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Abstract. Developing predictions of coastal flooding risk on subseasonal timescales (2-6 weeks in advance) is an emerging
priority for the National Oceanic and Atmospheric Administration (NOAA). In this study, we assess the ability of two current
operational forecast systems, the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS)
and the Centre National de Recherches Météorologiques climate model (CNRM), to make subseasonal ensemble predictions
of the non-tidal residual component of coastal water levels at United States coastal gauge stations for the period 2000-2019.
These models were chosen because they assimilate satellite altimetry at forecast initialization and attempt to predict the mean
sea level, including a global mean component whose absence in other forecast systems complicates assessment of tide gauge
reforecast skill. Both forecast systems have skill that exceeds damped persistence for forecast leads through 2-3 weeks, with
IFS skill exceeding damped persistence for leads up to six weeks. Post-processing forecasts to include the inverse barometer
effect, derived from mean sea level pressure forecasts, improves skill for relatively short forecast leads (1-3 weeks).
Accounting for vertical land motion of each gauge primarily improves skill for longer leads (3-6 weeks), especially for the
Alaskan and Gulf Coasts; sea-level trends contribute to reforecast skill for both model and persistence forecasts, primarily for
the East and Gulf Coasts. Overall, we find that current forecast systems have sufficiently high levels of deterministic and

probabilistic skill to be used in support of operational coastal flood guidance on subseasonal timescales.

1 Introduction

Over the past several decades, nearly all United States coastal regions have experienced a steady increase in the frequency,
extent, and duration of high tide flooding, particularly the East and Gulf Coast regions (Sweet et al. 2018, Sweet et al. 2022).
Asseetated-with-theThe increased flooding frequency is associated with risks to are-trillions of dollars #-of property and

infrastructure, as well as risks te-coastal ecosystems (Fleming et al. 2018 and references therein). As a result, there is an
emerging need to provide high tide flooding outlooks on subseasonal-to-annual timescales (Dusek et al. 2022, NOAA Coastal

Inundation Framework).



35

40

45

50

55

60

High tide flooding (HTF) can be defined in terms of water levels exceeding gauge station water level thresholds,
where the thresholds are typically determined based on local conditions, including topography, land-cover types, and risk to
infrastructure (Sweet et al. 2018; Kavanaugh et al. 2023). The water levels, in turn, can be considered the sum of a tidal

component, a sea-level trend component, and a non-tidal residual (Dusek et al. 2022; see also Widlansky et al. 2017). For the

West Coast and parts of the East Coast, the tidal component dominates water level in terms of amplitude relative to the non-
tidal residual, either because the tidal range is large or because the non-tidal residual is small, while in other regions, including
the Gulf Coast, the non-tidal residual is comparable to the tidal component (Merrifield et al. 2013, Sweet et al. 2014). Still,
predicting non-tidal residuals is important for all coastal regions because, as sea levels continue to rise, even small amplitude
non-tidal residual anomalies can push high tide water levels past flood thresholds (e.g., Sweet and Park, 2014).

Currently, NOAA’s National Ocean Service issues a monthly HTF outlook for a wide range of stakeholders (NOAA
Coastal Inundation Framework; Dusek et al., 2022) by using damped persistence of current gauge station monthly non-tidal
residual anomalies as part of its predicted total water levels. If current operational models could in fact skillfully predict coastal
sea level anomalies on subseasonal timescales, specifically by outperforming damped persistence, then incorporating those
predictions in the HTF outlook could improve upon its forecast guidance. The non-tidal residual is driven by a multitude of
processes operating on timescales ranging from minutes to decades (Sweet et al. 2018, Woodworth et al. 2019, and references
therein). Many of these processes, including daily timescale wind forcing and storm surge, are largely governed by individual
weather systems, which are generally not predictable beyond 10-14 days (Lorenz, 1963, 1969; Weber and Mass, 2017; Bauer
et al., 2015; Simmons and Hollingsworth, 2002; Zhang et al., 2019). However, sea level anomalies are also correlated with
several modes of large-scale climate variability, including the Madden-Julian Oscillation (MJO), the El Nifio-Southern
Oscillation (ENSO), and the North Atlantic Oscillation (NAO) (Enfield and Allen, 1980; Menéndez and Woodworth, 2010;
Sweet and Zervas, 2011, Ezer and Atkinson, 2014; Sweet and Park, 2014; Valle-Levinson et al., 2017; Han et al., 2019; Amaya
et al., 2022; Boucharel et al., 2023; Arcodia et al., 2024; Renkl et al., 2024), which are associated with potentially predictable
signals on subseasonal-to-seasonal (S2S) timescales (e.g, Vitart and Molteni, 2010; Barnston et al., 2017; Albers et al. 2021
and references therein). For example, Amaya et al. (2022) recently demonstrated that coastal Kelvin waves related to ENSO
are associated with sea surface height anomalies along the West Coast of the United States that can be skillfully predicted.
Whether these climate modes also introduce predictable sea level anomalies along the other coasts of the United States via
wind stress and atmospheric pressure anomalies associated with atmospheric teleconnections remains an open question.

In this study, we assess the skill of current forecast models for predicting non-tidal anomalies at gauge stations on
subseasonal timescales. Of course, there is a clear difference in spatial scale between the model grid size, on the order of tens
of kilometers, and the point locations of the gauge stations. Here, we will take a relatively simple approach, using the closest
oceanic model grid point to a particular gauge station to make forecasts for that station, and do not consider the additional
complication of how best to downscale the model output to much smaller scales (e.g., Long et al. 2023). This approach hinges
in part on the assumption that open ocean or near-shore sea level subseasonal anomalies will be representative of the sea level

subseasonal anomalies at gauge stations. This is a reasonably well-justified assumption, as many coastal gauge stations are
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fairly well-correlated with the nearby open ocean (Vinogradov and Ponte, 2011). However, the connection between open ocean
and coastal sea level anomalies varies by region due to many factors, including shelf depth and extent, and eastern versus
western boundary ocean dynamics (Hughes et al., 2019; Han et al., 2019). For example, for eastern boundary regions (e.g., the
US West Coast), coastal sea level will be influenced by coastally trapped waves propagating poleward from equatorial regions
and local direct forcing; for western boundary regions, on the other hand, models need to successfully simulate more processes,
including wave signals from all latitudes (Hughes et al. 2019). Gauge stations located on islands, on the other hand, which
typically have narrow shelfs, should have sea level variability more closely matching the nearby open ocean (Vinogradov and
Ponte, 2011). Coastal shelf depth also effects the relative importance of wind stress versus atmospheric pressure effects; for

example, along shalewercoasts with shallow shelves, wind stress driven sea level variability is relatively more important than

the inverse barometer effect (IBE) on daily to monthly timescales (Woodworth et al. 2019 and references therein).

The two forecast systems evaluated here, the European Centre for Medium Range Weather Forecasting Integrated
Forecasting System reforecasts (IFS) and the Centre National de Recherches Météorologiques climate model (CNRM), were
chosen in part because they both assimilate ocean altimetry data into their initial conditions, which previous studies have

suggested is important to sea level forecast skill (Widlansky et al. 2023; Long et al. 2024). In addition, since the forecast

systems are verified against tide gauge observations, we examine the impact of post-processing reforecasts by including both
the IBE, computed from the corresponding mean sea level pressure reforecasts, and an estimate of local vertical land motion
determined for each gauge location. Model and verification datasets and skill evaluation methods, including deterministic and
probabilistic metrics, are outlined in Section 2. This is followed by an evaluation of open ocean sea surface height reforecast
skill and coastal gauge station skill for the United States (Section 3.1-3.2), where gauge stations are broken down into four
regions: the East Coast, Gulf Coast, West Coast, and Alaska. The seasonality of skill is briefly discussed at the end of Section

3.3, which is followed by a discussion of the implications of the results in the Conclusions.

2 Data and verification metrics
2.1 Forecast models and verification data

Two dynamical forecast models are considered, the European Centre for Medium Range Weather Forecasting Integrated
Forecasting System reforecasts (IFS model versions CY 46R1- 47R1 for the reforecast period 2000-2019,
https://www.ecmwf.int/en/publications/ifs-documentation) and the Centre National de Recherches Météorologiques climate
model (CNRM model version CM6.1, for the reforecast period 1993-2017, Voldoire et al. 2019). Both models utilize the
Nucleus for European Modeling of the Ocean (NEMO, Madec et al., 2017) ocean model run at 1/4° resolution, and assimilate
ocean altimetry data into their initial conditions (ECMWF ocean analysis for the IFS and the Mercator-Ocean ocean and sea-
ice analysis for the CNRM). Reforecast data, obtained from the S2S Prediction database (Vitart et al. 2017), was only available
at 1° resolution, so all calculations, including identifying the closest model grid point to each gauge station, is based on this

resolution.
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For the open ocean, reforecasts are verified against sea surface height (SSH) from the Copernicus Marine Service
Global Ocean Physics Reanalysis 12v1l (GLORYS, Lellouche et al., 2021), which has been extensively verified in North
American waters (Amaya et al. 2022; Amaya et al. 2023; Castillo-Trujillo et al. 2023; Feng et al. 2024). For coastal regions of
the continental United States and Alaska, reforecasts are further verified against National Oceanic and Atmospheric
Administration (NOAA) water level gauge stations (NOAA Tides and Currents
https://tidesandcurrents.noaa.gov/PageHelp.html). Only gauge stations that have at least 10 years of data during the reforecast
records of the IFS and CNRM are considered, yielding 47 stations for the East Coast, 32 stations for the Gulf of Mexico, 35
stations for the West Coast, and 23 stations for Alaska (see Table 1 for a list of the gauge stations and the number of days in
each verification time series). When comparing the reforecast skill of the IFS and CNRM (Section 3.1), we verify against their
common reforecast periods, 2000-2017; when evaluating the reforecast skill of the IFS alone (Sections 3.2-3.3), we use the
full IFS reforecast period, 2000-2019.

As discussed in the Introduction, water levels at gauge stations are separated into three components for the HTF
outlooks (Dusek et al., 2022): a 37-constituent tidal component (e.g., Sweet and Zervas, 2011), a linear sea level trend
component, and a non-tidal residual. Here, for comparison with the reforecasts, we remove the local tidal components, but we
do not remove the trend from the water level gauge data, so that the verification time series of non-tidal residuals (NTR) at
each tide gauge includes the local trend component, in contrast with how it is defined for the HTF framework. Including the
trend component in the reforecasts and verifications of the non-tidal residual allows an assessment of contribution of the linear

trend to reforecast skill, for example, by comparing the difference in anomaly correlation skill with and without the linear trend

included (Figures 2d, 4d, 6d, and 8d), and comparing reliability with and without the linear trend included (Figures 3, 5, 7, and

9).r

IFS reforecasts are available from initialization out to forecast lead day 46, while CNRM reforecasts are available out

to forecast lead day 47; both reforecast sets were obtained as daily averages. To create reforecast anomalies, Al-reforecastand

ing-the lead-dependent 20- or 25-year reforecast climatologies of

the IFS and CNRM periods, respectively, are substracted from the daily average data, which implicitly applies a mean bias
correction; further details regarding the creation of the IFS and CNRM climatologies (which are different for each model) are
in the Supplement (Section S1). Next, weekly averages are calculated from the daily reforecast data, where Week 1 includes

the average of forecast days 1-7, Week 2 includes days 8-14, etc. To calculate Whenecomputing-verification-climatologies;
for-the daily average GLORYS yverification anomalies, we use a period spanning both the CNRM and IFS reforecast records

(2000-2017),_where -a 365-day (plus one day for leap years) climatology is calculated by averaging over all years, and

extracting the first four harmonics (plus the mean) via Fourier transform (e.g., Epstein, 1988), yielding the final climatology,

which is then removed from the daily average GLORYS data. Weekly average GLORYS verification anomalies are then

created by applying a 7-day running mean to the daily data. whileferTo calculate the NOAA gauge stations anomalies, we

calculate a daily average climatology use-for the period over which the gauge station data is-seered-and available, generally
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20 years but slightly shorter for some stations (see Table 1), and remove that climatology from the daily averaged gauge station

data. A 7-day running mean is then applied to the gauge station data-.

East Coast West Coast

Station list Data length Station list Data length
(days) (days)

Eastport, ME 2088 San Diego, San Diego Bay, CA* 2098

(8410140) (9410170)

Bar Harbor, ME* 1943 La Jolla, CA* 2098

(8413320) (9410230)

Portland, ME* 2097 Los Angeles, CA* 2098

(8418150) (9410660)

Boston, MA* 2092 Santa Monica, CA* 2095

(8443970) (9410840)

Fall River, MA 2097 Santa Barbara, CA 1534

(8447386) (9411340)

Woods Hole, MA 2064 Oil Platform Harvest, CA 1745

(8447930) (9411406)

Nantucket Island, MA 2083 Port San Luis, CA* 2096

(8449130) (9412110)

Newport, RI* 2098 Monterey, CA* 2098

(8452660) (9413450)

Providence, RI* 2086 San Francisco, CA 2093

(8454000) (9414290)

New London, CT 2088 Redwood City, CA 2098

(8461490) (9414523)

New Haven, CT 2092 Alameda, CA* 2098

(8465705) (9414750)

Bridgeport, CT* 2087 Richmond, CA 2014

(8467150) (9414863)

Montauk, NY 2003 Point Reyes, CA* 2088

(8510560) (9415020)

Kings Point, NY* 2097 Port Chicago, CA 2081

(8516945) (9415144)

The Battery, NY* 2032 Arena Cove, CA* 2098

(8518750) (9416841)

Bergen Point West Reach, NY* 2049 North Spit, CA* 2090

(8519483)

(9418767)




Sandy Hook, NJ* 2087 Crescent City, CA 2064
(8531680) (9419750)

Atlantic City, NJ* 2050 Port Orford, OR* 1847
(8534720) (9431647)

Cape May, NJ* 2066 Charleston, OR* 2098
(8536110) (9432780)

Burlington, Delaware River, NJ 1835 South Beach, OR* 2098
(8539094) (9435380)

Marcus Hook, PA 1667 Garibaldi, OR 1515
(8540433) (9437540)

Philadelphia, PA 2090 Astoria, OR 2098
(8545240) (9439040)

Delaware City, DE 1880 Wauna, OR 1718
(8551762) (9439099)

Reedy Point, DE 2076 St Helens, OR 1863
(8551910) (9439201)

Lewes, DE* 2093 Vancouver, WA 1815
(8557380) (9440083)

Ocean City Inlet, MD 1825 Skamokawa, WA 1703
(8570283) (9440569)

Cambridge, MD 2092 Toke Point, WA* 2058
(8571892) (9440910)

Tolchester Beach, MD 2093 Westport, WA 1447
(8573364) (9441102)

Chesapeake City, MD 1716 La Push, Quillayute River, WA 1641
(8573927) (9442390)

Baltimore, MD 2098 Neah Bay, WA 2096
(8574680) (9443090)

Annapolis, MD 2065 Port Angeles, WA* 2098
(8575512) (9444090)

Solomons Island, MD 2027 Port Townsend, WA* 2098
(8577330) (9444900)

Washington, DC 1991 Seattle, WA* 2098
(8594900) (9447130)

Wachapreague, VA* 1719 Cherry Point, WA* 2079
(8631044) (9449424)

Kiptopeke, VA* 2098 Friday Harbor, WA* 2098
(8632200) (9449880)

Lewisetta, VA* 2098

(8635750)




Windmill Point, VA* 2048

(8636580)

Yorktown USCG Training Center, VA 1658

(8637689)

Sewells Point, VA* 2098

(8638610)

Money Point, VA 2096

(8639348)

Duck, NC* 2087

(8651370)

Oregon Inlet Marina, NC 2089

(8652587)

Beaufort, Duke Marine Lab, NC* 2098

(8656483)

Wilmington, NC 2083

(8658120)

Springmaid Pier, SC* 1962

(8661070)

Charleston, SC* 2098

(8665530)

Fort Pulaski, GA* 2092

(8670870)

Gulf Alaska

Station list Data length Station list Data length
(days) (days)

Fernandina Beach, FL* 2076 Ketchikan, AK 2098

(8720030) (9450460)

Mayport (Bar Pilots Dock), FL* 2001 Port Alexander, AK 1289

(8720218) (9451054)

Trident Pier, Port Canaveral, FL* 2093 Sitka, AK 2098

(8721604) (9451600)

Virginia Key, Biscayne Bay, FL* 2096 Juneau, AK 2093

(8723214) (9452210)

Vaca Key, Florida Bay, FL 2065 Skagway, Taiya Inlet, AK 2087

(8723970) (9452400)

Key West, FL 2086 Elfin Cove, AK 1510

(8724580) (9452634)




Naples, Gulf of Mexico, FL* 2044 Yakutat, Yakutat Bay, AK 2082
(8725110) (9453220)

Fort Myers, FL 2055 Cordova, AK 2091
(8725520) (9454050)

Port Manatee, FLL 2062 Valdez, AK 2084
(8726384) (9454240)

St. Petersburg, Tampa Bay, FL 2095 Seward, AK 2098
(8726520) (9455090)

Old Port Tampa, FL 1915 Seldovia, AK 2074
(8726607) (9455500)

Clearwater Beach, FL 2067 Nikiski, AK 2094
(8726724) (9455760)

Cedar Key, FL* 2047 Anchorage, AK 2087
(8727520) (9455920)

Apalachicola, FL 2084 Kodiak Island, AK 2091
(8728690) (9457292)

Panama City, FL 2061 Alitak, AK 1398
(8729108) (9457804)

Panama City Beach, FL 1496 Sand Point, AK 2072
(8729210) (9459450)

Pensacola, FL* 2028 King Cove, AK 1506
(8729840) (9459881)

Dauphin Island, AL* 1851 Adak Island, AK 2051
(8735180) (9461380)

Mobile State Docks, AL 1387 Unalaska, AK 2094
(8737048) (9462620)

Bay Waveland Yacht Club, MS* 1476 Port Moller, AK 1124
(8747437) (9463502)

Shell Beach, LA 1191 Village Cove, St Paul Island, AK 1409
(8761305) (9464212)

Grand Isle, LA 2062 Nome, Norton Sound, AK 2067
(8761724) (9468756)

New Canal Station, LA 1484 Prudhoe Bay, AK 2090
(8761927) (9497645)

Port Fourchon, Belle Pass, LA 1684

(8762075)

Berwick, Atchafalaya River, LA 1673

(8764044)

Lake Charles, LA 1555

(8767816)
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Calcasieu Pass, LA 1709

(8768094)
Morgans Point, Barbours Cut, TX* 2091
(8770613)
Eagle Point, Galveston Bay, TX* 2095
(8771013)
Galveston Pier 21, TX* 2098
(8771450)
Rockport, TX* 2013
(8774770)
Port Isabel, TX* 2093
(8779770)

Table 1. List of NOAA gauge stations organized by four regions: East Coast, Gulf Coast, West Coast, and Alaska. The number
of days listed for each gauge station corresponds to the number of reforecast days used when calculating IFS reforecast skill;
the IFS is initialized twice weekly, which means that ~2000 days equates to roughly ~20 years. Gauge stations with an * next

to them are stations that are included in the official NOAA High Tide Flooding Monthly Outlooks (Kavanaugh et al. 2023).

2.2 Inverse barometer effect and vertical land motion

The satellite altimeter-derived sea level products used to initialize the IFS are processed so as to remove static and high

frequency (~20 day cutoff) dynamic atmospheric pressure effects (Ponte and Ray, 2002; Centre national d’études spatiales,

2020). As a result, when the ocean model (e.g., NEMO in the case of the IFS) is run for forecasting purposes, it assumes an

atmosphere with no mass_(both because the assimilated observations are corrected to remove pressure effects, and because the

‘atmospheric pressure’ subroutine in NEMO is turned off), so that the SSH reforecasts include neither static nor dynamic

responses to atmospheric pressure fluctuations (Tai, 1993). However, the static effect of atmospheric pressure on the ocean
surface can be approximated via the so-called inverse barometer effect (Ross, 1854; Doodson, 1923; Groves and Hannan,
1968; Tai, 1993; Arbic, 2005; Ponte, 1992, 2006; Oddo et al., 2014; Long et al., 2021; Feng et al., 2024), which assumes a

static ocean response to atmospheric pressure forcing (Tai, 1993; Wunsch and Stammer, 1997). The IBE (1;;,,) is written as:

Nive = _ Pmsi—Pmsl (1)

Pocean 9

(e.g., Piecuch and Ponte, 2015), where p,,; is atmospheric mean sea level pressure, p,,,5; is the global mean sea level pressure
(MSLP, ocean-only), p,ceqan 1S the ocean density (assumed to be a constant value of 1025 kg m-3), and g is the acceleration
due to gravity. Although the assumptions inherent to the inverse barometer approximation are not always strictly valid, which
can lead to deviations from a purely static response (e.g., Wunsch, 1991; Le Traon and Gauzelin, 1997), previous studies have

suggested that including the IBE is important on subseasonal-to-seasonal timescales (e.g., Woodworth et al, 2019; Long et al.,
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2021, Feng et al. 2024). In this study, for the IFS we use the predicted p,,q; to predict the 17;,,H1BE from (1) at different forecast
leads, which is added to the corresponding SSH reforecasts as a post-processing step for each tide gauge. (For simplicity, we
do not display IBE-corrected CNRM reforecasts, as the IFS is generally more skillful.)

Over the course of several decades, the sea level at local gauge stations can change from vertical land motion (VLM)
due to a wide range of phenomena, including glacial isostatic rebound and groundwater and/or fossil fuel removal (Larsen et
al., 2004; Hu and Freymueller, 2019; Sweet et al. 2022; https://www.climate.gov/news-features/features/interactive-map-how-
has-local-sea-level-united-states-changed-over-time; Oelsmann et al., 2024). While VLM rate is too small to impact an
individual subseasonal forecast, it could be large enough in some regions to impact long-term skill assessment, and is implicitly
included in a persistence forecast. There exist many methods for estimating VLM (e.g., Kopp et al. 2014; Hammond et al.

2021; Oclsmann et al. 2024), however, here Feo-accountfor VEM; we use a relative simple approach swe-apphythat applies

VLM rates as a trend correction to each IFS forecast anomaly time series. The VLM rates we use are provided on a 1°x1° grid
(https://oceanservice.noaa.gov/hazards/sealevelrise/Sea_Level Rise Datasets 2022.zip; Sweet et al. 2022), and the grid point
nearest to each gauge station is used as the rate constant for the entire reforecast period.

In the remainder of the paper, we will refer to two types of reforecasts: (1) IFS and CNRM SSH reforecast anomalies,
which are the original ocean model output; and (2) IFS reforecast anomalies that are IBE- and VLM-corrected, which will be
referred to as non-tidal residual reforecasts:

NTR= SSH + IBE + VLM )
where in (2), the SSH and IBE are IFS quantities and the VLM is the trend correction described above. While we could have
adjusted the tide gauge NTR using the VLM prior to evaluating skill, we prefer aAdding both the IFS-IBE and VLM to the

IFS-based SSH reforecast, since NTR is the hindcast that should be verified directly against the NTR that is observed at the
tide gaugebestappreximationto-thetidesanse NTR. GLORYS does not include the IBE, so verifying the IFS and CNRM
against GLORYS is done using SSH only;=whi

2.3 SKkill metrics

Reforecast skill is evaluated both deterministically, using anomaly correlation, and probabilistically, using reliability and
sharpness (Atger, 1999; Jolliffe and Stephenson, 2011; Wilks 2011). Reliability is computed for events that exceed the upper
tercile of each gauge station’s water level, where the tercile threshold is calculated separately for the water level (non-tidal
residual) distributions of the reforecasts (NTR) and verifications (NTR), respectively. Using the tercile from the reforecast
ensemble sample distribution for computing the reforecast probability of an event (as opposed to using the observed tercile)
amounts to an in-sample bias correction of the reforecast probability distribution (Weisheimer and Palmer 2014), which
ensures that the reforecast probabilities and observed frequencies of tercile events are the same for each gauge station; this

correction is needed because, in general, the reforecast water level distributions are underdispersive (i.e., more narrow than

10
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observed). For all reliability diagrams, the observed distributions and relative forecast frequencies are split into ten bins (0-
10%, 10-20%,..., 90-100%).

To condense reliability metrics onto a single map, we use the slope of a regression line fitted to each gauge station’s
reliability curve, computed via a weighted least-squares regression fitted to the reliability bin values (i.e., the observed relative
frequency-reforecast probability pairs), where the weights are determined by the number of events in each observed frequency-
reforecast probability bin. Since we have applied the reforecast probability bias correction, the regression lines always intersect
the tercile-tercile point (0.33, 0.33) on the reliability diagrams, so that a regression line with a slope greater than 0.5 contributes
positively to the Brier skill score (e.g., Mason 2004), though in general, any reliability regression line that is relatively close
to 0.5 is probably “useful’ for making forecast guidance (see e.g., Weisheimer and Palmer, 2014 for a discussion on this point).
We also determine forecast sharpness, which measures the ability of a forecast system to issue more definitive guidance (i.e.,
beyond simply forecasting the climatological probability), as

SHP = ~ 3, pi(1)(1 — p;((1)) * 400 (3)
(Daan 1984; Potts 2011), where p;(1) is the probability of exceeding the tercile threshold for each forecast, i, where each ‘7’
refers to a forecast initialization and verification pair. This expression yields SHP =0 for the sharpest forecasts (when all the
forecasts are either 0% or 100%) and SHP =100 for the most blurred forecasts (multiplying the expression in (3) by 400 is not
strictly necessary, but is done to provide a more intuitive range of SHP values, spanning 0 to 100 instead of 0 to 0.25). Since
a forecast system can be perfectly sharp by always forecasting 0%, which would not be terribly useful, we also report the
percentage of forecasts that are in the 90-100% probability bin relative to the 0-10% bin.

Dynamical model reforecast skill is also compared to the skill of “damped” persistence of the observed coastal station
anomalies. Each damped persistence forecast is calculated using the mean of the previous seven days, multiplied by the lead-
dependent autocorrelation value, where the autocorrelation function is calculated independently from the NTR time series for
each gauge station. For all reforecasts, including from the CNRM, the IFS, and damped persistence, reforecasts are compared
with and without a linear trend removed from the anomaly time series, where the trend is independently computed relative to

the length of each time series being compared.

3 Results

We begin with a simple evaluation of the geographic distribution of year-round Week 3 SSH prediction skill for the IFS and
CNRM, verifying against GLORYS SSH anomalies, which also do not include the IBE (Section 3.1). Thereafter, we conduct
a more detailed regional prediction skill assessment of NTR based on the IFS reforecasts, including evaluating the impact of
the postprocessed IBE- and VLM-based reforecast corrections, for gauge stations grouped into four broad regions: the East
Coast (Maine to South Carolina), the Gulf Coast (Florida to Texas, and one station in Georgia), the West Coast (California to

Washington), and Alaska (Section 3.2). Finally, we evaluate the seasonal dependence of NTR prediction skill (Section 3.3).

11
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3.1 Multi-model comparison of coastal ocean and tide gauge SSH reforecast skill

For the oceans surrounding North America, the geographic distribution of Week 3 SSH anomaly correlation skill for the IFS
and CNRM are qualitatively similar, with both models exhibiting relatively higher skill in the eastern portion of the Pacific
Ocean, along the southern coast of Alaska, and the Beaufort Sea, while exhibiting relatively lower skill along the East Coast
of the US (Fig. 1). In general, the IFS is more skillful than the CNRM in most regions, with the exception of a small region
near-northeast of the Bahamas, the central portion of the Gulf of Mexico, and portions of the Labrador Sea and Baffin Bay.

For both models, SSH reforecast skill evaluated at the gauge stations tends to correspond reasonably well with nearby
open ocean SSH reforecast skill evaluated using GLORYS gridded SSH anomalies for Week 3 (cf. colored shading for the
oceans surrounding North America and colored dots for the tide gauges used in this study in Fig. 1). This good comparison
justifies the use of nearest neighbor open ocean SSH forecasts to predict tide gauge anomalies in this study. For example, for
both tide gauges and the near shore open ocean, reforecast skill for both models is relatively high in Southern California and
Maine and relatively low between Virginia and New York (cf. both Figs. 1a and 1b).

For the US coastlines nearest to the gauge stations that are of central interest here, the IFS has superior skill at all
forecast leads (see Supplement Figs. S1-S6). While the IFS and CNRM have qualitatively similar skill characteristics, only
the IFS SSH has skill that is as good or better than persistence for nearly all CONUS gauge stations (Figs. S1-S6) as well as
many Alaskan stations (not shown), with the exception of those situated in regions far up inland rivers, including stations such
as Vancouver, WA or Berwick, Atchafalaya River, LA, which are all far removed (and physically disconnected) from the

nearest IFS or CNRM open ocean grid points.
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Figure 1. Year-round (2000-2017) Week 3 anomaly correlation skill between GLORYS SSH anomalies and SSH reforecasts
(color contours), and Week 3 anomaly correlation skill between NOAA gauge station anomalies and SSH reforecasts (colored
circle markers), for reforecasts from the (a) IFS and (b) CNRM. While the sample years used in the anomaly correlation
calculation (2000-2017) are the same, the dates are slightly different because of different initialization dates. All dates are used

240 in both datasets, regardless of whether they overlap with the other dataset, because otherwise there are too few samples.

The biggest skill improvements of IFS Week 3 reforecasts relative to persistence are seen in three regions: along the
central East Coast, the entire West Coast, and along the southern coast and islands of Alaska (not shown). Reforecast skill is
highest in Southern California (e.g., Fig. S3), where skill from coastal Kelvin waves may provide a significant predictable
signal (Amaya et al. 2022), particularly during strong El Nifio events (see also Arcodia et al., 2024 and references therein). At

245 Week 3, and even at Week 2 (both shown in the Supplement), the CNRM forecasts are uniformly (across all regions) less
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skillful than persistence, with one exception: the Week 2 CNRM forecasts for the Pacific Northwest (Oregon and Washington)
are more skillful than persistence (Fig. S2).

Scoring reforecasts without accounting for strong trends can make it difficult to differentiate between forecast skill
associated with predicting subseasonal climate variations versus the spurious impact of trends on subseasonal forecast skill
(Whulff et al. 2022). Similarly, previous studies of seasonal prediction of U.S. coastal sea-level anomalies have suggested that

the sea level trend can dominate estimates of reforecast skill, especially when using standard skill metrics that compare to skill

of a climatological forecast (Widlansky et al. 2017; Long et al. 2021; Shin and Newman 2021; Long et al. 2024). After a linear
trend is removed from the forecast and verification datasets, CONUS reforecast skill is reduced for most regions both for
models and for persistence, with the largest effects occurring for leads of 3 weeks and beyond (Figs. S1-S12; see Sections
3.2.1-3.2.4 for a detailed discussion of the effect of the linear trend on IFS reforecast skill). However, removing the linear
trend from the model reforecasts and persistence also highlights the models’ ability to skillfully predict SSH anomalies related
to subseasonal climate variability. For example, linearly detrended CNRM reforecasts are more skillful than linearly detrended
persistence for the entire West Coast and most East Coast stations at Weeks 2 and 3 (Figs. S4 and S6, respectively). Thus, with
the linear trend removed, it becomes clearer that the CNRM provides useful guidance for many regions for forecast leads out
to at least 3 weeks. However, the IFS is still more skillful than the CNRM at nearly all gauge stations and at all lead times

(Figs. S1-S12), so for the remainder of the manuscript, we focus on results using the IFS.

3.2 Regional U.S. coastal skill

We next assess deterministic and probabilistic NTR reforecast skill for each of the four US subregions, the West, Gulf, and
East Coasts, and Alaska. When comparing deterministic skill (anomaly correlation), four panels are shown: NTR skill,
followed by a panel showing the difference between NTR skill and persistence skill, and then two panels isolating the
contributions of the IBE and the linear trend to NTR skill; the contribution of VLM to NTR skill is discussed in the text when
relevant with a figure included in the Supplement.

Probabilistic Week 3 NTR reforecast skill is assessed at all gauge stations via three metrics that characterize reliability
and sharpness (see Section 2.3 for details of the calculations): (1) the slope of the reliability regression line, where values
greater than 0.5 indicate positive contributions to the Brier skill score; (2) forecast sharpness as measured by the ‘SHP’
parameter ranging from 0-100, where smaller values represent sharper forecasts; and (3) the percentage of forecasts that are in
the top forecast probability category versus the lowest category (0-10% versus 90-100%), where higher percentages indicate
relatively more “certain” affirmative forecasts. In addition, for each sub-region, we show reliability diagrams and histograms
of the forecast probability distributions for two representative gauge stations to provide a visual reference for the metric

numbers reported on the maps; for these figures, skill of NTR reforecasts with the linear trend removed is also shown.
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Figure 2. (a) Year-round (2000-2019) Week 3 NTR anomaly correlation skill between nearest grid point NTR reforecasts

anomalies (SSH + IBE + VLM) and West Coast NOAA gauge station NTR anomalies. (b) Difference between NTR skill and
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NTR persistence skill, (¢) difference between NTR skill and (SSH + VLM)-only skill, and (d) difference between NTR skill

and linearly detrended NTR skill.

3.2.1 West Coast

In general, NTR skill is highest along the southern to central West Coast, often exceeding 0.5 for leads through Week 6 (Fig.

2a). With the exception of a few gauge stations, notably those far up the Columbia River, West Coast reforecasts are also more

skillful than persistence (Fig. 2b). Note that for many of the stations between central California and Oregon, IFS Week 1 skill

is only better than persistence with the IBE-correction (cf. Figs. 2b and 2¢). Removing the linear trend minimally impacts West

Coast skill, primarily only for longer leads in California (Fig. 2d).
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Figure 3. (a) Year-round (2000-2019) West Coast NTR reliability (colored circles), sharpness (numbers), and percentage of
forecasts that are in top forecast probability category versus lowest category (0-10% versus 90-100%). For reliability, slopes
greater than 0.5 contribute to positive Brier skill scores; for sharpness, the scale spans 0-100, with smaller numbers representing
sharper forecast distributions. Panels (b) and (c¢) show example reliability diagrams and sharpness distributions (ensemble
probability counts) for two gauge stations, Crescent City, California and Santa Barbara, California, respectively, where the red

ovals in panel (a) highlight the location of each station.

Reliability and sharpness along the West Coast tends to be largest in the south and decreases fremseuth—to_to the

north (Fig. 3a). For example, reforecasts for gauge stations south of Arena Cove, CA have excellent reliability (regression
slopes between 0.6-0.9) and sharpness (SHP between 30-50), with most gauge stations having roughly a quarter of their
forecasts in the highest forecast probability category (e.g., Santa Barbara, CA in Fig. 3¢c). Even with the linear trend removed,
most forecasts in central to southern California have excellent reliability and sharpness (e.g., Fig. 3c). Sharpness decreases
roughly monotonically from south to north, but reliability has a minimum near the Oregon-California border (e.g., Crescent
City, CA; Fig. 3b) with increasing values again from northern Oregon into Washington, apart from gauge stations extending
well up the Columbia River. The IBE-correction increases reliability for all West Coast gauge stations, with regression slopes
generally increasing by 0.2 slope units (not shown). The IBE-correction also mildly decreases sharpness (not shown); however,
since sharpness for most gauge stations remains relatively high, this decrease is outweighed by the increased reliability realized
with the IBE-correction. Linearly detrending the reforecasts has a relatively small impact on overall reliability and sharpness

(not shown).

3.2.2 East Coast

In contrast to the West Coast, NTR deterministic reforecast skill along the East Coast exceeds 0.5 only through Weeks 2-3
(Fig. 4a), though skill still nearly always exceeds that of persistence for all locations and at all leads (Fig. 4b). The IBE-
correction improves skill for many East Coast gauge stations, particularly north of 35° N for Weeks 1 and 2 (Fig. 4c), so that
NTR skill exceeds persistence skill for the northernmost gauge stations for shorter lead times (cf. Figs. 4b and 4c). The linear
trend also has a more significant impact on East Coast than West Coast skill, significantly contributing to Weeks 3-6,
particularly for the Carolinas and Georgia (Fig. 4d). When both NTR and persistence are linearly detrended, NTR is still more
skillful than persistence at all leads (not shown), consistent with the SSH results from Section 3.1.

With the exception of two gauge stations (Burlington, Delaware River, NJ and Bergen Point West Reach, NY), all of
the NTR reforecasts for the East Coast are at least minimally reliable (regression slopes >0.5), with some stations, particularly
in the northeast, having quite high reliability (regression slopes >0.7). Moreover, for many of the northernmost and

southernmost gauge stations, the forecasts also have reasonably sharp forecast probability distributions, with SHP values
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somewhere between 50-68 (Fig. 5). In contrast, most of the mid-Atlantic stations have SHP values >65 (that is, most

320 reforecasts are near climatological probabilities), with only a small number of forecasts in the highest probability category.
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Figure 4. (a) Year-round (2000-2019) Week 3 NTR anomaly correlation skill between nearest grid point NTR reforecasts

anomalies (SSH + IBE + VLM) and East Coast NOAA gauge station NTR anomalies. (b) Difference between NTR skill and

NTR persistence skill, (¢) difference between NTR skill and (SSH + VLM)-only skill, and (d) difference between NTR skill
325 and linearly detrended NTR skill.

The IBE-correction impacts reliability differently depending on the region, improving it for gauge stations roughly
north of New York City and decreasing it for mid-Atlantic stations with no discernible change in sharpness (not shown), while
there is little impact further south in the Carolinas. Thus, on balance, the notable benefits of the IBE-correction for the Northeast

330 Coast appear to outweigh the small reduction in reliability for the mid-Atlantic region, particularly because the mid-Atlantic
gauge stations have marginal sharpness that weighs against their overall usefulness. With the linear trend removed, reforecasts

at all East Coast gauge stations become more overconfident and less sharp (e.g., Figs. 5b and 5c¢).
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Figure 5. (a) Year-round (2000-2019) East Coast NTR reliability (colored circles), sharpness (numbers), and percentage of
335 forecasts that are in top forecast probability category versus lowest category (0-10% versus 90-100%). For reliability, slopes
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greater than 0.5 contribute to positive Brier skill scores; for sharpness, the scale spans 0-100, with smaller numbers representing
sharper forecast distributions. Panels (b) and (¢) show example reliability diagrams and sharpness distributions (ensemble
probability counts) for two gauge stations, Eastport, Maine and Oregon Inlet Marina, North Carolina, respectively, where the

red ovals in panel (a) highlight the location of each station.

3.2.3 Gulf Coast

NTR skill for many of the Gulf Coast stations remains at or above 0.5 until at least forecast Week 6 (Fig. 6a), and for nearly
all gauge stations, the NTR reforecasts are more skillful than persistence for Weeks 2-6 (Fig. 6b). The IBE modestly improves
Weeks 1-2 reforecast skill for gauge stations between Mississippi and the southern tip of Florida (Fig. 6¢), while the linear
trend greatly increases reforecast skill for all stations for leads at and beyond Week 2. While the steric and eustatic contributions
to the linear trend are generally spatially uniform across the Gulf (e.g., Fig. 2.1 of Sweet et al. 2022), the effect of the VLM
trend on reforecast skill is largely confined to gauge stations between Rockport, Texas and Dauphin Island, Alabama (Fig.
10a), where VLM improves correlation skill by roughly 0.1-0.2, particularly for forecast leads beyond Week 2 (Fig. S13c).
Nevertheless, even when linear trend is removed from the reforecasts, reforecast skill (i.e., IFS-only SSH + IBE) exceeds
linearly detrended persistence skill for leads out to 2-3 weeks for Texas gauge stations and out to 6 weeks for stations between
Louisiana and Florida (not shown).

Gulf Coast forecasts have good reliability (Fig. 7a), with regression slopes in the 0.6-0.9 range. There is one outlier
gauge station relatively far inland (Berwick, Atchafalaya River, LA, Fig. 7b), with poorer reliability and with relatively few
forecasts in the highest probability category (~10%). Most of the Gulf Coast stations have reasonably decent sharpness quite
similar to the St. Petersburg, FL gauge station (Fig. 7c). The IBE-correction increases reliability for gauge stations from
Mississippi east to all of Florida (not shown), but appears not to impact reforecast skill in Louisiana or Texas. As for the East

Coast, linearly detrending the reforecasts mildly decreases their reliability and sharpness (e.g., Fig. 7c).
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Figure 6. (a) Year-round (2000-2019) Week 3 NTR anomaly correlation skill between nearest grid point NTR reforecasts

anomalies (SSH + IBE + VLM) and Gulf Coast NOAA gauge station NTR anomalies. (b) Difference between NTR skill and

NTR persistence skill, (¢) difference between NTR skill and (SSH + VLM)-only skill, and (d) difference between NTR skill

and linearly detrended NTR skill.
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Figure 7. (a) Year-round (2000-2019) Gulf Coast NTR reliability (colored circles), sharpness (numbers), and percentage of

forecasts that are in top forecast probability category versus lowest category (0-10% versus 90-100%). For reliability, slopes

greater than 0.5 contribute to positive Brier skill scores; for sharpness, the scale spans 0-100, with smaller numbers representing

sharper forecast distributions. Panels (b) and (c¢) show example reliability diagrams and sharpness distributions (ensemble
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probability counts) for two gauge stations, Berwick, Atchafalaya River, Louisiana and St. Petersburg, Florida , respectively,

where the red ovals in panel (a) highlight the location of each station.

3.2.4 Alaska

Most Alaskan gauge stations have modest skill (anomaly correlation>0.5) through Week 3 (Fig. 8a), with skill exceeding
persistence at all leads (Fig. 8b). The IBE notably contributes to reforecast skill for all stations out to two to three week lead
times, and for a handful of stations, out to even longer leads (Fig. 8c). Reliability is also quite good, with all but a few stations
having regression slopes >0.6 and moderate sharpness (Fig. 9). With-the-exeeption-efExcept for Nome, Norton Sound, AK
and Prudhoe Bay, AK, the IBE notably increases the slopes of the reliability regression lines (not shown), with many stations
rising from poor reliability slopes (0.1-0.4) to quite useful slopes (0.5-0.8).

Removing the linear trend decreases overall skill for stations extending from roughly Kodiak Island southeast to Sitka
(Fig. 8d). Along this section of the Alaskan coast, glacial isostatic rebound (see references in Section 2.2) is causing the land
surface to rise, which is reflected in relatively large VLM rates over southeastern Alaska (Fig. 10a). Indeed, failing to account
for VLM can lead to large errors in the NTR anomaly time series; see, for example, the NTR (blue lines) versus IFS-only (SSH
+ IBE) time series (orange lines) for Yakutat and Skagway, Alaska in Figs. 10b and 10c, respectively. In general, derived VLM
rates (Kopp et al. 2014, Sweet et al. 2022) successfully account for a large portion of the negative linear NTR trend, though
the VLM corrected time series (NTR) at some gauge stations appear to more closely match the observed trend than for others
(e.g., the VLM correction appears to underestimate the size of the land motion trend for Yakutat, Fig. 10b). Indeed, adjusting
the IFS reforecasts with the predicted VLM rates does not completely resolve all trend issues, as evidenced by Port Alexander
(Fig. 9¢c), where linearly detrending the reforecasts increases reliability. For stations in the Aleutian Islands and northwards to
Prudhoe Bay, AK where isostatic rebound is either not occurring or is not significant, accounting for VLM only mildly
increases reliability. Nevertheless, adjusting the IFS reforecasts to account for the VLM trend notably improves both
deterministic and probabilistic NTR reforecast skill between Kodiak Island and Sitka for all forecast leads, increasing anomaly

correlations by 0.1-0.75 (Fig. S13a).
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Figure 8. (a) Year-round (2000-2019) Week 3 NTR anomaly correlation skill between nearest grid point NTR reforecasts
anomalies (SSH + IBE + VLM) and Alaska NOAA gauge station NTR anomalies. (b) Difference between NTR skill and NTR
persistence skill, (¢) difference between NTR skill and (SSH + VLM)-only skill, and (d) difference between NTR skill and
linearly detrended NTR skill.
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Figure 9. (a) Year-round (2000-2019) Alaska NTR reliability (colored circles), sharpness (numbers), and percentage of

forecasts that are in top forecast probability category versus lowest category (0-10% versus 90-100%). For reliability, slopes

greater than 0.5 contribute to positive Brier skill scores; for sharpness, the scale spans 0-100, with smaller numbers representing

sharper forecast distributions. Panels (b) and (c¢) show example reliability diagrams and sharpness distributions (ensemble

probability counts) for two gauge stations, Skagway, Taiya Inlet, Alaska and Port Alexander, Alaska, respectively, where the

red ovals in panel (a) highlight the location of each station.
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Figure 10. (a) Vertical land motion rates (cm/year) shown as colored contours with the NOAA gauge station locations used
405 in the study shown as filled circular markers, where the color of the filled marker denotes the improvement in anomaly
correlation skill when VLM is included in the reforecast, i.e., skill of NTR reforecast minus skill of IFS-only reforecast (SSH
+ IBE). (b) Week 3 NTR reforecast time series (SSH + IBE + VLM, blue line), IFS-only reforecast (SSH + IBE, gray line)
and NOAA gauge station NTR time series (orange line) at Yakutat, Yakutat Bay, Alaska gauge station. (¢) same as (b) but for
the Skagway, Taiya Inlet, Alaska gauge station NTR time series (orange line) at Yakutat, Yakutat Bay, Alaska gauge station.
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3.3 Seasonality of deterministic skill

While coastal flooding can happen in any season, all four United States sub-regions tend to have peaks in water levels
exceeding the 90th percentile of the observed NTR during the winter months (not shown). To understand how the IFS performs
during these peak exceedance seasons, Figs. 11 and 12 group forecasts into four 3-month periods (JEM, AMJ, JAS, and OND),
where for each season and gauge station, the latest forecast lead when NTR anomaly correlation skill exceeds 0.5 is listed,
both with the linear trend included (lefthand columns) and without (righthand columns).

With the linear trend included, forecasts skill for the East remains above 0.5 for forecast leads out to at least two
weeks for all seasons and gauge stations, with the exception of the East Coast during late fall to early winter when skill only
exceeds 0.5 for leads of one week (Fig. 11a). For the Gulf Coast, reforecast skill exceeds 0.5 for most stations through at least
2-3 weeks, but as far out as 6 weeks for many stations and seasons (Fig. 11c). With the linear trend removed, skill out to and
beyond two week lead times is largely confined to late winter to early summer for the East Coast (Fig. 11b) and late fall to
early spring for the Gulf Coast (Fig. 11d).

Reforecast skill is notably better for the central to southern portions of the West Coast, and is relatively insensitive to
a linear trend (cf. Figs. 12a and 12b), with reforecast skill exceeding 0.5 through forecast Week 6 for nearly all California
gauge stations throughout the year. For Oregon and Washington, skill exceeds 0.5 for forecast leads of 2-3 weeks. For Alaska,
reforecast skill for most stations exceeds 0.5 through Week 3 for the cold season (Oct.-Mar.) but only through Week 2 for the
warm season (Apr.-Sep.), with the exception of the stations between Yakutat and Juneau, where reforecast skill exceeds 0.5 at

all lead times almost year-round (Figs. 12c and 12d).
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Figure 11. Seasonal cycle of NTR reforecast skill (2000-2019) where the color bar (and number in each box) corresponds to
the latest forecast lead (from week 1 to 6) when the anomaly correlation is greater than or equal to 0.5. In each panel, the
seasonal cycle is split into four three-month periods, where the panels correspond to correlations between: (a) East Coast
NOAA gauge station NTR anomalies and NTR reforecasts; (b) linearly detrended East Coast NOAA gauge station NTR
anomalies and linearly detrended NTR reforecasts; (¢) Gulf Coast NOAA gauge station NTR anomalies and NTR reforecasts;

(d) linearly detrended Gulf Coast NOAA gauge station NTR anomalies and linearly detrended NTR reforecasts.
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Figure 12. Seasonal cycle of NTR reforecast skill (2000-2019) where the color bar (and number in each box) corresponds to
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seasonal cycle is split into four three-month periods, where the panels correspond to correlations between: (a) West Coast
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linearly detrended Alaska NOAA gauge station NTR anomalies and linearly detrended NTR reforecasts.
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4 Conclusions

The primary goal of this paper is to assess whether-the suitability of the current generation of forecast models are-suitable-for
making coastal inundation forecasts on subseasonal timescales. We-have-demenstrated-that-on-subseasenal-timesealesIndeed,
we find that; the deterministic skill of the IFS and CNRM exceeds that of damped persistence for many US coastal regions for

forecast leads extending out to 2-3 weeks, with the IFS continuing to have skill above damped persistence- Atand-beyondfor
longer leads through Week 6. We i

However, when reforecasts and persistence reforecasts are linearly detrended, the skill of both models over persistence
increases, highlighting the ability of the models to successfully simulate water level anomalies related to subseasonal climate
variability. When a simple bias correction is applied to the IFS’ probability distribution, the IFS generally has ‘useful’
reliability (Weisheimer and Palmer, 2014) that contributes positively to the Brier skill score (Mason, 2004), though the need
for the probability bias correction highlights that the model ensemble spread is consistently underdispersive. Thus, our results
suggest that the current generation of operational forecast models provide predictions of coastal inundation with sufficient skill
to form the basis for improved forecast guidance of high tide flooding predictions on subseasonal timescales.

We have also shewnhewdemonstrated the regional and forecast lead time dependence of skief-weekly NTR
prediction_skills—varies—eonsiderablybyregion—-andforecasttead—time. California has by far highest skill, with anomaly

correlation skill above 0.6 through at least Week 6. Many portions of Alaska also have anomaly correlation skill that reaches

or exceeds 0.5 for leads through Week 3, with some stations in southeastern Alaska having skill exceeding 0.5 through Week
6; theugh—for-thesestations;mueh-ofthisskillis-enly—evident-whenonce past VLM trends are added-as—a—pest-proeessing
steptaken into account. On the East Coast, on the other hand, skill is quite low for the mid-Atlantic states but is relatively
higher south of Cape Hatteras and further north along the New England coast (Figs. 1 and 4), Eerthe southern-andnorthern
portions-of the East-Ceast;where anomaly correlation skill generally ranges from 0.4 to 0.5 for forecast leads out to at least
Week 3.; while-forFor many Gulf Coast stations, skill remains above 0.4 to 0.5 for leads out to at least Week 6. However, for

many Alaskan and East and Gulf Coast gauge stations, a large fraction of the reforecast skill can be attributed to the linear
NTR trend, which includes steric and eustatic trends that are explicitly accounted for in the model reforecasts, as well as VLM

trends that are added via post-processing.

The-impaet-ofHow the inclading the-predicted IBE #n-impacts eusNTR reforecast skills also appears to be-stronglyly
dependent upon forecast lead time and geegraphyregion. Fer—alregions;—Aaccounting for the IBE primarily improves

reforecast skill during forecast Weeks 1 and 2, which is consistent with predictable IBE signals being limited to weather

timescale atmospheric pressure fluctuations (e.g., the timescales suggested in Fig. 2 of Woodworth et al. 2019). HewevesStill,
the IBE is essential since, the 1BE-is-neverthelessimportant-to—inchade;beeause-for many gauge stations, the-Week 1 IFS

reforecasts are-only have more skillfal than persistence when the IBE-correction is applied.




475

480

485

490

495

500

505

on-geography-is at least somewhat consistent with the idea that the IBE is more important at higher latitudes (Chelton and
Davis, 1982), particularly in the Gulf of Alaska and the northern portion of the East Coast (Wunsch and Stammer, 1997; Ponte,
2006). 1 i

e-Ea oast{partictlarly New Ensland)—and the Gy oastportion-of Florida—However, there-are

elearly-other-impertantfactorsit is likely that Seme-ofthis-may berelated-to-the geographical dependence of MSLP reforecast
skill itself also plays a role.; whiehFor example, for-the IFS at Weeks 3-6 tends to behave higher MSLP skill for the East Coast

and the Aleutian Islands than #-is-for the West Coast and mainland Alaska (Albers and Newman, 2019, see their Figs. 1 and
S2)..; ferexampleLikewise, while the importance of the IBE seems to monotonically increase from south to north along the

East Coast (Figure 4), the middle of the West Coast appears to benefit more from including the IBE than do the northernmost

West Coast gauge stations (Fig. 2). Sem

—Opverall, the skill improvement we find with a
postprocessed IBE correction suggests that future forecast model development would benefit from the explicit inclusion of the

IBE.

The relatively low NTR reforecast skill for many regions suggests that usable NTR forecast guidance may benefit

from identifying ‘forecasts of opportunity’; that is, when predictions are expected to have skill at the time of forecast issuance

(e.g., Albers and Newman, 2019; Lang et al. 2020; Mariotti et al. 2020; and references therein). For example, when the MJO,

ENSO, or the stratosphere may produce predictable oceanic waves and/or teleconnections in sea level pressure and surface

wind (Barnston et al., 2019; DelSole et al., 2017; Kim et al., 2018; Tripathi et al., 2015; Vitart & Molteni, 2010, Albers and

Newman, 2021) may also be times when coastal NTR anomalies are particularly predictable, which may be helpful for issuing

more definitive guidance to many coastal communities and stakeholders. While-this-study-hasnot-evaluated processesleading
to-thegeographievariations—n-skill,—seme-inferenees—eanbe-drawn: For the southern and central portion of California, the

relatively high reforecast skill likely can be anticipated as a consequence of coastal Kelvin waves and remote wind variability

from coupled modes of variability including ENSO (Menéndez and Woodworth, 2010; Arcodia et al., 2024, Amaya et al.

correlated(Ezeretal 2043 Ezer 2016 Chiet-al 2023} —which-suggeststhat-any—identifying predictable Gulf Stream
subseasonal anomalies that-are-predietable-on-subseasenal timeseales-may eentribute-lead to_identifying times of higher NTR
reforecast skill aleng-the-eoast-from Florida through the Gulf Stream separation point near Cape Hatteras, since Gulf Stream
variability and coastal SLAs are known to be correlated (Ezer et al., 2013; Ezer, 2016; Chi et al., 2023). Likewiseln contrast,
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the increase in coastal reforecast skill further north along the New England portion of the coast may be associated with the
NAO, which-is-eceasionallywhose predietable-skill on subseasonal timescales can be anticipated from prior stratospheric and
tropical conditions (e.g., Albers et al. 2021 and references therein), and-since the NAO has a stronger influence further north

in New England versus the mid-Atlantic (Hurrell et al. 2003, Visbeck et al. 2003)._Our study will form the basis for future

work that uses dynamical models to better predict these subseasonal forecasts of opportunity.
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https://data.marine.copernicus.eu/product/GLOBAL MULTIYEAR PHY 001 030/description ECMWF IFS and CNRM

reforecasts https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/ VLM
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