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Abstract. Identification of risks and vulnerabilities in urban and rural areas is crucial for supporting local city authorities 

in disaster risk reduction and climate change adaptation. Moreover, comparison of risk assessments across different 

areascities may help effective allocation of adaptation funding towards more resilient and sustainable communitiescities. 10 

The distinct physical, social, economic, and environmental characteristics of a a citysettlement, along with the relevance 

of impending hazards, determine the level of risk and vulnerability faced by its residents. While the results of urban risk 

assessments will vary from one city settlement to another, using general settlementurban typologies (e.g. coastal cities, 

dryland cities, and inland or high-altitude cities) can effectively support in the understanding of risk in relation to its key 

drivers, helping to segmentate the complexity in an otherwise too broad problem (Dickson et al., 2012). 15 

This study aims to reduce complexity in urban risk assessment of urban/rural settlements at regional and national scale, 

ensure a baseline for comparison and identify potential hotspots in multi-hazard and multi-riskrisk assessment 

frameworks. We propose a clustering methodology that groups urban human settlements based on open-source data, used 

as proxies of urban vulnerability and exposure. Applying two widely used clustering techniques, we define 18 urban and 

rural archetypes for the Italian territory, incorporating geographic, demographic, and socio-economic characteristics. 20 

These archetypes satisfy multiple validity dimensions of archetype analysis (Piemontese et al., 2022) and can serve as a 

valuable tool for policymakers. By providing a structured understanding of urban human settlements vulnerability 

profiles, they support the design of targeted interventions and urban resilience strategies tailored to specific risk 

conditions. 

1 Introduction 25 

Over the last few decades, natural disasters have caused devastation to many communities throughout the world, killing 

about 1.5 million of people and incurring losses exceeding 4.5 billion USD (Centre for Research on the Epidemiology of 

Disasters - CRED, 2024). Such disasters are the results of the interaction of hazards (natural or man-made) with vulnerable 

socio-ecological and socio-economical systems. Evidence shows that the level of disaster proneness of communities may 

vary greatly with their physical, demographic, socioeconomic and institutional characteristics (Cutter et al., 2003; Wang 30 

et al., 2022). For example, low-income and minority communities in New Orleans were disproportionately affected during 

Hurricane Katrina due to residing in flood-prone, lower-lying areas, and lacking personal transportation, which hindered 

evacuation (Flanagan et al., 2011). Similarly, aging communities with limited mobility face challenges in evacuating 

quickly during hazardous events, leading to higher mortality rates, as seen during the 2011 Tohoku Tsunami, Hurricane 

Katrina, and the 2017 and 2018 California wildfires (Brunkard et al., 2008; Hamideh et al., 2022; Miyazaki, 2022).  35 

Climate change brings additional challenges to urban management and decision making for city governments and is 

associated with a growing variety of impacts on cities, the surrounding ecosystems, and livelihood of resident and 

temporary population (e.g., Dickson et al., 2012). As highlighted in the IPCC's 6th assessment report, in urban areas the 

risk to people and assets due to climate-related hazard has already increased, and climate impacts are felt 

disproportionately in urban communities, with the most economically and socially marginalized being most affected  40 

(Dodman et al., 2023). Such risks depend on the increase of intensity and frequency of extreme weather events (La Sorte 

et al., 2021; Mulholland & Feyen, 2021) as well as on the interplay with several non-climatic risk drivers including extent 

and features of the exposed systems and assets (e.g., European Environment Agency, 2024) and their vulnerability (e.g., 

Cutter & Finch, 2008; Dickson et al., 2012). 

Exposure is intended asrefers to the presence of people,; livelihoods,; species or ecosystems,; environmental functions, 45 

services, and resources,; infrastructure,; or economic, social, or cultural assets in places and settings that could be 

adversely affected, while vulnerability refers to the propensity or predisposition to be adversely affected. Vulnerability 
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encompasses a variety of concepts and elements, including sensitivity or susceptibility to harm and lack of capacity to 

cope and adapt (Intergovernmental Panel on Climate Change - IPCC, 2022; Koren et al., 2017). It encompasses both the 

lack of coping capacity and adaptive capacity—factors that influence a community’s ability to manage disasters 50 

effectively (Cardona et al., 2012; Marin Ferrer, 2017). The level to which urban urban settings are prone to the negative 

impacts of one or multiple hazards is also known as urban vulnerability (Thywissen, 2006), and its assessment is 

particularly challenging, as cities are intricate systems composed of interdependent networks of built environments, 

infrastructure, and social systems (Koren et al., 2017).  

The concentration of assets and people may increase potential losses, while dynamic interactions between individual 55 

components that enable efficient system performance can lead to cascading failures. In addition, urban areas are often 

exposed to multiple hazards, such as earthquakes, floods, heatwaves, each interacting with the built environment and 

human activities in different ways. Rural settlements, on the other hand, may experience different forms of vulnerability, 

often related to geographic isolation, limited access to emergency services and infrastructure, lower institutional capacity, 

and demographic challenges such as aging population, which can significantly hinder preparedness and recovery. This 60 

complex interplay explains also why often non-extreme hazards can lead to severe consequences, while extreme events 

in other contexts may not result in disasters (Lavell et al., 2012). 

In this complex context, archetypes can be powerful tools for simplifying and interpreting systemic risks They provide 

structured representations of recurrent patterns across diverse cases, helping policymakers understand key drivers of 

vulnerability and exposure and supporting more effective risk communication and decision-making Archetypes may help 65 

manage the complexity of systems by highlighting essential patterns, facilitating better understanding and 

communication, and supporting more informed decision-making (Oberlack et al., 2023; Piemontese et al., 2022; Wicki et 

al., 2024). Archetypes have been extensively employed to classify cities based on socio-economic and socio-demographic 

parameters, to support policy decisions on fiscal interventions (Bruce, 1971; Dalton, 2015; Harris, 1943). An increasing 

amount of climate studies are dedicated to identifying recurring patterns and archetypes, in order to understand local 70 

climate vulnerabilities and to formulate specific adaptation strategies (Rocha et al., 2020; Vidal Merino et al., 2019; Wicki 

et al., 2024). For instance, in Riach et al. (2023) recurring climate risk patterns at the municipal level in Baden-

Wuerttemberg, Germany, are identified by analysing indicators for climatic hazards (e.g., annual mean temperature, 

hot/ice days, heavy precipitation) and exposure/vulnerability (e.g., proportion of elderly, energy production, population 

density). The nine urban archetypes derived represent municipalities with varying climate risk characteristics that require 75 

tailored adaptation measures.  

Although several examples of city-scale archetypes analysis are available, they are often limitedfocus on to the analysis 

of single-hazard risk (e.g., Awah et al., 2024; Carroll & Paveglio, 2016; Joshi et al., 2022; Riach et al., 2023) and may be 

not applicable in a multi-risk context.  

This study addresses the following research question: can urban and rural settlements be clustered into meaningful 80 

archetypes based on shared characteristics of vulnerability and exposure, to improve multi -risk assessment and support 

more targeted resilience planning at regional and national scale? Indeed, . 

Ddespite the high specificity of exposure and vulnerability of each urban and rural environment, we assume that a 

relatively low number of representative archetypes could be found to decrease the level of complexity at regional and 

national scale, ensure a baseline for comparison and highlight potential hotspots in multi-hazard and multi-risk assessment 85 

frameworks. 

The term "archetype" can be interpreted in different ways. In statistics, archetypes refer to extremal profiles used to 

describe all data points as convex combinations of a few "pure" types (Cutler & Breiman, 1994). In contrast, in 

sustainability science and climate risk research, archetypes are understood as representative specimens or clusters of 

similar entities that are “crucial for describing the system dynamics or causal effect of interest”  and that exhibit recurring 90 

patterns of risk-relevant characteristics We note that the concept of archetype is interpreted here as the optimal 

representation of a relatively homogeneous cluster of urban settlements. A disambiguation is necessary with respect to 

the statistical concept of archetype proposed by Cutler & Breiman  which defines them as pure types whose mixture can 

be used to describe all elements in a dataset and can be considered as a form of extremal analysis. A different and broader 

interpretation of archetype in the context of sustainability research aims at finding recurrent patterns and similarities in 95 

the considered set of cases that are “crucial for describing the system dynamics or causal effect of interest” (Oberlack et 

al., 2019). We adopt this latter interpretation. In our work, 

We therefore urban and rural settlement archetypes are defined as representative instances (real or ideal) of a group of 

municipalities sharing similar vulnerability and exposure characteristics.  define urban settlement archetype as a 

representative instance (either real or ideal) of a cluster of urban settlements according to the selected indicators and the 100 

considered clustering approach and metrics.  
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A clustering proposal for decoding urban settlements archetypes  

 

Archetypes may help manage the complexity of systems by highlighting essential patterns, facilitating better 

understanding and communication, and supporting more informed decision-making . Archetypes have been extensively 105 

employed to classify cities based on socio-economic and socio-demographic parameters, to support policy decisions on 

fiscal interventions . An increasing amount of climate studies are dedicated to identifying recurring patterns and 

archetypes, in order to understand local climate vulnerabilities and to formulate specific adaption strategies . For instance, 

in Riach et al.  recurring climate risk patterns at the municipal level in Baden-Wuerttemberg, Germany, are identified by 

analysing indicators for climatic hazards (e.g., annual mean temperature, hot/ice days, heavy precipitation) and 110 

exposure/vulnerability (e.g., proportion of elderly, energy production, population density). The nine urban archetypes 

derived represent municipalities with varying climate risk characteristics that require tailored adaptation measures.  

Although several examples of city-scale archetypes analysis are available, they are often limited to the analysis of single-

hazard risk (e.g., ). 

Following the approach suggested in Piemontese et al. (2022), we perform the archetype analysis in Italy according to 115 

three phases of dDesign, aAnalysis and aApplication. In the dDesign phase, the problem framing and attributes selection 

is performed. In particular, this study seeks to address the challenge of assessing urban/rural exposure and vulnerability 

by proposing a national-scale clustering of Italian urban settlements using open-source data. Municipality is selected as 

the primary geographical boundary for urban settlements since available authoritative open-source data is often referring 

to such administrative units. Municipalities are small, well-defined units, making them ideal for detailed spatial analysis 120 

and accurate identification of urban human settlements. These boundaries often reflect historical settlements, preserving 

the cultural context that is essential for understanding contemporary urban dynamics. Additionally, municipalities are 

responsible for local governance and urban planning, making them relevant units for studying urban/rural settlements, as 

local policies directly affect development and quality of life (actionability also for risk mitigation and climate change 

adaptation). The goal of this study is to group urban settings (municipalities) to define risk-oriented urban and rural 125 

settlements archetype. To this end, the we select a set of geographic, demographic, and socio-economic attributes available 

from open-source data, known to be relevant to vulnerability/resilience (see section 2)ed attributes are shared key drivers 

of urban vulnerability, as described in section 3. Thanks to a proper selection of a range of geographic, demographic, and 

socio-economic parameters, the study provides a robust assessment of the vulnerability of Italian urban and rural 

settlements, identifying archetypes with varying levels of susceptibility to natural hazards. Moreover, the use of open-130 

source data ensures the approach is both replicable and scalable, making it generalizable and applicable to other regions.  

For the  aAnalysis phase, described in section 3, methods of analysis should be defined, towards generalizability of results. 

Archetypes are derived through a two-step clustering process: first, broad urban and rural archetypes are defined using 

only demographic and geographic data, then they are refined using socio-economic attributes. This initial classification 

reduces complexity and establishes a baseline for comparison, providing a clear, interpretable framework to capture 135 

essential structural differences among urban/rural settlements (e.g., size, density, location). Refining these archetypes 

with socio-economic parameters allows for a more articulated understanding of vulnerability differences within similar 

structural contexts, supporting more targeted risk assessment and policy intervention. This two-step approach balances 

clarity with detail, enhancing both usability and precision. The proposed methodology utilizes two widely-used clustering 

techniques—agglomerative hierarchical clustering and partitioning clustering—to analyse vulnerability-related data. 140 

Using two clustering techniques allows for cross-validation of results and helps capture different patterns in the data, 

enhancing the robustness and reliability of the identified archetypes. Results of the cluster analysis are presented in 

sections 4 and 5.  By integrating a range of geographic, demographic, and socio-economic parameters, the study provides 

a robust assessment of the vulnerability of Italian urban settlements, identifying archetypes with varying levels of 

susceptibility to natural hazards. Using open-source data ensures the approach is both replicable and scalable, making it 145 

generalizable and applicable to other regions. Finally, the aApplication phase entails the practical usefulness and a a real-

world check of the archetypes identified towards their empirical validity, meaning they should correspond to variable 

levels of susceptibility to risk (according to the problem framing), and assessment of the impact, intended as the usefulness 

of results for application by final knowledge users.  To this aim, a simplified Impact Susceptibility Index is proposed, 

highlighting the likelihood of experiencing negative consequences based on the combined levels of vulnerability and 150 

exposure associated with each identified archetype. Additionally, Section 7 provides a comprehensive discussion on how 

each dimension of archetype analysis validity - as outlined by Piemontese et al. (2022) - is addressed, emphasizing both 

the strengths and limitations of the study. 
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By developing a national-scale clustering of Italian municipalities, 10 broad and 18 nested archetypes are identified in 

this study.  The identified archetypes offer a simplified framework for managing the complexity of diverse urban areas 155 

and their exposure to hazards. This risk-oriented classification offers valuable insights for urban resilience and disaster 

management professionals, enabling policymakers and urban planners to design targeted risk-reduction strategies tailored 

to the specific vulnerability profiles of each archetype, resulting in more efficient resource allocation. 

Selection of Section 3 details the selection of geographic, demographic, and socio-economic factors considered 

representative of various dimensions of urban vulnerability. These factors, derived from open-source data, serve as the 160 

input for the clustering analysis. Section 4 explains the clustering process, including the metrics used to evaluate the 

performance of the clustering algorithms, and discusses the analysis results. Section 5 presents the urban settlement 

archetypes identified through the analysis. Section 6 describes the real-world validation of the identified archetypes, 

assessing their empirical validity. Finally, the conclusion highlights the potential applications and implications of the 

research findings, acknowledges the study's limitations, and provides recommendations for future research directions. 165 

62 Kkey indicators of urban settlements vulnerability dimensions  

To apply clustering techniques, it is essential to have a dataset containing meaningful features (attributes) that allow for 

clear differentiation between clusters. These attributes may include numerical, categorical, or mixed data types, depending 

on the clustering algorithm. Thus, the first step in clustering urban human settlements at a national scale is to identify key 

drivers of vulnerability and assess data availability. 170 

Vulnerability is multidimensional, defined by various physical, social, economic, environmental, and institutional factors 

that shape the susceptibility of systems to the impact of hazards (UNDRR., 2023; Van Westen & Woldai, 2012; Villagrán 

de León, 2006). Social vulnerability refers to the propensity of some social groups (e.g., poor, single-parent households, 

pregnant or lactating women, the handicapped, children, and elderly) to suffer negative consequences of hazards, due to 

their lack of capacity to react and manage the effect of hazard related processes (Cutter et al., 2003; Wisner et al., 2004). 175 

Economic vulnerability is the propensity of economic assets and processes to be harmed by exogenous shocks (Cardona 

et al., 2012), such as the potential impacts of natural and man-made hazards (i.e., business interruption, secondary effects 

such as increased poverty and job loss). Physical vulnerability expresses the propensity of the built environment (e.g., 

buildings and infrastructure) and population to suffer the physical impact of hazardous events (Douglas, 2007). 

Institutional vulnerability arises from limitations in governance structures, risk communication, preparedness, and 180 

emergency management systems. Following Papathoma-Köhle et al. (2021), institutional vulnerability also encompasses 

the capacity of institutions to anticipate, absorb, and adapt to hazards, highlighting the importance of coordination, 

contingency planning, and learning mechanisms as part of adaptive risk governance.  Environmental vulnerability is the 

susceptibility of ecosystems to sustain degradation (destruction of forest, farmland, or crops, lower yields) and loss of 

functionality following a hazardous event (Angeon & Bates, 2014; Marzi et al., 2019). Table 1 presents a list of key 185 

indicators commonly used in literature to assess each dimension of vulnerability mentioned. 

In our work we focused on a selection of indicators, expectedly linked with different vulnerability dimensions, and 

namely: altimetric zone, degree of urban centeredness, degree of urbanisation, residential population and social 

vulnerability indicators. The altimetric zone of a settlement, which refers to their elevation and topographical features, 

can be considered a proxy of access to the main services – or equally distance to services centres (institutional 190 

vulnerability, see Table 1). Accessibility of services of general interest can be particularly challenging in certain contexts 

(e.g. mountain regions, islands) due to their geomorphological and settlement structure conditions (Bertram et al., 2023). 

These accessibility issues can also complicate evacuation efforts and the delivery of emergency services during a disaster. 

Likewise, degree of urban centeredness, which reflects the spatial characteristics and distribution of urban areas, is 

associated with the availability of public services and the level of spatial connectedness, as it measures the distance and 195 

travel time to major service centres (institutional vulnerability, see Table 1). The degree urban centeredness significantly 

influences the response and resilience of urban systems by affecting resource availability, infrastructure robustness, 

community networks, and emergency preparedness (Giuliano & Narayan, 2003; Schwanen et al., 2004). Ensuring 

effective access to essential public services, such as healthcare and education, is challenging even under normal 

circumstances. However, it becomes even more crucial during crises like natural disasters, when the demands on these 200 

services and their operating conditions become significantly more complex (Fan et al., 2022; Loreti et al., 2022; Tariverdi 

et al., 2023). The level of peripherality of the areas with respect to the network of urban centres influence may determine 

not only difficulties of access to basic services but also lower quality of life of citizens and their level of social inclusion 

(Oppido et al., 2023). 
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Table 1 – Vulnerability dimensions most common indicators. 205 

Dimension Indicator Reference 

Social 

Dependency ratio (Cutter et al., 2003; Eriksen & Kelly, 2007; 

Frigerio et al., 2018) 

Age (Cutter et al., 2003; Frigerio et al., 2018; 

Marzi et al., 2019) 

Population growth Old age index (Cutter et al., 2003; Frigerio et al., 2018) 

Fare clic o toccare qui per 

immettere il testo. 
Level of education (Cutter et al., 2003; Frigerio et al., 2018; 

Marzi et al., 2019; Sibilia et al., 2024) 

Family structure (Cutter et al., 2003; Frigerio et al., 2018; 

Marzi et al., 2019) 

Commuting rate (Cutter et al., 2003; Frigerio et al., 2018; 
Marzi et al., 2019) 

Quality of buildings (Cutter et al., 2003; Frigerio et al., 2018) 

Race/Ethnicity (Cutter et al., 2003; Frigerio et al., 2018; 

Marzi et al., 2019) 

Access to medical services (Cutter et al., 2003; Sibilia et al., 2024) 

Economic 

Employment rate (Marzi et al., 2019; Opach et al., 2020; 

Sibilia et al., 2024) 

% women in the workforce (Marzi et al., 2019; Opach et al., 2020) 

Household income (Marzi et al., 2019; Sibilia et al., 2024) 

GPDP per capita (Eriksen & Kelly, 2007; Sibilia et al., 2024) 

Physical 

Housing conditions (Marzi et al., 2019; Sibilia et al., 2024) 

Building typology/material/design (FEMA, 2022; Kappes et al., 2012; 

Lagomarsino & Giovinazzi, 2006) 

Population density (Marzi et al., 2019; Opach et al., 2020) 

Institutional 

Access to services/ Distance to services 
centres 

(Marzi et al., 2019; Opach et al., 2020) 

Political stability (Papathoma-Köhle et al., 2021; Sibilia et al., 

2024) 

Risk awareness and perception (Papathoma-Köhle et al., 2021) 

Transparency (Papathoma-Köhle et al., 2021) 

Environmental 

Vegetation cover/Land use (Eriksen & Kelly, 2007; O’Brien et al., 2004; 

Sibilia et al., 2024) 

Water quality and availability (Eriksen & Kelly, 2007; Rockstrom, 2013) 

Air pollution level (Cohen et al., 2017; Eriksen & Kelly, 2007) 

Physical vulnerability expresses the propensity of the built environment (e.g., buildings and infrastructure) and population 

to suffer the physical impact of hazardous events . Institutional vulnerability may arise from weaknesses in governance 

and infrastructure, such as a lack of comprehensive disaster preparedness plans or poor coordination between agencies 

like emergency services and healthcare providers . Environmental vulnerability is the susceptibility of ecosystems to 

sustain degradation (destruction of forest, farmland, or crops, lower yields) and loss of functionality following a hazardous 210 

event . Table 1 presents a list of key indicators used to assess each dimension of vulnerability mentioned. 

In our work we focused on different categories of indicators expectedly linked with these vulnerability dimensions, and 

namely: geographical, demographic and socio-economic (Table 2). Geographic indicators include the altimetric zone and 

the urban centeredness degree. The altimetric zone of urban settlements, which refers to their elevation and topographical 

features, can be considered a proxy of access to the main services. As a matter of fact, accessibility of services of general 215 

interest can be particularly challenging in certain contexts (e.g. mountain regions, islands) due to their geomorphological 

and settlement structure conditions . These accessibility issues can also complicate evacuation efforts and the delivery of 

emergency services during a disaster. Likewise, urban centeredness degree, that relates to the spatial characteristics and 

distribution of urban areas, is proxy for the availability of public services and the level of spatial connectedness. In classic 

urban geography, centrality is typically defined by attractiveness .  degree of urban centeredness significantly influences 220 

the response and resilience of urban systems by affecting resource availability, infrastructure robustness, community 

networks, and emergency preparedness(Giuliano & Narayan, 2003; Schwanen et al., 2004). Ensuring effective access to 

essential public services, such as healthcare and education, is challenging even under normal circumstances. However, it 

becomes even more crucial during crises like natural disasters, when the demands on these services and their operating 

conditions become significantly more complex . The level of peripherality of the areas with respect to the network of 225 

urban centres influence may determine not only difficulties of access to basic services but also lower quality of life of 

citizens and their level of social inclusion . 
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Residential population and degree of urbanisation are linked to exposure and physical vulnerability dimensions, and 

specifically to population density (physical vulnerability, see Table 1). While population density cannot capture the full 

range of structural vulnerability factors of the built environment, it reflects both the intensity of exposure and the systemic 230 

vulnerabilities inherent to high-density urban environments (e.g., emergency response complexity and evacuation 

challenges,  increased likelihood of cascading infrastructure failures during hazard events, overburdened urban services 

that exacerbate systems’ physical fragility - healthcare, water systems, mobility - under stress), consistent with its 

interpretation in urban risk literature (e.g., Balk et al., 2018; Marzi et al., 2019; Opach et al., 2020; Zhao et al., 2017). 

Demographic indicators are linked to physical vulnerability. Residential population significantly influences the exposure 235 

to natural hazards, determineding not only by the higher presence of people and housing, but also of infrastructure, 

production capacities, species or ecosystems, and other tangible human assets in places and settings that could be 

adversely affected by one or multiple hazards. GreaterHigher population not only increases the potential for human and 

property losses, but also complicate evacuation efforts, and strains emergency response resources (Zhao et al., 2017).  

The other demographic parameter adopted is tThe degree of urbanization is , often used to classify areas into cities, urban 240 

areas, and rural areas based on criteria such as population density, concentration of human activities, and built environment 

(Balk et al., 2018; United Nations, 2018). Indeed, highly urbanized densely populated areas are more likely to experience 

greater damage, congestion, and strain on resources during emergencies. It affects the capacity for evacuation and 

accessibility to essential services, due to dense infrastructure, complex urban layouts and the potential for cascading 

failures in infrastructure (Kendra et al., 2008; Lall & Deichmann, 2012).  245 

Finally, social vulnerability indicators include socio-economic factors taken into account are those parameters that 

influence both social and economic vulnerability. Past events highlight that the elderly may be more vulnerable due to 

reduced mobility, poor health, and communication challenges (Ardalan et al., 2010; Carnelli & Frigerio, 2017; Cutter et 

al., 2003), while education levels can heighten vulnerability to natural hazards influencing risk perception and awareness, 

knowledge, and skills related to disaster preparedness (Alexander, 2012; Wachinger et al., 2013). Still, minority groups, 250 

including migrants, and ethnic communities, often face heightened social vulnerability, especially in high-risk areas, due 

to language barriers and communication challenges that can hinder access to critical emergency information (Carnelli & 

Frigerio, 2017; Walter Gillis et al., 2012). A comprehensive list of socio-economic indicators considered is presented in 

section 2.5, though some indicators were not used for the final clustering process due to their strong correlation with other 

selected variables (Table 2). , such as the presence of the elderly population, the employment rate and the educational 255 

level. For instance, past events highlight that elderly may be more vulnerable due to reduced mobility, poor health, and 

communication challenges , while education levels can heighten vulnerability to natural hazards influencing risk 

perception and awareness, knowledge, and skills related to disaster preparedness . Still, minority groups, including 

migrants, and ethnic communities, often face heightened social vulnerability, especially in high-risk areas, due to language 

barriers and communication challenges that can hinder access to critical emergency information .   260 

Table 2 – Indicators selected for urban settlement clustering.  

Indicator Category Vulnerability dimension 

Altimetric zone 
Geographical Institutional 

Centeredness degree 

Urban degree 
Demographic Physical  

Residential population 

Proportion of Children/ Elderly 

Socio-economic Social; Economic 

Aging index 

Dependency ratio 

Family structures 

Educational level 

Quality of buildings 

Commuting rate 

Employment/ Unemployment  

Female employment 

Crowding index 

Ethnicity /Foreign resident 

It is worth mentioning that we only consider indicators for which publicly available and authoritative data exist at the 

municipal level. For example, since GDP per capita is only available at national, regional, or provincial scales, it is not 

included in this study. Similarly, many building characteristics affecting physical vulnerability are either difficult to detect 

or unavailable at the municipal scale (e.g., structural system and earthquake-resistant design level; Tocchi et al., 2022). 265 
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Moreover, building vulnerability indicators often vary depending on the type of hazard (Kappes et al., 2012), making it 

challenging to collect all relevant information for multiple hazards across Italy. For these reasons, only population density 

and general building quality are considered in this study. Indicators suggested for the environmental vulnerability 

dimension are not included due to data limitations as well. For instance, municipal-level air pollution data in Italy is 

limited, as such data is only available for major cities with monitoring stations.  270 

Data on urban degree of urbanisation, degree of urban centeredness degree, altimetric zone, social vulnerability factors 

used herein are primarily sourced from ISTAT (Italian National Institute of Statistics). All data are collected at the 

municipal level, aligning with the administrative boundaries adopted for the analysis. The dataset includes 7960 objects, 

representing the 7960 Italian municipalities, and 19 attributes (both numerical and categorical) related to the vulnerability 

factors outlined in sections 3.1 through 3.5. All data are collected at the municipal level, aligning with the administrative 275 

boundaries adopted for the analysis. The dataset includes 7960 objects, representing the 7960 Italian municipalities, and 

the numerical and categorical attributes related to the vulnerability factors outlined in sections 3.1 through 3.5  

6.12.1 Degree of urbanization 

Eurostat (2021) proposed a grid-based approach, implemented in geographic information systems (GIS), to determine the 

degree of urbanization based on a combination of geographical contiguity and population density.  First, raster grid cells 280 

of 1 km² are categorized according to their total population and population density. Second, small statistical units are 

classified as urban centres (high-density units), urban clusters (moderate-density units) and rural cells (low density units) 

based on population thresholds and density criteria of groups of neighbouring cells. Finally, degree of urbanization of 

local administrative units is defined based on the share of population living in urban centres, urban clusters and rural grid 

cells: densely populated units (i.e., at least 50% of population living in urban centres) are categorized as cities, thinly 285 

populated units (i.e., at least 50% of population living in rural areas) as rural areas and intermediate density units (i.e., 

less than 50% of population living in rural areas and urban centres) as towns and suburbs. In Italy, classification of 

municipalities adopting to the above-mentioned Eurostat procedure is provided by ISTAT, the Italian National institute of 

statistics (https://www.istat.it/classificazione/principali-statistiche-geografiche-sui-comuni/) and reported in Figure 1. 

It is found that only 3% of Italian municipalities are classified as cities, yet they account for 33% of the country's 290 

residential population. Conversely, rural areas make up 68% of municipalities but only represent 24% of the population. 

Towns and suburbs, which comprise 29% of municipalities, account for 43% of the population. 

6.22.2 Degree of Uurban centeredness degree 

The urban centeredness degree is used herein as a measure of how centralized or decentralized an urban area is. Italian 

territory is a polycentric territory, i.e., a territory characterized by a network of municipalities or aggregations of 295 

municipalities (centres of offer of services) around which areas characterized by different levels of peripherality gravitate. 

These centres offer a wide range of essential services, capable of generating important catchment areas, even remotely, 

and of acting as "attractors" (in the gravitational sense). The methodology used to define the degree of urban centeredness 

degree of municipalities is based on the approach proposed by the National Strategy for Internal Areas (SNAI, "Strategia 

Nazionale per le Aree Interne" in Italian). This territorial policy aims to enhance the quality of citizen services and 300 

economic opportunities in remote areas, which are characterized by significant distances from major service centres and 

are at risk of marginalization. The proposed methodology involves two main phases: i) identifying urban hubs based on 

their capacity to provide essential services and ii) classifying the remaining municipalities as peri-urban areas and inner 

areas based their distance from the hubs measured in travel time (DPS, 2013).  

More specifically, the selection of hubs, which can also be defined as service offering centres, is based on service 305 

availability indicators for high school educational services (e.g., high schools, technical and professional institutes, and 

other higher education institutions), health services (e.g., presence of multiple health and emergency facilities, healthcare 

facilities with at least 250 beds), and rail transport services (e.g., train stations with an average of more than 6,000 

travellers per day and a high number of daily trains). Some neighbouring municipalities are classified as intermunicipal 

hubs, meaning that several contiguous municipalities collectively provide the required level of services in a network 310 

system. The remaining municipalities are classified based on an accessibility indicator measured in minutes to reach the 

nearest hub. Peri-urban areas are less than 20 minutes away from the nearest hub, while inner areas are more than 20 min 

away. Further classification of the inner areas into four three categories is also provided: it is possible to distinguish 

between intermediate areas, that are approximately 20 to 40 minutes away, peripheral areas, that are between 40 and 75 

minutes away, and ultra-peripheral territories, that are more than 75 minutes away. Figure 1 (right) shows the classification 315 

of Italian municipalities based on their degree of urban centeredness degree.  

https://www.istat.it/classificazione/principali-statistiche-geografiche-sui-comuni/
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Figure 1 – Italian municipalities classified based on urban ddegree of urbanisation (left) and degree of urban centeredness 

degree (right). Data used for the classification are derived from ISTAT (https://www.istat.it/classificazione/principali-320 
statistiche-geografiche-sui-comuni/). 

Most of the Italian population resides in peri-urban areas (37%) and urban hubs (35%), which account for 44% and 3% 

of municipalities, respectively. Intermediate, peripheral and ultra-peripheral areas account for 16%, 6% and 1% of 

population, respectively, and represent 28% (intermediate), 19% (peripheral), and 4% (ultra-peripheral) of Italian 

municipalities. Intermunicipal hubs represent only 2% of municipalities and house 5% of the population. Population 325 

density generally decreases from hubs to peripheral municipalities. High-density cities comprise 35% of hubs, while 

medium-density towns and suburbs make up 57%. Only 8% of hubs are low-density rural areas. Intermunicipal hubs 

exhibit medium-high population density, with 23% classified as cities, 50% as towns and suburbs and 27% as rural areas. 

Peri-urban municipalities exhibit medium-low population density, with 5%, 45% and 50% classified as cities, towns and 

https://www.istat.it/classificazione/principali-statistiche-geografiche-sui-comuni/
https://www.istat.it/classificazione/principali-statistiche-geografiche-sui-comuni/
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suburbs and rural areas, respectively. Intermediate, peripheral, and ultra-peripheral municipalities are mostly low-density 330 

rural regions (83%, 91%, and 96%, respectively). 

It is worth mentioning that only three classes are considered for the degree of urban centeredness degree, namely urban 

hubs (represented by both hubs and intermunicipal hubs, shades of red in Figure 1), peri-urban areas (green in Figure 1) 

and inland areas (that includes intermediate, peripherical and ultra-peripherical areas, shades of blue in Figure 1), 

according to the main classification proposed by ISTAT. This simplification is adopted in order to: (i) minimizes noise 335 

and variability in the data, leading to more stable and reproducible clusters; (ii) prevents the model from overfitting to 

minor variations, improving generalizability; (iii) enhanced interpretability.  

6.32.3 Altimetric zone 

ISTAT classifies Italian municipalities into three altimetric zones based on elevation: mountain (>600 m.a.s.l.), hill (300-

600 m.a.s.l.), and lowland (<300 m.a.s.l.) (ISTAT, 2020). Elevation data is derived from a Digital Elevation Model (DEM) 340 

developed by ISPRA (Italian Institute for Environmental Protection and Research) for a 20-meter grid. Using the DEM, 

statistics such as average, sum, minimum, and maximum elevation within the municipal boundaries are calculated using 

a zonal statistics tool in GIS software. The municipality's altimetric zone is then determined based on the surface 

prevalence criterion. Municipalities could be also subdivided to account for the moderating influence of the sea on the 

climate, as coastal or inland areas. However, only the main three altimetric classes are adopted in this study (i.e., mountain, 345 

hill and lowland), not considering the classification in coastal and inland zones. Indeed, coastal zones represent a minority 

of municipality (almost 90% of municipalities are located in inland areas, while only 10% in coastal areas) and this can 

lead to the model becoming more likely to fit to noise, reducing its generalizability to new data. Furthermore, despite 

some correlation may existexisting between urban vulnerability and coastal/inland areas (e.g., a coastal city with strong 

infrastructure and preparedness may be less vulnerable than an inland town with weak governance and high poverty), 350 

generally the distinction between coastal and inland areas is primarily linked to the types of natural hazards affecting 

these regions rather than inherent differences in urban vulnerability. Figure 2 shows the classification of Italian 

municipalities by population classes and altimetric zones. 

Geographically, 31% of municipalities are in mountainous areas (30% inland, 1% coastal), accounting for just 12% of the 

population (10% inland, 2% coastal). Hill areas encompass 43% of municipalities, with 33% in inland hills and 10% in 355 

coastal hills, representing 23% and 16% of the Italian population, respectively. Lowland areas include 26% of 

municipalities (24% inland, 2% coastal) and home to 49% of the population (34% inland, 15% coastal).  

Many densely populated cities are located in lowland areas (75%), while only 22% are situated in hilly regions and 3% 

in mountainous areas. Low-density or rural municipalities are predominantly found in mountainous (39%) and hilly 

regions (42%), compared to only 19% in lowlands. Medium-density towns and suburbs are mostly located in lowlands 360 

(38%) and hills (45%), with only 17% in mountainous areas. Similarly, hubs (including intermunicipal hubs) and peri-

urban municipalities are primarily situated in lowland (47% and 44%, respectively) and hilly areas (44% and 41%), with 

only 9% of hubs and 15% of peri-urban municipalities in mountainous regions. In contrast, most inner municipalities are 

in mountainous (47%) and hilly regions (44%), while only 9% are found in lowlands. 
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  365 

Figure 2 - Italian municipalities classified based on altimetric zone (left) and population (right). Data used for the 

classification are derived from ISTAT (https://www.istat.it/classificazione/principali-statistiche-geografiche-sui-comuni/). 

6.42.4 Residential Population 

Three population classes (Cpop) were introduced by ISTAT to classify municipalities according to the number of 

inhabitants (ISTAT, 2020). The classes (Figure. 2) are defined using the following population thresholds: small 370 

municipalities (less than 5000 inhabitants, Cpop=1); medium municipalities (between 5001 to 250000 inhabitants, Cpop=2); 

big municipalities (more than 250000 inhabitants, Cpop=3). ISTAT provides updated statistics on the resident population 

per municipality every year. In this study information on population per municipality is updated to 2018, along with the 

most recent data on urbanization, centrality, and altitude zones, all referring to the same year.  

A significant proportion of municipalities fall into the lowest population class, with 33% having between 501 and 2000 375 

inhabitants, 26% having between 2001 and 5000 inhabitants and 11% being very sparsely populated, with fewer than 500 

residents. The remaining municipalities belong to the medium population class (30%), including 15% with population 

between 5001 and 10000 inhabitants, 13% between 10001 and 50000, and 2% between 50001 and 250000. Only 0.2% 

belong to the high population class, representing Italy’s largest cities such as Rome and Milan. 

As expected, 91% of hubs (including intermunicipal hubs) are found in higher population classes, with 87% in population 380 

class 2 and 4% in population class 3, highlighting their concentration in highly populated areas. In contrast, 84% of inner 

municipalities fall within the lowest population categories, with only 16% classified in class 2. Similarly, densely 

populated cities tend to have larger populations, with 73% in classes 2 and 3 (41% having between 10001 and 50000 

inhabitants, and 32% exceeding 50001 inhabitants). Meanwhile, 88% of rural areas are also sparsely populated, with the 

vast majority (88%) having fewer than 5000 inhabitants. 385 

6.52.5 Social vulnerability indicators 

Parameters commonly used to assess social vulnerability, such as gender, age, education, socioeconomic status, public 

health condition, employment status, and access to resources, need to be tailored to the local context to accurately reflect 

place-specific dimensions (Chen et al., 2013; Cutter et al., 2003; Guillard-Gonçalves et al., 2015; Mesta et al., 2022). The 

variables representing social vulnerability adopted in this study are derived from the study conducted by Frigerio et al 390 

(2018). These variables , which encompass seven demographic and socio-economic indicators pertinent to the Italian 

context , are inspired by the study conducted by Frigerio et al Fare clic o toccare qui per immettere il testo. and 

specifically: age, population growth, level of education, family structures, commuting rate, quality of buildings, 

race/ethnicity and employment..  
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Table 3 - Variables that characterize social vulnerability. The last column reports their impact on social 395 

vulnerability, i.e., increasing (+) or decreasing (-), according to Frigerio et al. (2018)Age indicator 

includes the percentage of children (under 15) and elderly (over 65), the ageing index, calculated as ratio of elderly to 

children (Preedy & Watson, 2010), and the dependency ratio, i.e., ratio of nonworking-age people to working-age people 

(Simon et al., 2012), calculated in this study as those under 15 and over 65. The family structure indicator measures the 

proportion of families with more than five members. Indeed, evidence shows that the larger the family the lower the 400 

income (ISTAT, 2024). The education indicator consists of the low educational index, calculated as number of people 

with at most a secondary school diploma compared to the total population aged over 15, and the high educational index, 

calculated as people with at least a university degree compared to the total population aged over 30. The commuting rate 

is the ratio of commuters to working-age people (those over 15), while building quality indicator is calculated as the 

proportion of buildings in poor condition. In the census database, building quality is classified based on four categories 405 

of preservation: very good, good, bad, or very bad. For this study, the number of buildings in bad or very bad condition 

at the municipal level is used as a representative variable for building quality. The employment indicators cover both 

unemployment, employment, and female employment rates among working-age people (those over 15). The crowding 

index is calculated herein as the number of persons per dwelling. The race/ethnicity indicator is defined in terms of 

percentage of foreign population (i.e., not Italian citizens). It is important to note that only 12 of the 14 previously 410 

presented social vulnerability indicators are used in this study (Table 2), as a correlation analysis - described in Section 

3.1 - was conducted. Each variable is derived from last census (ISTAT, 2011) at census tract level and aggregated at 

municipal level.  

 

Variables Description 
Impact on social 

vulnerability 

Children Percentage of population aged under 15  + 

Elderly people Percentage of population aged over 65  + 

Aging index Ratio of elderly people compared to children + 

Dependency ratio Ratio of nonworking-age people to those of working age + 

Families with more than 5 components Proportion of families with more than five members + 

High educational index 

People with at least a university degree compared to the 

total population aged over 15  - 

Low educational index 

People with at most a secondary school diploma 

compared to the total population aged over 15 + 

Quality of buildings 
Buildings with very bad or bad state of preservation 

+ 

Commuting rate Ratio of commuters to working-age population + 

Unemployed 

Proportion of unemployed among working-age 

population + 

Employed Proportion of employed among working-age population - 

Female employed Proportion of employed women of working-age  - 

Crowding index Number of persons per dwelling + 

Foreign resident Proportion of foreign population + 

Age indicators include the percentage of children (under 15) and elderly (over 65), the ageing index, calculated as ratio 415 

of elderly to children , and the dependency ratio, i.e., ratio of nonworking-age people to working-age people , calculated 

as those under 15 and over 65. The family structure indicator measures the proportion of families with more than five 

members. Indeed, evidence shows that the larger the family the lower the income . The education indicator consists of the 

low educational index, calculated as number of people with at most a secondary school diploma compared to the total 

population aged over 15, and the high educational index, calculated as people with at least a university degree compared 420 

to the total population aged over 30. The commuting rate is the ratio of commuters to working-age people, while building 

quality indicator is calculated as the proportion of buildings in poor condition. In the census database, building quality is 

classified based on four categories of preservation: very good, good, bad, or very bad. For this study, the number of 

buildings in bad or very bad condition at the municipal level is used as a representative variable for building quality. The 

employment indicators cover unemployment, employment, and female employment rates among working-age people. 425 

The crowding index is calculated herein as the number of persons per dwelling. The foreign residents indicator is defined 

in terms of percentage of foreign population (i.e., not Italian citizens). Each variable is derived from last census  at census 

tract level and aggregated at municipal level.  
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It was observed that aging index, dependency ratio, low educational index and the percentage of buildings in poor 

conditions tends to increase from hubs to ultra-peripheral areas (average values of 1.7, 0.55, 0.51 and 14% for hubs, 430 

average values of 2.7, 0.61,0.60 and 20% for ultra-peripheral areas, respectively), while high educational index, 

percentage of employed and female employed as well as crowding index tend to decrease (average values of 0.17, 50%, 

44% and 2.4 for hubs, average values of 0.08, 44%, 38% and 2.2 for ultra-peripheral areas, respectively). Rural 

municipalities exhibit a higher aging index (2.2) compared to towns (1.4) and cities (1.2), along with larger values of low 

educational index (0.61 vs. 0.58 in towns and 0.55 in cities) and dependency ratios (0.58 vs. 0.52 in towns and 0.50 in 435 

cities). Conversely, these rural areas show smaller values of high educational index (0.09 compared to 0.11 in towns and 

0.15 in cities), employment rates (0.48 vs. 0.52 in towns and cities), and crowding index (2.3 compared to 2.5 in towns 

and 2.6 in cities).  

Social vulnerability is often expressed through a composite index known as the Social Vulnerability Index (SoVI), which 

aggregates different metrics affecting it (e.g., Cutter et al., 2003; Frigerio et al., 2018). Using a unique index to represent 440 

social vulnerability provides a comprehensive and easily interpretable measure that encapsulates multiple dimensions of 

vulnerability, facilitating communication and policymaking. In this study the individual indicators affecting social 

vulnerability are considered in the cluster analysis, while the aggregated SoVI index is used to provide a synthetic 

description. This approach allows for a more nuanced understanding of the different dimensions of vulnerability. By 

analysing each indicator separately, cluster analysis can capture the unique contributions and relationships between factors 445 

like income, education, health, and housing quality, which may be masked in a single composite index. Additionally, 

considering individual indicators enables the identification of distinct patterns or subgroups within the data, leading to 

more effective archetype identification. In contrast, an aggregated index may oversimplify these dynamics and overlook 

important variations across clusters. 

73 Cluster analysis 450 

To identify archetypes by grouping entities based on shared characteristics, clustering analysis is widely used. Clustering 

refers to unsupervised learning techniques used to find subgroups (or clusters) within a data set by organizing elements 

according to their similarities. This method is designed to group together observations that are highly similarensures that 

observations within the same group are highly similar, while separating those that differ into distinct clusterswhile those 

in different groups are distinctly different. Unlike supervised classification algorithms, which rely on labelled training 455 

data to categorize new information into predefined classes, clustering uncovers natural structures in the data by analysing 

similarities between data points without the need for predefined labels.  

In this study clustering is adopted to group urban human settlements based on their potential exposure and urban 

vulnerability-related factors to define risk-oriented urban and rural settlements archetypes, proposing an application for 

Italian municipalities as a case. We conducted a two-step clustering approach. A first cluster analysis is performed with a 460 

sub-set of attributes, specifically demographic and geographic parameters representative of physical and institutional 

vulnerability dimensions. The aim is to allow a first broad definition of urban archetypes, simple and highly interpretable. 

In the second step, a nested clustering approach is applied to further differentiate sub-clusters based on socio-economic 

attributes.  

Both hierarchical and partitioning clustering techniques are employed in each step to enable comparison of clustering 465 

outputs and to identify nuanced patterns that may not be captured by a single method. The adoption of two different 

clustering techniques serves to enhance the robustness, reliability, and interpretability of the archetypes identified in thi s 

study. Each method has distinct strengths and analytical advantages, which, when combined, allow for a more 

comprehensive exploration of patterns in the data. For instance, hierarchical clustering is particularly useful for exploring 

data structures without the need to predefine the number of clusters. It produces a dendrogram that visually represents 470 

nested groupings and their relationships, offering insights into how clusters evolve as dissimilarity thresholds change. 

This is especially valuable for understanding the hierarchical nature of urban/rural systems and guiding the selection of 

an appropriate number of clusters. On the other hand, partitioning clustering requires the number of clusters to be 

predefined, but it typically performs better with larger datasets, producing compact, well-separated clusters when 

appropriately parameterized. It is computationally efficient and more suitable for refining clusters, especially when 475 

working with both categorical and numerical data types. Using both techniques enables cross-validation of clustering 

outputs, ensuring consistency and increasing confidence in the identified archetypes. Discrepancies between methods can 

highlight ambiguous or transitional settlement types, while convergences confirm stable, well-defined clusters.  

Morest detailed information of algorithms used are reported in section 34.2 and 34.3. Results of first and second level 

clustering analysis are presented in section 4 and 5, respectively. For each step,Rural and urban archetypes (presented in 480 
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section 65) are defined based on the results of the most effective algorithm, selected according to widely used clustering 

performance metrics (see section 4.23 and 4.5). 

7.13.1 Data pre-processing 

Data preprocessing is crucial for enhancing thee quality of clustering. Specifically, we performed: (i) outlier detection; 

(ii) correlation analysis – to eliminate measurement redundancy; (iii) normalization of numerical data values.  485 

The detection of outliers is necessary to ensure high quality of clustering. An outlier is an object in a data set that deviates 

significantly from the remaining data, Outlier detection is essential for ensuring high-quality clustering, as extreme values 

can distort normalization and affect cluster formation (Nowak-Brzezińska & Gaibei, 2022; OECD, 2008).Outliers are 

identified using the interquartile range (IQR) method, where data points beyond 1.5 times the IQR from the quartiles are 

considered outliers. In this study, residential population had the highest number of outliers. Instead of removing them, 490 

which would compromise the analysis, the population variable was transformed into categorical classes (i.e. the 

population classes presented in section 3.4) to reduce its impact on clustering. The 18 attributes selected for the clustering 

are thus divided into 4 categorical (i.e., urban degree, population class, urban centeredness degree and altimetric zone) 

and 14 numerical (the ones listed in table 3). 

For the correlation analysis, the Pearson correlation coefficient (r) is used. This coefficient is a statistical measure used 495 

to assess the strength and direction of the linear relationship between two continuous variables (Cohen, 2013). It is one 

of the most used methods for correlation analysis. While it does not inherently assume normality, research indicates that 

Pearson's correlation is relatively robust to violations of normality, especially when sample sizes are large (Bishara & 

Hittner, 2017). The value of r ranges between -1 and 1, with values higher than 0 that indicate a positive correlation and 

values lower than 0 a negative correlation. Values close to 0 indicate no linear correlation between variables (Cohen, 500 

2013). Figure 3 shows the correlation matrix obtained for the 14 numerical variables presented in section 2.5. considered. 

The analysis shows that there is a very strong correlation (| r | > 0.8) between age indicators, namely: proportion of 

population under 154 aged and over 65 aged (r = -0.84); aging index and proportion of people aged 65 and above (r = 

+0.81); dependency ratio and proportion of population over 65 (r = 0.91). Strong correlation (| r | > 0.5) is also observed 

for: aging index and dependency ratio to proportion of people under 154 (r equal to -076 and –0.55, respectively); 505 

dependency ratio and aging index ( r = +0.73); crowding index and dependency ratio ( r = -0.6); crowding index and 

proportion of families with 5 or more components (r = +0.78), high and low educational index (r = -0.78), proportion of 

commuters and proportion of employed (r = +0.61); proportion of employed and proportion of over 65 aged (r = -0.58) 

and proportion of under 154 aged ( r = +0.54). 
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Figure 3 – Correlation matrix for numerical variables considered. 

Based on the analysis results, the number of numerical attributes used for clustering was reduced from 14 to the following 

8: aging index, low educational index, proportion of unemployed, proportion of commuters, proportion of female 

employed, proportion of buildings in poor condition, crowding index and proportion of foreign resident. The 18 attributes 515 

selected for the clustering are thus divided into 4 categorical (i.e., urban degree of urbanisation, population class, degree 

of urban centeredness degree and altimetric zone) and 8 14 numerical,  (the ones listed in table 3). 

Table 2 – Variable used in cluster analysis. 

Variable Type Vulnerability dimension 

Degree of urbanisation Categorical Physical 

Degree of urban centeredness  Categorical Institutional 

Residential population class Categorical Physical 

Altimetric zone Categorical Institutional 

Aging index Numerical Social 

Low educational index Numerical Social 

Unemployed Numerical Economic 

Commuting rate Numerical Social 

Female employed Numerical Economic 

Quality of buildings Numerical Social 

Crowding index Numerical Social 

Foreign resident Numerical Social 
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Finally, numerical data are normalized to enhance the quality of clustering by ensuring that all features contribute equally 520 

to the analysis, regardless of their original scales. Without normalization, features with larger ranges could dominate the 

clustering process, leading to biased results (Usman & Stores, 2020). As normalization method, the empirical cumulative 

distribution function (ECDF) is adopted. The empirical CDF approach ranks the data points by their cumulative 

probability, effectively distributing them between 0 and 1 based on their relative positions within the dataset. Compared 

to other normalization methods (e.g., min-max normalization, z-score), ECDF normalization offers several advantages: it 525 

effectively processes non-normally distributed data, minimizes the impact of outliers, and provides a clear, intuitive 

framework for interpreting data rankings relative to the overall distribution (Hoffman et al., 2017). 

7.23.2 Hierarchical clustering  

Hierarchical clustering organizes data into tree-structured clusters through either an agglomerative or divisive process 

(Han et al., 2011). In agglomerative clustering, each object is initially assigned to an individual cluster (that is, if there 530 

are 𝑛 objects, the process will start with 𝑛 clusters). Initial clusters are gradually merged into larger clusters based on their 

similarity (or dissimilarity), until a hierarchy of clusters is built and only one cluster remains, which contains all data 

points. The selection of an appropriate distance or dissimilarity measure crucially affects the clustering solution and 

depends on the nature of the considered variables. Most distance measures concern the analysis of either continuous only 

or categorical only data (e.g., Euclidean distance). The Gower distance (Gower, 1971) is a flexible dissimilarity measure 535 

that can work both with numerical and categorical variables. For numerical variables, the Gower distance uses the 

normalized absolute difference. If 𝑥𝑖lk and 𝑥jl𝑘 are the values of the l-th numerical attribute for objects 𝑖 and j, the distance 

between the two objects for attribute l is calculated as: 

𝑑𝑖𝑗
𝑙 =

|𝑥𝑖𝑙 − 𝑥𝑗𝑙|

max(𝑥𝑙) − min (𝑥𝑙)
 

(1) 

For categorical variables, the Gower distance assigns a value of 0 if the values are the same and 1 if they are different: 

𝑑𝑖𝑗
𝑙 = {

 0     𝑖𝑓 𝑥𝑖𝑙 = 𝑥𝑗𝑙

  1     𝑖𝑓 𝑥𝑖𝑙 ≠ 𝑥𝑗𝑙
 

(2) 

The Gower distance for a pair of objects i and j is calculated as the average value of the individual attribute distances, 540 

according to Eq. (3): 

𝐷𝑖𝑗 =
∑ 𝑤𝑙𝑑𝑖𝑗

𝑙𝑝
𝑙=1

∑ 𝑤𝑙
𝑝
𝑙=1

 (3) 

Where p is the number of attributes, 𝑑𝑖𝑗
𝑙  is the individual attribute distance and wl is the weight for the l-th attribute, set 

to 1. 

The main steps of agglomerative hierarchical clustering process can be outlined as follows: 

1) For each pair of data points i and j in the dataset, the Gower distance is calculated. The result is an 𝑛×𝑛 distance 545 

matrix where each entry (𝑖, j) represents the Gower distance between objects i and j across all attributes. This 

means that the values on the diagonal of this matrix will be equal to zero, since the distance between object i and 

itself is zero. It is important to note that the Gower distance already normalizes numerical variables, making 

additional normalization unnecessary. 

2) Next, the two clusters with the smallest Gower distance are merged, reducing the total number of clusters by 550 

one. 

3) The distance matrix is then updated to reflect the distance between the newly formed cluster and all other clusters. 

The recalculation of distances depends on the chosen linkage criterion (e.g., single, complete, average, or ward 

linkage). In this study, complete linkage is employed, where all pairwise dissimilarities between observations in 

cluster A and cluster B are computed, and the largest of these dissimilarities is recorded. 555 

4) Repeat the merging process iteratively, continuing to merge the closest clusters and updating the distance matrix 

until all objects are grouped into a single cluster. 

7.2.13.2.1 Optimal number of clusters 

Throughout the merging process, a dendrogram is constructed—a tree-like diagram that visually represents the order and 

levels at which clusters are merged. The height of each node in the dendrogram corresponds to the Gower distance at 560 

which the clusters were merged. The dendrogram can be analysed to determine the optimal number of clusters, either 

visually by identifying the largest vertical distance (gap) between merges, known as the "cut" point  (James et al., 2017), 
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or by evaluating the inconsistency coefficient (Martin et al., 2022). The inconsistency coefficient measures the similarity 

of clusters connected by each link, comparing its length with the average length of other links at the same level of the 

dendrogram (Jatain et al., 2013). A higher coefficient indicates less similarity between clusters. The relationship between 565 

the inconsistency coefficient and the number of clusters indicates that a lower number of clusters corresponds to higher 

inconsistency, which suggests better clustering since distinct clusters tend to have high inconsistency. However, fewer 

clusters often lead to greater within-cluster variance. To strike a balance between distinct clusters and minimizing within-

cluster variance, the variability of observations within each cluster is evaluated, and its trend is analysed as the number 

of clusters increases. 570 

To evaluate the variability of the observations within each cluster, a coefficient representing the within cluster distance 

(WCD) is calculated as sum of the average values of distances between data points in a single cluster. Specifically, for the 

l-th numerical attribute WCDl is calculated by taking the average of the squares of the differences between each pair of 

values i and j in the cluster Ck (Gordon, 1986): 

𝑊𝐶𝐷𝑙(𝐶𝑘) =
∑ ∑ (𝑥𝑖𝑙 − 𝑥𝑗𝑙)2𝑛

𝑗=1
𝑛
𝑖=1

𝑛2 − 𝑛
 

(4) 

Where x1, x2, …, xn are n observations within the k-th cluster on a quantitative variable, x.  575 

For the l-th categorical attribute, the coefficient of unlikeability proposed by Perry & Kader (2005) is utilized as measure 

of WCDk: 

𝑊𝐶𝐷𝑙(𝐶𝑘) =
∑ 𝑐(𝑥𝑖𝑙 , 𝑥𝑗𝑙)𝑖≠𝑗

𝑛2 − 𝑛
 

(5) 

Where:  

𝑐(𝑥𝑖 , 𝑥𝑗) = {
1     𝑖𝑓 𝑥𝑖𝑙 ≠ 𝑥𝑗𝑙

0     𝑖𝑓 𝑥𝑖𝑙 = 𝑥𝑗𝑙
 

(6) 

And x1, x2, …, xn are n observations within the k-th cluster on a categorical variable, x.  

The final value of WCD for the cluster Ck is given by the average values across all p attributes: 580 

𝑊𝐶𝐷 (𝐶𝑘) =
∑ 𝑊𝐶𝐷𝑙(𝐶𝑘)

𝑝
𝑙=1

𝑝
 (7) 

While the overall value of WCD for the clustering – which accounts for all m clusters - can be defined as the average 

value: 

𝑊𝐶𝐷 =
∑ 𝑊𝐶𝐷(𝐶𝑘)𝑚

𝑘=1

𝑚
 (8) 

The evaluation of variation of WCD with the increasing number of clusters together with the trend of inconsistency 

coefficient allows the definition of the best number of clusters for the specific case analyses. 

7.33.3 Partitioning clustering 585 

Partitioning clustering is a method that divides a dataset into a predefined number of clusters by assigning each data point 

to a single cluster based on similarity. The most used partitioning clustering technique is the k-means algorithm 

(MacQueen, 1967). To perform k-means clustering, the number k of clusters must be predefined, and k objects, 

representing the initial cluster centroids, are arbitrarily chosen. The remaining objects are then iteratively assigned to 

these clusters in a way that minimizes the distances of points to their respective centroids, thereby minimizing the within-590 

cluster variance. The position of each centroid is updated each iteration by the mean value of the objects in a cluster. One 

of the main drawbacks of k-means algorithm is that it only works on numeric values, prohibiting its use to cluster data 

containing categorical values. The k-modes algorithm is an extension of k-means algorithm that employs a simple 

matching dissimilarity measure to handle categorical data, replacing cluster means with modes and using a frequency-

based approach to update these modes during the clustering process (Huang, 1998). These modifications enable the k-595 

modes algorithm to cluster categorical data in a manner similar to k-means. The k-prototypes algorithm combines 

elements of the K-means algorithm and the K-modes algorithm, allowing for the clustering of objects characterized by 

both numeric and categorical attributes (Huang, 1998). Like the k-means algorithm, this technique requires the user to set 

the number of clusters (k), while initial cluster centroids are chosen arbitrarily. Observations are iteratively assigned to 
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the closest centroid in a way that minimizes within-cluster variance. To define the closeness between two objects, this 600 

method applies Euclidean distance to numeric attributes and uses a distance function simple matching dissimilarity (δ=0 

if the values match, δ=1 if they do not) for categorical attributes. Thus, dissimilarity measure for a data point 𝑖 and centroid 

𝑗 can be calculated as: 

𝐷(𝑖, 𝑗) = ∑ (𝑥𝑖𝑙 − 𝜇𝑘𝑙)2 + 𝛾 ∑ 𝛿(𝑥𝑖𝑙 , 𝜇𝑘𝑙)

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

 
(9) 

Where xil is the value of the l-th attribute of the 𝑖-th data point, 𝜇kl is the relative value for the k-th cluster centroid, and 𝛾 

is a weighting factor to balance numerical and categorical distances (a value of 1 is adopted for 𝛾). The centroids are 605 

updated after each iteration by taking the average values of numerical variables of the objects within a cluster and 

evaluating the modes for categorical attributes, i.e., the category with the highest frequency.  

As one of the main drawbacks of this clustering techniques is that the clustering is very sensitive to the selection of initi al 

centroid, the random selection of initial centroids and the clustering are repeated t times (t=10) and each iteration t the 

performance of the clustering algorithm is evaluated by calculating WCD. Among t different clustering obtained, the best 610 

clustering is determined based on WCD value (i.e., the clustering providing the lower WCD value).  

7.44 First level analysis: Cclustering based on demographic physical and geographic institutional vulnerability 

featuresparameters 

A preliminary cluster analysis is conducted using only demographic and geographic attributes representative of physical 

and institutional vulnerability dimensions, namely: urban degree of urbanisation, residential population, degree of urban 615 

centeredness degree and altimetric zone. It is important to note that all these attributes are categorical (see Table 2). 

Consequently, hierarchical clustering is performed using Eq. (2) and (3), while partitioning clustering is applied using the 

dissimilarity measures for categorical variables presented in Eq. (9).  

The optimal number of clusters is determined following the procedure outlined in Section 4.2.1. The inconsistency 

coefficient reaches its highest values (>4) when considering between 4 and 12 clusters. Conversely, the within-cluster 620 

dispersion (WCD) exhibits an inverse relationship with the inconsistency coefficient: as the number of clusters increases, 

WCD decreases. Specifically, WCD declines from 1.26 with 4 clusters to 0.70 with 10 clusters, remaining constant at 

0.70 between 10 and 12 clusters. To achieve a balanced trade-off between the inconsistency coefficient and WCD, 10 

clusters are selected as the optimal number for this dataset. Since partitioning clustering requires a predefined number of 

clusters, the optimal number identified through this methodology is also adopted for the partitioning clustering approach.  625 

7.4.14.1 Results of hierarchical cluster analysis 

Figure 4 shows the representativeness of clusters in terms of attributes considered. Clusters 1, 2, 3 and 6 represent rural 

municipalities with low (1, 2 and 3) and medium (6) population. Among them, cluster 1 identifies hubs (more specifically 

intermunicipal hubs), cluster 2 peripheral areas, cluster 3 peri-urban areas while cluster 6 includes both peripheral and 

peri-urban municipalities – with a very small portion of intermunicipal hubs.  630 

Clusters 4, 5 and 7 identifies medium-density towns and suburbs with medium (4), medium-low (7) and low population 

(5). Cluster 4 is represented by hubs (specifically, intermunicipal hubs), cluster 7 by peripheral areas while cluster 5 in 

majority by peri-urban areas. Clusters 8 and 9 include high density cities, that are medium (8) and high (9) populated 

areas. Cluster 9 includes all the major Italian cities with more than 250’000 inhabitants (e.g., Rome, Milan and Naples) , 

while cluster 8 includes cities located in peri-urban areas. Finally, cluster 10 includes all medium-populated municipalities 635 

not included in the other clusters, most of the medium-densely populated and located in peri-urban and peripheral areas.  

Regarding the altimetric zone, most peripheral areas (e.g., clusters 2 and 7) are located in hilly and mountainous regions, 

whereas densely populated cities (e.g., clusters 8 and 9) are primarily situated in lowland areas. Cluster 4 distinctly 

represents towns and suburbs in hilly regions, while Cluster 6 includes rural municipalities in mountainous areas. Cluster 

1 groups intermunicipal hubs found in both hilly and mountainous areas. However, the classification of municipalities in 640 

clusters 3, 5, and 10 is less clearly defined. 
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(a)           (b) 

        
(c)           (d)  645 

Figure 4 - Representativeness of clusters resulting from hierarchical clustering in terms of urban degree of urbanisation (a), 

degree of urban centeredness degree (b), population class (c) and altimetric zone (d).  

The Aattributes’ importance for clustering is evaluated adopting simplified procedure proposed in Fraiman et al. (Fraiman 

et al., 2008). The methodology is based on an iterative removal of variables, to assess their its contribution to clustering 

based on the performance metric selected. In other words, variables are removed one at a time and the impact of the 650 

removal on the overall model is measured. The greater the impact of removing a variable, the more important it is 

considered. In this study we consider WCD as the performance metric. Figure 5a shows that the most important attribute 

for the clustering is the urban degree of urbanisation, followed by the population class and the degree of urban 

centeredness degree, while the less important attribute is the altimetric zone. 
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 655 

(a)           (b) 

Figure 5 – Attribute importance in terms of variation of WCD (a); number of Italian municipalities belonging to each cluster 

(b). 

A significant number of municipalities are classified within rural clusters, with Cluster 6 2 encompassing 3,305 

municipalities and Cluster 3 including 1,632 municipalities (Fig.ure 5b). This aligns with the fact that 68% of Italian 660 

municipalities are categorized as rural areas (see also Section 3.4). The least populated cluster is Cluster 1, which contains 

only 5 municipalities, followed by Cluster 4 (35 municipalities), Cluster 9 (51 municipalities), and Cluster 6 (89 

municipalities). Meanwhile, Clusters 8, 7, 5, and 10 include 166, 347, 615, and 1,715 municipalities, respectively.  

7.4.24.2 Results of partitioning cluster analysis 

Results of partitioning clustering are presented in Figure. 6, highlighting the representativeness of different attributes. 665 

Clusters 3 and 10 represent low populated peripheral municipalities in rural areas, specifically located in mountainous (3) 

and hilly (10) regions. Clusters 1, 6 and 8 also include low populated municipalities in rural areas but classified as peri-

urban, located in hilly (1), lowland (6) and mountainous areas (8). Clusters 4 and 9 identify low populated suburban 

municipalities in peri-urban areas, with cluster 4 representing those in mountainous and hilly regions, and cluster 9 those 

in lowland areas. Clusters 2 and 5 characterize medium-low (5) and medium populated (2) towns in peripheral and peri-670 

urban areas. Municipalities in cluster 5 are predominantly located in mountainous regions, while those in cluster 2 are 

mainly found in hill and lowland areas. Finally, cluster 7 includes medium to high populated cities, encompassing both 

hubs and peri-urban municipalities, primarily located in lowland regions. 

The attribute importance analysis (Figure. 7a) indicates that urban degree of urbanisation is the most influential factor in 

accurately distinguishing clusters, followed by altimetric zone, degree of urban centeredness degree, and population 675 

classification.  

    
   (a)            (b) 
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   (c)         (d) 680 

Figure 6 - Representativeness of clusters resulting from partitioning clustering in terms of urban degree of urbanisation (a), 

degree of urban centeredness degree (b), population class (c) and altimetric zone (d). 

The distribution of municipalities across clusters varies significantly (Figure. 7b). Cluster 3 is the largest, comprising 

1,976 municipalities, followed by Cluster 2 with 1,655 municipalities and Cluster 10 with 1,520 municipalities. Cluster 

1 includes 740 municipalities, while Cluster 6 and Cluster 8 contain 618 and 341 municipalities, respectively. Cluster 4 685 

and Cluster 5 represent smaller groups, with 503 and 216 municipalities. The smallest clusters are Cluster 9 with 148 

municipalities and Cluster 7 with 243 municipalities, indicating distinct groupings within the dataset.  

 

(a)            (b) 

Figure 7 - Attribute importance in terms of variation of WCD (a); number of Italian municipalities belonging to each cluster 690 
(b). 

7.4.34.3 Comparison of clustering algorithms  

In order to evaluate quality of clustering techniques, measure of intra-cluster distance (i.e., WCD presented in section 

4.2.1) as well as inter-clusters distance are investigated. Specifically, the coefficient WCD is adopted to evaluate the 

performance of the clustering for each single attribute. The value of WCDl for the attribute l-th across all clusters is 695 

calculated as follows: 

𝑊𝐶𝐷𝑙 =
∑ 𝑊𝐶𝐷𝑙(𝐶𝑘)𝑚

𝑘=1

𝑚
 

(10) 

Where 𝑊𝐶𝐷𝑙(𝐶𝑘) is the value of WCD for the l-th attribute and the k-th cluster, calculated according to Eq. (4) and Eq. 

(5), and m is the total number of clusters. The lower is the WCDl value, the better the performance of the algorithm with 

respect to the considered attribute. 
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Inter-cluster distance (ICD) measures the separation between clusters in a clustering solution and is useful for evaluating 700 

how distinct the clusters are. To calculate inter-cluster distance, we adopt Centroid-to-Centroid Distance:  

𝐼𝐶𝐷𝑙 =
∑ ‖𝜇𝑖,𝑙 − 𝜇𝑗,𝑙‖𝑖≠𝑗

𝑚
 

(11) 

Where 𝜇𝑖,𝑙 and 𝜇𝑗,𝑙 are the centroids values (i.e., the mode of the objects within a cluster) of clusters i and j for the l-th 

attribute. Unlike WCD, a higher ICD indicates better algorithm performance, as it reflects greater differentiation between 

clusters. 

From Figure. 8, it can be observed that the hierarchical clustering algorithm achieves better WCD performance for degree 705 

of urbanthe centeredness degree attribute. However, it performs worse than partitioning clustering for the population class 

attribute and significantly worse for the altimetric zone attribute. Regarding urban degree of urbanisation, both clustering 

methods exhibit high and comparable WCD performance. Overall, considering the average WCD across all attributes, the 

hierarchical algorithm shows a higher WCD (0.18) compared to the partitioning algorithm (0.13). Despite this difference, 

both clustering approaches demonstrate relatively good performance. In terms of ICD, hierarchical clustering outperforms 710 

partitioning clustering across all attributes, except for the altimetric zone, where both methods yield the same ICD value. 

Overall, hierarchical clustering demonstrates superior performance in terms of ICD, with a value of 0.62, compared to 

0.49 for partitioning clustering. 

     
   (a)           (b) 715 

Figure 8 – Comparison of clustering algorithms in terms of WCDl.(a) and ICDl (b). 

While WCD is slightly higher in hierarchical clustering compared to partitioning clustering, the overall clustering quality 

remains good in both methods. However, the significantly higher ICD (0.62 vs. 0.49) for hierarchical clustering suggests 

that it produces more distinct and well-separated clusters, making it the preferable choice for this analysis. Therefore, the 

results of hierarchical clustering are used for the initial broad definition of archetypes (presented in Section 5) and serve 720 

as the input for the second step of the analysis, namely the nested clustering, which is discussed in the following section.  

7.55 Second level analysis: Nnested clustering based on socio-economic parameters 

Nested clustering identifies clusters within clusters, unveiling data structures at multiple levels of granularity. This method 

is particularly valuable for detecting complex patterns in data, providing a more detailed understanding of the underlying 

relationships. In this study, for each first-level cluster (or broad archetype) identified in the previous section, we analyse 725 

nested clusters to capture the heterogeneity of urban/rural settlements in terms of socio-economic vulnerability. To achieve 

this, we consider eight socio-economic attributes—aging index, low educational index, proportion of unemployed 

individuals, proportion of commuters, proportion of female employees, proportion of buildings in poor condition, 

crowding index, and proportion of foreign residents—selected based on the correlation analysis results presented in 

Section 4.1. 730 

Both partitioning and hierarchical clustering algorithms are applied within each cluster to further refine the sub-groups. 

The optimal number of sub-clusters for each cluster is determined using WCD and the inconsistency coefficient, as 
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detailed in Section 4.2.1. Based on the clustering performance metrics (i.e., WCD and ICD), partitioning clustering proves 

to be the most suitable approach for this second-level clustering. As results, we identified 3 sub-clusters for cluster 2 and 

cluster 3, 2 sub-clusters for cluster 4, 8, 9 and 10 and no sub-clusters for cluster 1, 5, 6 and 7 due to homogeneity of socio-735 

economic data within the cluster. The list of clusters and sub-clusters with the average values of numerical attributes for 

each of the sub-clusters identified is reported in Table 4.  

While Ccluster names are derived from the geographical and demographic characteristics analysed (e.g., peri-urban 

settlements, peripheral rural areas), while sub-cluster names are assigned based on the mean value of the Social 

Vulnerability Index (SoVI) within each sub-cluster, which reflects demographic and socio-economic conditions of the 740 

settlements.  Additionally, if necessary, sub-cluster names may also incorporate the specific social vulnerability factors 

that contribute most significantly to the SoVI value. For example, both sub-clusters 2a and 2b exhibit high social 

vulnerability; however, sub-cluster 2b has the highest aging index among all sub-clusters, leading to its classification as 

"aged communities with high social vulnerability." Similarly, sub-clusters 3a ("aged communities with high social 

vulnerability") and 3b ("high household density settlements with high social vulnerability") both exhibit high SoVI values, 745 

but the former is characterized by a high aging index, while the latter has a high crowding index.  Understanding the 

influence of individual socio-economic indicators within each archetype can support the prioritization and tailoring of 

risk mitigation strategies and resilience policies. The SoVI indicator is calculated following the procedure proposed by 

Frigerio et al.(2018), utilizing the same socio-economic variables adopted in this study for clustering. The criteria used to 

identify the different socio-economic condition categories is based on SoVI values and specifically: a value lower than 1 750 

corresponds to low social vulnerability (dark green in Table 4), value between 1 and 1.20 to moderate social vulnerability 

(light green in Table 4), values between 1.20 and 1.40 to intermediate social vulnerability (yellow in Table 4), values 

between 1.40 and 1.60 to high social vulnerability (light red in Table 4), values higher than 1.60 to very high social 

vulnerability (dark orange in Table 4). The average values of individual variables for each sub-cluster are provided in 

Table 4.  755 

Table 34 – Cluster and sub-clusters identified with relative average value of numerical attributes within the cluster or sub-

cluster. 

Cluster Sub-cluster 
Aging 

Index 

Low 

Educational 

Index 

Unemployed 
Comm

uters 

Female 

employed 

Building 

poorbad 

state 

Crowding 

index 
Foreigns SoVI 

1. Low populated 

intermunicipal hubs in 

rural areas  

- 

1.69 0.54 0.03 0.23 0.44 0.14 2.44 0.09 1.31 

2. Low populated 

peripherical rural 

areas 

a. High household density 

settlements with Hhigh socially 

vulnerability settlementssocial 

vulnerability 2.04 0.61 0.04 0.22 0.39 0.19 2.40 0.04 1.50 

b. Aged communities with high 

social vulnerability 3.70 0.68 0.02 0.28 0.38 0.23 2.03 0.05 1.54 

c. Aged communities with 

moderate social vulnerability 
3.31 0.59 0.03 0.19 0.43 0.19 2.12 0.04 1.15 

3. Medium-Low 

populated peri-urban 

settlements in rural 

areas 

a. Aged communities with high 

social vulnerability 2.38 0.61 0.03 0.34 0.44 0.22 2.21 0.05 1.46 

b. High household density 

settlements with high social 

vulnerability 

1.51 0.56 0.05 0.26 0.39 0.21 2.59 0.03 1.56 

c. High socially vulnerable 

settlementsSettlements with high 

social vulnerability 1.78 0.62 0.03 0.34 0.42 0.12 2.47 0.08 1.54 

4. Medium-populated 

intermunicipal hubs 

a. Settlements with intermediate 

social vulnerability 1.77 0.54 0.03 0.28 0.45 0.10 2.40 0.08 1.22 

b. Settlements with Hhigh 

socially vulnerable 

settlementssocial vulnerbaility 1.22 0.55 0.05 0.15 0.40 0.18 2.74 0.03 1.40 

5. Low Populated 

peri-urban suburbs 
- 

1.38 0.58 0.04 0.34 0.41 0.15 2.55 0.05 1.53 

6. Medium-populated 

peri-urban and 

peripheric suburbs 

- 

1.71 0.54 0.03 0.14 0.41 0.19 2.50 0.04 1.17 

7. Peripheric suburbs 

medium-low 

populated 

- 

1.43 0.59 0.04 0.24 0.40 0.19 2.50 0.06 1.51 

8. Peri-urban cities 

a. Settlements with Vvery high 

social vulnerabilityly vulnerable 

settlements 0.73 0.63 0.06 0.22 0.36 0.26 3.08 0.02 2.01 

b. Settlements with intermediate 

social vulnerability 1.17 0.55 0.03 0.40 0.45 0.11 2.44 0.07 1.38 

9. Major urban hubs  

a. Settlements with Llow socially 

vulnerable settlementssocial 

vulnerability 1.95 0.47 0.03 0.11 0.47 0.10 2.23 0.11 0.84 
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b. Settlements with intermediate 

social vulnerability 1.50 0.51 0.05 0.08 0.42 0.24 2.60 0.03 1.20 

10. Medium-

populated towns 

a. Settlements with Hhigh 

socially vulnerable 

settlementssocial vulnerbaility 1.15 0.57 0.05 0.18 0.38 0.22 2.71 0.03 1.56 

b. Settlements with intermediate 

social vulnerability 1.54 0.57 0.03 0.28 0.43 0.13 2.48 0.08 1.39 
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86 Urban and rural settlements archetypes in Italy  

The first-level clustering provides a “broad” definition of urban archetypes, considering only geographic and demographic 760 

attributes. Clusters 1, 2 and 3 (“Low populated intermunicipal hubs in rural areas”, “Low populated peripherical rural 

areas” and “Low populated peri-urban settlements in rural areas”, see table 4) represent archetypes of low populated, 

rural urban settlements in peripherical (2) and peri-urban (3) areas or close to urban hubs (1). Cluster 5 (“Low Populated 

peri-urban suburbs”) also represents archetypes for low populated settlements but characterized by higher population 

density. Clusters 4, 6, 7 and 10 (“Medium-populated intermunicipal hubs”, “Medium-populated peri-urban and peripheric 765 

suburbs”, “Peripheric suburbs medium-low populated” and “Medium-populated towns”) are archetypes for medium-

populated peri-urban and peripheric suburbs (6, 7, 10) and towns that are intermunicipal hubs (4). Clusters 8 and 9 (“Peri-

urban cities”, “Major urban hubs”) represent archetypes for densely populated peri-urban settlements (8) and hubs (9). 

These broad archetypes are mapped in Figure. 9. Notably, altimetric classification is not included in the archetype 

definition, as it exhibits high within-cluster variance and is the least significant attribute, making its contribution 770 

negligible in defining urban and rural archetypes. 
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Figure 9 – Broad urban and rural archetypes across Italian territory. On the right the map with the Italian regions is 

reported. 775 

The proposed urban archetypes are obtained considering both first-level clusters and sub-clusters. Specifically, 18 urban 

and rural archetypes are defined (listed in Table 5), characterized by geographic, demographic, and socio-economic 

features.  Each archetype is identified by an alphanumeric code and a designation, derived from the combination of the 

codes and names of the clusters and sub-clusters from which they are obtained. 

Table 45 – Urban and rural archetypes identified. The number of municipalities belonging to each archetype and the related 780 
population share are provided in the last columns. 

Urban Archetypes 
n° 

municipalities 

Population share 

(%) 

1 Low populated intermunicipal hubs in rural areas with intermediate social vulnerability 5 0.03 

2a Low populated, peripherical rural settlements with high household density  peripherical rural 

settlements andwith high social vulnerability 

2237 7.56 

2b Low populated peripherical rural settlements with socially vulnerable aged communities 525 0.54 

2c Low populated peripheral rural settlements with moderately socially vulnerable aged 

communities 

543 1.16 

3a Medium-Low populated peri-urban settlements in rural areas with socially vulnerable aged 
communities 

457 1.1 

3b Medium-Low populated, high household density peri-urban settlements in rural areas with high 

social vulnerability 

220 1.47 

3c Medium-Low populated peri-urban settlements in rural areas with high social vulnerability 955 4.13 

4a Medium-populated intermunicipal hubs with intermediate social vulnerability 20 0.64 

4b Medium-populated intermunicipal hubs with high social vulnerability 15 0.64 

5 Low Populated peri-urban suburbs with high social vulnerability 615 2.92 

6 Medium-populated peri-urban and peripheric suburbs with moderate social vulnerability 89 1.17 

7 Peripheric suburbs medium-low populated with high social vulnerability 347 5.14 
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8a Peri-urban cities with very high social vulnerability 63 2.35 

8b Peri-urban cities with intermediate social vulnerability 103 2.22 

9a Major urban hubs with low social vulnerability 31 15.89 

9b Major urban hubs with intermediate social vulnerability 20 6.61 

10a Medium-populated towns with high social vulnerability 429 13.2 

10b Medium-populated towns with intermediate social vulnerability 1286 33.23 

AUrban archetype 1 represents urban rural settlements characterized by low population, low population density and 

medium-low social vulnerability, functioning as intermunicipal hubs. Notably, only few municipalities fall into this 

archetype, because it represents a small minority of urban hubs in rural areas with very low population (< 500 inhabitants). 

The majority of urban human settlements archetypes in peripheral and rural areas (i.e., those with low population density) 785 

are characterized by low population and medium to high social vulnerability (e.g., archetypes 2a, 2b, 3a, 3b and 3c). 

Archetype 2a includes peripherical, low populated rural areas (< 2000 inhabitants) with high social vulnerability, mainly 

due to a medium-high aging index, high low educational index, high unemployment rate and high crowding index. 

Archetype 2b represents sparsely populated rural, aging communities, exhibiting the highest average aging index and low 

educational index, along with significantly high proportion of buildings in poor conditions and low percentage of female 790 

employed, all contributing to a high SoVI value. In contrast, archetype 2c, which also represents low populated peripheral 

settlements characterized by very high aging index, shows lower SoVI value thanks to the lower percentage of commuters, 

a lower low educational index and higher proportion of female employed.  

Archetypes 3a, 3b and 3c represent low populated, socially vulnerable settlements in peri-urban areas, exhibiting high 

low educational index, high percentage of unemployed (3b), high percentage of buildings in bad state of preservation (3a 795 

and 3b), high crowding index (3b and 3c) and high proportion of foreign resident (3c). Archetypes 4a and 4b are medium-

populated intermunicipal hubs with slightly different level of social vulnerability: medium-low social vulnerability the 

former, medium-high social vulnerability the latter. While both show quite high crowding index, archetype 4b shows 

higher crowding index, high unemployment rate and medium-high percentage of buildings in poor conditions. 

Low populated peri-urban suburbs are represented by archetype 5 and show high social vulnerability, primarily due to 800 

medium-high unemployment rate, high percentage of commuters and high crowding index. Archetype 6 corresponds to 

medium-populated peri-urban and peripheric suburbs with relatively favourable demographic and socio-economic 

conditions, benefiting from medium-high educational level (i.e., medium-low value of low educational index), low 

percentage of commuters, high percentage of female employed, that compensate for the medium-high value of buildings 

in bad state of preservation and high crowding index. Archetype 7, representing medium-low populated peripheral 805 

suburbs, shares the same average values of archetype 6 regarding buildings in poor conditions and crowding index. 

However, it is characterized by higher percentage of commuters and higher percentage of unemployed, leading to higher 

SoVI.  

Archetypes 8a represents densely populated peri-urban settlements with the highest social vulnerability, driven by the 

highest percentage of unemployed, the highest percentage of buildings in poor conditions and the highest crowding index. 810 

In addition, this archetype also shows high low educational index and low percentage of female employed. Archetype 8b 

also represents densely populated peri-urban settlements but with lower social vulnerability (higher percentages of female 

employed, lower percentage of buildings in bad state of preservation), despite being characterized by the highest 

percentage of commuters. 

Archetypes 9a and 9b correspond to the largest densely populated cities, yet with contrasting degree of social vulnerability: 815 

archetype 9a has low SoVI (the lowest), attributed to the lowest value of low educational index, the highest percentage 

of female employed, together with low percentage of buildings in poor conditions; archetype 9b has intermediate social 

vulnerability, due to the higher percentage of unemployed, higher percentage of buildings in poor conditions and higher 

crowding index. Archetypes 10a and 10b represent medium-populated towns (with medium-population density) that can 

function as hubs or be located in peri-urban and peripheral areas. These towns exhibit relatively high social vulnerability, 820 

influenced by high percentage of unemployed (10a), medium-high percentage of commuters (10b), relatively low 

percentage of female employed (10a), high percentage of buildings in bad state of preservation (10b) and high crowding 

index. 

From a geographical perspective, we found that many low populated peripheric and peri-urban settlements in rural areas 

(archetypes 2b, 2c, 3a, 3b and 3c) are primarily located in northern region of Piemonte (20%) and Lombardy (15%). 825 

Archetypes 2a, which also represents low populated peripherical rural areas, includes several municipalities in Sardinia 

(12%), Calabria (9%), Lombardy (9%) and Piemonte (7%) regions. Archetype 4a (“Medium-populated intermunicipal 
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hubs with intermediate social vulnerability”) is exclusively found in the northern regions (i.e., Piemonte, Lombardy, 

Veneto, Liguria, Tuscany and Marche). Conversely, Archetype 4b (“Medium-populated intermunicipal hubs with high 

social vulnerability”) is present only in the southern regions, specifically Abruzzo, Campania, Apulia and Sicily. Many 830 

municipalities (48%) represented by archetype 5 (“Low Populated peri-urban suburbs with high social vulnerability”) 

are in Lombardy region, while a notable percentage of municipalities represented by archetype 6 (“Medium-populated 

peri-urban and peripheric suburbs with moderate social vulnerability”) are in Trentino (20%), Tuscany (11%) and 

Basilicata (11%) regions. Archetype 7 (“Peripheric suburbs medium-low populated with high social vulnerability”) 

includes a high concentration of municipalities in Lombardy (27%) and Sicily (15%) regions.  835 

“Peri-urban cities with very high social vulnerability” (archetype 8a) can be found exclusively in the southern regions, 

withhich almost all cases located in Campania (61 out of 63 municipalities). In contrast, “Peri-urban cities with 

intermediate social vulnerability” (archetype 8b) are concentrated in the northern regions, specifically in Lombardy (99%) 

and Piemonte (1%). Similarly, “Major urban hubs with low social vulnerability” (archetype 9a) are in the northern part 

of the country, covering Piemonte, Valle d’Aosta, Lombardy, Trentino, Veneto, Friuli-Venezia Giulia, Liguria, Emilia-840 

Romagna, Tuscany and Lazio regions, while “Major urban hubs with intermediate social vulnerability” (archetype 9b) 

predominantly located in the southern regions, including Molise, Campania, Apulia, Sicily and Sardinia regions. 

Archetype 10a (“Medium-populated towns with high social vulnerability”) is also primarily found in the southern regions 

(93%), while archetype 10b (“Medium-populated towns with intermediate social vulnerability”) is distributed across the 

entire country, with a significant percentage in Lombardy (27%) and Veneto (16%) regions.   845 

6.1 Archetypes’ vulnerability profiles 

Composite indices are widely used to measure multidimensional concepts, as they enable the integration of various sub -

indicators representing different dimensions that lack a common unit of measurement (Nardo et al., 2008). Social 

vulnerability and community resilience are often quantified through composite indices (e.g., Cutter et al., 2003; Frigerio 

et al., 2018; Bruneau et al., 2003; Marin Ferrer et al., 2017). In Sibilia et al. (2024) for instance, a multidimensional 850 

composite index is proposed to assess vulnerability across Europe. The vulnerability index proposed, developed within 

the Risk Data Hub, evaluates vulnerability at three geographic levels—national, regional, and provincial—from 2005 to 

2030. It encompasses five key dimensions of vulnerability: physical, social, economic, political and environmental.  

To investigate the level of exposure and vulnerability associated with each identified archetype, this study adopts a 

composite index-based framework. We define an Impact Susceptibility Index (ISI) which describes the potential for 855 

experiencing adverse conseuences given existing vulnerabilities and exposure levels, without implying the occurrence of 

a specific hazard. The construction of the composite indicator involves four main stages: selection of sub-indicators, 

normalization, choice of aggregation method, and assignment of weights to the sub-indicators. The indicators used are 

those applied in the cluster analysis and described in Sections 2.1 to 2.5. Normalization—required to make the variables 

comparable and suitable for aggregation—is carried out by assigning categorical scores to each indicator, following 860 

approaches used in previous studies (e.g., Greiving et al., 2006). Scores range from 1 to 3, where 1 indicates low exposure 

or vulnerability and 3 indicates high exposure or vulnerability, hence contributing more to the susceptibility to impact for 

the given variable. For example, peripheral areas are considered the most vulnerable due to their greater distance from 

essential services and are therefore assigned a score of 3. Peri-urban areas receive a score of 2, and urban hubs are assigned 

a score of 1. Similarly, since high population density is linked to greater physical vulnerability, cities are scored as 3, 865 

towns and suburbs as 2, and rural areas as 1. The highest population class (municipalities with over 250000 inhabitants) 

is also assigned the highest exposure and vulnerability score, while the lowest class (less than 5000 inhabitants) receives 

the lowest score. In terms of social vulnerability, three categories—high, medium, and low—are defined based on the 

Social Vulnerability Index range (0.84–2.01, see Table 4), and scores are assigned accordingly. The final ISI for each 

municipality is obtained by summing the individual scores for each vulnerability dimension (e.g., Greiving et al., 2006), 870 

and therefore range between 4 and 10. Figure 10 displays the resulting ISI at the municipal level and the average ISI for 

each archetype.  
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(a) 

 875 

(b) 

Figure 10 – Average ISI value for each archetype (a); boxplot showing full distribution of ISI values, median (line in red), and 

outliers (blue circles) (b). 

The highest average ISI is observed for Archetype 8a (mean ISI = 9.86), which includes densely populated peri-urban 

municipalities characterized by very high social vulnerability. Other archetypes with notably high average ISI values 880 

include Archetype 7 (mean ISI = 8.69), characterized by their relative remoteness (100% peripheral municipalities), 

medium-high population density (100% classified as towns and suburbs) and high social vulnerability; Archetype 8b 

(mean ISI = 8.67), marked by high population density (cities), peri-urban location and medium social vulnerability; and 

Archetype 10a (mean ISI = 8.32), largely driven by poor accessibility to services (only 12% of municipalities are classified 

as hubs), medium-high population and high social vulnerability. In several cases, social vulnerability is the primary driver 885 

of high ISI values, as observed in Archetypes 8a, 10a, 7 and Archetypes 2a, 2b and 2c. The latter (i.e., Archetypes 2a, 2b, 

and 2c) share the same geographic and demographic profiles yet differ in ISI values - with 2a and 2b showing higher ISI 

than 2c - due solely to differences in their SoVI scores. In this context, SoVI emerges as the only influencing factor driving 

ISI variation among these archetypes. Conversely, for other archetypes, demographic and geographic characteristics play 

a more significant role in shaping ISI outcomes. For instance, Archetype 9b presents the lowest SoVI but a relatively high 890 

ISI, which can be attributed to its high population density. In contrast, Archetype 3b shows one of the highest mean SoVI 

scores, second only to Archetype 9b, but results in a relatively low ISI, primarily due to its low population density and 

geographic remoteness. 

The box plot in Figure 10b illustrates the distribution of ISI values across the identified urban archetypes, providing 

insights into both central tendency and internal variability; the red and black lines represent the median and min-max 895 

values of ISI for each archetype, blue boxes the dispersion (±standard deviation) and the dots are outliers, in case they 

are present. Archetype 1 exhibits the lowest median ISI and minimal variability, suggesting a consistently low level of 
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exposure and vulnerability across its municipalities. In contrast, Archetype 8a displays the highest median ISI with a very 

narrow spread, indicating strong internal homogeneity and high susceptibility to impacts. The few outliers with an ISI 

value of 9 highlight minor deviations but do not significantly affect the overall pattern. Archetype 9b shows the greatest 900 

dispersion, reflecting a high degree of internal heterogeneity. This wide variability suggests the presence of municipalities 

with both relatively low and high ISI values within the same archetype, potentially complicating uniform policy 

interventions. Archetypes 3a, 3b, and 3c present identical median, mean, and interquartile ranges, which align with their 

shared geographic and demographic features, as well as similar SoVI scores (see Table 3). However, their comparable 

SoVI estimates result from distinct socio-economic compositions, as discussed in Section 5, underscoring the 905 

multidimensional nature of social vulnerability.  

Figure 11 highlights that many municipalities with high ISI values are concentrated in the regions of Apulia, Sicily and 

Lombardy, with average regional ISI values of 7.8, 7.7, 7.6, respectively. In details, 37% of Apulia’s municipalities fall 

under Archetype 10a; 25% of Sicily’s municipalities are categorized as Archetypes 10a while 14% belong to Archetype 

7. In Lombardy, 22% of municipalities belong to Archetype 10b, 19% to Archetype 5 and 14% to Archetype 2a. These 910 

archetypes all show medium-high average ISI values: 7.78, 7.29, and 7.15, respectively. Overall, the ISI tends to be higher 

in southern regions of Italy, with an average value of 7.3, compared to 6.9 for central and northern regions. The lowest 

average VI values are observed in the Valle d’Aosta (ISI = 6.4) and Piedmont (ISI = 6.7) regions.  

 

Figure 11 - Map of ISI value at municipal level. 915 

 

107 Discussion 

The proposed study of human settlements urban archetypes leverages the framework and guidelines set forth by 

Piemontese et al. (2022) to ensure a robust and reliable archetype analysis, focusing on six dimensions of validity: 

conceptual validity, construct validity, internal validity, empirical validity, external validity, and application validity. The 920 

proposed urban archetypes conform to each of these dimensions as follows. 

Conceptual Validity is achieved by ensuring the research problem and questions are scientifically sound and relevant to 

real-world issues. In this study we addressed the need to categorize urban and rural areas based on geographic, 
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demographic, and socio-economic factors to understand urban/rural  vulnerabilities better. By focusing on these pertinent 

aspects, this study aligns with the conceptual framework and reflects real-world challenges faced by urban urban and rural 925 

settlements in Italy. 

Construct Validity involves the careful selection of attributes that define the archetypes, ensuring their connection to the 

conceptual framework. We meticulously selected attributes relevant to vulnerability of urban/rural systems and their 

potential exposure to different hazards. such as unemployment rates, building conditions, crowding indices, educational 

levels, and percentages of female employment. These attributes are justified based on existing literature, ensuring 930 

indicators are theoretically and empirically linked to  and their relevance to socio-economic conditionsseveral 

vulnerability dimensions, thereby reinforcing the construct validity (Diogo et al., 2023; Nagel et al., 2024).. 

Internal Validity is maintained through the rigorous application of hierarchical and partitioning clustering methods. In 

previous studies, such as Bilalova et al. (2025), internal validity has been addressed through a transparent and replicable 

methodology, incorporating widely used validity metrics which measures how similar an object is to its own cluster 935 

compared to other clusters like silhouette scores, and evaluating both within-cluster and between-cluster cohesion. 

Similarly, Nagel et al. (2024) assessed internal validity by testing cluster robustness using R packages NbClust and clValid. 

The NbClust package supports the determination of the optimal number of clusters by computing and comparing multiple 

internal validity indices (e.g., silhouette score, Dunn index), while the clValid package enables the evaluation of clustering 

stability and comparative performance across different algorithms (e.g., k-means, hierarchical clustering). Building on 940 

these approaches, internal validity in this study is ensured through: (i) the determination of the optimal number of clusters 

using established internal validity indices—specifically, the inconsistency coefficient and the WCD; (ii) the assessment 

of cluster robustness, by repeating the partitioning clustering procedure multiple times with randomized initial centroids 

and selecting the best-performing result based on WCD, thus reducing sensitivity to initialization; (iii) the comparison of 

clustering algorithms, by applying both hierarchical and partitioning methods and evaluating their performance using 945 

WCD and ICD to identify the most internally coherent solution.We employed WCD and ICD to select the most suitable 

clustering approach, ensuring the reliability and robustness of the clustering process.  This combination of techniques 

ensures methodological rigor, reproducibility, and robustness in the clustering process, thereby addressing the internal 

validity dimension as recommended in the literature (Piemontese et al., 2022).This methodological rigor ensures that the 

urban archetypes are well-defined and accurately represent the dataset. 950 

Empirical validity in archetype analysis is commonly supported through various means, including stakeholder surveys 

Empirical Validity is (Nagel et al., 2024), the integration of diverse data sources at different spatial resolutions, and cross-

comparisons of archetyping approaches at multiple scales (Diogo et al., 2023). It may also be demonstrated through 

consistency with prior empirical observations or theoretical expectations (Bilalova et al., 2025). However, validating 

archetypes’ vulnerability profiles against observed impacts or risk outcomes remains challenging. For example, many 955 

historical impact datasets—such as those from EM-DAT—are available only at national or regional levels and include 

only events meeting specific severity criteria. As a result, they often exclude smaller-scale, yet locally significant, events, 

introducing both a selection bias and a scale mismatch that limit their utility for validating local-level archetypes. 
Furthermore, expected impact outputs from risk assessments are typically model-driven, emphasizing hazard intensity 

and physical exposure, while often overlooking the broader dimensions of vulnerability (Cardona et al., 2012). These 960 

limitations highlight the need for improved access to fine-grained, georeferenced impact data and the potential value of 

complementing quantitative validation with qualitative or stakeholder-informed insights at the local level. Empirical 

validity in our research is partially partially confirmed by demonstrating that the identified archetypes correspond to real-

world outcomes and causal mechanisms. This is supported by stakeholder engagement-based risk storylines, as outlined 

e.g. in Marciano et al. (2024). Marciano et al. (2024) present an exploratory case study using a participatory approach to 965 

develop multi-risk storylines, illustrating the cascading effects of a heatwave followed by intense rainfall in two Italian 

urban contexts: a peri-urban area and a metropolitan area. Findings reveal that peri-urban settlements face limited 

emergency resources and higher infrastructure failure risks, while metropolitan hubs have stronger emergency systems 

but face coordination challenges in managing large-scale events. The study highlights the varying levels of urban 

vulnerability across different archetypes. While these elements contribute to the empirical grounding of the archetypes, 970 

we acknowledge that empirical validation remains a limitation of this study.F Further studies should explore the impacts 

of natural disasters on different archetypes, revealing key differences in vulnerability and response capabilities across the 

considered urban contexts. 

External Validity assesses the generalizability of archetypes beyond the studied cases. It is typically addressed by applying 

archetypes across multiple regions and evaluating the consistency of resulting patterns across different scales (e.g., Diogo 975 

et al., 2023; Nagel et al., 2024) or linking archetypes to theoretical expectations or global typologies (e.g., Bilalova et al., 

2025). While )tWhile this study acknowledges the challenge of fully satisfying this dimension, given that the identified 
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archetypes are specific to the Italian context and broader applicability requires further investigation, it also provides a 

foundation for generalization. The identification of archetypes across diverse Italian regions, combined with the careful 

selection of relevant variables and the use of a replicable methodology, may serve as a valuable reference for archetype-980 

based analyses in other national or regional settings, particularly within Europe. Notably, many of the variables adopted 

in this study, such as degree of urbanisation, population class, and census-based demographic and socio-economic 

indicators, are also available at comparable spatial resolutions through Eurostat, EUROPOP, or pan-European datasets 

such as Urban Atlas, CORINE Land Cover, and GHSL (Global Human Settlement Layer). Similarly, the degree of urban 

centeredness, while constructed using national criteria in Italy, relates closely to the concept of accessibility and service 985 

availability, which can be captured using EU-wide datasets on transport networks, healthcare access, and educational 

infrastructure. Therefore, the consistent use of open-source and harmonized data sources enhances the potential for 

applying the methodology beyond the Italian context, fostering comparative analyses and supporting the construction of 

cross-country urban and rural archetypes within Europe. 

we believe that further research is needed to validate the archetypes across different settings. The identification of 990 

archetypes in various Italian regions provides a preliminary basis for generalization, but additional studies are required to 

establish broader applicability, particularly in assessing the sensitivity of the proposed methodology with respect to the 

specific characteristics of authoritative data in comparable European countries. 

Application Validity evaluates the practical usefulness of the archetypes. This dimension can be addressed emphasizing 

practical applications of archetypes in policy, planning, and governance, for instance, by presenting results to government 995 

officials and researchers, guiding inform local policy discussions, with archetypes guiding differentiated policy 

interventions (Nagel et al., 2024). Section 6.1 illustrates the potential of urban/rural archetypes to enhance risk 

communication through the assignment of a simplified impact susceptibility index to each identified archetype. 

Additionally, the exploratory case study presented in Marciano et al. (2024) highlights how these archetypes can support 

stakeholder engagement by informing the development of multi-risk storylines. This study demonstrates the potential of 1000 

urban archetypes in developing risk storylines, enhancing risk communication, and supporting stakeholder engagement. 

By categorizing urban human settlementsareas into distinct archetypes, it becomes possible to assess how different hazard 

scenarios may unfold in each context, considering their specific vulnerabilities, exposure levels, and adaptive capacities.  

This structured approach enables policymakers to design tailored interventions and resilience strategies based on specific 

vulnerability profiles. However, to further strengthen urban resilience planning and develop targeted mitigation measures, 1005 

it is crucial to consider not only exposure and vulnerability but also hazard data for each archetype—particularly the level 

of exposure of urban a settlements to various natural hazards. Although in this study we did not yet integrate hazard 

information, there is a clear need for future research to incorporate this aspect and conduct GIS-based analyses for a more 

comprehensive assessment of urban risk (e.g., Tocchi et al., 2024). 

118 Conclusion 1010 

This study presents a set of archetypes for urban and rural urban  settlements archetypes in Italy, based on geographic, 

demographic and socio-economic factors that cover different vulnerability dimensions. Using a two-step cluster analysis, 

ten broad archetypes were first defined according to structural features (e.g., location, size, density), Cluster analysis 

revealed ten broad archetypes of urban settlements in Italy according to geographic and demographic urban features, 

further refined into 18 nested archetypes in regions with diverse socio-economic characteristicsto account for socio-1015 

economic diversity.  

The proposed urban archetypes were developed by applying the six dimensions of validity outlined by Piemontese et al. 

(2022), offering a robust and replicable methodology for vulnerability-oriented archetype analysis. While several of these 

validity dimensions was successfully addressed (conceptual, construction, internal and application validity), empirical 

and external validity were only partially addressed. successfully address the six dimensions of validity outlined by 1020 

Piemontese et al. . Conceptual, construct, and internal validity are robustly established through scientifically sound 

research questions, careful attribute selection, and rigorous clustering methods. Empirical validity of proposed archetypes 

may be hardly satisfied, as discussed, due to the lack of fully integrated social and institutional vulnerability data. External 

validity remains an open challenge: while the archetypes are context-specific to Italy, the use of open and harmonized 

data sources (e.g., Urban Atlas, CORINE Land Cover, Eurostat demographic indicators, GHSL datasets) enhances the 1025 

potential for replicating the methodology in other European contexts, fostering future comparative studies. Application 

validity was demonstrated by linking each archetype to an Impact Susceptibility Index, providing a tool for prioritizing 

areas for risk reduction strategies. The archetypes also offer structured support for developing multi-risk storylines and 

informing resilience planning efforts. 
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Despite some limitations, this study provides a valuable framework for simplifying complex urban and rural vulnerability 1030 

patterns. It lays a strong foundation for both scientific advancements and practical applications in the field of multi-risk 

assessment, resilience planning, and targeted policy design. Defining urban and rural archetypes based on vulnerability 

factors may help identify areas with higher susceptibility to natural hazards and socio-economic challenges, supporting 

better resource allocation for disaster preparedness and response. is supported by real-world outcomes and stakeholder 

engagement. While external and application validity require further investigation, this study lays a strong foundation for 1035 

future research and practical applications in urban resilience planning. 

Defining urban archetypes based on vulnerability factors may help identify areas with higher susceptibility to natural 

hazards and socio-economic challenges, supporting better resource allocation for disaster preparedness and response. 

Although this study does not incorporate hazard information, which requires further research and analysis, its findings 

offer a valuable tool for policymakers to design targeted interventions based on specific vulnerability profiles, ultimately 1040 

supporting the development of urban resilience strategies tailored to different archetypes.It also highlights critical areas 

for future research. In particular, integrating hazard-specific exposure data and further empirical validation through 

observed impact data are needed to fully realize the potential of archetype-based approaches in disaster risk management 

and climate change adaptation. 
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