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Response to RC1: 'Comment on egusphere-2025-91 ' , Anonymous Referee #1, 11 Mar 2025 

Review of Manuscript egusphere-2025-91 entitled ‘Global validation of the Particulate Observing 

Scanning Polarimeter (POSP) Aerosol Optical Depth products over land’ by Zhe Ji, Zhengqiang Li, 

Gerrit de Leeuw, Zihan Zhang, Yan Ma, Zheng Shi, Cheng Fan, and Qian Yao 

On behalf of all co-authors, we thank Referee #1 for the insightful and extensive comments which 

certainly contribute to the substantial improvement of the manuscript (MS). Below we respond to each 

of the general, major and specific comments which are copied below (in black). In addition to the 

numbered major and specific comments, we have numbered the general comments as GC1-GC5. After 

each comment we provide our response, in red, together with changes in the revised MS. Line numbers 

(indicated by L) mentioned by Referee #1 refer to the original MS as published in the AMT discussion 

Section and revisions are quoted with line numbers (indicated by LR) referring to the revised MS. 

GC1: The specific data quality control procedures for POSP (e.g., cloud detection, outlier removal) remin 

unclear in the manuscript, potentially affecting result reproducibility. It is recommended to supplement 

detailed descriptions of POSP data preprocessing steps (e.g., cloud masking, pixel screening criteria) and 

clarify their impacts on the matching strategy. 

Response to GC1: Thank you for pointing this out. We overlooked the description of the data 

preprocessing step, and we appreciate your reminder, which is very helpful in improving the quality of 

the manuscript. Since the algorithm proposed in this study is specifically designed for cloud-free land 

pixels, we removed land pixels that might contain clouds or ice/snow before retrieval. When retrieval 

pixels contain potential cloud contamination, the results tend to be significantly overestimated. A strict 

cloud detection process can effectively mitigate this issue. Additionally, to ensure the reliability of the 

validation, we adopted the following matching strategies: 

“In this study, considering the 6.4 km spatial resolution of the POSP, the following strategies to match 

POSP and AERONET AOD data have been devised to ensure reliable AOD validation results while 

accounting for spatial consistency: satellite data are averaged over a window of 3 × 3 pixels centred on 

the AERONET site, and ground-based observations are averaged over 30 minutes before and after the 

time of the satellite overpass. To mitigate the uncertainty associated with averaging data, a minimum of 

two or more ground-based observations are required in the temporal matchup window, and the spatial-

temporal matchup window must encompass more than three valid satellite pixels (Chu et al., 2002).” (LR 

145-151) 

A detailed description of the preprocessing has been added to the Methods section. 

“As an optical sensor, POSP observations are inherently susceptible to cloud interference. To mitigate 

cloud contamination, it is essential to filter out cloud-affected pixels before retrieval. Given the single-

angle observation method of POSP, this study adopts cloud detection strategies from MODIS, which 

have been extensively validated (Frey et al., 2008). Specifically, two methods are employed: the apparent 

reflectance threshold method and the apparent reflectance spatial variation detection method (Martins et 

al., 2002). The former effectively identifies optically thick clouds with high reflectance or substantial 

water vapor content, while the latter is particularly useful for detecting cloud edges, shadows, thin clouds, 

and dispersed cloud formations.  

The land surface exhibits low reflectance in the blue band, whereas clouds have high reflectance. 
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Therefore, a pixel is identified as a cloud when its reflectance at the 443 nm band exceeds a certain 

threshold. The 1380 nm band lies within a strong water vapor absorption region, where the reflectances 

from land surfaces and low clouds are generally low. As a result, only high clouds, mostly above the 

heights where atmospheric water vapor is located, are visible in this band. Pixels with high reflectance 

at 1380 nm are therefore typically classified as high clouds. Furthermore, cloud edges typically exhibit 

high spatial variability due to mixed pixels and partial cloud coverage. The spatial variation 

characteristics of the 443 nm and 1380 nm bands can effectively identify cloud-edge pixels. The 

combination of their spatial differences helps reduce misclassification at cloud boundaries and improves 

the accuracy of cloud detection.  

Surface conditions such as snow and water also affect the inversion. Since the retrieval algorithm is 

explicitly designed for clear-sky over non-ice land surfaces, pixels over water, ice, and snow must be 

excluded. The detection of water and snow pixels is achieved using the Normalized Difference Water 

Index (NDWI) and the Normalized Difference Snow/Ice Index (NDSI), respectively, with specific 

identification thresholds presented in Table 1. 

𝑁𝐷𝑊𝐼 ൌ
𝜌଺଻଴ െ 𝜌଼଺ହ
𝜌଺଻଴ ൅ 𝜌଼଺ହ

ሺ9ሻ 

𝑁𝐷𝑆𝐼 ൌ
𝜌଺଻଴ െ 𝜌ଶଶହ଴
𝜌଺଻଴ ൅ 𝜌ଶଶହ଴

ሺ10ሻ 

While the aforementioned cloud detection strategy provides a foundation for minimizing cloud 

contamination, potential for further improvement remains. Given the relatively coarse spatial resolution 

of POSP (6.4 km) and its limited spectral coverage, certain pixels that contain residual clouds may remain 

undetected. The simulation analysis by Kassianov and Ovtchinnikov (2008) pointed out that multiple 

scattering of clouds can lead to overestimated AOD retrievals when the residual clouds are not fully 

screened. Sogacheva et al. (2017) further removed the cloud-contaminated pixels using a cloud post-

processing scheme. To enhance cloud-mask accuracy, a dedicated cloud detection algorithm for POSP is 

still needed. We aim to further enhance the cloud detection algorithm in future work. 

Table 1 Summary of screening thresholds. 

Items Purpose 

𝜌ସସଷ ൏ 0.02 𝑜𝑟 𝜌ସସଷ ൐ 0.4 Cloud 

𝜎ସସଷ ൐ 0.038 Cloud 

𝜌ଵଷ଼଴ ൐ 0.02 𝑎𝑛𝑑 𝐻𝑒𝑖𝑔ℎ𝑡 ൏ 1500 Cloud 

𝜎ଵଷ଼଴ ൐ 0.005 Cloud 

𝑁𝐷𝑊𝐼 ൐ 0 Water 

𝑁𝐷𝑆𝐼 ൐ 0.4 Snow/Ice 

” (LR 185-213) 

GC2:. Line24, Lines 178-182: The significant underestimation in high-AOD regions (e.g., North Africa) 

is attributed to "aerosol model errors" without specific analysis of discrepancies between model 

assumptions and actual aerosol characteristics. Further investigation into aerosol model classification 

and its impact on retrieval errors is suggested. 
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Response to GC2: We sincerely apologize for any misunderstanding caused by our oversight. First, Fig. 

14 in the manuscript shows that: 

“POSP AOD is slightly lower than MODIS DB AOD over North Africa and the Arabian Peninsula, while 

it is much closer to MODIS MAIAC AOD in these regions. Overall, POSP AOD shows similar features 

as MAIAC AOD over North Africa and the Arabian Peninsula, while it is more consistent with DB AOD 

over other regions. Furthermore, compared to MODIS DB, the spatial differences between POSP AOD 

and MODIS DT are smaller. In general, the results indicate a high degree of agreement between POSP 

and MODIS AOD, with differences predominantly within the (-0.2, 0.2) range.” (LR 424-428) 

In recent years, the global ground-based observation network has expanded significantly, improving 

coverage in many areas. However, ground-based observations remain sparse in remote and inaccessible 

regions. Given the current distribution of ground-based observation sites, it remains challenging to 

determine which aerosol product achieves the highest accuracy globally compared to others. 

 

Figure 14: Maps of the seasonally averaged AOD derived from POSP, MODIS MAIAC, MODIS DB and 

MODIS DT, for the winter (DJF: December–January–February), spring (MAM: March–April-May,) 

summer (JJA: June–July–August), and autumn (SON: September–October–November). 

This study performs retrievals based on a fixed aerosol model, which may lead to significant 

discrepancies between the assumed and actual aerosol models. Li et al. (2018) have quantitatively 

described the impact of aerosol model error on retrieval accuracy through simulation experiments. They 

applied the optimal estimation theory and calculated the degree of freedom for signal (DFS) available 

for aerosol retrieval parameters to quantify their information content (Frankenberg et al., 2012; 

Hasekamp and Landgraf, 2005). This method has been widely used to assess the theoretical retrieval 

capability of sensors. 
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Here, the aerosol model errors correspond with the combination of 6 predefined aerosol parameters: {𝑟௘௙௙
௙ , 

𝑣௘௙௙
௙ , 𝑟௘௙௙

௖ , 𝑣௘௙௙
௖ , 𝑚௜

௙, 𝑚௜
௖}, which are all assumed to change from 5% to 100% by a step of 5% with 

the constant measurement error, as well as the constant a priori errors of 𝑚௜
௙ and 𝑚௜

௖. 𝑟௘௙௙
௙  and 𝑟௘௙௙

௖  

represent the effective radius of fine- and coarse- mode aerosol, respectively. 𝑣௘௙௙
௙  and 𝑣௘௙௙

௖  represent 

the effective variance of fine- and coarse-mode aerosol, respectively. 𝑚௜
௙  and 𝑚௜

௖  represent the 

refractive index of fine- and coarse-mode aerosol, respectively. It is evident that as the aerosol model 

error increases, DFS decreases linearly, indicating that the retrieval uncertainty correspondingly 

increases. 

 

Fig. R1. Same as Fig. 11 but as a function of the aerosol model errors from 5% to 100% by a step of 5% with 

AOD=0.6. 

We have added descriptions in the relevant sections regarding the impact of aerosol model error on 

retrieval accuracy. 

“The probability density functions of differences (POSP-AERONET) are presented in Figure 2 (B). The 

results show that the POSP algorithm underestimates the AOD as aerosol loading increases. For low 

AOD (AOD < 0.2), POSP's bias is 0.01. For moderate AOD (0.2 ≤ AOD ≤ 0.7), POSP's bias increases 

to -0.03, and for high AOD (AOD > 0.7), POSP's bias further increases to -0.04. These biases may be 

attributed to the increasing aerosol model error. As AOD increases, the impact of discrepancies between 

the assumed aerosol model and the actual aerosol model is amplified, leading to an increase in retrieval 

uncertainty (Hou et al., 2018; Li et al., 2018).” (LR 218-223) 

“On the other hand, in heavily polluted regions such as northern India, central and western Africa, and 
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central South America, POSP AOD shows high consistency with AERONET AOD, although the GCOS 

fraction is lower. This is because a fixed aerosol model is used to improve the stability of the inversion, 

which, however, may not accurately represent the actual aerosol types. Such discrepancies introduce 

greater uncertainties in the retrieval as the aerosol loading increases. Thus, using a fixed aerosol model 

inevitably affects the retrieval accuracy (Levy et al., 2013). This is one of the inherent challenges of 

aerosol retrieval using single-angle observations, and we aim to address this issue in future algorithm 

improvements.” (LR 283-288) 

GC3: Lines 302-304: The explanation for lower AOD accuracy in urban areas remains overly 

generalized ("complex surface and diverse pollution components"), lacking quantitative analysis (e.g., 

interference from urban surface reflectance anisotropy). Enhanced discussion on separating urban surface 

reflectance from aerosol signals is recommended. 

Response to GC3: Thank you very much for pointing this out. Your comment is extremely valuable for 

improving the quality of our manuscript. We acknowledge that our analysis lacked a detailed discussion 

on the impact of urban surface reflectance anisotropy on aerosol retrievals. Therefore, we have now 

included a comprehensive discussion on this aspect, as detailed below. 

“To further explore the impact of urban surface reflectance anisotropy on aerosol retrieval, synthetic 

experiments have been made. Following the detailed description of the spectral reconstruction of BRDF 

kernel coefficients in Section 2.1, here the BRDF kernel coefficients are filtered further for urban LC 

using the global IGBP classification product MCD12C1 (The MCD12C1 product was resampled to 

match the spatial resolution of the BRDF results). The number of BRDF kernel coefficients obtained 

over urban LC is quite large, making it impractical to compute TOA reflectance under different 

observation geometries and aerosol conditions for each individual case. To simplify the computation 

while retaining the representativeness of BRDF kernel coefficients over urban areas, we applied the K-

means clustering method to extract BRDF kernel coefficients representative of urban areas in 2022 (tests 

showed that seven clusters are sufficient to represent the urban BRDF kernel coefficients). The results 

are presented in Table 3. 

To evaluate the effect of ignoring surface directional characteristics over urban areas on the retrieved 

aerosol properties, the non-Lambertian radiative transfer model (RTM) and Lambertian RTM are used 

for creating synthetic TOA reflectances (𝜌′ ) and AOD retrieval results, respectively. In the retrieval 

process, the Lambertian RTM is used to calculate the TOA reflectance (ρ*). The AOD corresponding to 

the best match between ρ* and ρ′ is taken as the retrieval result. By comparing the retrieval bias, the 

effect of ignoring surface anisotropy on AOD retrieval over urban areas was assessed. 

The calculation of TOA reflectance requires consideration of three aspects: For the aerosol properties, to 

simulate aerosol conditions over urban areas, we used a mixture of continental and polluted aerosol types 

in equal proportions (Omar et al., 2009). And AOD was set to range from 0 to 1.5. Furthermore, in order 

to reduce the influence of errors introduced by aerosol model uncertainty, the aerosol model used in the 

retrieval is the same as that used in the creation of the synthetic dataset. For the surface reflectance, we 

used the seven representative BRDF kernel coefficients derived from the above clustering process. When 

calculating TOA reflectance using the non-Lambertian RTM, all three BRDF kernel coefficients from 

Table 3 are used to estimate the surface reflectance. In contrast, when using the Lambertian RTM, only 

the isotropic kernel coefficient from Table 3 is used as the surface reflectance. For the observation 
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geometries, the solar zenith angle, viewing zenith angle, and relative azimuth angle were set to range 

from 10° to 70°, 0° to 60°, and 0° to 360°, respectively. The observation geometry and AOD were both 

randomly sampled following a Gaussian distribution. To account for real-world observational conditions, 

we introduced random errors to the simulated reflectances consistent with calibration accuracy. 

Figures 8 and 9 show polar diagrams of the surface reflectances, calculated using the MODIS BRDF 

model (Eqs. S1 to S9, with the solar zenith angle set at 30°), for each of the seven LC for urban types, as 

well as the scattering angle. These calculations were made for wavelengths used in the POSP retrieval 

algorithm, i.e., at 443 nm (Fig. 8) and 490 nm (Fig. 9). The simulations show that the surface reflectance 

increases significantly for viewing zenith angles larger than approximately 75°. In the retrieval algorithm, 

this issue is avoided by restricting the viewing zenith angles to less than 60°. Furthermore, surface 

reflectance increases substantially when the viewing zenith angle approaches the solar zenith angle, 

corresponding to the maximum scattering angle. This explains the high uncertainty over urban areas at 

large scattering angles discussed in Section 5.1.2. 

Table 3 BRDF kernel coefficients statistics for different urban types. 

Kernal name 
Band 

(nm) 
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 

Isotropic 
443 0.068 0.044 0.053 0.104 0.076 0.049 0.127 

490 0.083 0.055 0.065 0.123 0.091 0.060 0.150 

volumetric 
443 0.017  0.021  0.017  0.028  0.041  0.036  0.058  

490 0.021  0.024  0.022  0.033  0.048  0.042  0.067  

geometric-optical 
443 0.016  0.010  0.011  0.023  0.014  0.007  0.020  

490 0.020  0.013  0.013  0.027  0.017  0.009  0.023  

 

Figure 1: Polar diagrams of the BRDF distribution for the 7 types of clustered results. (A)-(F) The result of 

surface reflectance at 443 nm, and (G) The scattering angle plot. In this polar plot, the radius denotes a change 

in viewing zenith angle from 0° to 90°, and the polar angle represents a change in relative azimuth angle from 

0° to 360°. The simulations are performed for a solar zenith angle of 30°. The colors in (A)–(F) and (G) 

represent surface reflectance and scattering angle magnitude, respectively. 



7 

 

 

Figure 2: As Figure 8, but for a wavelength of 490 nm. 

Figures 10 and S7 show the AOD bias as a function of scattering angle for 7 different surface types to 

illustrate how retrieval errors caused by neglecting surface anisotropy vary with scattering angle and 

aerosol loading, respectively. Because of the overestimation of the simulated reflectance using the 

Lambertian forward radiative transfer model, the retrieved AOD is underestimated. For types 4 and 7, 

which have the highest reflectance, the AOD underestimation is most pronounced, confirming that the 

higher the surface reflectance, the greater the impact of ignoring surface anisotropy on retrieval accuracy. 

For types 2 and 3, which have the lowest reflectance surfaces, the retrieval error caused by neglecting 

surface anisotropy is nearly constant across different aerosol loadings (Figure S7), but slightly increases 

as the scattering angle increases. Overall, as AOD increases, the impact of ignoring surface anisotropy 

on retrievals diminishes, and as surface reflectance increases. 

Therefore, for aerosol retrieval over urban areas, the effect of surface anisotropy on the retrieval result is 

non-negligible in regions with high surface reflectance. 
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Figure 3: AOD bias as a function of scattering angle for different urban surface types. 

” (LR 329-383) 
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Figure S4: The boxplot of the differences for apparent reflectance between the results calculated based on the 

Lambertian forward radiative transfer model (TOAL) and the non-Lambertian forward radiative transfer 

model (TOA). The upper panel shows the differences as a function of AOD, while the lower panel presents 

the differences as a function of the scattering angle. 
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Figure S5: AOD bias as a function of aerosol loading for different urban surface types. 

GC4: Line 246:"Other LC types which are not shown in Fig.4 are presented in Fig. S1." Figs. S1-S9 

need to be found in the supplementary document. It is recommended to describe clearly in the manuscript. 

Response to GC4: Thank you for these comments. We have revised the relevant sections to make the 

explanation as clear as possible. 

GC5: Some grammatical inconsistencies exist. Comprehensive language polishing is advised to ensure 

proper tense usage and grammatical consistency throughout the manuscript. 

Response to GC5: Thank you for these comments. We have substantially revised the MS. We have 

invited Professor Gerrit de Leeuw, an expert in the field of aerosol remote sensing, to revise our 

manuscript for grammatical errors and further improve the logic and organization. Furthermore, the 

manuscript has been carefully read and where necessary, unclear text has been re-formulated. 

Citation: https://doi.org/10.5194/egusphere-2025-91-RC1 
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