
1 
 

 
Technical Note: Incorporating topographic deflection effects into 
thermal history modelling 

Richard A. Ketcham1 
1Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, USA 5 

Correspondence to: Richard A. Ketcham (ketcham@jsg.utexas.edu) 

Abstract. This contribution describes a set of equations and relations to calculate accurate cooling paths through the 2D 

temperature field of an exhuming region with periodic topography.  A 1D model adequately captures the time-varying 

component of the system regardless of the complexity of the cooling path, making the computation efficient. A series of 2D 

finite element models demonstrate how temperatures below the periodic mid-slope, or mean topography, can be mapped to 10 

those below ridges and valleys, and how these transitions vary with topographic period and amplitude and the ratio of the near-

surface geotherm to the atmospheric lapse rate.  These new calculations are implemented into HeFTy to support simultaneous 

modelling of samples collected along topographic profiles, particularly for terranes with long-lived topography that exhumed 

through an inflected temperature field.  Users should bear in mind the limitations of this simplified approach, notably that it 

presumes a single dominant topographic wavelength, and that it does not encompass other advective processes such as faulting. 15 

1 Introduction 

High degrees of exhumation are characteristically accompanied by development of variable topography.  During mountain 

building different areas of the crust rise or fall unevenly due to fault movements and block rotations.  Erosion counteracts these 

incompletely, as erosion rates are a function of relief, and topography approaches a steady state condition while deformation 

continues (Adams, 1980; Willett and Brandon, 2002).  Undulating topography in turn deflects isotherms below, increasing the 20 

space between geotherms beneath local highs and compressing them beneath local lows (Figure 1). 

It is thus natural that the effects of topography on cooling rates, and how they can be used to infer exhumation rates, has long 

been of interest to thermochronologists.  Early treatments of the effect of sinusoidal topography on steady-state thermal 

structure were provided by Birch (1950), Carslaw and Jaeger (1959), and Turcotte and Schubert (1982).  Stüwe et al. (1994) 

expanded this work to provide equations for steady-state isotherms given a constant erosion rate.  Mancktelow and Grasemann 25 

(1997) further broadened the set of available analytical solutions to approximate the time-dependent development of isotherms 

under constant sinusoidal topography after the onset of erosion at a constant rate.  To study more general cases Mancktelow 

and Grasemann (1997) utilized a 2D finite difference model, and most subsequent work has gone into the development of 2D 
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and 3D numerical solutions (e.g., Almendral et al., 2015; Braun, 2003), although further development of analytical solutions 

has continued as well (Fox et al., 2014). 30 

Thermal history modelling consists of posing a large number of variable time-temperature (t-T) paths, calculating the response 

of thermochronometric systems, and comparing the results to measured data to investigate which histories the data are 

compatible with (Gallagher, 2012; Ketcham, 2005, 2024).  The histories posed are typically complex, with cooling rates that 

vary rather than remaining constant. 

 
Figure 1.  Isotherms for periodic topography with wavelength 24 km, amplitude 1500 m, and steady-state geotherm of 

20°C/km, and atmospheric lapse rate of 5 °C/km.  A) Steady-state condition.  B) After 20 million years of exhumation at 

0.6 mm/yr.  Calculated using FETKin (Almendral et al., 2015). 

 35 

A recent update to the HeFTy thermal history modelling software provided for the capability to perform inversions in time-

depth space (t-z), rather than time-temperature, by utilizing a 1D finite difference model to convert t-z paths to t-T, under the 

assumption that changes in depth correspond to erosion or deposition at the surface (Ketcham, 2024).  It was specifically 

intended to help with simultaneous modelling of samples along topographic profiles.  It allows for topographic development, 

and relative vertical rotation (tilting) of sample positions with respect to each other during exhumation (see Fig. 7 in Ketcham, 40 

2024).  The 1D model is computationally fast enough that models can be calculated interactively using the graphic interface. 

A shortcoming of this implementation is that it neglected the effects of topography on thermal structure, thus treating 

exhumation through ridges and valleys as equivalent.  These effects could be roughly approximated by including topographic 

development, starting a model as a peneplain and then increasing topographic amplitude during exhumation (e.g., Hestnes et 

al., 2024; Mackaman-Lofland et al., 2024).  However, this shortcut is non-ideal for studying areas with long term or steady 45 

state topography. 
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This contribution presents a method to approximate the thermal deflection effects of periodic topography for complex 

exhumation and topographic development histories, using only the 1D model calculation. It builds upon, and is informed by, 

previous work described by Turcotte and Schubert (1982) and Mancktelow and Grasemann (1997).  It is partly empirical, 

utilizing a series of 2D finite element models to map out how variations in various parameters (wavelength, amplitude, 50 

geotherm, exhumation rate, topographic development) affect thermal structure to develop a set of relations encompassing the 

range of conditions likely to be encountered in HeFTy-type thermal history modelling. 

2 Methods 

Thermal calculations for this work are performed using the FETKin 2D finite element model (Almendral et al., 2015).  Grid 

spacing was 1 km, except for models with topographic wavelengths of 8 km, for which accuracy was improved by reducing 55 

to 0.5 km.  All models used a constant basal flux boundary condition (50 mW/m2, resulting in a steady-state gradient of 20 

°C/km), began at steady state, and then run for 12 km of exhumation, all with thermal conductivity K=2.5 W m-1 K-1, thermal 

diffusivity =9.26e-7 m2 s-1, and atmospheric lapse rate =0.005 °C m-1. 

3 Model Development and Description 

3.1 Steady state geotherm with constant periodic topography 60 

For steady-state thermal conditions beneath periodic topography, Turcotte and Schubert (1982, Eq. 4-66, excluding heat 

production) provide: 

𝑇(𝑧) = 𝑇଴ +
𝑞௠𝑧

𝐾
+ ቀ

𝑞௠

𝐾
− 𝛽ቁ 𝐻଴ cos ൬

2𝜋𝑥

𝜆
൰ 𝑒ିଶగ௭ ఒ⁄  (1) 

where z is depth with mean surface = 0 and positive upwards1, T0 is surface temperature at mean elevation, qm is mantle heat 

flow (W/m2), H0 is the amplitude of topography above and below the mean (m),  is topographic wavelength (m), and x is 

position along the surface (m).  Their solution is based on assuming the separability of the different components of the heat 65 

flow equation: the first term is the mean surface temperature, the second represents heat flow from depth (the steady-state 

geotherm g = qm/K), and the third reflects the transition in thermal gradient from the atmospheric lapse rate at the surface to 

the steady-state geotherm as a function of wavelength, dropping by factor of 1/e for every /2 increase in depth. 

This equation is built upon a simpler one that posits a flat Earth surface with periodically varying temperature.  To incorporate 

topography, they make the simplifying assumption that it is shallow (Turcotte and Schubert, 1982, p. 153), and use only the 70 

first term of the Taylor series expansion to extrapolate from the mean surface.  Although adequate for illustrating crust-scale 

 
1 The ordering in the parenthetical term preceding H0 is opposite in Mancktelow and Grasemann (1997) compared to 
Turcotte and Schubert (1982), making z positive upwards, whereas in the original model setup z is positive downwards.  This 
work uses the Mancktelow and Grasemann (1997) ordering and convention. 
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patterns, this assumption does not reproduce the temperature at and immediately below the crests and valleys of periodic 

topography (important areas for thermal history modeling), because the derivation assumes the geotherm is linear at z=0 while 

at the same time has the topographic effect exponentially diminish with depth (and amplify with elevation) away from z=0.  

The solution is improved by introducing a new variable zx representing depth below the local surface: 75 

𝑇(𝑧௫) = 𝑇଴ +
𝑞௠𝑧

𝐾
+ ቀ

𝑞௠

𝐾
− 𝛽ቁ 𝐻଴ cos ൬

2𝜋𝑥

𝜆
൰ 𝑒ିଶగ௭ೣ ఒ⁄  (2) 

where 

𝑧௫ =  𝑧 + 𝐻଴ cos ൬
2𝜋𝑥

𝜆
൰ (3) 

Or in other words, for the purpose of topographic deflection, the Taylor series originates at the local surface rather than at 

mean topography.  

Another consequence of utilizing separability is that it assumes that the geothermal gradient at the topographic midpoint (z=0) 

is the same as the geothermal gradient without any topography at all.  The finite element modelling in this study shows that 80 

this is not quite the case, as, in effect, valleys cool the crust more than hills help retain heat.  This effect is usually small, but 

grows with the severity of topography (increasing H0 and/or decreasing . 

These two effects can be seen by comparing Equation (2) to a finite element model.  Figure 2A shows the difference in the 

steady state geotherm between model and analytical solution below the crest, mid-slope, and valley of topography with 

wavelength 24 km and amplitude 1500 m.  The zx shift in variable allows the temperatures to closely replicate in the near-85 

surface, but the periodic topography cools the lower crust by ~4°C in the FE model compared to the analytical solution.  All 

1D solutions for areas of varying topography share this bias, but a simple correction can remove most of it.  

Fig. 2B shows the offset of the mid-slope geotherm for a number of additional scenarios varying in topographic wavelength 

and amplitude, and geothermal gradient.  All are fit well by the relation Toff(z) = Toff,∞(1-exp(-z/D)), where Toff,∞ is the 

temperature offset at infinite depth, and D scales its onset with depth. 90 

Inspection indicates that Toff,∞ can be estimated as a function of amplitude, wavelength, and difference between geotherm and 

lapse rate as Toff,∞ (est) = -2.65 H0
2 (g-)/ (Fig. 2C), and D is a function of wavelength and amplitude, and can be estimated 

empirically as D(est) = 0.073  + 0.22 H0 (Fig. 2D).  The former correction is imprecise at larger offsets, but even in the worst, 

severe case (8 km wavelength, 1.5 km amplitude) the correction is only off by 1.1 °C. 

The depth correction for 1D solutions of temperature at the topographic mid-slope (subscript m) is thus: 95 

𝑇௠(𝑧) = 𝑇ଵ஽(𝑧) −  
2.65 𝐻଴

ଶ (𝑔 − 𝛽)

𝜆
ൣ1 − 𝑒ି௭ (଴.଴଻ଷఒା଴.ଶଶு೚)⁄ ൧ (4) 

The resulting correction is 0-10°C across conditions appropriate for modelling in HeFTy.  Although fairly small in absolute 

temperature terms, this correction also improves the calculation of the geothermal gradient at the mid-slope position, which 

turns out to be useful in the next section. 
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Figure 2.  A) Temperature difference in the steady state geotherm between finite element model and Equation (2) solution 

below the crest, mid-slope, and valley of topography with wavelength 24 km, amplitude 1500 m and heat flow corresponding 

to a steady-state geotherm of 20 °C/km.  B) Mid-slope anomalies for models with varying wavelength, amplitude, and 

geotherm.  C) Residuals for maximum temperature offset estimate.  D) Residuals for depth scaling estimate. 

3.2 Steady state geotherm with erosion and constant topography 

In general, achieving a steady state temperature regime from a standing start (i.e., going from no erosion to a constant rate) 100 

takes tens of millions of years, at least for erosion rates capable of creating and sustaining topography. It can be taken as a 

given that a complete steady state is seldom achieved.  But, once conditions are set up, it is useful as a marker for where 

isotherms are converging toward. 

Stüwe et al. (1994) and Mancktelow and Grasemann (1997) derived analytical solutions for steady-state thermal structure 

beneath constant periodic topography and constant erosion.  The Mancktelow and Grasemann (1997) formulation for erosion 105 

occurring at rate u, omitting radiogenic heating and keeping the zx shift, contains the same three elements as Equation (2), in 

altered form: 

𝑇 = 𝑇଴ + 𝛾ൣ1 − 𝑒ି௨ ௭ ఑⁄ ൧ + ቀ
𝑢

𝜅
𝛾 − 𝛽ቁ 𝐻଴ cos ൬

2𝜋𝑥

𝜆
൰ 𝑒௠మ௭ೣ  (5) 

where  is thermal diffusivity, and   
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𝛾 =
𝑇ௌ − 𝑇௅

1 − 𝑒ି௅௨ ఑⁄
 (6) 

enforces a constant basal temperature boundary condition where TS and TL are the temperatures at the mean surface and at 

depth L, respectively.  Either a constant temperature or constant flux basal boundary can be used for this problem, with the 110 

difference being that a constant flux condition will allow the basal temperature to rise toward a new limit (Braun, 2025).  Also: 

𝑚ଶ = −
1

2
቎
𝑢

𝜅
+ ඨቀ

𝑢

𝜅
ቁ

ଶ

+ ൬
4𝜋

𝜆
൰

ଶ

቏ (7) 

The m2 root term shows that the transition from surface to geothermal gradient occurs over a shallower interval than the no-

erosion case, as for any positive u it has a higher magnitude than the corresponding exponential term in Equation (2).  At the 

same time, the magnitude of the isotherm displacement rises, as the steady state gradient given by u/ is higher than the no-

erosion condition. 115 

3.3 Geotherm evolution at crests and valleys with erosion and constant or growing topography 

The different offsets from the analytical solution for the geotherm between the ridge and valley of topography in Figure 2A 

indicate that different corrections are necessary for each location.  Figure 3 shows different views of the temperature difference 

at the same zx between the mid-slope versus the ridge (left; negative values) and valley (right; positive), at 1 Myr intervals for 

a 2D finite element model with 24 km wavelength, 1500 m deflection, and 0.6 mm/yr erosion.  The constant displacement 120 

between the curves at 0 km reflects the unchanging topography and lapse rate.  The bulging of the curves with increasing time 

since onset of erosion reflects the bunching of isotherms toward the surface due to exhumation, which diminishes with depth 

but grows slowly through time as the bulging propagates downward. 

 
Figure 3.  Offsets of temperature with depth below local surface at periodic topography ridges (negative values) and valleys 

(positive values) compared to mid-slope (mean) elevation, at 1 Myr intervals for model with parameters as in Figure 1b. A) 

Oblique view.  B) Temperature offset versus depth.  C) Temperature offset versus time. 

The diagrams illustrate that the change in temperature with depth and time due to topographic deflection has three components: 

maximum magnitude at great depth, magnitude variation with depth, and magnitude evolution with time.  These are separable. 125 



7 
 

The depth of the transition from the surface to maximum magnitude offset does not change through time and is dominantly 

controlled by the topographic wavelength (Fig. 1b).  The offset magnitude at depth increases through time, and shows no sign 

of converging over these time scales. 

The progressive bunching of isotherms also occurs at the mid-slope position, suggesting that the mid-slope geotherm can be 

used as a normalizing factor.  Dividing the offsets by the current local geotherm at the same z-t position beneath the mid-slope 130 

location (dT/dzm (z)) leads to Figure 4: 

 
Figure 4.  Normalized offsets with depth below local surface at periodic topography ridges (negative values) and valleys 

(positive values) compared to mid-slope (mean) elevation, at 1 Myr intervals for model with parameters as in Figure 1b. A) 

Oblique view.  B) Normalized offset versus depth.  C) Normalized offset versus time. 

 

It is evident that the time evolution of the offsets is almost entirely characterized by the time evolution of the geotherm at the 

mid-slope (mean elevation) point.  There is a slight evolution in the nearest-surface points, but this is due to the evolution of 

the geotherm relative to the constant lapse rate.  Figure 4 also clarifies the asymmetry between the ridge and valley offsets, 135 

indicating that they require separate treatment. 

The same test can be run with growing topography, starting from no topography and evolving to amplitude 1500 m after 20 

Myr (Fig. 5).  Normalizing using the mid-slope geotherm again results in a regular pattern for the anomalies at the ridge and 

valley positions, with depth relationships closely resembling, and converging toward, their counterparts in Figure 4.  This 

result suggests that, regardless of the history of topographic development, the current state of topography and the current mid-140 

slope geotherm adequately describe the time-varying component of the system. 
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Figure 5.  As Fig. 4, for model with developing topography. A) Oblique view.  B) Normalized offset versus depth.  C) 

Normalized offset versus time. 

 

The asymmetric offsets in Figures 4B and 5B can be fitted well with an equation of the form:  

𝑇௔௦௬௠(𝑧) = ൬𝑐଴ + 𝑐ଵ𝑒
ି 

௭
௖మ൰ ൤

𝑑𝑇

𝑑𝑧
൨

௠
(𝑧) (8) 

in which c0 defines the maximum normalized offset at depth, c1 the normalized offset at the surface, and c2 is the depth scale 

of the transition.  It is readily apparent that c0 corresponds to H0, positive for valleys and negative for ridges, as it reflects the 145 

difference in temperature at depths where isotherms no longer deflect.  Similarly, c1 corresponds to the surface temperature 

offset, which is determined by H0 and .  The set of relations for ridges (subscript r) and valleys (subscript v) are thus: 

𝑐଴,௩ = 𝐻଴ 

𝑐଴,௥ = −𝐻଴ 

𝑐ଵ,௩ = −𝐻଴ ൬1 − 𝛽 ൤
𝑑𝑇

𝑑𝑧
൨

௠
(0)ൗ ൰ 

𝑐ଵ,௩ = 𝐻଴ ൬1 − 𝛽 ൤
𝑑𝑇

𝑑𝑧
൨

௠
(0)ൗ ൰ 

(9) 

 

with H0 representing current amplitude at a given time (i.e. during topographic development) in units of km, and geotherm and 

lapse rate in °C/km.  Equations (8) and (9) combined provide: 150 

𝑇௔௦௬௠(𝑧) = ±𝐻଴ ൜1 − ൬1 − 𝛽 ൤
𝑑𝑇

𝑑𝑧
൨

௠
(0)ൗ ൰ 𝑒

ି 
௭

௖మൠ ൤
𝑑𝑇

𝑑𝑧
൨

௠
(𝑧) (10) 

where the sign is positive for valleys and negative for ridges, and the c2 variable changes between these cases. 
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To explore the depth scaling (c2), a series of 20 FETKin models varying in wavelength, amplitude, background steady-state 

geotherm, erosion rate, and developing versus constant topography was used.  Model settings are listed in Table 1, as well as 

the corresponding c2 values for ridges and valleys fitted to the model outcomes.   

 155 

 

The depth scaling is dominantly a function of the topographic wavelength, and secondarily of topographic amplitude.   A good 

empirical fit is given by: 

 

Figure 6.  Residual plots for estimates of depth scaling parameter 

for ridges and valleys. 
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𝑐ଶ,௩ = 0.166 𝜆 − 0.473 𝐻଴ 

𝑐ଶ,௥ = 0.156 𝜆 + 0.805 𝐻଴ 
(11) 

As shown in Figure 6, these formulas do an excellent job of reproducing c2 for a wide range of conditions.  The principal 

apparently systematic departure is for growing versus static topography, with the former increasing the depth scaling by ~0.5 160 

km compared to similar constant-topography models.   

Table 1 also lists the maximum and median absolute temperature differences over the top 10 km of the crust between finite 

element models and estimates using the FE-calculated mid-slope geotherm and Equations (2), (10), and (11). All errors at all 

times are less than 3 °C, with an average maximum error among models of 1 °C, and the average median error is 0.6 °C.  The 

growing-topography scenarios also show small errors, suggesting that adjusting for such scenarios is a second-order 165 

consideration.  

Although there is always a danger that empirical relations can degrade if applied outside of the model parameter space used to 

develop them, the scenarios used for generating Equation (11) (wavelengths of 8-36 km, total relief of 1-3 km, exhumation 

rates up to 0.6 mm/yr or km/Myr) reasonably bracket the use cases appropriate for modelling in HeFTy.  The conditions 

modelled also effectively account for changes in conductivity and diffusivity, as the former offsets the geotherm (Eq. 1) and 170 

the latter offsets the exhumation rate (Eq. 5, 6, 7). 

To test the effects of venturing beyond these limits, an extreme case was run that generates 3 km of relief with exhumation 

rates of 6 mm/yr over 2 Myr (Table 1, model 21).  While the maximum error exceeds 14°C in valleys, the high dynamic 

geothermal gradients (> 80 °C/km) means that this corresponds to a vertical offset of less than 200 m or a timing error of ~30 

kyr, which may be within tolerances.  Still, in such severe cases investigators should consider using alternative tools that 175 

provide full 2D or 3D solutions. 

3.4 Varying exhumation rates and interpolating across topography 

The topographic correction model also achieves low errors when exhumation rates vary.  For example, a model akin to that 

shown in Fig. 3 in which erosion proceeds for 10 Myr at 0.6 mm/yr and then slows to 0.2 mm/yr over the subsequent 30 Myr 

yields a maximum error of 1.2 °C and a median error of 0.8 °C, only marginally above the similar constant-rate model in Table 180 

1 (model 17).  This indicates that the mid-slope 1D model adequately captures the evolution of thermal structure even for 

complex t-z histories. 

Interpolating deflection between ridges and valleys is done via the cosine term in Equation (1).  For ideal sinusoidal topography 

elevation E varies around mean elevation Em as: 

𝐸(𝑥) = 𝐸௠ + 𝐻଴ cos ൬
2𝜋𝑥

𝜆
൰ (12) 

allowing the cosine term to be calculated as: 185 
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𝐸(𝑥) − 𝐸௠

𝐻଴
= cos ൬

2𝜋𝑥

𝜆
൰ (13) 

The complete equation for temperature asymmetry then becomes: 

𝑇௔௦௬௠(𝑧, 𝑥) = ൫𝐸௠ − 𝐸(𝑥)൯ ൜1 − ൬1 − 𝛽 ൤
𝑑𝑇

𝑑𝑧
൨

௠
(0)ൗ ൰ 𝑒

ି 
௭

௖మൠ ൤
𝑑𝑇

𝑑𝑧
൨

௠
(𝑧) (14) 

4 Implementation in HeFTy 

The foregoing calculations have been implemented into HeFTy (version 2.2.0 and higher) to provide a better basis for thermal 

history modelling across elevation transects. In the new version, the position of the 1D thermal model has been changed from 

the “control” sample location, against which the positions of the other samples are determined in models involving topographic 190 

development or tilting (Ketcham, 2024), to the mid-slope.  This reduces the impact of choice of control sample.  Whereas part 

of the need for carefully choosing the control sample stemmed from avoiding generating exhumation paths that result in some 

samples being sent above the ground surface prior to the end of the model, the program now flags these cases during forward 

modelling, and avoids them automatically during inverse modelling. 

4.1 Guidelines for data entry 195 

As with other multi-sample modelling in HeFTy, it is best to fit individual models for each sample prior to combining them, 

as an initial check for their respective viability and mutual consistency.  Regional topographic parameters of wavelength, 

amplitude, and mean elevation are specified independently, and all samples should lie within the topographic range specified 

(mean elevation ± amplitude).  The wavelength and amplitude should correspond to the full extent of the region being 

modelled, even if the sample set does not include the peak and valley positions.  Although position along the transect is entered 200 

via geographic coordinates, it is only used for display purposes; HeFTy uses sample elevation to define its location along the 

topographic period for the thermal correction according to Equations (13) and (14). Users should bear in mind how this data 

entry scheme may be affected by shorter-wavelength complexities, as, for example, a small-scale reversal in topography will 

effectively switch sample ordering. 

This correction and its implementation are designed with the principal anticipated use case being a single traverse spanning a 205 

single major elevation change.  However, topography can have multiple periodic components, and users should be mindful 

that dates from lower-closure-temperature thermochronometers will be sensitive to shorter topographic wavelengths (Stüwe et 

al., 1994).  One can estimate a critical wavelength below which topographic deflection effects will be irrelevant to a 

thermochronometer as the ratio of the closure temperature (Tc) to the geothermal gradient (Braun, 2002), and this may be used 

as guidance for additional exploration of lower-Tc systems by modelling subsets of samples across smaller-scale variations.  A 210 

Fourier deconvolution (e.g., Glotzbach et al., 2015) may also provide helpful insight into the expected effects of 3D topography 

and superposed wave components in a given study area. 
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4.2 Demonstration of topographic correction 

Figure 7 shows a series of models results following from those used by Ketcham (2024, Fig. 8) without and then with the 215 

periodic topographic correction.  In Fig. 7A, simple exhumation under constant (static) topography results in a series of parallel 

paths when there is no correction, as each path differs only in its surface boundary condition, defined by the lapse rate.  

Applying the topographic correction in Fig. 7B allows the specimens to transition from depth, where they are separated by ~25 

°C, to the surface where their separation is 9 °C.  Note that at the starting depth of 7 km the steady-state isotherms are not fully 

flat (see Fig. 1A), and thus the temperature offset among samples in the initial condition (steady state) does not quite correspond 220 

to the geothermal gradient.  If topography begins flat at 40 Ma and develops during exhumation, the difference between the 

non-corrected and corrected path sets (Fig. 7C and D, respectively) is very subtle, with a maximum temperature difference of 

only about 2 °C.  

Results are similar when tilting is included, in this case with a 10° clockwise rotation from past to present such that the 

topographic high corresponds with the uplifted side of the profile.  Under constant topography the periodic correction again 225 

makes a difference of up to 10 °C, only this time the dispersion of paths decreases at depth because the topographic effect is 

inverted (Fig. 7E, F).  If topography starts flat, then differences are more subtle, basically because there is no correction to 

make at the model start, and models all converge to the same ending point.  Combined, results in Fig. 7 demonstrate that 

topographic development has served as a reasonable proxy for periodic topography effects in previous studies using 

topographic profile modelling in HeFTy (Hestnes et al., 2024; Mackaman-Lofland et al., 2024), but that the models cannot 230 

distinguish whether topographic development was really required to fit the data. 

With regard to tilting, it should be noted that the 1D model does not incorporate the additional deflection of isotherms up or 

down due to block rotation; HeFTy only projects samples higher or lower in the crust.   The error stemming from this omission 

is minimized by having the mid-slope be the rotational pivot rather than the control sample, and is expected to usually be 

second-order. 235 
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Figure 7.  Effects of topographic correction.  Each model shows the set of t-T histories assuming the control sample (sample 

a in all cases) is exhumed from 7 km depth to the surface over a 40 Myr span.  For all HeFTy models, MSL temperature is 

20 °C, basal heat flux is 60 mW m-2, thermal conductivity 3 W m-1 K-1, heat capacity 800 J kg-1 K-1, density 2700 kg m-3, 

maximum depth 120 km, grid spacing 2 km, and  6.5 °C km-1. For the periodic correction, =54 m, H0 = 915 m, and Em = 

1415 m.  In all cases, the black curve is for sample position a in I, and the teal curves are for the others, with sample e always 

the most distant.  Models shown in A, C, E, and G do not use the periodic topography correction, which can be compared 

with models B, D, F, and H which do. 

5 Discussion 

As shown in the example, the absolute temperature changes enabled by the periodic correction developed here will tend to be 

modest, in many cases less than ±10 °C (or net 20°C between ridge and valley), although the absolute value will depend on 

the severity of topography.  The primary utility in this correction, aside from increasing the overall accuracy of the solution, 

is to better allow topographic effects to be “felt” at depth during exhumation, in turn increasing the ability for the data to 240 



14 
 

discern when topographic evolution began.  In the context of multi-sample thermal history modelling, even relatively mild 

relative excursions among samples that are geographically linked can significantly affect their ability to have their 

thermochronometric data be matched in tandem. 

It should also be stressed that this functionality is meant to test relatively simple scenarios and provide a first-order 

approximation of the geological processes being considered; it should not be seen as depicting or reproducing reality.  In 245 

particular, in studies where the exhumation history is more complex, such as involving spatially variable and/or significant 3D 

topographic development, or is directly impacted by additional advective processes such as folding, faulting, or fluid 

movement, more sophisticated modelling tools will be preferable for posing questions with the appropriate level of fidelity 

and detail (e.g., Almendral et al., 2015; Braun, 2003; Bernard et al., 2022). 
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