observations are required in the temporal matchup window, and the spatial-
temporal matchup window must encompass more than three valid satellite pixels (Chu et al., 2002).” (LR
145-151)

A detailed description of the preprocessing has been added to the Methods section.

“As an optical sensor, POSP observations are inherently susceptible to cloud interference. To mitigate
cloud contamination, it is essential to filter out cloud-affected pixels before retrieval. Given the single-
angle observation method of POSP, this study adopts cloud detection strategies from MODIS, which
have been extensively validated (Frey et al., 2008). Specifically, two methods are employed: the apparent
reflectance threshold method and the apparent reflectance spatial variation detection method (Martins et
al., 2002). The former effectively identifies optically thick clouds with high reflectance or substantial
water vapor content, while the latter is particularly useful for detecting cloud edges, shadows, thin clouds,

and dispersed cloud formations.

The land surface exhibits low reflectance in the blue band, whereas clouds have high reflectance.
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Therefore, a pixel is identified as a cloud when its reflectance at the 443 nm band exceeds a certain
threshold. The 1380 nm band lies within a strong water vapor absorption region, where the reflectances
from land surfaces and low clouds are generally low. As a result, only high clouds, mostly above the
heights where atmospheric water vapor is located, are visible in this band. Pixels with high reflectance
at 1380 nm are therefore typically classified as high clouds. Furthermore, cloud edges typically exhibit
high spatial variability due to mixed pixels and partial cloud coverage. The spatial variation
characteristics of the 443 nm and 1380 nm bands can effectively identify cloud-edge pixels. The
combination of their spatial differences helps reduce misclassification at cloud boundaries and improves

the accuracy of cloud detection.

Surface conditions such as snow and water also affect the inversion. Since the retrieval algorithm is
explicitly designed for clear-sky over non-ice land surfaces, pixels over water, ice, and snow must be
excluded. The detection of water and snow pixels is achieved using the Normalized Difference Water
Index (NDWI) and the Normalized Difference Snow/Ice Index (NDSI), respectively, with specific

identification thresholds presented in Table 1.
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While the aforementioned cloud detection strategy provides a foundation for minimizing cloud
contamination, potential for further improvement remains. Given the relatively coarse spatial resolution
of POSP (6.4 km) and its limited spectral coverage, certain pixels that contain residual clouds may remain
undetected. The simulation analysis by Kassianov and Ovtchinnikov (2008) pointed out that multiple
scattering of clouds can lead to overestimated AOD retrievals when the residual clouds are not fully
screened. Sogacheva et al. (2017) further removed the cloud-contaminated pixels using a cloud post-
processing scheme. To enhance cloud-mask accuracy, a dedicated cloud detection algorithm for POSP is

still needed. We aim to further enhance the cloud detection algorithm in future work.

Table 1 Summary of screening thresholds.

Items Purpose
Pasz < 0.02 01 pyus > 0.4 Cloud
0443 > 0.038 Cloud
P13g0 > 0.02 and Height < 1500 Cloud
01350 > 0.005 Cloud
NDWI >0 Water

NDSI > 0.4 Snow/Ice

» (LR 185-213)

GC2:. Line24, Lines 178-182: The significant underestimation in high-AOD regions (e.g., North Africa)
is attributed to "aerosol model errors" without specific analysis of discrepancies between model
assumptions and actual aerosol characteristics. Further investigation into aerosol model classification

and its impact on retrieval errors is suggested.



Response to GC2: We sincerely apologize for any misunderstanding caused by our oversight. First, Fig.

14 in the manuscript shows that:

“POSP AOD is slightly lower than MODIS DB AOD over North Africa and the Arabian Peninsula, while
it is much closer to MODIS MAIAC AOD in these regions. Overall, POSP AOD shows similar features
as MAIAC AOD over North Africa and the Arabian Peninsula, while it is more consistent with DB AOD
over other regions. Furthermore, compared to MODIS DB, the spatial differences between POSP AOD
and MODIS DT are smaller. In general, the results indicate a high degree of agreement between POSP
and MODIS AOD, with differences predominantly within the (-0.2, 0.2) range.” (LR 424-428)

In recent years, the global ground-based observation network has expanded significantly, improving
coverage in many areas. However, ground-based observations remain sparse in remote and inaccessible
regions. Given the current distribution of ground-based observation sites, it remains challenging to

determine which aerosol product achieves the highest accuracy globally compared to others.

POSP AOD (DJF) POSP AOD (MAM) POSP AOD (JJA)

Figure 14: Maps of the seasonally averaged AOD derived from POSP, MODIS MAIAC, MODIS DB and
MODIS DT, for the winter (DJF: December—January-February), spring (MAM: March—-April-May,)
summer (JJA: June-July—August), and autumn (SON: September—October—-November).

This study performs retrievals based on a fixed aerosol model, which may lead to significant
discrepancies between the assumed and actual aerosol models. Li et al. (2018) have quantitatively
described the impact of aerosol model error on retrieval accuracy through simulation experiments. They
applied the optimal estimation theory and calculated the degree of freedom for signal (DFS) available
for aerosol retrieval parameters to quantify their information content (Frankenberg et al., 2012;
Hasekamp and Landgraf, 2005). This method has been widely used to assess the theoretical retrieval

capability of sensors.



Here, the aerosol model errors correspond with the combination of 6 predefined aerosol parameters: {re}; £
vefff, Terfs Verss mlf, m{}, which are all assumed to change from 5% to 100% by a step of 5% with
the constant measurement error, as well as the constant a priori errors of mif and m{. refff and 7r5¢f

represent the effective radius of fine- and coarse- mode aerosol, respectively. vef sr and Veps Tepresent

the effective variance of fine- and coarse-mode aerosol, respectively. mlf and m{ represent the
refractive index of fine- and coarse-mode aerosol, respectively. It is evident that as the aerosol model

error increases, DFS decreases linearly, indicating that the retrieval uncertainty correspondingly

increases.
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Fig. R1. Same as Fig. 11 but as a function of the aerosol model errors from 5% to 100% by a step of 5% with
AOD=0.6.

We have added descriptions in the relevant sections regarding the impact of aerosol model error on

retrieval accuracy.

“The probability density functions of differences (POSP-AERONET) are presented in Figure 2 (B). The
results show that the POSP algorithm underestimates the AOD as aerosol loading increases. For low
AOD (AOD < 0.2), POSP's bias is 0.01. For moderate AOD (0.2 < AOD < 0.7), POSP's bias increases
to -0.03, and for high AOD (AOD > 0.7), POSP's bias further increases to -0.04. These biases may be
attributed to the increasing aerosol model error. As AOD increases, the impact of discrepancies between
the assumed aerosol model and the actual aerosol model is amplified, leading to an increase in retrieval
uncertainty (Hou et al., 2018; Li et al., 2018).” (LR 218-223)

“On the other hand, in heavily polluted regions such as northern India, central and western Africa, and
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central South America, POSP AOD shows high consistency with AERONET AOD, although the GCOS
fraction is lower. This is because a fixed aerosol model is used to improve the stability of the inversion,
which, however, may not accurately represent the actual aerosol types. Such discrepancies introduce
greater uncertainties in the retrieval as the aerosol loading increases. Thus, using a fixed aerosol model
inevitably affects the retrieval accuracy (Levy et al., 2013). This is one of the inherent challenges of
aerosol retrieval using single-angle observations, and we aim to address this issue in future algorithm
improvements.” (LR 283-288)

GC3: Lines 302-304: The explanation for lower AOD accuracy in urban areas remains overly
generalized ("complex surface and diverse pollution components"), lacking quantitative analysis (e.g.,
interference from urban surface reflectance anisotropy). Enhanced discussion on separating urban surface

reflectance from aerosol signals is recommended.

Response to GC3: Thank you very much for pointing this out. Your comment is extremely valuable for
improving the quality of our manuscript. We acknowledge that our analysis lacked a detailed discussion
on the impact of urban surface reflectance anisotropy on aerosol retrievals. Therefore, we have now

included a comprehensive discussion on this aspect, as detailed below.

“To further explore the impact of urban surface reflectance anisotropy on aerosol retrieval, synthetic
experiments have been made. Following the detailed description of the spectral reconstruction of BRDF
kernel coefficients in Section 2.1, here the BRDF kernel coefficients are filtered further for urban LC
using the global IGBP classification product MCD12C1 (The MCDI12C1 product was resampled to
match the spatial resolution of the BRDF results). The number of BRDF kernel coefficients obtained
over urban LC is quite large, making it impractical to compute TOA reflectance under different
observation geometries and aerosol conditions for each individual case. To simplify the computation
while retaining the representativeness of BRDF kernel coefficients over urban areas, we applied the K-
means clustering method to extract BRDF kernel coefficients representative of urban areas in 2022 (tests
showed that seven clusters are sufficient to represent the urban BRDF kernel coefficients). The results

are presented in Table 3.

To evaluate the effect of ignoring surface directional characteristics over urban areas on the retrieved
aerosol properties, the non-Lambertian radiative transfer model (RTM) and Lambertian RTM are used
for creating synthetic TOA reflectances (p") and AOD retrieval results, respectively. In the retrieval
process, the Lambertian RTM is used to calculate the TOA reflectance (p*). The AOD corresponding to
the best match between p* and p’ is taken as the retrieval result. By comparing the retrieval bias, the

effect of ignoring surface anisotropy on AOD retrieval over urban areas was assessed.

The calculation of TOA reflectance requires consideration of three aspects: For the aerosol properties, to
simulate aerosol conditions over urban areas, we used a mixture of continental and polluted aerosol types
in equal proportions (Omar et al., 2009). And AOD was set to range from 0 to 1.5. Furthermore, in order
to reduce the influence of errors introduced by acrosol model uncertainty, the acrosol model used in the
retrieval is the same as that used in the creation of the synthetic dataset. For the surface reflectance, we
used the seven representative BRDF kernel coefficients derived from the above clustering process. When
calculating TOA reflectance using the non-Lambertian RTM, all three BRDF kernel coefficients from
Table 3 are used to estimate the surface reflectance. In contrast, when using the Lambertian RTM, only

the isotropic kernel coefficient from Table 3 is used as the surface reflectance. For the observation
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geometries, the solar zenith angle, viewing zenith angle, and relative azimuth angle were set to range
from 10° to 70°, 0° to 60°, and 0° to 360°, respectively. The observation geometry and AOD were both
randomly sampled following a Gaussian distribution. To account for real-world observational conditions,

we introduced random errors to the simulated reflectances consistent with calibration accuracy.

Figures 8 and 9 show polar diagrams of the surface reflectances, calculated using the MODIS BRDF
model (Egs. S1 to S9, with the solar zenith angle set at 30°), for each of the seven LC for urban types, as
well as the scattering angle. These calculations were made for wavelengths used in the POSP retrieval
algorithm, i.e., at 443 nm (Fig. 8) and 490 nm (Fig. 9). The simulations show that the surface reflectance
increases significantly for viewing zenith angles larger than approximately 75°. In the retrieval algorithm,
this issue is avoided by restricting the viewing zenith angles to less than 60°. Furthermore, surface
reflectance increases substantially when the viewing zenith angle approaches the solar zenith angle,
corresponding to the maximum scattering angle. This explains the high uncertainty over urban areas at

large scattering angles discussed in Section 5.1.2.

Table 3 BRDF kernel coefficients statistics for different urban types.

Band
Kernal name (nm) Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7
nm
) 443 0.068 0.044 0.053 0.104 0.076 0.049 0.127
Isotropic
490 0.083 0.055 0.065 0.123 0.091 0.060 0.150
. 443 0.017 0.021 0.017 0.028 0.041 0.036 0.058
volumetric

490 0.021 0.024 0.022 0.033 0.048 0.042 0.067

443 0.016 0.010 0.011 0.023 0.014 0.007 0.020

geometric-optical
490 0.020 0.013 0.013 0.027 0.017 0.009 0.023
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Figure 1: Polar diagrams of the BRDF distribution for the 7 types of clustered results. (A)-(F) The result of
surface reflectance at 443 nm, and (G) The scattering angle plot. In this polar plot, the radius denotes a change
in viewing zenith angle from 0° to 90°, and the polar angle represents a change in relative azimuth angle from
0° to 360°. The simulations are performed for a solar zenith angle of 30°. The colors in (A)—(F) and (G)

represent surface reflectance and scattering angle magnitude, respectively.
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Figure 2: As Figure 8, but for a wavelength of 490 nm.

Figures 10 and S7 show the AOD bias as a function of scattering angle for 7 different surface types to
illustrate how retrieval errors caused by neglecting surface anisotropy vary with scattering angle and
aerosol loading, respectively. Because of the overestimation of the simulated reflectance using the
Lambertian forward radiative transfer model, the retrieved AOD is underestimated. For types 4 and 7,
which have the highest reflectance, the AOD underestimation is most pronounced, confirming that the
higher the surface reflectance, the greater the impact of ignoring surface anisotropy on retrieval accuracy.
For types 2 and 3, which have the lowest reflectance surfaces, the retrieval error caused by neglecting
surface anisotropy is nearly constant across different aerosol loadings (Figure S7), but slightly increases
as the scattering angle increases. Overall, as AOD increases, the impact of ignoring surface anisotropy

on retrievals diminishes, and as surface reflectance increases.

Therefore, for aerosol retrieval over urban areas, the effect of surface anisotropy on the retrieval result is

non-negligible in regions with high surface reflectance.
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Figure 3: AOD bias as a function of scattering angle for different urban surface types.

” (LR 329-383)



Al. Type 1 B1. Type 2 C1. Type 3 D1. Type 4
0.05 0.05 0.05 0.05
0.035 0.035 0.035 0.035
g T ;
F 002 002 T 0.02 L 1 T 0.02
o 4 . A
g 0.005 I T 0005 | L } 0.005 0.005
= T 1 B I T 1 | ! T
! LT ESNEREEES
5553 558668 0 6556668668 o 6565668668
PR YD B N SRR RPN SRR
Scattering Angle
Al. Type S F1. Type 6 G1. Type 7
0.05 0.05 0.05
0.035 0.035 0.035
< |
- 0.02 I 0.02 - 0.02
g [ ‘ « 443 nm
o ooos ] 00051 I 0.005
[ T l
-0.01 I. | l J‘ | 3 lu '] l. | o DO 001
$a89%3 9% %5 h® B N AN
Scattering Angle
A2. Type 1l B2. Type 2 C2. Type 3 D2. Type 4
0.05 0.05 0.05 0.05
0.035 . . X T
g ] i 0.035 . 0.035 . I 0035
- 0.02 ] 0.02 T 0.02 ‘ 0.02
; T %rg Lillig
o 0005 B 000s{ | | 7 0.005 ‘ 0.005 1
- L i |
OO e e e e e -0.01 -0.01 -0.01
sossceccss M ririecacas N i isccacasa e e a e
PSRN PIIIPG R MR ZXEN IO R NN
Scattering Angle
E2. Type 5 F2. Type 6 G2. Type 7
0.05 0.05 0.05
0.035- 0.035 0.035 I [
s Ll
Z 002: ™ 0.02 T T 0.02 1 490 nm
g 0,005 I 0,005 3 0,005 ‘
- 1 | l 1 1 B +
ol Ll el { 1L I Y LS S
X ?@‘i\«?&a‘i«&’ PR A SN B
Scattering Angle

Figure S4: The boxplot of the differences for apparent reflectance between the results calculated based on the
Lambertian forward radiative transfer model (TOAL) and the non-Lambertian forward radiative transfer
model (TOA). The upper panel shows the differences as a function of AOD, while the lower panel presents

the differences as a function of the scattering angle.
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Figure S5: AOD bias as a function of aerosol loading for different urban surface types.

GC4: Line 246:"Other LC types which are not shown in Fig.4 are presented in Fig. S1." Figs. S1-S9

need to be found in the supplementary document. It is recommended to describe clearly in the manuscript.

Response to GC4: Thank you for these comments. We have revised the relevant sections to make the

explanation as clear as possible.

GC5: Some grammatical inconsistencies exist. Comprehensive language polishing is advised to ensure

proper tense usage and grammatical consistency throughout the manuscript.

Response to GCS: Thank you for these comments. We have substantially revised the MS. We have
invited Professor Gerrit de Leeuw, an expert in the field of aerosol remote sensing, to revise our
manuscript for grammatical errors and further improve the logic and organization. Furthermore, the

manuscript has been carefully read and where necessary, unclear text has been re-formulated.
Citation: https://doi.org/10.5194/egusphere-2025-91-RC1
References:

Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanré, D., and Holben, B. N.: Validation of MODIS
aerosol  optical depth retrieval over land, Geophysical Research  Letters, 29,
https://doi.org/10.1029/2001GL013205, 2002.

Frankenberg, C., Hasekamp, O., O’Dell, C., Sanghavi, S., Butz, A., and Worden, J.: Aerosol information
content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy

greenhouse gas retrievals, Atmospheric Measurement Techniques, 5, 1809-1821, 2012.

Frey, R. A., Ackerman, S. A., Liu, Y., Strabala, K. 1., Zhang, H., Key, J. R., and Wang, X.: Cloud detection
with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5, Journal of Atmospheric
and Oceanic Technology, 25, 1057-1072, https://doi.org/10.1175/2008JTECHA1052.1, 2008.

Hasekamp, O. P. and Landgraf, J.: Retrieval of aerosol properties over the ocean from multispectral

single-viewing-angle measurements of intensity and polarization: Retrieval approach, information

10



content, and sensitivity study, Journal of Geophysical Research: Atmospheres, 110, 2005.

Hou, W., Li, Z., Wang, J., Xu, X., Goloub, P., and Qie, L.: Improving Remote Sensing of Aerosol
Microphysical Properties by Near-Infrared Polarimetric Measurements Over Vegetated Land:

Information Content Analysis, Journal of Geophysical Research: Atmospheres, 123, 2215-2243, 2018.

Kassianov, E. I. and Ovtchinnikov, M.: On reflectance ratios and aerosol optical depth retrieval in the
presence of cumulus clouds, Geophysical Research Letters, 35, https://doi.org/10.1029/2008GL033231,
2008.

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The
Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989-3034,
https://doi.org/10.5194/amt-6-2989-2013, 2013.

Li, Z., Hou, W., Hong, J., Zheng, F., Luo, D., Wang, J., Gu, X., and Qiao, Y.: Directional Polarimetric
Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation,
Journal of  Quantitative Spectroscopy ~ and  Radiative  Transfer, 218, 21-37,
https://doi.org/10.1016/j.jqsrt.2018.07.003, 2018.

Martins, J. V., Tanré, D., Remer, L., Kaufman, Y., Mattoo, S., and Levy, R.: MODIS cloud screening for
remote sensing of aerosols over oceans using spatial variability, Geophysical Research Letters, 29,
MOD4-1, 2002.

Omar, A. H., Winker, D. M., Vaughan, M. A., Hu, Y., Trepte, C. R., Ferrare, R. A., Lee, K.-P., Hostetler,
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Response to RC2: 'Comment on egusphere-2025-91', Anonymous Referee #2, 30 Jun 2025

Review of Manuscript egusphere-2025-91 entitled ‘Global validation of the Particulate Observing
Scanning Polarimeter (POSP) Aerosol Optical Depth products over land’ by Zhe Ji, Zhengqiang Li,
Gerrit de Leeuw, Zihan Zhang, Yan Ma, Zheng Shi, Cheng Fan, and Qian Yao

On behalf of all co-authors, we thank Referee #2 for the insightful and extensive comments which
certainly contribute to the substantial improvement of the manuscript (MS). Below we respond to each
of the general, major and specific comments which are copied below (in black). In addition to the
numbered major and specific comments, we have numbered the general comments as GC1-GC7. After
each comment we provide our response, in red, together with changes in the revised MS. Line numbers
(indicated by L) mentioned by Referee #2 refer to the original MS as published in the AMT discussion

Section and revisions are quoted with line numbers (indicated by LR) referring to the revised MS.

GC1: Given that POSP is a new instrument with a novel retrieval algorithm, more detailed information
should be provided on the AOD retrieval methodology, particularly regarding the estimation of surface
reflectance over land. Since surface reflectance is a critical factor in satellite AOD retrieval, a lack of
clarity on how it is treated limits the reader’s ability to understand regional differences in retrieval
performance. Clear articulation of the algorithm's treatment of land surface properties would help explain

spatial variations in validation results.

Responds to GC1: Thanks for your suggestion. We have added a description of surface reflectance

estimation in Section 2.1, as follows:

“The POSP was launched on board the GF-5(02) satellite in July 2021. It has a field of view of £50° with
a swath width of ~1850 km, and provides global observations in nine spectral bands spanning
wavelengths from 380 to 2250 nm (Lei et al., 2023). The local time of the descending node for GF-5(02)
is 10:30 a.m. The POSP is equipped with a comprehensive onboard calibration system (the radiometric
calibration accuracy is within 5%, and the polarimetric calibration accuracy is within 0.005). Ji et al.
(2025) developed an enhanced AOD retrieval algorithm using POSP data. Due to the limited number of
observations, POSP faces an ill-posed inversion problem when the directional characteristics of the
surface are taken into account. To reduce the discrepancy between the number of observations and the
number of retrieval parameters, the following changes have been made to the algorithm presented in Ji
et al. (2025). For aerosol parameters, the global aerosol distribution from the MODIS Dark Target
algorithm has been used, but aerosol models over northern India and central Africa have been updated to
achieve more accurate retrievals. For surface parameters, the bidirectional reflectance distribution
function (BRDF) from MODIS (MCD43) was used to account for the directional reflectance
characteristics of the surface during the inversion (Schaaf et al., 2002). The MODIS BRDF comprises an
isotropic kernel (reflectance from Lambertian surface), a volumetric kernel (reflectance from multiple
scattering within vegetation canopies), and a geometric-optical kernel (reflectance from object
shadowing). To eliminate the differences in spectral response between POSP and MODIS, spectral
reconstruction was performed using the Singular Value Decomposition (SVD) technique. The algorithm
only retrieves the isotropic kernel to reduce the number of parameters to be inverted. Therefore, after
spectral reconstruction, monthly averaged Ross-Thick and Li-Sparse kernel parameters were applied
to account for the surface directional characteristics. Finally, the new aerosol models and surface

directional characteristics were incorporated into the algorithm developed by Ji et al. (2025), and AOD
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was successfully retrieved. Ji et al. (2025) also presented the preliminary validation (from November
2021 to April 2022), the results show that the AOD retrievals have high accuracy.” (LR 81-100)

GC2: The manuscript could benefit from being more concise. Since the primary objective is to validate
the POSP AOD product, the content should remain focused on presenting the validation methods, metrics,

regional analysis, and interpretation of results, minimizing peripheral discussions.

Responds to GC2: We fully agree with your suggestion and have streamlined most of the peripheral
discussions. However, following the recommendation of the first reviewer, we have added a discussion
on the impact of neglecting surface directional reflectance characteristics on the retrieval over urban
areas. In addition, we have also included a comparison of the spatial distribution between POSP AOD
and MODIS AOD.

Responds to GC3:: The current validation extends a previous preliminary comparison (Nov 2021 — Apr
2022) by covering a longer period (Dec 2021 — Nov 2022). However, the manuscript should clearly
articulate the novel contributions of this extended study. For instance, does the longer time series reveal
seasonal biases? Are regional patterns more robustly confirmed or refined? Clarifying what new insights

are gained will better justify the value of this work.

Thanks for your suggestion. We have revised the manuscript and reorganized the highlights of this study,

leading to the following conclusions:

This study is dedicated to the following two objectives: 1) To ensure the reliability of POSP AOD
products and explore the potential factors influencing their performance; 2) To provide a valuable

reference for the enhancement of these products in future iterations.

Firstly, the validation of the POSP AOD against AERONET site data is performed. Then, we obtained
the retrieval accuracy of POSP AOD for one year (2022) and the accuracy metrics across different global

regions.

“The validation of POSP AOD shows good consistency with AERONET AOD, with an R of 0.914, and
the fraction within the EE of 78.45%. Global site-scale validation results show that POSP AOD is more
consistent with AERONET AOD in high AOD regions than in low AOD regions. The bias is positive in
Europe and negative in Asia. The fraction within the GCOS requirements is smaller in high aerosol

loading regions than in low aerosol loading regions.” (LR 458-461)

Secondly, we explored the potential factors influencing their performance and specifically discussed the

impact of ignoring surface directional reflectance characteristics on the retrieval in urban areas.

“The accuracy of the POSP AOD varies significantly across different seasons, with the highest accuracy
in the DJF (R? of 0.854, RMSE of 0.080) and the lowest in the JJA (R? of 0.667, RMSE of 0.083). The
accuracy of the POSP AOD is higher over densely vegetated areas than over low-vegetated areas, with
croplands achieving the highest accuracy (R? of 0.859, RMSE of 0.093). Moreover, the error analysis
shows that the accuracy of POSP AOD is mainly influenced by surface vegetation cover and observation
geometry. As NDVI or scattering angle increases, the uncertainty of POSP AOD decreases. POSP AOD
consistently provides results with low bias irrespective of the values of NDVI or scattering angles. For
aerosol retrieval over urban areas, the effect of surface anisotropy on retrieval accuracy is non-negligible

in regions with high surface reflectance.” (LR 462-469)
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Finally, we analyzed the spatial reliability of POSP AOD by comparing the differences between the POSP
AOD and MODIS AOD products.

“The comparison of MODIS and POSP AOD products shows that POSP AOD is in good agreement with
MAIAC AOD over North Africa and the Arabian Peninsula, while it compares better with DB AOD over
other regions. Cross-validation shows that the accuracy of the POSP AOD is higher than that of the
MODIS AOD. The comparison metrics for DB versus POSP are as follows: R? of 0.853/0.791, RMSE
0f0.075/0.090, fraction within EE of 82.51%/77.25% (POSP/DB); and for DT: R? 0f 0.862/0.770, RMSE
of 0.080/0.103, fraction within EE of 80.72%/73.90% (POSP/DT). Comparison over different surface
types shows that POSP AOD is more accurate than DB over City, Cropland, and Grassland areas, and
better than DT under all surface types.” (LR 470-476)

GC4: Cloud screening is especially crucial for POSP given its spatial resolution of 6.4 km. However, the
current manuscript lacks sufficient details on the cloud masking procedures employed. Please describe
how cloud contamination is identified and removed from the observations, and discuss the potential

impact of residual cloud effects on the validation results.

Responds to GC4: Thank you very much for your suggestion. We indeed overlooked the description
related to cloud masking. In response, we have added a description of Data Preprocessing in Section

3.3 as follows:

“As an optical sensor, POSP observations are inherently susceptible to cloud interference. To mitigate
cloud contamination, it is essential to filter out cloud-affected pixels before retrieval. Given the single-
angle observation method of POSP, this study adopts cloud detection strategies from MODIS, which
have been extensively validated (Frey et al., 2008). Specifically, two methods are employed: the apparent
reflectance threshold method and the apparent reflectance spatial variation detection method (Martins et
al., 2002). The former effectively identifies optically thick clouds with high reflectance or substantial
water vapor content, while the latter is particularly useful for detecting cloud edges, shadows, thin clouds,

and dispersed cloud formations.

The land surface exhibits low reflectance in the blue band, whereas clouds have high reflectance.
Therefore, a pixel is identified as a cloud when its reflectance at the 443 nm band exceeds a certain
threshold. The 1380 nm band lies within a strong water vapor absorption region, where the reflectances
from land surfaces and low clouds are generally low. As a result, only high clouds, mostly above the
heights where atmospheric water vapor is located, are visible in this band. Pixels with high reflectance
at 1380 nm are therefore typically classified as high clouds. Furthermore, cloud edges typically exhibit
high spatial variability due to mixed pixels and partial cloud coverage. The spatial variation
characteristics of the 443 nm and 1380 nm bands can effectively identify cloud-edge pixels. The
combination of their spatial differences helps reduce misclassification at cloud boundaries and improves

the accuracy of cloud detection.

Surface conditions such as snow and water also affect the inversion. Since the retrieval algorithm is
explicitly designed for clear-sky over non-ice land surfaces, pixels over water, ice, and snow must be
excluded. The detection of water and snow pixels is achieved using the Normalized Difference Water
Index (NDWI) and the Normalized Difference Snow/Ice Index (NDSI), respectively, with specific

identification thresholds presented in Table 1.
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While the aforementioned cloud detection strategy provides a foundation for minimizing cloud
contamination, potential for further improvement remains. Given the relatively coarse spatial resolution
of POSP (6.4 km) and its limited spectral coverage, certain pixels that contain residual clouds may remain
undetected. The simulation analysis by Kassianov and Ovtchinnikov (2008) pointed out that multiple
scattering of clouds can lead to overestimated AOD retrievals when the residual clouds are not fully
screened. Sogacheva et al. (2017) further removed the cloud-contaminated pixels using a cloud post-
processing scheme. To enhance cloud-mask accuracy, a dedicated cloud detection algorithm for POSP is

still needed. We aim to further enhance the cloud detection algorithm in future work.

Table 1 Summary of screening thresholds.

Items Purpose
Pasz < 0.02 01 pyus > 0.4 Cloud
0443 > 0.038 Cloud
P13g0 > 0.02 and Height < 1500 Cloud
01350 > 0.005 Cloud
NDWI >0 Water

NDSI > 0.4 Snow/Ice

» (LR 185-213)

Meanwhile, we have also added a discussion on the potential impact of residual cloud effects on the

validation results, as follows:

“Given the relatively coarse spatial resolution of POSP (6.4 km) and its limited spectral coverage, certain
pixels that contain residual clouds may remain undetected. The simulation analysis by Kassianov and
Ovtchinnikov (2008) pointed out that multiple scattering of clouds can lead to overestimated AOD
retrievals when the residual clouds are not fully screened. Sogacheva et al. (2017) further removed the
cloud-contaminated pixels using a cloud post-processing scheme. To enhance cloud-mask accuracy, a
dedicated cloud detection algorithm for POSP is still needed. We aim to further enhance the cloud
detection algorithm in future work.” (LR 206-211)

GCS5: The reference to Che (2015) is cited in the manuscript but not listed in the References section.

Please ensure this citation is properly included and formatted.

Responds to GCS: Thank you for pointing this out, and we apologize for the confusion caused by our

oversight. We have corrected all the reference formats.

GC6: The citation “Liangfu et al. (2021)” appears to be incorrect. It should be corrected to “Chen et al.

(2021)” as per standard citation format.
Responds to GC6: Thank you very much for pointing this out. We have corrected it accordingly.

GC7: L85-90, Relying on the high-..., it should be polished.
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Responds to GC7: We have revised it and removed the inappropriate parts, as follows:

“Ji et al. (2025) also presented the preliminary validation (from November 2021 to April 2022), the
results show that the AOD retrievals have high accuracy.” (LR 99-100)
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