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Abstract. Developing predictions of coastal flooding risk on subseasonal timescales (2-6 weeks in advance) is an emerging 10 

priority for the National Oceanic and Atmospheric Administration (NOAA). In this study, we assess the ability of two current 

operational forecast systems, the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) 

and the Centre National de Recherches Météorologiques climate model (CNRM), to make subseasonal ensemble predictions 

of the non-tidal residual component of coastal water levels at United States coastal gauge stations for the period 2000-2019. 

These models were chosen because they assimilate satellite altimetry at forecast initialization and attempt to predict the mean 15 

sea level, including a global mean component whose absence in other forecast systems complicates assessment of tide gauge 

reforecast skill. Both forecast systems have skill that exceeds damped persistence for forecast leads through 2-3 weeks, with 

IFS skill exceeding damped persistence for leads up to six weeks. Post-processing forecasts to include the inverse barometer 

effect, derived from mean sea level pressure forecasts, improves skill for relatively short forecast leads (1-3 weeks). 

Accounting for vertical land motion of each gauge primarily improves skill for longer leads (3-6 weeks), especially for the 20 

Alaskan and Gulf Coasts; sea-level trends contribute to reforecast skill for both model and persistence forecasts, primarily for 

the East and Gulf Coasts. Overall, we find that current forecast systems have sufficiently high levels of deterministic and 

probabilistic skill to be used in support of operational coastal flood guidance on subseasonal timescales. 

1 Introduction 

Over the past several decades, nearly all United States coastal regions have experienced a steady increase in the frequency, 25 

extent, and duration of high tide flooding, particularly the East and Gulf Coast regions (Sweet et al. 2018, Sweet et al. 2022). 

Associated with theThe increased flooding frequency is associated with risks to are trillions of dollars in of property and 

infrastructure, as well as risks to coastal ecosystems (Fleming et al. 2018 and references therein). As a result, there is an 

emerging need to provide high tide flooding outlooks on subseasonal-to-annual timescales (Dusek et al. 2022, NOAA Coastal 

Inundation Framework). 30 
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High tide flooding (HTF) can be defined in terms of water levels exceeding gauge station water level thresholds, 

where the thresholds are typically determined based on local conditions, including topography, land-cover types, and risk to 

infrastructure (Sweet et al. 2018; Kavanaugh et al. 2023). The water levels, in turn, can be considered the sum of a tidal 

component, a sea-level trend component, and a non-tidal residual (Dusek et al. 2022; see also Widlansky et al. 2017). For the 

West Coast and parts of the East Coast, the tidal component dominates water level in terms of amplitude relative to the non-35 

tidal residual, either because the tidal range is large or because the non-tidal residual is small, while in other regions, including 

the Gulf Coast, the non-tidal residual is comparable to the tidal component (Merrifield et al. 2013, Sweet et al. 2014). Still, 

predicting non-tidal residuals is important for all coastal regions because, as sea levels continue to rise, even small amplitude 

non-tidal residual anomalies can push high tide water levels past flood thresholds (e.g., Sweet and Park, 2014).  

Currently, NOAA’s National Ocean Service issues a monthly HTF outlook for a wide range of stakeholders (NOAA 40 

Coastal Inundation Framework; Dusek et al., 2022) by using damped persistence of current gauge station monthly non-tidal 

residual anomalies as part of its predicted total water levels. If current operational models could in fact skillfully predict coastal 

sea level anomalies on subseasonal timescales, specifically by outperforming damped persistence, then incorporating those 

predictions in the HTF outlook could improve upon its forecast guidance. The non-tidal residual is driven by a multitude of 

processes operating on timescales ranging from minutes to decades (Sweet et al. 2018, Woodworth et al. 2019, and references 45 

therein). Many of these processes, including daily timescale wind forcing and storm surge, are largely governed by individual 

weather systems, which are generally not predictable beyond 10-14 days (Lorenz, 1963, 1969; Weber and Mass, 2017; Bauer 

et al., 2015; Simmons and Hollingsworth, 2002; Zhang et al., 2019). However, sea level anomalies are also correlated with 

several modes of large-scale climate variability, including the Madden-Julian Oscillation (MJO), the El Niño-Southern 

Oscillation (ENSO), and the North Atlantic Oscillation (NAO) (Enfield and Allen, 1980; Menéndez and Woodworth, 2010; 50 

Sweet and Zervas, 2011, Ezer and Atkinson, 2014; Sweet and Park, 2014; Valle-Levinson et al., 2017; Han et al., 2019; Amaya 

et al., 2022; Boucharel et al., 2023; Arcodia et al., 2024; Renkl et al., 2024), which are associated with potentially predictable 

signals on subseasonal-to-seasonal (S2S) timescales (e.g, Vitart and Molteni, 2010; Barnston et al., 2017; Albers et al. 2021 

and references therein). For example, Amaya et al. (2022) recently demonstrated that coastal Kelvin waves related to ENSO 

are associated with sea surface height anomalies along the West Coast of the United States that can be skillfully predicted. 55 

Whether these climate modes also introduce predictable sea level anomalies along the other coasts of the United States via 

wind stress and atmospheric pressure anomalies associated with atmospheric teleconnections remains an open question.  

In this study, we assess the skill of current forecast models for predicting non-tidal anomalies at gauge stations on 

subseasonal timescales. Of course, there is a clear difference in spatial scale between the model grid size, on the order of tens 

of kilometers, and the point locations of the gauge stations. Here, we will take a relatively simple approach, using the closest 60 

oceanic model grid point to a particular gauge station to make forecasts for that station, and do not consider the additional 

complication of how best to downscale the model output to much smaller scales (e.g., Long et al. 2023). This approach hinges 

in part on the assumption that open ocean or near-shore sea level subseasonal anomalies will be representative of the sea level 

subseasonal anomalies at gauge stations. This is a reasonably well-justified assumption, as many coastal gauge stations are 
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fairly well-correlated with the nearby open ocean (Vinogradov and Ponte, 2011). However, the connection between open ocean 65 

and coastal sea level anomalies varies by region due to many factors, including shelf depth and extent, and eastern versus 

western boundary ocean dynamics (Hughes et al., 2019; Han et al., 2019). For example, for eastern boundary regions (e.g., the 

US West Coast), coastal sea level will be influenced by coastally trapped waves propagating poleward from equatorial regions 

and local direct forcing; for western boundary regions, on the other hand, models need to successfully simulate more processes, 

including wave signals from all latitudes (Hughes et al. 2019). Gauge stations located on islands, on the other hand, which 70 

typically have narrow shelfs, should have sea level variability more closely matching the nearby open ocean (Vinogradov and 

Ponte, 2011). Coastal shelf depth also effects the relative importance of wind stress versus atmospheric pressure effects; for 

example, along shallower coasts with shallow shelves, wind stress driven sea level variability is relatively more important than 

the inverse barometer effect (IBE) on daily to monthly timescales (Woodworth et al. 2019 and references therein). 

The two forecast systems evaluated here, the European Centre for Medium Range Weather Forecasting Integrated 75 

Forecasting System reforecasts (IFS) and the Centre National de Recherches Météorologiques climate model (CNRM), were 

chosen in part because they both assimilate ocean altimetry data into their initial conditions, which previous studies have 

suggested is important to sea level forecast skill (Widlansky et al. 2023; Long et al. 2024). In addition, since the forecast 

systems are verified against tide gauge observations, we examine the impact of post-processing reforecasts by including both 

the IBE, computed from the corresponding mean sea level pressure reforecasts, and an estimate of local vertical land motion 80 

determined for each gauge location. Model and verification datasets and skill evaluation methods, including deterministic and 

probabilistic metrics, are outlined in Section 2. This is followed by an evaluation of open ocean sea surface height reforecast 

skill and coastal gauge station skill for the United States (Section 3.1-3.2), where gauge stations are broken down into four 

regions: the East Coast, Gulf Coast, West Coast, and Alaska. The seasonality of skill is briefly discussed at the end of Section 

3.3, which is followed by a discussion of the implications of the results in the Conclusions. 85 

2 Data and verification metrics 

2.1 Forecast models and verification data 

Two dynamical forecast models are considered, the European Centre for Medium Range Weather Forecasting Integrated 

Forecasting System reforecasts (IFS model versions CY 46R1- 47R1 for the reforecast period 2000-2019, 

https://www.ecmwf.int/en/publications/ifs-documentation) and the Centre National de Recherches Météorologiques climate 90 

model (CNRM model version CM6.1, for the reforecast period 1993-2017, Voldoire et al. 2019). Both models utilize the 

Nucleus for European Modeling of the Ocean (NEMO, Madec et al., 2017) ocean model run at 1/4° resolution, and assimilate 

ocean altimetry data into their initial conditions (ECMWF ocean analysis for the IFS and the Mercator-Ocean ocean and sea-

ice analysis for the CNRM). Reforecast data, obtained from the S2S Prediction database (Vitart et al. 2017), was only available 

at 1° resolution, so all calculations, including identifying the closest model grid point to each gauge station, is based on this 95 

resolution.  
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For the open ocean, reforecasts are verified against sea surface height (SSH) from the Copernicus Marine Service 

Global Ocean Physics Reanalysis 12v1 (GLORYS, Lellouche et al., 2021), which has been extensively verified in North 

American waters (Amaya et al. 2022; Amaya et al. 2023; Castillo-Trujillo et al. 2023; Feng et al. 2024). For coastal regions of 

the continental United States and Alaska, reforecasts are further verified against National Oceanic and Atmospheric 100 

Administration (NOAA) water level gauge stations (NOAA Tides and Currents 

https://tidesandcurrents.noaa.gov/PageHelp.html). Only gauge stations that have at least 10 years of data during the reforecast 

records of the IFS and CNRM are considered, yielding 47 stations for the East Coast, 32 stations for the Gulf of Mexico, 35 

stations for the West Coast, and 23 stations for Alaska (see Table 1 for a list of the gauge stations and the number of days in 

each verification time series). When comparing the reforecast skill of the IFS and CNRM (Section 3.1), we verify against their 105 

common reforecast periods, 2000-2017; when evaluating the reforecast skill of the IFS alone (Sections 3.2-3.3), we use the 

full IFS reforecast period, 2000-2019. 

As discussed in the Introduction, water levels at gauge stations are separated into three components for the HTF 

outlooks (Dusek et al., 2022): a 37-constituent tidal component (e.g., Sweet and Zervas, 2011), a linear sea level trend 

component, and a non-tidal residual. Here, for comparison with the reforecasts, we remove the local tidal components, but we 110 

do not remove the trend from the water level gauge data, so that the verification time series of non-tidal residuals (𝑁𝑇𝑅) at 

each tide gauge includes the local trend component, in contrast with how it is defined for the HTF framework. Including the 

trend component in the reforecasts and verifications of the non-tidal residual allows an assessment of contribution of the linear 

trend to reforecast skill, for example, by comparing the difference in anomaly correlation skill with and without the linear trend 

included (Figures 2d, 4d, 6d, and 8d), and comparing reliability with and without the linear trend included (Figures 3, 5, 7, and 115 

9).. 

IFS reforecasts are available from initialization out to forecast lead day 46, while CNRM reforecasts are available out 

to forecast lead day 47; both reforecast sets were obtained as daily averages. To create reforecast anomalies, All reforecast and 

verification datasets are determined using seven-day running mean anomalies from the respective reforecast and observational 

climatologies. Reforecast anomalies are calculated by removing the lead-dependent 20- or 25-year reforecast climatologies of 120 

the IFS and CNRM periods, respectively, are substracted from the daily average data, which implicitly applies a mean bias 

correction; further details regarding the creation of the IFS and CNRM climatologies (which are different for each model) are 

in the Supplement (Section S1). Next, weekly averages are calculated from the daily reforecast data, where Week 1 includes 

the average of forecast days 1-7, Week 2 includes days 8-14, etc.  To calculate When computing verification climatologies, 

for the daily average GLORYS verification anomalies, we use a period spanning both the CNRM and IFS reforecast records 125 

(2000-2017), where  a 365-day (plus one day for leap years) climatology is calculated by averaging over all years, and 

extracting the first four harmonics (plus the mean) via Fourier transform (e.g., Epstein, 1988), yielding the final climatology, 

which is then removed from the daily average GLORYS data. Weekly average GLORYS verification anomalies are then 

created by applying a 7-day running mean to the daily data. while forTo calculate the NOAA gauge stations anomalies, we 

calculate a daily average climatology use for the period over which the gauge station data is scored and available, generally 130 
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20 years but slightly shorter for some stations (see Table 1), and remove that climatology from the daily averaged gauge station 

data. A 7-day running mean is then applied to the gauge station data.. 

 

East Coast 
 

West Coast 
 

    

Station list Data length 
(days) 

Station list Data length 
(days)     

Eastport, ME 
(8410140) 

2088 San Diego, San Diego Bay, CA* 
(9410170) 

2098 

Bar Harbor, ME* 
(8413320) 

1943 La Jolla, CA* 
(9410230) 

2098 

Portland, ME* 
(8418150) 

2097 Los Angeles, CA* 
(9410660) 

2098 

Boston, MA* 
(8443970) 

2092 Santa Monica, CA* 
(9410840) 

2095 

Fall River, MA 
(8447386) 

2097 Santa Barbara, CA 
(9411340) 

1534 

Woods Hole, MA 
(8447930) 

2064 Oil Platform Harvest, CA 
(9411406) 

1745 

Nantucket Island, MA 
(8449130) 

2083 Port San Luis, CA* 
(9412110) 

2096 

Newport, RI* 
(8452660) 

2098 Monterey, CA* 
(9413450) 

2098 

Providence, RI* 
(8454000) 

2086 San Francisco, CA 
(9414290) 

2093 

New London, CT 
(8461490) 

2088 Redwood City, CA 
(9414523) 

2098 

New Haven, CT 
(8465705) 

2092 Alameda, CA* 
(9414750) 

2098 

Bridgeport, CT* 
(8467150) 

2087 Richmond, CA 
(9414863) 

2014 

Montauk, NY 
(8510560) 

2003 Point Reyes, CA* 
(9415020) 

2088 

Kings Point, NY* 
(8516945) 

2097 Port Chicago, CA 
(9415144) 

2081 

The Battery, NY* 
(8518750) 

2032 Arena Cove, CA* 
(9416841) 

2098 

Bergen Point West Reach, NY* 
(8519483) 

2049 North Spit, CA* 
(9418767) 

2090 
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Sandy Hook, NJ* 
(8531680) 

2087 Crescent City, CA 
(9419750) 

2064 

Atlantic City, NJ* 
(8534720) 

2050 Port Orford, OR* 
(9431647) 

1847 

Cape May, NJ* 
(8536110) 

2066 Charleston, OR* 
(9432780) 

2098 

Burlington, Delaware River, NJ 
(8539094) 

1835 South Beach, OR* 
(9435380) 

2098 

Marcus Hook, PA 
(8540433) 

1667 Garibaldi, OR 
(9437540) 

1515 

Philadelphia, PA 
(8545240) 

2090 Astoria, OR 
(9439040) 

2098 

Delaware City, DE 
(8551762) 

1880 Wauna, OR 
(9439099) 

1718 

Reedy Point, DE 
(8551910) 

2076 St Helens, OR 
(9439201) 

1863 

Lewes, DE* 
(8557380) 

2093 Vancouver, WA 
(9440083) 

1815 

Ocean City Inlet, MD 
(8570283) 

1825 Skamokawa, WA 
(9440569) 

1703 

Cambridge, MD 
(8571892) 

2092 Toke Point, WA* 
(9440910) 

2058 

Tolchester Beach, MD 
(8573364) 

2093 Westport, WA 
(9441102) 

1447 

Chesapeake City, MD 
(8573927) 

1716 La Push, Quillayute River, WA 
(9442396) 

1641 

Baltimore, MD 
(8574680) 

2098 Neah Bay, WA 
(9443090) 

2096 

Annapolis, MD 
(8575512) 

2065 Port Angeles, WA* 
(9444090) 

2098 

Solomons Island, MD 
(8577330) 

2027 Port Townsend, WA* 
(9444900) 

2098 

Washington, DC 
(8594900) 

1991 Seattle, WA* 
(9447130) 

2098 

Wachapreague, VA* 
(8631044) 

1719 Cherry Point, WA* 
(9449424) 

2079 

Kiptopeke, VA* 
(8632200) 

2098 Friday Harbor, WA* 
(9449880) 

2098 

Lewisetta, VA* 
(8635750) 

2098   
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Windmill Point, VA* 
(8636580) 

2048   

Yorktown USCG Training Center,VA 
(8637689) 

1658   

Sewells Point, VA* 
(8638610) 

2098   

Money Point, VA 
(8639348) 

2096   

Duck, NC* 
(8651370) 

2087   

Oregon Inlet Marina, NC 
(8652587) 

2089   

Beaufort, Duke Marine Lab, NC* 
(8656483) 

2098   

Wilmington, NC 
(8658120) 

2083   

Springmaid Pier, SC* 
(8661070) 

1962   

Charleston, SC* 
(8665530) 

2098   

Fort Pulaski, GA* 
(8670870) 

2092   

    

Gulf 
 

Alaska 
 

    

Station list Data length 
(days) 

Station list Data length 
(days)     

Fernandina Beach, FL* 
(8720030) 

2076 Ketchikan, AK 
(9450460) 

2098 

Mayport (Bar Pilots Dock), FL* 
(8720218) 

2001 Port Alexander, AK 
(9451054) 

1289 

Trident Pier, Port Canaveral, FL* 
(8721604) 

2093 Sitka, AK 
(9451600) 

2098 

Virginia Key, Biscayne Bay, FL* 
(8723214) 

2096 Juneau, AK 
(9452210) 

2093 

Vaca Key, Florida Bay, FL 
(8723970) 

2065 Skagway, Taiya Inlet, AK 
(9452400) 

2087 

Key West, FL 
(8724580) 

2086 Elfin Cove, AK 
(9452634) 

1510 
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Naples, Gulf of Mexico, FL* 
(8725110) 

2044 Yakutat, Yakutat Bay, AK 
(9453220) 

2082 

Fort Myers, FL 
(8725520) 

2055 Cordova, AK 
(9454050) 

2091 

Port Manatee, FL 
(8726384) 

2062 Valdez, AK 
(9454240) 

2084 

St. Petersburg, Tampa Bay, FL 
(8726520) 

2095 Seward, AK 
(9455090) 

2098 

Old Port Tampa, FL 
(8726607) 

1915 Seldovia, AK 
(9455500) 

2074 

Clearwater Beach, FL 
(8726724) 

2067 Nikiski, AK 
(9455760) 

2094 

Cedar Key, FL* 
(8727520) 

2047 Anchorage, AK 
(9455920) 

2087 

Apalachicola, FL 
(8728690) 

2084 Kodiak Island, AK 
(9457292) 

2091 

Panama City, FL 
(8729108) 

2061 Alitak, AK 
(9457804) 

1398 

Panama City Beach, FL 
(8729210) 

1496 Sand Point, AK 
(9459450) 

2072 

Pensacola, FL* 
(8729840) 

2028 King Cove, AK 
(9459881) 

1506 

Dauphin Island, AL* 
(8735180) 

1851 Adak Island, AK 
(9461380) 

2051 

Mobile State Docks, AL 
(8737048) 

1387 Unalaska, AK 
(9462620) 

2094 

Bay Waveland Yacht Club, MS* 
(8747437) 

1476 Port Moller, AK 
(9463502) 

1124 

Shell Beach, LA 
(8761305) 

1191 Village Cove, St Paul Island, AK 
(9464212) 

1409 

Grand Isle, LA 
(8761724) 

2062 Nome, Norton Sound, AK 
(9468756) 

2067 

New Canal Station, LA 
(8761927) 

1484 Prudhoe Bay, AK 
(9497645) 

2090 

Port Fourchon, Belle Pass, LA 
(8762075) 

1684 
  

Berwick, Atchafalaya River, LA 
(8764044) 

1673 
  

Lake Charles, LA 
(8767816) 

1555 
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Calcasieu Pass, LA 
(8768094) 

1709 
  

Morgans Point, Barbours Cut, TX* 
(8770613) 

2091   

Eagle Point, Galveston Bay, TX* 
(8771013) 

2095   

Galveston Pier 21, TX* 
(8771450) 

2098   

Rockport, TX* 
(8774770) 

2013   

Port Isabel, TX* 
(8779770) 

2093   

 
Table 1. List of NOAA gauge stations organized by four regions: East Coast, Gulf Coast, West Coast, and Alaska. The number 135 

of days listed for each gauge station corresponds to the number of reforecast days used when calculating IFS reforecast skill; 

the IFS is initialized twice weekly, which means that ~2000 days equates to roughly ~20 years. Gauge stations with an * next 

to them are stations that are included in the official NOAA High Tide Flooding Monthly Outlooks (Kavanaugh et al. 2023). 

2.2 Inverse barometer effect and vertical land motion 

The satellite altimeter-derived sea level products used to initialize the IFS are processed so as to remove static and high 140 

frequency (~20 day cutoff) dynamic atmospheric pressure effects (Ponte and Ray, 2002; Centre national d’études spatiales, 

2020). As a result, when the ocean model (e.g., NEMO in the case of the IFS) is run for forecasting purposes, it assumes an 

atmosphere with no mass (both because the assimilated observations are corrected to remove pressure effects, and because the 

‘atmospheric pressure’ subroutine in NEMO is turned off), so that the SSH reforecasts include neither static nor dynamic 

responses to atmospheric pressure fluctuations (Tai, 1993). However, the static effect of atmospheric pressure on the ocean 145 

surface can be approximated via the so-called inverse barometer effect (Ross, 1854; Doodson, 1923; Groves and Hannan, 

1968; Tai, 1993; Arbic, 2005; Ponte, 1992, 2006; Oddo et al., 2014; Long et al., 2021; Feng et al., 2024), which assumes a 

static ocean response to atmospheric pressure forcing (Tai, 1993; Wunsch and Stammer, 1997). The IBE (𝜂!"#) is written as: 

𝜂!"# =	−
$!"#%$!"#&&&&&&&
'$%&'(	)

      (1) 

(e.g., Piecuch and Ponte, 2015), where 𝑝*+, is atmospheric mean sea level pressure, 𝑝*+,)))))) is the global mean sea level pressure 150 

(MSLP, ocean-only), 𝜌-.#/0 is the ocean density (assumed to be a constant value of 1025 kg m-3), and 𝑔 is the acceleration 

due to gravity. Although the assumptions inherent to the inverse barometer approximation are not always strictly valid, which 

can lead to deviations from a purely static response (e.g., Wunsch, 1991; Le Traon and Gauzelin, 1997), previous studies have 

suggested that including the IBE is important on subseasonal-to-seasonal timescales (e.g., Woodworth et al, 2019; Long et al., 
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2021, Feng et al. 2024). In this study, for the IFS we use the predicted 𝑝*+, to predict the 𝜂!"#IBE from (1) at different forecast 155 

leads, which is added to the corresponding SSH reforecasts as a post-processing step for each tide gauge. (For simplicity, we 

do not display IBE-corrected CNRM reforecasts, as the IFS is generally more skillful.) 

Over the course of several decades, the sea level at local gauge stations can change from vertical land motion (VLM) 

due to a wide range of phenomena, including glacial isostatic rebound and groundwater and/or fossil fuel removal (Larsen et 

al., 2004; Hu and Freymueller, 2019; Sweet et al. 2022;  https://www.climate.gov/news-features/features/interactive-map-how-160 

has-local-sea-level-united-states-changed-over-time; Oelsmann et al., 2024). While VLM rate is too small to impact an 

individual subseasonal forecast, it could be large enough in some regions to impact long-term skill assessment, and is implicitly 

included in a persistence forecast. There exist many methods for estimating VLM (e.g., Kopp et al. 2014; Hammond et al. 

2021; Oelsmann et al. 2024), however, here To account for VLM, we use a relative simple approach we applythat applies 

VLM rates as a trend correction to each IFS forecast anomaly time series. The VLM rates we use are provided on a 1°x1° grid 165 

(https://oceanservice.noaa.gov/hazards/sealevelrise/Sea_Level_Rise_Datasets_2022.zip; Sweet et al. 2022), and the grid point 

nearest to each gauge station is used as the rate constant for the entire reforecast period. 

In the remainder of the paper, we will refer to two types of reforecasts: (1) IFS and CNRM SSH reforecast anomalies, 

which are the original ocean model output; and (2) IFS reforecast anomalies that are IBE- and VLM-corrected, which will be 

referred to as non-tidal residual reforecasts: 170 

𝑁𝑇𝑅,=	SSH	+	IBE	+	VLM      (2) 

where in (2), the SSH and IBE are IFS quantities and the VLM is the trend correction described above. While we could have 

adjusted the tide gauge NTR using the VLM prior to evaluating skill, we prefer aAdding both the IFS-IBE and VLM to the 

IFS-based SSH reforecast, since 𝑁𝑇𝑅,  is the hindcast that should be verified directly against the NTR that is observed at the 

tide gaugebest approximation to the tide gauge NTR. GLORYS does not include the IBE, so verifying the IFS and CNRM 175 

against GLORYS is done using SSH only, while the 𝑁𝑇𝑅,  reforecasts are verified against the observed gauge station 𝑁𝑇𝑅. 

2.3 Skill metrics 

Reforecast skill is evaluated both deterministically, using anomaly correlation, and probabilistically, using reliability and 

sharpness (Atger, 1999; Jolliffe and Stephenson, 2011; Wilks 2011). Reliability is computed for events that exceed the upper 

tercile of each gauge station’s water level, where the tercile threshold is calculated separately for the water level (non-tidal 180 

residual) distributions of the reforecasts (𝑁𝑇𝑅,) and verifications (𝑁𝑇𝑅), respectively. Using the tercile from the reforecast 

ensemble sample distribution for computing the reforecast probability of an event (as opposed to using the observed tercile) 

amounts to an in-sample bias correction of the reforecast probability distribution (Weisheimer and Palmer 2014), which 

ensures that the reforecast probabilities and observed frequencies of tercile events are the same for each gauge station; this 

correction is needed because, in general, the reforecast water level distributions are underdispersive (i.e., more narrow than 185 
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observed). For all reliability diagrams, the observed distributions and relative forecast frequencies are split into ten bins (0-

10%, 10-20%,…, 90-100%). 

To condense reliability metrics onto a single map, we use the slope of a regression line fitted to each gauge station’s 

reliability curve, computed via a weighted least-squares regression fitted to the reliability bin values (i.e., the observed relative 

frequency-reforecast probability pairs), where the weights are determined by the number of events in each observed frequency-190 

reforecast probability bin. Since we have applied the reforecast probability bias correction, the regression lines always intersect 

the tercile-tercile point (0.33, 0.33) on the reliability diagrams, so that a regression line with a slope greater than 0.5 contributes 

positively to the Brier skill score (e.g., Mason 2004), though in general, any reliability regression line that is relatively close 

to 0.5 is probably ‘useful’ for making forecast guidance (see e.g., Weisheimer and Palmer, 2014 for a discussion on this point).  

We also determine forecast sharpness, which measures the ability of a forecast system to issue more definitive guidance (i.e., 195 

beyond simply forecasting the climatological probability), as 

𝑆𝐻𝑃 =	 1
0
∑ 𝑝!(1)=1 − 𝑝!((1)> ∗ 4000
!21       (3) 

(Daan 1984; Potts 2011), where 𝑝!(1) is the probability of exceeding the tercile threshold for each forecast, i, where each ‘i’ 

refers to a forecast initialization and verification pair. This expression yields 𝑆𝐻𝑃 =0 for the sharpest forecasts (when all the 

forecasts are either 0% or 100%) and 𝑆𝐻𝑃 =100 for the most blurred forecasts (multiplying the expression in (3) by 400 is not 200 

strictly necessary, but is done to provide a more intuitive range of 𝑆𝐻𝑃 values, spanning 0 to 100 instead of 0 to 0.25). Since 

a forecast system can be perfectly sharp by always forecasting 0%, which would not be terribly useful, we also report the 

percentage of forecasts that are in the 90-100% probability bin relative to the 0-10% bin.  

Dynamical model reforecast skill is also compared to the skill of “damped” persistence of the observed coastal station 

anomalies. Each damped persistence forecast is calculated using the mean of the previous seven days, multiplied by the lead-205 

dependent autocorrelation value, where the autocorrelation function is calculated independently from the 𝑁𝑇𝑅 time series for 

each gauge station. For all reforecasts, including from the CNRM, the IFS, and damped persistence, reforecasts are compared 

with and without a linear trend removed from the anomaly time series, where the trend is independently computed relative to 

the length of each time series being compared. 

3 Results 210 

We begin with a simple evaluation of the geographic distribution of year-round Week 3 SSH prediction skill for the IFS and 

CNRM, verifying against GLORYS SSH anomalies, which also do not include the IBE (Section 3.1). Thereafter, we conduct 

a more detailed regional prediction skill assessment of 𝑁𝑇𝑅,  based on the IFS reforecasts, including evaluating the impact of 

the postprocessed IBE- and VLM-based reforecast corrections, for gauge stations grouped into four broad regions: the East 

Coast (Maine to South Carolina), the Gulf Coast (Florida to Texas, and one station in Georgia), the West Coast (California to 215 

Washington), and Alaska (Section 3.2). Finally, we evaluate the seasonal dependence of 𝑁𝑇𝑅,  prediction skill (Section 3.3). 
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3.1 Multi-model comparison of  coastal ocean and tide gauge SSH reforecast skill 

For the oceans surrounding North America, the geographic distribution of Week 3 SSH anomaly correlation skill for the IFS 

and CNRM are qualitatively similar, with both models exhibiting relatively higher skill in the eastern portion of the Pacific 

Ocean, along the southern coast of Alaska, and the Beaufort Sea, while exhibiting relatively lower skill along the East Coast 220 

of the US (Fig. 1). In general, the IFS is more skillful than the CNRM in most regions, with the exception of a small region 

near northeast of the Bahamas, the central portion of the Gulf of Mexico, and portions of the Labrador Sea and Baffin Bay.  

For both models, SSH reforecast skill evaluated at the gauge stations tends to correspond reasonably well with nearby 

open ocean SSH reforecast skill evaluated using GLORYS gridded SSH anomalies for Week 3 (cf. colored shading for the 

oceans surrounding North America and colored dots for the tide gauges used in this study in Fig. 1). This good comparison 225 

justifies the use of nearest neighbor open ocean SSH forecasts to predict tide gauge anomalies in this study. For example, for 

both tide gauges and the near shore open ocean, reforecast skill for both models is relatively high in Southern California and 

Maine and relatively low between Virginia and New York (cf. both Figs. 1a and 1b). 

For the US coastlines nearest to the gauge stations that are of central interest here, the IFS has superior skill at all 

forecast leads (see Supplement Figs. S1-S6). While the IFS and CNRM have qualitatively similar skill characteristics, only 230 

the IFS SSH has skill that is as good or better than persistence for nearly all CONUS gauge stations (Figs. S1-S6) as well as 

many Alaskan stations (not shown), with the exception of those situated in regions far up inland rivers, including stations such 

as Vancouver, WA or Berwick, Atchafalaya River, LA, which are all far removed (and physically disconnected) from the 

nearest IFS or CNRM open ocean grid points. 
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 235 

Figure 1. Year-round (2000-2017) Week 3 anomaly correlation skill between GLORYS SSH anomalies and SSH reforecasts 

(color contours), and Week 3 anomaly correlation skill between NOAA gauge station anomalies and SSH reforecasts (colored 

circle markers), for reforecasts from the (a) IFS and (b) CNRM. While the sample years used in the anomaly correlation 

calculation (2000-2017) are the same, the dates are slightly different because of different initialization dates. All dates are used 

in both datasets, regardless of whether they overlap with the other dataset, because otherwise there are too few samples. 240 

The biggest skill improvements of IFS Week 3 reforecasts relative to persistence are seen in three regions: along the 

central East Coast, the entire West Coast, and along the southern coast and islands of  Alaska (not shown). Reforecast skill is 

highest in Southern California (e.g., Fig. S3), where skill from coastal Kelvin waves may provide a significant predictable 

signal (Amaya et al. 2022), particularly during strong El Niño events (see also Arcodia et al., 2024 and references therein). At 

Week 3, and even at Week 2 (both shown in the Supplement), the CNRM forecasts are uniformly (across all regions) less 245 

a) IFS

b) CNRM

Figure 1. Year-round (2000-2017) Week 3 anomaly correlation skill between
GLORYS SSH anomalies and SSH hindcasts (color contours), and Week 3
anomaly correlation skill between NOAA gauge station NTR anomalies and
SSH hindcasts (colored circle markers), for hindcasts from the a IFS and b
CNRM. While the sample years used in the anomaly correlation calculation
(2000-2017) are the same, the dates are slightly different because of different
initialization dates. All dates are used in both datasets, regardless of whether
they overlap with the other dataset, because otherwise there are too few
samples .
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skillful than persistence, with one exception: the Week 2 CNRM forecasts for the Pacific Northwest (Oregon and Washington) 

are more skillful than persistence (Fig. S2).  

Scoring reforecasts without accounting for strong trends can make it difficult to differentiate between forecast skill 

associated with predicting subseasonal climate variations versus the spurious impact of trends on subseasonal forecast skill 

(Wulff et al. 2022). Similarly, previous studies of seasonal prediction of U.S. coastal sea-level anomalies have suggested that 250 

the sea level trend can dominate estimates of reforecast skill, especially when using standard skill metrics that compare to skill 

of a climatological forecast (Widlansky et al. 2017; Long et al. 2021; Shin and Newman 2021; Long et al. 2024).  After a linear 

trend is removed from the forecast and verification datasets, CONUS reforecast skill is reduced for most regions both for 

models and for persistence, with the largest effects occurring for leads of 3 weeks and beyond (Figs. S1-S12; see Sections 

3.2.1-3.2.4 for a detailed discussion of the effect of the linear trend on IFS reforecast skill). However, removing the linear 255 

trend from the model reforecasts and persistence also highlights the models’ ability to skillfully predict SSH anomalies related 

to subseasonal climate variability. For example, linearly detrended CNRM reforecasts are more skillful than linearly detrended 

persistence for the entire West Coast and most East Coast stations at Weeks 2 and 3 (Figs. S4 and S6, respectively). Thus, with 

the linear trend removed, it becomes clearer that the CNRM provides useful guidance for many regions for forecast leads out 

to at least 3 weeks. However, the IFS is still more skillful than the CNRM at nearly all gauge stations and at all lead times 260 

(Figs. S1-S12), so for the remainder of the manuscript, we focus on results using the IFS. 

3.2 Regional U.S. coastal skill 

We next assess deterministic and probabilistic 𝑁𝑇𝑅,  reforecast skill for each of the four US subregions, the West, Gulf, and 

East Coasts, and Alaska. When comparing deterministic skill (anomaly correlation), four panels are shown: 𝑁𝑇𝑅,  skill, 

followed by a panel showing the difference between 𝑁𝑇𝑅,  skill and persistence skill, and then two panels isolating the 265 

contributions of the IBE and the linear trend to 𝑁𝑇𝑅,  skill; the contribution of VLM to 𝑁𝑇𝑅,  skill is discussed in the text when 

relevant with a figure included in the Supplement.  

Probabilistic Week 3 𝑁𝑇𝑅,  reforecast skill is assessed at all gauge stations via three metrics that characterize reliability 

and sharpness (see Section 2.3 for details of the calculations): (1) the slope of the reliability regression line, where values 

greater than 0.5 indicate positive contributions to the Brier skill score; (2) forecast sharpness as measured by the ‘𝑆𝐻𝑃’ 270 

parameter ranging from 0-100, where smaller values represent sharper forecasts; and (3) the percentage of forecasts that are in 

the top forecast probability category versus the lowest category (0-10% versus 90-100%), where higher percentages indicate 

relatively more “certain” affirmative forecasts. In addition, for each sub-region, we show reliability diagrams and histograms 

of the forecast probability distributions for two representative gauge stations to provide a visual reference for the metric 

numbers reported on the maps; for these figures, skill of 𝑁𝑇𝑅,  reforecasts with the linear trend removed is also shown. 275 
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Figure 2. (a) Year-round (2000-2019) Week 3 𝑁𝑇𝑅,  anomaly correlation skill between nearest grid point 𝑁𝑇𝑅,  reforecasts 

anomalies (SSH + IBE + VLM) and West Coast NOAA gauge station 𝑁𝑇𝑅 anomalies. (b) Difference between 𝑁𝑇𝑅,  skill and 
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𝑁𝑇𝑅 persistence skill, (c) difference between 𝑁𝑇𝑅,  skill and (SSH  + VLM)-only skill, and (d) difference between 𝑁𝑇𝑅,  skill 

and linearly detrended 𝑁𝑇𝑅,  skill. 280 

3.2.1 West Coast 

In general, 𝑁𝑇𝑅,  skill is highest along the southern to central West Coast, often exceeding 0.5 for leads through Week 6 (Fig. 

2a). With the exception of a few gauge stations, notably those far up the Columbia River, West Coast reforecasts are also more 

skillful than persistence (Fig. 2b). Note that for many of the stations between central California and Oregon, IFS Week 1 skill 

is only better than persistence with the IBE-correction (cf. Figs. 2b and 2c). Removing the linear trend minimally impacts West 285 

Coast skill, primarily only for longer leads in California (Fig. 2d). 

 

Figure 3. a Year-round
(2000-2019) West Coast
IFS reliability (colored
circles), sharpness
(numbers), and
percentage of forecasts
that are in top forecast
probability category
versus lowest category (0-
10% versus 90-100%).
For reliability, slopes
greater than 0.5 contribute
to positive Brier skill
scores; for sharpness, the
scale spans 0-100, with
smaller numbers
representing sharper
forecast distributions.
Panels b and c show
example reliability
diagrams and sharpness
distributions (ensemble
probability counts) for
two gauge stations,
Crescent City, California
and Santa Barbara,
California, respectively,
where the red ovals in
panel a highlight the
location of each station.

a) b)

c)
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Figure 3. (a) Year-round (2000-2019) West Coast 𝑁𝑇𝑅,  reliability (colored circles), sharpness (numbers), and percentage of 

forecasts that are in top forecast probability category versus lowest category (0-10% versus 90-100%). For reliability, slopes 

greater than 0.5 contribute to positive Brier skill scores; for sharpness, the scale spans 0-100, with smaller numbers representing 290 

sharper forecast distributions. Panels (b) and (c) show example reliability diagrams and sharpness distributions (ensemble 

probability counts) for two gauge stations, Crescent City, California and Santa Barbara, California, respectively, where the red 

ovals in panel (a) highlight the location of each station. 

 

Reliability and sharpness along the West Coast tends to be largest in the south and decreases from south to to the 295 

north (Fig. 3a). For example, reforecasts for gauge stations south of Arena Cove, CA have excellent reliability (regression 

slopes between 0.6-0.9) and sharpness (𝑆𝐻𝑃 between 30-50), with most gauge stations having roughly a quarter of their 

forecasts in the highest forecast probability category (e.g., Santa Barbara, CA in Fig. 3c). Even with the linear trend removed, 

most forecasts in central to southern California have excellent reliability and sharpness (e.g., Fig. 3c). Sharpness decreases 

roughly monotonically from south to north, but reliability has a minimum near the Oregon-California border (e.g., Crescent 300 

City, CA; Fig. 3b) with increasing values again from northern Oregon into Washington, apart from gauge stations extending 

well up the Columbia River. The IBE-correction increases reliability for all West Coast gauge stations, with regression slopes 

generally increasing by 0.2 slope units (not shown). The IBE-correction also mildly decreases sharpness (not shown); however, 

since sharpness for most gauge stations remains relatively high, this decrease is outweighed by the increased reliability realized 

with the IBE-correction. Linearly detrending the reforecasts has a relatively small impact on overall reliability and sharpness 305 

(not shown). 

3.2.2 East Coast 

In contrast to the West Coast, 𝑁𝑇𝑅,  deterministic reforecast skill along the East Coast exceeds 0.5 only through Weeks 2-3 

(Fig. 4a), though skill still nearly always exceeds that of  persistence for all locations and at all leads (Fig. 4b). The IBE-

correction improves skill for many East Coast gauge stations, particularly north of 35° N for Weeks 1 and 2 (Fig. 4c), so that 310 

𝑁𝑇𝑅,  skill exceeds persistence skill for the northernmost gauge stations for shorter lead times (cf. Figs. 4b and 4c). The linear 

trend also has a more significant impact on East Coast than West Coast skill, significantly contributing to Weeks 3-6, 

particularly for the Carolinas and Georgia (Fig. 4d). When both 𝑁𝑇𝑅,  and persistence are linearly detrended, 𝑁𝑇𝑅,  is still more 

skillful than persistence at all leads (not shown), consistent with the SSH results from Section 3.1. 

With the exception of two gauge stations (Burlington, Delaware River, NJ and Bergen Point West Reach, NY), all of 315 

the 𝑁𝑇𝑅,  reforecasts for the East Coast are at least minimally reliable (regression slopes >0.5), with some stations, particularly 

in the northeast, having quite high reliability (regression slopes >0.7). Moreover, for many of the northernmost and 

southernmost gauge stations, the forecasts also have reasonably sharp forecast probability distributions, with 𝑆𝐻𝑃 values 
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somewhere between 50-68 (Fig. 5). In contrast, most of the mid-Atlantic stations have 𝑆𝐻𝑃  values >65 (that is, most 

reforecasts are near climatological probabilities), with only a small number of forecasts in the highest probability category. 320 
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b) Skill improvement above persistence

c) Skill improvement due to IBE
d) Skill improvement due to linear trend
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Figure 4. (a) Year-round (2000-2019) Week 3 𝑁𝑇𝑅,  anomaly correlation skill between nearest grid point 𝑁𝑇𝑅,  reforecasts 

anomalies (SSH + IBE + VLM) and East Coast NOAA gauge station 𝑁𝑇𝑅 anomalies. (b) Difference between 𝑁𝑇𝑅,  skill and 

𝑁𝑇𝑅 persistence skill, (c) difference between 𝑁𝑇𝑅,  skill and (SSH  + VLM)-only skill, and (d) difference between 𝑁𝑇𝑅,  skill 

and linearly detrended 𝑁𝑇𝑅,  skill. 325 

 

The IBE-correction impacts reliability differently depending on the region, improving it for gauge stations roughly 

north of New York City and decreasing it for mid-Atlantic stations with no discernible change in sharpness (not shown), while 

there is little impact further south in the Carolinas. Thus, on balance, the notable benefits of the IBE-correction for the Northeast 

Coast appear to outweigh the small reduction in reliability for the mid-Atlantic region, particularly because the mid-Atlantic 330 

gauge stations have marginal sharpness that weighs against their overall usefulness. With the linear trend removed, reforecasts 

at all East Coast gauge stations become more overconfident and less sharp (e.g., Figs. 5b and 5c). 

 
Figure 5. (a) Year-round (2000-2019) East Coast 𝑁𝑇𝑅,  reliability (colored circles), sharpness (numbers), and percentage of 

forecasts that are in top forecast probability category versus lowest category (0-10% versus 90-100%). For reliability, slopes 335 

Figure 5. a Year-round
(2000-2019) East Coast
IFS reliability (colored
circles), sharpness
(numbers), and
percentage of forecasts
that are in top forecast
probability category
versus lowest category
(0-10% versus 90-
100%). For reliability,
slopes greater than 0.5
contribute to positive
Brier skill scores; for
sharpness, the scale
spans 0-100, with
smaller numbers
representing sharper
forecast distributions.
Panels b and c show
example reliability
diagrams and sharpness
distributions (ensemble
probability counts) for
two gauge stations,
Eastport, Maine and
Oregon Inlet Marina,
North Carolina,
respectively, where the
red ovals in panel a
highlight the location of
each station.

a) b)

c)
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greater than 0.5 contribute to positive Brier skill scores; for sharpness, the scale spans 0-100, with smaller numbers representing 

sharper forecast distributions. Panels (b) and (c) show example reliability diagrams and sharpness distributions (ensemble 

probability counts) for two gauge stations, Eastport, Maine and Oregon Inlet Marina, North Carolina, respectively, where the 

red ovals in panel (a) highlight the location of each station. 

3.2.3 Gulf Coast 340 

𝑁𝑇𝑅,  skill for many of the Gulf Coast stations remains at or above 0.5 until at least forecast Week 6 (Fig. 6a), and for nearly 

all gauge stations, the 𝑁𝑇𝑅,  reforecasts are more skillful than persistence for Weeks 2-6 (Fig. 6b). The IBE modestly improves 

Weeks 1-2 reforecast skill for gauge stations between Mississippi and the southern tip of Florida (Fig. 6c), while the linear 

trend greatly increases reforecast skill for all stations for leads at and beyond Week 2. While the steric and eustatic contributions 

to the linear trend are generally spatially uniform across the Gulf (e.g., Fig. 2.1 of Sweet et al. 2022), the effect of the VLM 345 

trend on reforecast skill is largely confined to gauge stations between Rockport, Texas and Dauphin Island, Alabama (Fig. 

10a), where VLM improves correlation skill by roughly 0.1-0.2, particularly for forecast leads beyond Week 2 (Fig. S13c). 

Nevertheless, even when linear trend is removed from the reforecasts, reforecast skill (i.e., IFS-only SSH + IBE) exceeds 

linearly detrended persistence skill for leads out to 2-3 weeks for Texas gauge stations and out to 6 weeks for stations between 

Louisiana and Florida (not shown). 350 

Gulf Coast forecasts have good reliability (Fig. 7a), with regression slopes in the 0.6-0.9 range. There is one outlier 

gauge station relatively far inland (Berwick, Atchafalaya River, LA, Fig. 7b), with poorer reliability and with relatively few 

forecasts in the highest probability category (~10%). Most of the Gulf Coast stations have reasonably decent sharpness quite 

similar to the St. Petersburg, FL gauge station (Fig. 7c). The IBE-correction increases reliability for gauge stations from 

Mississippi east to all of Florida (not shown), but appears not to impact reforecast skill in Louisiana or Texas. As for the East 355 

Coast, linearly detrending the reforecasts mildly decreases their reliability and sharpness (e.g., Fig. 7c). 
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Figure 6. (a) Year-round (2000-2019) Week 3 𝑁𝑇𝑅,  anomaly correlation skill between nearest grid point 𝑁𝑇𝑅,  reforecasts 

anomalies (SSH + IBE + VLM) and Gulf Coast NOAA gauge station 𝑁𝑇𝑅 anomalies. (b) Difference between 𝑁𝑇𝑅,  skill and 

𝑁𝑇𝑅 persistence skill, (c) difference between 𝑁𝑇𝑅,  skill and (SSH  + VLM)-only skill, and (d) difference between 𝑁𝑇𝑅,  skill 360 

and linearly detrended 𝑁𝑇𝑅,  skill. 

 

 
Figure 7. (a) Year-round (2000-2019) Gulf Coast 𝑁𝑇𝑅,  reliability (colored circles), sharpness (numbers), and percentage of 

forecasts that are in top forecast probability category versus lowest category (0-10% versus 90-100%). For reliability, slopes 365 

greater than 0.5 contribute to positive Brier skill scores; for sharpness, the scale spans 0-100, with smaller numbers representing 

sharper forecast distributions. Panels (b) and (c) show example reliability diagrams and sharpness distributions (ensemble 

Figure 7. a Year-round (2000-2019) Gulf
Coast IFS reliability (colored circles), sharpness
(numbers), and percentage of forecasts that are
in top forecast probability category versus
lowest category (0-10% versus 90-100%). For
reliability, slopes greater than 0.5 contribute to
positive Brier skill scores; for sharpness, the
scale spans 0-100, with smaller numbers
representing sharper forecast distributions.
Panels b and c show example reliability
diagrams and sharpness distributions (ensemble
probability counts) for two gauge stations,
Berwick, Atchafalaya River, Louisiana and St.
Petersburg, Florida , respectively, where the red
ovals in panel a highlight the location of each
station.

a)

b) c)
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probability counts) for two gauge stations, Berwick, Atchafalaya River, Louisiana and St. Petersburg, Florida , respectively, 

where the red ovals in panel (a) highlight the location of each station. 

3.2.4 Alaska 370 

Most Alaskan gauge stations have modest skill (anomaly correlation>0.5) through Week 3 (Fig. 8a), with skill exceeding 

persistence at all leads (Fig. 8b). The IBE notably contributes to reforecast skill for all stations out to two to three week lead 

times, and for a handful of stations, out to even longer leads (Fig. 8c). Reliability is also quite good, with all but a few stations 

having regression slopes >0.6 and moderate sharpness (Fig. 9). With the exception ofExcept for Nome, Norton Sound, AK 

and Prudhoe Bay, AK, the IBE notably increases the slopes of the reliability regression lines (not shown), with many stations 375 

rising from poor reliability slopes (0.1-0.4) to quite useful slopes (0.5-0.8). 

Removing the linear trend decreases overall skill for stations extending from roughly Kodiak Island southeast to Sitka 

(Fig. 8d). Along this section of the Alaskan coast, glacial isostatic rebound (see references in Section 2.2) is causing the land 

surface to rise, which is reflected in relatively large VLM rates over southeastern Alaska (Fig. 10a). Indeed, failing to account 

for VLM can lead to large errors in the 𝑁𝑇𝑅 anomaly time series; see, for example, the 𝑁𝑇𝑅,  (blue lines) versus IFS-only (SSH 380 

+ IBE) time series (orange lines) for Yakutat and Skagway, Alaska in Figs. 10b and 10c, respectively. In general, derived VLM 

rates (Kopp et al. 2014, Sweet et al. 2022) successfully account for a large portion of the negative linear 𝑁𝑇𝑅 trend, though 

the VLM corrected time series (𝑁𝑇𝑅,) at some gauge stations appear to more closely match the observed trend than for others 

(e.g., the VLM correction appears to underestimate the size of the land motion trend for Yakutat, Fig. 10b). Indeed, adjusting 

the IFS reforecasts with the predicted VLM rates does not completely resolve all trend issues, as evidenced by Port Alexander 385 

(Fig. 9c), where linearly detrending the reforecasts increases reliability. For stations in the Aleutian Islands and northwards to 

Prudhoe Bay, AK where isostatic rebound is either not occurring or is not significant, accounting for VLM only mildly 

increases reliability. Nevertheless, adjusting the IFS reforecasts to account for the VLM trend notably improves both 

deterministic and probabilistic 𝑁𝑇𝑅,  reforecast skill between Kodiak Island and Sitka for all forecast leads, increasing anomaly 

correlations by 0.1-0.75 (Fig. S13a). 390 
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Figure 8. (a) Year-round (2000-2019) Week 3 𝑁𝑇𝑅,  anomaly correlation skill between nearest grid point 𝑁𝑇𝑅,  reforecasts 

anomalies (SSH + IBE + VLM) and Alaska NOAA gauge station 𝑁𝑇𝑅 anomalies. (b) Difference between 𝑁𝑇𝑅,  skill and 𝑁𝑇𝑅 

persistence skill, (c) difference between 𝑁𝑇𝑅,  skill and (SSH  + VLM)-only skill, and (d) difference between 𝑁𝑇𝑅,  skill and 

linearly detrended 𝑁𝑇𝑅,  skill. 395 

 
Figure 9. (a) Year-round (2000-2019) Alaska 𝑁𝑇𝑅,  reliability (colored circles), sharpness (numbers), and percentage of 

forecasts that are in top forecast probability category versus lowest category (0-10% versus 90-100%). For reliability, slopes 

greater than 0.5 contribute to positive Brier skill scores; for sharpness, the scale spans 0-100, with smaller numbers representing 

sharper forecast distributions. Panels (b) and (c) show example reliability diagrams and sharpness distributions (ensemble 400 

probability counts) for two gauge stations, Skagway, Taiya Inlet, Alaska and Port Alexander, Alaska, respectively, where the 

red ovals in panel (a) highlight the location of each station. 

Figure 10. a Year-round (2000-2019) Alaska IFS reliability (colored circles), sharpness (numbers), and
percentage of forecasts that are in top forecast probability category versus lowest category (0-10% versus
90-100%). For reliability, slopes greater than 0.5 contribute to positive Brier skill scores; for sharpness, the
scale spans 0-100, with smaller numbers representing sharper forecast distributions. Panels b and c show
example reliability diagrams and sharpness distributions (ensemble probability counts) for two gauge
stations, Skagway, Taiya Inlet, Alaska and Port Alexander, Alaska, respectively, where the red ovals in
panel a highlight the location of each station.

a)

b) c)
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Figure 10. (a) Vertical land motion rates (cm/year) shown as colored contours with the NOAA gauge station locations used 

in the study shown as filled circular markers, where the color of the filled marker denotes the improvement in anomaly 405 

correlation skill when VLM is included in the reforecast, i.e., skill of 𝑁𝑇𝑅,  reforecast minus skill of IFS-only reforecast (SSH 

+ IBE). (b) Week 3 𝑁𝑇𝑅,  reforecast time series (SSH + IBE + VLM, blue line), IFS-only reforecast (SSH + IBE, gray line) 

and NOAA gauge station 𝑁𝑇𝑅 time series (orange line) at Yakutat, Yakutat Bay, Alaska gauge station. (c) same as (b) but for 

the Skagway, Taiya Inlet, Alaska gauge station 𝑁𝑇𝑅 time series (orange line) at Yakutat, Yakutat Bay, Alaska gauge station.  

Figure 10. a Vertical land motion rates (cm/year) shown as colored contours with the NOAA gauge station locations used in
the study shown as filled circular markers, where the color of the filled marker denotes the improvement in anomaly
correlation skill when VLM is included in the hindcast, i.e., skill of!"#$ hindcast minus skill of IFS-only hindcast (SSH +
IBE). b Week 3 !"#$ hindcast time series (SSH + IBE + VLM, blue line), IFS-only hindcast (SSH + IBE, gray line) and
NOAA gauge station NTR time series (orange line) at Yakutat, Yakutat Bay, Alaska gauge station. c same as b but for the
Skagway, Taiya Inlet, Alaska gauge station.

NOAA gauge station NTR observation                              IFS-only hindcast (without VLM) !"#$ hindcast (with VLM correction)
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3.3 Seasonality of deterministic skill 410 

While coastal flooding can happen in any season, all four United States sub-regions tend to have peaks in water levels 

exceeding the 90th percentile of the observed 𝑁𝑇𝑅 during the winter months (not shown). To understand how the IFS performs 

during these peak exceedance seasons, Figs. 11 and 12 group forecasts into four 3-month periods (JFM, AMJ, JAS, and OND), 

where for each season and gauge station, the latest forecast lead when 𝑁𝑇𝑅,  anomaly correlation skill exceeds 0.5 is listed, 

both with the linear trend included (lefthand columns) and without (righthand columns). 415 

With the linear trend included, forecasts skill for the East remains above 0.5 for forecast leads out to at least two 

weeks for all seasons and gauge stations, with the exception of the East Coast during late fall to early winter when skill only 

exceeds 0.5 for leads of one week (Fig. 11a).  For the Gulf Coast, reforecast skill exceeds 0.5 for most stations through at least 

2-3 weeks, but as far out as 6 weeks for many stations and seasons (Fig. 11c). With the linear trend removed, skill out to and 

beyond two week lead times is largely confined to late winter to early summer for the East Coast (Fig. 11b) and late fall to 420 

early spring for the Gulf Coast (Fig. 11d). 

Reforecast skill is notably better for the central to southern portions of the West Coast, and is relatively insensitive to 

a linear trend (cf. Figs. 12a and 12b), with reforecast skill exceeding 0.5 through forecast Week 6 for nearly all California 

gauge stations throughout the year. For Oregon and Washington, skill exceeds 0.5 for forecast leads of 2-3 weeks. For Alaska, 

reforecast skill for most stations exceeds 0.5 through Week 3 for the cold season (Oct.-Mar.) but only through Week 2 for the 425 

warm season (Apr.-Sep.), with the exception of the stations between Yakutat and Juneau, where reforecast skill exceeds 0.5 at 

all lead times almost year-round (Figs. 12c and 12d). 
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Figure 11. Seasonal cycle of 𝑁𝑇𝑅,  reforecast skill (2000-2019) where the color bar (and number in each box) corresponds to 

the latest forecast lead (from week 1 to 6) when the anomaly correlation is greater than or equal to 0.5. In each panel, the 430 

seasonal cycle is split into four three-month periods, where the panels correspond to correlations between: (a) East Coast 

NOAA gauge station 𝑁𝑇𝑅 anomalies and 𝑁𝑇𝑅,  reforecasts; (b) linearly detrended East Coast NOAA gauge station 𝑁𝑇𝑅 

anomalies and linearly detrended 𝑁𝑇𝑅,  reforecasts; (c) Gulf Coast NOAA gauge station 𝑁𝑇𝑅 anomalies and 𝑁𝑇𝑅,  reforecasts; 

(d) linearly detrended Gulf Coast NOAA gauge station 𝑁𝑇𝑅 anomalies and linearly detrended 𝑁𝑇𝑅,  reforecasts. 

Figure 11. a Seasonal cycle of IFS forecast skill (2000-2019) where the color bar (and number in each box) corresponds to
the latest forecast lead (from week 1 to 6) when the anomaly correlation is greater than or equal to 0.5. The seasonal cycle is
split into four three-month periods, where the panels correspond to correlations between: a East Coast NOAA gauge stations
anomalies and IFS hindcasts (SSH + IBE + VLM); b detrended East Coast NOAA gauge stations anomalies and detrended
IFS hindcasts (SSH + IBE + VLM); c Gulf Coast NOAA gauge stations anomalies and IFS hindcasts (SSH + IBE + VLM);
b detrended Gulf Coast NOAA gauge stations anomalies and detrended IFS hindcasts (SSH + IBE + VLM).

a) b)

c) d)
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 435 
Figure 12. Seasonal cycle of 𝑁𝑇𝑅,  reforecast skill (2000-2019) where the color bar (and number in each box) corresponds to 

the latest forecast lead (from week 1 to 6) when the anomaly correlation is greater than or equal to 0.5. In each panel, the 

seasonal cycle is split into four three-month periods, where the panels correspond to correlations between: (a) West Coast 

NOAA gauge station 𝑁𝑇𝑅 anomalies and 𝑁𝑇𝑅,  reforecasts; (b) linearly detrended West Coast NOAA gauge station 𝑁𝑇𝑅 

anomalies and linearly detrended 𝑁𝑇𝑅,  reforecasts; (c) Alaska NOAA gauge station 𝑁𝑇𝑅 anomalies and 𝑁𝑇𝑅,  reforecasts; (d) 440 

linearly detrended Alaska NOAA gauge station 𝑁𝑇𝑅 anomalies and linearly detrended 𝑁𝑇𝑅,  reforecasts. 

Figure 12. a Seasonal cycle of IFS forecast skill (2000-2019) where the color bar (and number in each box) corresponds to
the latest forecast lead (from week 1 to 6) when the anomaly correlation is greater than or equal to 0.5. The seasonal cycle is
split into four three-month periods, where the panels correspond to correlations between: aWest Coast NOAA gauge stations
anomalies and IFS hindcasts (SSH + IBE + VLM); b detrended West Coast NOAA gauge stations anomalies and detrended
IFS hindcasts (SSH + IBE + VLM); c Alaska NOAA gauge stations anomalies and IFS hindcasts (SSH + IBE + VLM); b
detrended Alaska NOAA gauge stations anomalies and detrended IFS hindcasts (SSH + IBE + VLM).

a) b)

c) d)
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4 Conclusions 

The primary goal of this paper is to assess whether the suitability of the current generation of forecast models are suitable for 

making coastal inundation forecasts on subseasonal timescales. We have demonstrated that on subseasonal timescalesIndeed, 

we find that, the deterministic skill of the IFS and CNRM exceeds that of damped persistence for many US coastal regions for 445 

forecast leads extending out to 2-3 weeks, with the IFS continuing to have skill above damped persistence. At and beyondfor 

longer leads through Week 6. Week 3, only the IFS is more skillful than damped persistence for nearly all US gauge stations. 

However, when reforecasts and persistence reforecasts are linearly detrended, the skill of both models over persistence 

increases, highlighting the ability of the models to successfully simulate water level anomalies related to subseasonal climate 

variability. When a simple bias correction is applied to the IFS’ probability distribution, the IFS generally has ‘useful’ 450 

reliability (Weisheimer and Palmer, 2014) that contributes positively to the Brier skill score (Mason, 2004), though the need 

for the probability bias correction highlights that the model ensemble spread is consistently underdispersive. Thus, our results 

suggest that the current generation of operational forecast models provide predictions of coastal inundation with sufficient skill 

to form the basis for improved forecast guidance of high tide flooding predictions on subseasonal timescales. 

We have also shown howdemonstrated the regional and forecast lead time dependence of skill of weekly 𝑁𝑇𝑅,  455 

prediction skills varies considerably by region and forecast lead time. California has by far highest skill, with anomaly 

correlation skill above 0.6 through at least Week 6. Many portions of Alaska also have anomaly correlation skill that reaches 

or exceeds 0.5 for leads through Week 3, with some stations in southeastern Alaska having skill exceeding 0.5 through Week 

6, though for those stations, much of this skill is only evident whenonce past VLM trends are added as a post-processing 

steptaken into account. On the East Coast, on the other hand, skill is quite low for the mid-Atlantic states but is relatively 460 

higher south of Cape Hatteras and further north along the New England coast (Figs. 1 and 4), For the southern and northern 

portions of the East Coast,where anomaly correlation skill generally ranges from 0.4 to 0.5 for forecast leads out to at least 

Week 3., while forFor many Gulf Coast stations, skill remains above 0.4 to 0.5 for leads out to at least Week 6. However, for 

many Alaskan and East and Gulf Coast gauge stations, a large fraction of the reforecast skill can be attributed to the linear 

𝑁𝑇𝑅,  trend, which includes steric and eustatic trends that are explicitly accounted for in the model reforecasts, as well as VLM 465 

trends that are added via post-processing.  

The impact ofHow the including the predicted IBE in impacts our 𝑁𝑇𝑅,  reforecast skills also appears to be stronglyly 

dependent upon forecast lead time and geographyregion. For all regions, Aaccounting for the IBE primarily improves 

reforecast skill during forecast Weeks 1 and 2, which is consistent with predictable IBE signals being limited to weather 

timescale atmospheric pressure fluctuations (e.g., the timescales suggested in Fig. 2 of Woodworth et al. 2019). HoweverStill, 470 

the IBE is essential since, the IBE is nevertheless important to include, because for many gauge stations, the Week 1 IFS 

reforecasts are only have more skillful than persistence when the IBE-correction is applied. In terms of geography, the IBE 

contributes to reforecast skill most in Alaska, far northern California-southern Oregon, the northern portion of the East Coast 

(particularly New England), and the Gulf Coast portion of Florida. The regional dependence of IBE-related skill improvement 
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on geography is at least somewhat consistent with the idea that the IBE is more important at higher latitudes (Chelton and 475 

Davis, 1982), particularly in the Gulf of Alaska and the northern portion of the East Coast (Wunsch and Stammer, 1997; Ponte, 

2006). In terms of geography, the IBE contributes to reforecast skill most in Alaska, far northern California-southern Oregon, 

the northern portion of the East Coast (particularly New England), and the Gulf Coast portion of Florida. However, there are 

clearly other important factorsit is likely that Some of this may be related to the geographical dependence of MSLP reforecast 

skill itself also plays a role., whichFor example, for the IFS at Weeks 3-6 tends to behave higher MSLP skill for the East Coast 480 

and the Aleutian Islands than it is for the West Coast and mainland Alaska (Albers and Newman, 2019, see their Figs. 1 and 

S2)..; for exampleLikewise, while the importance of the IBE seems to monotonically increase from south to north along the 

East Coast (Figure 4), the middle of the West Coast appears to benefit more from including the IBE than do the northernmost 

West Coast gauge stations (Fig. 2). Some of this may be related to the geographical dependence of MSLP reforecast skill itself, 

which for the IFS at Weeks 3-6 tends to be higher for the East Coast and the Aleutian Islands than it is for the West Coast and 485 

mainland Alaska (Albers and Newman, 2019, see their Figs. 1 and S2). Overall, the skill improvement we find with a 

postprocessed IBE correction suggests that future forecast model development would benefit from the explicit inclusion of the 

IBE. 

The relatively low 𝑁𝑇𝑅,  reforecast skill for many regions suggests that usable 𝑁𝑇𝑅	forecast guidance may benefit 

from identifying ‘forecasts of opportunity’; that is, when predictions are expected to have skill at the time of forecast issuance 490 

(e.g., Albers and Newman, 2019; Lang et al. 2020; Mariotti et al. 2020; and references therein). For example, when the MJO, 

ENSO, or the stratosphere may produce predictable oceanic waves and/or teleconnections in sea level pressure and surface 

wind (Barnston et al., 2019; DelSole et al., 2017; Kim et al., 2018; Tripathi et al., 2015; Vitart & Molteni, 2010, Albers and 

Newman, 2021) may also be times when coastal 𝑁𝑇𝑅,  anomalies are particularly predictable, which may be helpful for issuing 

more definitive guidance to many coastal communities and stakeholders.While this study has not evaluated processes leading 495 

to the geographic variations in skill, some inferences can be drawn. For the southern and central portion of California, the 

relatively high reforecast skill likely can be anticipated as a consequence of coastal Kelvin waves and remote wind variability 

from coupled modes of variability including ENSO (Menéndez and Woodworth, 2010; Arcodia et al., 2024, Amaya et al. 

2022). For the southern and central portion of California, the relatively high reforecast skill likely arises from coastal Kelvin 

waves and remote wind variability from coupled modes of variability including ENSO (Menéndez and Woodworth, 2010; 500 

Arcodia et al., 2024, Amaya et al. 2022). On the East Coast, on the other hand, skill is quite low for the mid-Atlantic states, 

but is relatively higher south of Cape Hatteras and further north along the New England coast (Figs. 1 and 4). For the EastOne 

potential explanation for the variation of skill from south to north on the East Coast, hinges on a combination of factors 

including the effect of the Gulf Stream and the NAO. In particular, Gulf Stream variability and coastal SLAs are known to be 

correlated (Ezer et al., 2013; Ezer, 2016; Chi et al., 2023), which suggests that any identifying predictable Gulf Stream 505 

subseasonal anomalies that are predictable on subseasonal timescales may contribute lead to identifying times of higher 𝑁𝑇𝑅,  

reforecast skill along the coast from Florida through the Gulf Stream separation point near Cape Hatteras, since Gulf Stream 

variability and coastal SLAs are known to be correlated (Ezer et al., 2013; Ezer, 2016; Chi et al., 2023). LikewiseIn contrast, 
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the increase in coastal reforecast skill further north along the New England portion of the coast may be associated with the 

NAO, which is occasionallywhose predictable skill on subseasonal timescales can be anticipated from prior stratospheric and 510 

tropical conditions (e.g., Albers et al. 2021 and references therein), and since the NAO has a stronger influence further north 

in New England versus the mid-Atlantic (Hurrell et al. 2003, Visbeck et al. 2003). Our study will form the basis for future 

work that uses dynamical models to better predict these subseasonal forecasts of opportunity. 

With the exception of southern and central California and parts of Alaska, the relatively low 𝑁𝑇𝑅,  reforecast skill for 

many regions suggests that forecast guidance of 𝑁𝑇𝑅s may benefit from considering the role of ‘forecasts of opportunity’ 515 

(e.g., Albers and Newman, 2019; Lang et al. 2020; Mariotti et al. 2020; and references therein). For example, time periods 

when the MJO, ENSO, or the stratosphere may produce predictable oceanic waves and/or teleconnections in sea level pressure 

and surface wind (Barnston et al., 2019; DelSole et al., 2017; Kim et al., 2018; Tripathi et al., 2015; Vitart & Molteni, 2010, 

Albers and Newman, 2021) may also translate to time periods when coastal 𝑁𝑇𝑅,  anomalies are particularly predictable, which 

may be helpful for issuing more definitive guidance to many coastal communities and stakeholders. 520 
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