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13 Abstract

14 Soil moisture is a fundamental state variable in climatology, meteorology, and hydrology. Many
15  of the available soil moisture products have a coarse spatial resolution that is not useful for

16  agricultural applications. This study used Random Forest to identify which features are most

17 helpful for accurately downscaling soil moisture to 1-km resolution. Fourteen features were

18  considered: precipitation, antecedent precipitation index, maximum daily air temperature,

19  minimum daily air temperature, mean daily air temperature, diurnal temperature range, dew

20  point temperature, elevation, slope, aspect, normalized difference vegetation index, leaf area

21 index (LAI), soil texture, and land use/land cover. The analysis of variable importance was

22 repeated using two different sources of soil moisture data (e.g., satellite-derived soil moisture

23 from NASA’s Soil Moisture Active Passive (SMAP) and model-derived soil moisture from the
24 North American Land Assimilation System (NLDAS)) and two different ways of representing
25  soil saturation (e.g., volumetric water content (VWC) and percentiles). We found that dew point
26 temperature is the most important variable for downscaling SMAP percentiles (0.18), NLDAS
27  VWC (0.27), and NLDAS percentiles (0.17) over CONUS, while elevation is the most important
28  variable for downscaling SMAP VWC (0.28). Dew point temperature is crucial for downscaling
29  in most regions of the United States, except in the South and WestNorthCentral, where elevation
30 is the most important feature. The accuracy of the downscaling varies by region. In the South,
31 SMAP VWC and NLDAS VWC downscaling are relatively accurate, both have mean absolute
32 errors of ~0.07. The MAE values in the South region are 0.196 for SMAP percentiles and 0.175

33 for NLDAS percentiles.
34  Keywords: Soil moisture, downscaling, SMAP, NLDAS, Random Forest

35
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36 1. Introduction

37 Soil moisture is an important state variable in the climate system. Soil moisture is

38  essential for examining, monitoring, and forecasting drought and streamflow (Abbaspour et al.
39  2015; Keesstra et al. 2016), hydrological parameter distribution (Carrijo et al. 2019; Dobriyal et
40  al. 2012; Pittelkow et al. 2015), flash flood management (Brocca et al. 2014; Wanders et al.

41 2014), drought (Ruosteenoja et al. 2020; Wagner et al. 2013) and weather forecasting

42 (Seneviratne et al. 2010; Zhang et al. 2019). Soil moisture is also important for agriculture. It
43 influences crop yield, irrigation planning, disease outbreaks, pest control, and determining

44  optimal management practices, including irrigation (Dobriyal et al. 2012; Pittelkow et al. 2015).

45 Soil moisture is a small constituent of the total available freshwater (0.0015%) and the
46 global water cycle (0.05%) (Robinson et al. 2008). However, soil moisture is a critical element
47  of land-atmosphere interactions because it plays a significant role in modulating exchanges of
48  water between the land and atmosphere through evapotranspiration and transpiration (Ford et al.
49  2016; Zhang et al. 2019). Processes such as evapotranspiration, runoff, infiltration, and

50 groundwater recharge are influenced by the soil moisture and so it also has a significant part to

51  play in the hydrologic cycle (Vereecken et al. 2008).

52 Although soil moisture is useful for many purposes, national soil moisture data are not
53  readily available at high resolution (e.g., kilometer scale). For example, satellite soil moisture
54  products are limited to 1-km spatial resolution and model-derived products are limited to 12.5-
55  km, therefore often it is not sufficient for field-scale applications in the agricultural sector. To
56  make these datasets applicable to the finer scale, downscaling is necessary. It is possible to

57  conduct soil moisture downscaling in different ways. To assess soil moisture heterogeneity at a

58  finer scale, one approach is to combine ancillary data with low-resolution soil moisture
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59  estimates. This has been implemented in several studies to obtain soil moisture at high spatial
60  resolution (Alemohammad et al. 2018; Srivastava et al. 2013). The spatial heterogeneity of soil
61  moisture is influenced by numerous factors, such as topography, precipitation, temperature, soil
62  texture, and vegetation. The purpose of this study is to identify which variables are most

63  important for downscaling soil moisture to 1-km spatial resolution. We downscaled SMAP and
64 NLDAS using Random Forest. We compared the importance of the ancillary variables for two
65 different data sources and two different methods for representing soil moisture (e.g., percentiles
66  and volumetric water content). To the best of our knowledge, this is the first study to evaluate

67  feature importance over CONUS using both satellite-derived and modeled soil moisture.

68 2. Data

69 2.1 Soil moisture data

70 2.1.1 In-situ soil moisture

71 In-situ datasets are useful for calibration and validation of the SMAP and NLDAS soil

72 moisture. In-situ measurements of soil moisture were used to validate the results of the

73 downscaling approach. The in-situ measurement of soil moisture is based on sensors installed in
74  various national and state networks. The networks used in this study include: the U.S. Climate

75  Reference Network (CRN), Delaware Environmental Observing System (DEOS), North Carolina
76 Environment and Climate Observing Network (ECONet), Illinois Climate Network (ICN),

77 Kansas Mesonet (KS Mesonet, New Jersey Weather and Climate Network (NJWCN), NOAA

78  Hydrometeorological Testbed (NOAA), New York Mesonet (NY Mesonet), Oklahoma Mesonet
79  (OK Mesonet), Soil Climate Analysis Network (SCAN), South Dakota Mesonet (SD Mesonet),
80  Snowpack Telemetry (SNOTEL), Texas Soil Observation Network (TxSon), Georgia Automated

81  Environmental Monitoring Network (GA AEMN), and West Texas Mesonet (WTX Mesonet). A



https://doi.org/10.5194/egusphere-2025-896
Preprint. Discussion started: 7 April 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

82  total of 1542 in-situ stations were used for this study. The number of stations varies from region
83  toregion greatly. For example, the South has a lot of stations, while the NorthWest has few

84  stations. In-situ data from 2001 to 2021 were used for validating the downscaled soil moisture.
85 2.1.2 SMAP soil moisture

86 Remote sensing data provides gridded products instead of point-based soil moisture

87  measurements and improves spatial coverage. Ford and Quiring (2019) examined the remote

88  sensing soil moisture datasets provided by SMAP (SMAP L3 and SMAP L4), SMOS, and ESA-
89  CCl and they concluded that SMAP Level 3 products consistently performed best among the

90 four datasets. Though SMAP L3 products perform better than other remote sensing products, it
91 has a significant number of missing values and dates. For that reason, SMAP L4 data are used in
92  this study. The SMAP L4 product is a model-derived value-added products of surface and root
93  zone soil moisture that support key SMAP applications. SMAP produces Level 4 data products
94  that combine surface observations with a land surface model using a data assimilation system to
95  simulate root zone soil moisture. The SMAP L4 data are available from 2015 to the present and
96 they provide surface soil moisture (0-5 cm) and root zone soil moisture (0-100 cm). This study

97  used SMAP data from 2015 to 2021.
98 2.1.3 NLDAS soil moisture

99 Land surface models use climate inputs and parameterizations of the environment to
100  simulate soil moisture based on model-derived equations and assumptions. The model-derived
101 soil moisture products can be achieved consistently at the global scale because the model can be
102  operated seamlessly. However, model-simulated soil moisture has limitations because there is a

103 nonlinear relationship between climate parameters and soil water content. In addition, soils and
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104  vegetation are spatially heterogeneous and this is not accurately captured by models (Xia et al.
105  2015). Ford and Quiring (2019) examined the NLDAS-2 and found that it performed better than
106  the CPC-modeled soil moisture when validated against in-situ measurements. Therefore, this
107  study uses NLDAS-2 model-simulated soil moisture. The soil moisture data are provided hourly
108  at 1/8° spatial resolution by the NLDAS-2 Noah model. The data are available at four soil layers:
109  0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm. To align the temporal granularity with in-situ
110  and satellite data, we averaged the hourly data to daily. NLDAS-2 data from 2001 to 2021 were
111 used in this study. The downscaling was done every day from 2001 to 2021 within the CONUS

112 to generate a 1-km soil moisture from NLDAS-2.
113 2.2 Ancillary variables

114 This study evaluated a total of 14 features: precipitation, antecedent precipitation index,
115 maximum daily air temperature, minimum daily air temperature, mean daily air temperature,
116  diurnal temperature range, dew point temperature, elevation, slope, aspect, Normalized

117  Difference Vegetation Index, Leaf Area Index, soil texture, and land use/land cover.

118 Soil texture (sand, silt, and clay percentage) came from the gridded soil survey
119  geographic database (SSURGO) provided by Natural Resources Conservation Services (NRCS)

120  (https://www.nrcs.usda.gov/). It has a spatial resolution of 10-30 m. Precipitation, mean

121  temperature, maximum temperature, minimum temperature, and dew point temperature were

122  obtained from Parameter-elevation Regressions on the Independent Slopes Model (PRISM) lab
123 (https://prism.oregonstate.edu/). The spatial resolution of PRISM is 4-km. The Antecedent

124  Precipitation Index (API) was calculated from the precipitation data for each day. The antecedent

125  precipitation index (API) formula is,
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API=Pi*N*0.98

where: Pi: daily precipitation i days before a storm, N: total number of days to consider before

the storm, K: a recession constant that is less than 1.0 (here, a value of 0.98 was used).

The diurnal temperature range (DTR) was calculated based on the difference between the
maximum to minimum temperature. Elevation data were extracted from GTOP30 provided by
the United States Geological Survey (USGS), and the spatial resolution is 1-km. Slope and
aspect were derived from the elevation data. The Normalized Difference Vegetation Index
(NDVI) and Leaf Area Index (LAI) are from the Advanced Very High-Resolution Radiometer
(AVHRR) satellite. The spatial resolution of the AVHRR satellite is 9-km. Land use data were
collected from the National Land Cover Dataset (NLCD). The native spatial resolution of NLCD

is 30-m. Table 1 provides a description of all of the ancillary variables.

Table 1: Spatial and temporal resolution of variables evaluated for downscaling soil moisture
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Variable Temporal Temporal Spatial Source
Name Domain Resolution Resolution

Elevation 2018 N/A 1-km USGS EROS Archive - Digital Elevation -
Global 30 Arc-Second Elevation (GTOPO30)

Slope 2018 N/A 1-km USGS EROS Archive - Digital Elevation -
Global 30 Arc-Second Elevation (GTOPO30)

Aspect 2018 N/A 1-km USGS EROS Archive - Digital Elevation -
Global 30 Arc-Second Elevation (GTOPO30)

Soil Texture 2021 N/A 10 to 30-m Gridded Soil Survey Geographic (gSSURGO)
Database

Land Use 2021 N/A 30-m National Land Cover Dataset (NLCD)

Precipitation 2001 to Daily 4-km Parameter-elevation Relationships on

2021 Independent Slopes Model (PRISM)

Antecedent 2001 to Daily 4-km Parameter-elevation Relationships on

Precipitation 2021 Independent Slopes Model (PRISM)

Index (API)

Mean 2001 to Daily 4-km Parameter-elevation Relationships on

Temperature 2021 Independent Slopes Model (PRISM)

Maximum 2001 to Daily 4-km Parameter-elevation Relationships on

Temperature 2021 Independent Slopes Model (PRISM)

Minimum 2001 to Daily 4-km Parameter-elevation Relationships on

Temperature 2021 Independent Slopes Model (PRISM)

Dew Point 2001 to Daily 4-km Parameter-elevation Relationships on

Temperature 2021 Independent Slopes Model (PRISM)

Normalized 2001 to Daily 4-km Parameter-elevation Relationships on

Difference 2021 Independent Slopes Model (PRISM)

Vegetation

Index (NDVI)

Normalized 2001 to Daily 9-km Advanced very-high-resolution radiometer

Difference 2021 (AVHRR)

Vegetation

Index (NDVI)

Leaf Area 2001 to Daily 9-km Advanced very-high-resolution radiometer

Index (LAI) 2021 (AVHRR)

138

139 2.3 Soil Moisture Standardization

140 Volumetric water content (VWC) varies according to weather conditions, soil properties,

141  vegetation cover, topographic features, and various other elements. Thus, it is not possible to

142 directly compare the VWC from different locations since a fine-textured soil will almost always
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143 have a higher VWC than a coarse-textured soil. Therefore, VWC is commonly standardized

144 using an approach such as soil moisture percentiles (Ford et al. 2016; Zhang et al. 2019). In this
145  paper, we converted the soil moisture datasets to percentiles using the following approach. First,
146 the VWC data were converted to VWC anomalies (m® m3) by subtracting the climatological
147  mean from the daily VWC value (Crow et al. 2012). A moving window approach was used to
148  calculate the climatological mean. Following Chen et al. (2019), a 31-day moving window was
149  used surrounding the target day, and all years of data from the period of record from that window
150  were used to calculate the mean. Next, daily percentiles were calculated using the empirical

151 cumulative distribution function based on a 31-day moving approach that used the entire period
152 of record. According to Ford et al. (2016), at least 6 years of daily data are required to create
153  stable and robust percentiles. In our case, soil moisture percentiles were calculated based on 7

154  years of SMAP data and 21 years of NLDAS data.
155 3. Methods

156 The NLDAS and SMAP soil moisture data were downscaled using Random Forest. This
157  algorithm was applied separately to the SMAP soil moisture (9-km) and the NLDAS soil

158  moisture (12.5-km) to generate a 1-km soil moisture dataset over CONUS. Figure 1 provides a
159  summary of the methods used to identify the most important features for downscaling soil

160  moisture. The first step was to retrieve from different sources and aggregate the ancillary

161  variables by applying nearest-neighbor interpolation. Then an RF model was generated for

162  downscaling SMAP and NLDAS soil moisture products. The third step was to summarize feature

163  importance. Each step is described in detail below.
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Figure 1: Schematic representation of the methodology used in this study
3.1 Nearest neighbor interpolation

All ancillary data are first aggregated to a resolution of 9-km and 12.5-km to construct
the downscaling models. Nearest neighbor interpolation is used to resample the ancillary data
(Table 1). Nearest neighbor is a method of spatial resampling that calculates the value of a new
pixel based on the value of its nearest neighbor. This method was selected because it is
computationally efficient and previous soil moisture downscaling studies have applied the

nearest neighbor method (Alemohammad et al. 2018; Li et al. 2016; Liu et al. 2020, 2011). This

10
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173 method was applied twice, once to generate features at the same resolution as SMAP (9-km) and

174  to generate features at the same resolution as NLDAS (12.5-km).
175 3.2 Downscaling soil moisture with random forest

176 Soil moisture downscaling to 1-km from the native SMAP (9-km) and NLDAS (12.5-km)
177  resolutions was done using Random Forest. Random Forest (RF) was first developed by

178  (Breiman 2001) and then later advanced by (Cutler et al. 2012). RF is an integrated learning

179  algorithm that can be used for both classification of a categorical response and regression for

180  continuous variables (Li et al. 2013; Lu et al. 2014). The advantages of RF are that it is very fast
181  to train and predict, it only depends on a few tuning parameters, and it can be used for high-

182  dimensional problems, outlier detection, and visualization (Cutler et al. 2012). The regression

183  model in RF was used for downscaling soil moisture in this study.

184 The dataset was randomly split into 80% training and 20% testing for model evaluation.
185  To optimize the model, we performed randomized search cross-validation over a set of

186  hyperparameters, including the number of trees (n_estimators): {20, 40, 60, ..., 200}, maximum
187  depth of trees (max_depth): {10, 20, 30, ..., 110, None}, maximum number of features per split
188  (max_features): {‘auto’, ‘sqrt’}, minimum number of samples per split (min_samples_split): {2,
189 5, 10}, minimum number of samples per leaf (min_samples_leaf): {1, 2, 4}, and bootstrap

190  sampling method: {True, False}. The hyperparameter tuning is the same for each region.

191 The RF model for SMAP was generated using data from 2015 to 2021, and the RF model
192  for NLDAS was generated using data from 2001 to 2021. A 3-fold cross-validation was used for
193  cross-validation, each fold randomly selected 80% of the data for training and the remaining

194  20% was used for validation. The RF model with the highest accuracy was selected based on the

11
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195  cross-validation. This model was used to downscale the soil moisture to 1-km resolution and this
196  downscaled soil moisture was validated using the in-situ measurements. This process was

197  repeated separately for SMAP and NLDAS.
198 3.3 Model evaluation

199 The correlation coefficient (R), coefficient of determination (R?), mean absolute error
200 (MAE), mean squared error (MSE), and root mean square error (RMSE) were used for validating
201 the downscaled soil moisture data. R and R? measure the goodness-of-fit of the model. MAE,

202  MSE and RMSE measure the error between the actual and downscaled soil moisture values.

Cov (SM,, SM
203 R= (SMo, SM,)

\/Var[SMo]Var[SMp]

m[(SMp — SMmp) (SMg — SMimo)]”

204 R?=1-— o 5
i=1(SMp - SMmp) Zi=1(SM0 - SMmo)
1 n
205 MAE = Z |SM,, — SM,|
i=1
1 n
206 MSE = —Z (SM, — SM,)?
n i=1
n_(SM, — SM,)*
207 RMSE = j =1 I‘; )

208  Where n is the number of observations, SMo, SMp, SMmo, SMpo represent the observed soil
209  moisture value, predicted soil moisture value, mean observed soil moisture value, and mean

210  predicted soil moisture value.

12
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211 4 Results

212 4.1 Feature importance for SMAP downscaling

213 There are two measures that can be used to quantify the predictive power of individual
214  features in RF Regression: (1) an increased mean squared error (INCMSE) and, (2) an increase in
215  the number of nodes purified (IncNudePurity). INCMSE measures how an individual feature

216  changes when it is permuted at random. INcMSE measures the degree to which the accuracy of
217  Random Forest decreases when a feature is removed. Fourteen features were used to downscale
218  the coarse resolution of soil moisture products to 1-km resolution. The IncMSE was calculated

219  for each feature in each of the 9 regions to determine feature importance.

220 At the national (CONUS) scale, elevation is the most influential variable and dew point
221  temperature is the second most important feature (Figure 2). Maximum temperature is also
222 ranked as an important variable that improves the accuracy of downscaling of SMAP VWC over

223 CONUS. The least important features at the national scale are slope, aspect, and LAL.

224 In addition to evaluating feature importance for each region, the analysis was also

225  replicated by evaluating feature importance for different regions of CONUS. Figure 3 shows the
226  feature importance for SMAP VWC by region. The dew point temperature is the most important
227  feature in all regions, except the WestNorthCentral and South regions. Elevation is the most

228  important variable in these two regions. API is the second-most important variable in the

229  NorthWest, West, and SouthWest regions. Maximum, minimum, and mean temperature also play
230  asignificant role in downscaling soil moisture. LAl is a feature that consistently is ranked as a
231 relatively unimportant feature for downscaling soil moisture (ranks from 0.1 to 0.2 across the 9

232 regions).

13
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233 This study evaluates both VWC and soil moisture percentiles. Therefore, we can compare
234  the relative feature importance for downscaling soil moisture percentiles. At the CONUS scale,
235  dewpoint temperature is the most influential variable (Figure 4). This is followed by APl and

236  elevation. The results at the CONUS scale are relatively consistent with the regional results.

237  Additionally, precipitation, maximum, mean temperatures, and DRT are all relatively important
238  variables for downscaling soil moisture percentiles at the CONUS scale (rank ranges from 3 to

239 6).

240 Similar to the results for SMAP VWC, dew point temperatures are the most influential
241  variable in all regions except the South (Figure 5). Elevation is the most influential feature in the
242 South. The second most important feature is either API or elevation. API is the second-most

243 influential variable in the NorthWest, SouthWest, and EastNorthCentral, NorthEast, SouthEast,
244 and Central regions. While elevation is the second most important feature of WestNorthCentral
245  regions. LAI, aspect, slope, NDVI, and LULC are the least important features for downscaling

246  soil moisture percentiles.

14
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255 4.2 Feature importance for NLDAS downscaling

256 At the CONUS scale, dew point temperature is the most important feature (Figure 6).

257  Elevation and maximum temperature have almost the same influence and are ranked as the

258  second and third most important features on the CONUS scale. Though elevation was the highest
259 influential variable for SMAP VWC, elevation is ranked second here. However, as SMAP VWC,

260  slope, aspect, LAI ranked the lowest.

261 Figure 7 shows the feature importance for downscaling NLDAS VWC in each region.
262 Dew point temperature is the most important feature in all regions. Elevation is the second-
263 highest important feature in all regions, except the NorthWest, West, SouthWest, and

264  EastNorthCentral regions. The second most important variable for the NorthWest, SouthWest,
265  and EastNorthCentral region is maximum temperature; for the West is mean temperature.

266  Maximum and mean temperature are also influential features for downscaling NLDAS VWC.
267  They typically rank as each region's 3rd or 4th most important features. While LAI and aspect
268 are generally the least important features. These results are quite consistent with the SMAP

269  feature importance.

270 At the CONUS scale, dewpoint temperature is again the most influential feature (Figure
271 8). This is followed by API and elevation. Maximum and mean temperatures are also influential
272 features at the CONUS scale. The results of the feature importance for NLDAS soil moisture

273 percentiles are consistent with NLDAS VWC. Dew point temperature is the most important

274 feature in all regions (Figure 9). API is the second most important feature in all regions, except
275  the NorthWest, West, WestNorthCentral. In these regions, elevation is the second most important
276  feature. LAl and aspect consistently have the lowest feature importance for downscaling NLDAS

277  soil moisture percentiles.

17
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Figure 10 represents the relationship between predicted soil moisture and the other
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302  The higher dew point temperature is related to the high soil moisture values in all seasons. The
303  lower elevation seems to have high soil moisture values in four seasons which is reasonable
304  because in the high elevation, the water content in the soil is low. If the API value is increasing,
305 the value of water content in the soil will be high and vice versa. On the other hand, with the

306 increasing maximum temperature, the soil moisture will be decreasing.
307 4.3 Accuracy of VWC downscaling

308 Table 2 shows the accuracy of the VWC downscaling in each region based on the

309 validation against in situ measurements. As shown in the table, the R-value is < 0.5 and R? <
310  0.25 for NLDAS downscaling. The average absolute difference between the SMAP downscaling
311  and observed value (MAE) ranges from 0.074 to 0.092. The Central region has a relatively low
312  MAE of 0.074, indicating a small average absolute difference between the predicted and actual
313 values. The highest value of MSE is 0.014 corresponding to SouthEast and 0.013 to

314  EastNorthCentral and the lowest value is 0.008 corresponding to South. The ubRMSE for the
315  South is 0.082 which is the lowest and for the SouthEast is 0.109 which is the highest. Although
316  the R? values are relatively low, the errors (MAE and ubRMSE) are also low. This indicates that

317  the downscaling is skillful.

318 Table 2: Accuracy of 1-km downscaled soil moisture (VWC) by region for SMAP and
319 NLDAS
R R2 MAE MSE RMSE ubRMSE Bias

SMAP | NLDAS | SMAP | NLDAS | SMAP | NLDAS | SMAP | NLDAS | SMAP | NLDAS | SMAP | NLDAS | SMAP NLDAS

Central 0.451 0.352 | 0.204 0.146 | 0.074 0.086 | 0.009 0.011 0.093 0.104 0.089 0.091 -0.008 -0.021

21
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EastNorthCentral | 403 | 0494 | 0157 | 0248 | 0092 | 0072 | 0013| 0010 0115| 0097 | 0093 | 0087 | 0053 | -0.017
NorthEast 0.323 0.337 0.104 0.131 0.075 0.084 0.009 0.010 0.095 0.100 0.089 0.085 0.001 -0.017
NorthWest 0.268 0.298 0.065 0.090 0.080 0.085 0.009 0.010 0.097 0.100 0.092 0.089 0.022 0.014
South 0.568 0.551 0.323 0.304 0.072 0.069 0.008 0.007 0.091 0.086 0.082 0.080 -0.033 -0.020
SouthEast 0419 | 0622 | 0176 | 0386 | 0094 | 0084 | 0014 | 0010 | 0116 | 0101 | 0109 | 0.090 | 0034 | 0.010
SouthWest 0.364 0.622 0.132 0.073 0.078 0.091 0.010 0.012 0.098 0.108 0.093 0.097 -0.020 -0.004
West 0.308 0.270 0.099 0.081 0.075 0.084 0.009 0.010 0.094 0.099 0.092 0.090 0.016 0.025
WestNorthCentral | 56 | 0494 | 0270 | 0248 | 0073 | 0080 | 0008 | 0010 | 0091 | 0097 | 0085 | 0087 | -0.011| 0004
National 0.514 0.509 | 0.192 0.259 | 0.082 0.083 0.010 0.010 0.102 0.100 0.100 0.095 -0.015 -0.011

320

321 4.4 Accuracy of percentile downscaling

322 Table 3 provides the evaluation metrics of soil moisture downscaling for percentiles by

323  region. The South region has the lowest MAE of 0.195, indicating the smallest average absolute

324  difference between predicted and actual values among all the regions. The MSE is also the

325  lowest which is 0.061 for this region, indicating a higher average squared difference. The RMSE

326  0of 0.248 is also the lowest among the regions, indicating the smallest average absolute

327  difference. On the other hand, the NorthWest and SouthWest regions are characterized by the

328  highest MAE of 0.223, which indicates a greater average absolute difference between the

329  predicted and actual values compared to other regions. As indicated by the MSE value of ~0.076,

330 there is a greater average squared difference between the two regions. RMSE of ~0.275 indicates

331 Table 3: Accuracy of 1-km downscaled soil moisture (percentiles) by region for SMAP

332 and NLDAS

R R? MAE MSE RMSE ubRMSE Bias
SMAP NLDAS | SMAP NLDAS | SMAP NLDAS | SMAP NLDAS | SMAP NLDAS | SMAP NLDAS | SMAP NLDAS
Central 0.423 0.536 0.187 0.297 0.200 0.177 0.065 0.050 0.256 0.224 0.222 0.198 -0.055 -0.016

22




https://doi.org/10.5194/egusphere-2025-896
Preprint. Discussion started: 7 April 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

EastNorthCentral 0.411 0.429 0.198 0.304 0.207 0.195 0.065 0.056 0.256 0.236 0.216 0.189 -0.026 -0.045
NorthEast 0.269 0.307 0.085 0.120 0.207 0.211 0.066 0.068 0.257 0.261 0.226 0.220 -0.048 -0.034
NorthWest 0.229 0.194 0.050 0.048 0.223 0.237 0.076 0.084 0.276 0.291 0.249 0.252 0.0276 -0.058
South 0.442 0.488 0.195 0.238 0.195 0.175 0.061 0.049 0.248 0.223 0.224 0.208 -0.068 -0.019
SouthEast 0.394 0.437 0.156 0.195 0.207 0.189 0.066 0.055 0.258 0.236 0.227 0.212 -0.081 -0.027
SouthWest 0.229 0.229 0.053 0.058 0.223 0.228 0.077 0.079 0.278 0.281 0.256 0.253 0.000 -0.042
West 0.238 0.180 0.062 0.047 0.216 0.226 0.072 0.076 0.268 0.276 0.245 0.245 -0.015 -0.025
WestNorthCentral 0.363 0.367 0.141 0.144 0.215 0.218 0.073 0.074 0.270 0.272 0.253 0.244 -0.021 -0.054
National 0.425 0.370 0.029 0.138 0.217 0.226 0.073 0.080 0.270 0.284 0.260 0.262 -0.033 -0.080
333

334  agreater average absolute difference among the regions. The lowest MAE value is 0.175 in the
335  South region. The lowest MAE value indicates the closer alignment between actual and predicted
336 values. The average squared difference between the expected and actual values ranges from

337  0.050 to 0.086. Similar patterns can be observed between MSE and RMSE values. The lowest

338  value of RMSE is 0.223 indicating good predictions for South regions.

339 5 Discussion

340 5.1 Feature importance

341 A complex interaction between pedologic, topographic, vegetative, and meteorological
342  factors is responsible for the extensive horizontal variability in surface soil moisture fields
343  (Mohanty and Skaggs 2001). It is difficult to isolate and measure these factors, however,

344  understanding their magnitude is critical for determining soil moisture upscaling strategies

345 (Crow etal. 2012).

346 Topography is another crucial factor that influences the spatial organization of soil
347  moisture at various scales. The topographic attributes such as slope, aspect affect the movement

348  of water through gravity-driven processes, such as runoff and infiltration, leading to variations in
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349  soil moisture across the landscape (Crow et al. 2012). This research also complements that

350 topography is an important factor because elevation is the most influential factor and second

351  highest factor relatively in SMAP VWC and NLDAS VWC downscaling over CONUS. In

352  addition, elevation ranks third for percentile downscaling for both data sources. Understanding
353 the role of topography is essential for accurately characterizing and predicting soil moisture

354  patterns. Charpentier and Groffman (1992) suggested that variations in topography play a

355  significant role in shaping the spatial distribution of soil moisture, with more diverse topographic
356  features leading to increased variability in soil moisture. This study shows the South and

357  WestNorthCentral regions have the influences of slope regardless of data sources and units of
358  measurement. Since the WestNorthCentral region includes portions of the Rocky Mountains, and
359  the mountainous area has high variability in elevation. It has been demonstrated that relative

360  slope position significantly impacts determining soil moisture variation. When considering

361 different time scales, a straightforward averaging of soil moisture values across a slope is likely
362  to produce errors (Mohanty et al. 2000; Jacobs 2004). Here, this research shows differences

363  because slope has a relatively low impact on the downscaling for both data sources and both

364  units of measurement (VWC and percentile). In addition, the aspect (direction of slope) also has
365 less impact on the downscaling in all the regions and over CONUS too. The effects of slope on
366  soil moisture are more localized and dependent on other factors rather than being significant. It is
367  important to mention that slope influences soil moisture in various ways, including its length and
368  direction (aspect). Although these effects are generally less pronounced than those that elevation

369  has on the local microclimate and hydrology, they can be observed (Bennie et al. 2008).

370 Among these meteorological factors, precipitation is considered the single most

371 important forcing factor for soil moisture content and its distribution (Crow et al. 2012). This
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372 research agrees with Crow et al. (2012) because the precipitation index (API) ranks second in
373 terms of SMAP percentile downscaling over the CONUS. Furthermore, API is also a dominant
374  factor for the South, WestNorthCentral, NorthWest, SouthWest regions. Sivapalan et al. (1987)
375  and Famiglietti et al. (1999) found the mean soil moisture trend changed with the precipitation
376  gradient. The soil moisture storage, drainage, and water budget for different climate patterns
377  changed with the intensity of rainfall (Kim et al. 1997; Salvucci 2001). To date, there has not
378  been any research that has shown that dew point temperature is useful for downscaling soil. The
379  present study found that dew point temperature is the most important feature for downscaling
380  soil moisture for both products and both measurements, except SMAP VWC over the CONUS.
381  Although elevation has the highest impact on SMAP VWC downscaling over the CONUS, dew
382  point temperature has the highest influence over all the regions except the South, and

383  WestNorthCentral regions both for SMAP VWC and percentile downscaling. For NLDAS VWC

384  and percentiles, only the South region is different.

385 There are a number of ways that the dew point temperature can influence soil moisture.
386  First, when the air temperature cools to the dew point temperature water vapor will condense,
387  forming dew on the soil surface and vegetation (Monteith, 1957, Jacobs et al. 2000). Second,
388  dew point temperature can also affect the transpiration rates of plants (Ambrose et al. 2009). Soil
389  evaporation and plant transpiration will increase as a function of the vapor pressure gradient.

390 Therefore, dew point temperature fluctuations can influence the wetting and drying cycles of the

391  soil (Zhou et al. 2008).

392 Precipitation, mean, maximum, and minimum temperatures also have an impact on soil
393  moisture. Higher temperatures tend to be associated with an increased vapor pressure deficit

394  between the soil surface and the air, and this leads to a higher evaporation rate from the soil.
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395  Higher temperatures can cause the soil to dry out more rapidly, particularly from the surface of
396 the soil (Balugani et al. 2014). They can also cause vegetation to utilize more soil water and so

397 they can cause the depletion of soil moisture (Oren et al. 1999).

398 The distribution of soil moisture is significantly affected by soil heterogeneity, due to

399  variations in soil properties such as texture, organic matter content, porosity, and structure. As a
400  result of these variations, soil moisture can significantly differ over small spatial distances,

401 influencing local hydrological processes. The color of the soil can also influence the rate of

402  evaporative drying for bare or lightly vegetated soils by affecting the albedo. Soil hydraulic

403  conductivity affects processes such as water infiltration, redistribution, and drainage, which in
404  turn impact the distribution of soil moisture across a given area (Moore et al. 1988; Kim and

405  Barros 2002). Although previous research concluded that soil type has a significant impact on
406  soil moisture, this research found that soil type has minimal impact on downscaling soil

407  moisture. In addition, whether over the CONUS or for all the regions, soil type is one of the least
408 influential variables. The reason could be that other factors like elevation, prevailing climate, and

409  precipitation patterns have a greater impact than the soil texture.

410 Previous work has concluded that variations in soil moisture are more strongly influenced
411 by vegetation than by soil and topography (Crow et al. 2012). Our results do not support this

412 conclusion (at least for 1-km soil moisture) since the vegetation variables (NDVI and LAI) were
413  less important than topography. Soil moisture is spatially variable as a result of various processes
414  that involve water uptake, transpiration, and the surface energy budget. The influence of land

415  cover characteristics must be understood to accurately model and predict soil moisture dynamics.
416  Land cover affected soil moisture distribution significantly at the satellite footprint during the

417  NAFE'05 field campaign in Australia (Panciera et al. 2008). The regional distribution of soil
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418  moisture was noted to be impacted by variations in land cover (Cosh et al. 2004; Joshi and

419  Mohanty 2010). However, the results of our study indicated that land cover was not an important
420  feature for downscaling soil moisture to 1-km resolution. It had minimal impact on the

421 downscaling regardless of the data sources or soil moisture measurement. These results were

422  consistent over the CONUS and all regions.

423 Drawing broad conclusions regarding the impact of soil, topography, land cover,

424  vegetation, and meteorological forcing can be challenging because feature important is strongly
425 influenced by the spatial scale of analysis and the region of interest (Crow et al. 2012). Our study
426  results demonstrate that there can be substantial region variations in feature importance and that
427  feature importance is also a function of the data source, unit of measurement and spatial

428  resolution.

429 Regions may differ in terms of climatic, geographic, and soil characteristics, which can
430 have a significant impact on the relationship between the input features and soil moisture.

431 Regions with limited or incomplete data may be difficult to predict accurately. Our analysis
432 demonstrates that other than elevation, temperature is an important feature in the South. This
433 region includes Texas, Louisiana, Mississippi, Arkansas, Kansas, and Oklahoma. It is

434  characterized by a warm and humid climate. Soil moisture is influenced by precipitation and
435  topography. Periodic droughts have a strong influence on soil water content (Bond et al. 2008;

436 Engle et al. 2008).

437 The northeastern region includes New York, Pennsylvania, Connecticut, Delaware,
438  Maine, Maryland, Massachusetts, New Hampshire, New Jersey, Vermont, and Rhode Island. It
439  has a temperate climate with distinct seasonal patterns. Seasonal variations in precipitation and

440  snowmelt can significantly impact soil moisture patterns (Daly et al. 2008). Our results
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441  demonstrate that API, dew point temperature, and temperature influence soil moisture. The

442  northwestern region includes Idaho, Oregon, and Washington. It has a diverse climate ranging
443  from maritime to continental. The EastNorthCentral includes lowa, Michigan, Minnesota, and
444  Wisconsin. It has a humid continental climate with distinct seasonal changes. The region is

445  dominated by the Great Lakes. Soil moisture depends on temperature and precipitation patterns
446 (Kunkel et al. 2013). Our results demonstrate that API and temperature have a significant impact

447  on soil moisture.

448 The WestNorthCentral includes Montana, Nebraska, North Dakota, South Dakota, and
449  Wyoming. It is characterized by a continental climate with hot summers and cold winters.

450  Snowmelt and spring rains can increase soil moisture levels (Kunkel et al. 2013). Temperature
451  and dew point temperature are important features for accurately downscaling soil moisture. The
452 West includes California and Nevada. It has a diverse range of climates, from Mediterranean to
453 arid and semi-arid. This region with mountainous terrain may experience higher soil moisture
454 levels due to increased precipitation (Nielsen et al. 2024). The SouthWest includes Arizona,

455  Colorado, New Mexico, and Utah. It has an arid to semi-arid climate. However, soil moisture is
456  lower in this region (Huxman et al. 2004) and API has an impact on the soil moisture. Moreover,
457  topographic features such as mountains and valleys can cause localized variations in soil

458  moisture (Seager et al. 2007), which is evident in the present study.
459 5.3 Model evaluation

460 Abbaszadeh et al. (2019) downscaled SMAP 9-km (SMAP level 3) soil moisture to 1-km
461  over the CONUS using ensemble learning methods and they found overall the ubRMSE between
462  downscaled and in-situ observations met the SMAP accuracy requirement of 0.04. The

463  downscaled soil moisture data showed a strong correlation (R=0.325 to 0.997, average 0.715)
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464  and high accuracy (UbRMSE=0.010 to 0.141 m3%m3, average 0.041 m3/m3) compared to the in-
465  situ soil moisture measurements (Xu et al. 2022). Our study shows that the ubRMSE value for
466  SMAP VWC is 0.100 m3/m3. The reason could be the different methods of downscaling because
467  our analysis used RF, while Xu et al. (2022) used an ensemble approach. In addition, Xu et al.

468  (2022) used SMAP level 3, while this analysis used SMAP level 4.

469 Sun and Cui (2021) downscaled VWC in the central United States using support vector
470  machine (SVM). The correlation between their downscaled soil moisture and the in-situ

471 measurements ranged from 0.174 to 0.754, and their RMSE ranged from 0.063 to 0.101. In our
472  study, the correlation between the downscaled soil moisture and in-situ measurements in the
473  central region was 0.452 for SMAP VWC and 0.352 for NLDAS VWC. The RMSE was 0.093
474  for SMAP VWC and 0.104 for NLDAS VWC. Therefore, our results are relatively comparable

475 interms of correlation and error.

476 Guevara and Vargas (2019) downscaled the soil moisture from 27-km to 1-km by

477  training the kernel-weighted nearest neighbors across the conterminous United States. They

478  showed that the downscaled soil moisture had an R? value of 0.46. Our results generally have
479  lower correlations for all the regions, except the South. It is possible that this is because Guevara
480  and Vargas (2019) used different methods of downscaling such kernel-weighted nearest

481  neighbors, while our approach was based on. There is also the difference of spatial native

482  resolutions of soil moisture products that were used for downscaling.

483 Liu et al. (2020) downscaled soil moisture using six methods over different regions
484  including Oklahoma. The R? value for their Oklahoma region ranged from 0.287 to 0.714, and
485  the MAE ranged from 0.027 to 0.055. The MAE in the South region in our study ranged from

486  0.069 to 0.195. A similar study in Oklahoma state was done by Jiang and Cotton (2004) applying
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487  the artificial neural network (ANN). Their RMSE was <0.04. Xu et al. (2021) downscaled SMAP
488  36-km soil moisture to 3-km and 1-km by applying the convolution neural network in Oklahoma.
489  Xuetal. (2021) had a correlation of 0.659 and ubRMSE of 0.052 for their 1-km downscaled soil
490  moisture using SMAP level 3 products from 1%t January 2018 to 30" December 2018. While

491  these studies had lower errors than our analysis, this is likely because they focused on a single
492  state, while our region encompasses multiple states. In addition, they downscaled only one year
493  soil moisture, but we downscaled daily soil moisture from 2015 to 2021 and evaluated

494  performance using this entire period. In addition, Xu et al. (2021) utilized a convolutional neural

495  network (CNN) and we used RF for downscaling.

496 Warner et al. (2021) downscaled VWC in Delaware to 100-m resolution using kernel k-
497  nearest neighbor (KKNN) based on SSM estimates from the European Space Agency’s Climate
498  Change soil moisture products. They had an MAE of 0.048 (Warner et al. 2021). In comparison,
499  our MAE in the NorthEast region, which includes Delaware, ranged from 0.076 to 0.082. Warner
500 etal. (2021) likely had greater accuracy because they their study area is a single state

501  (Delaware), while our NorthEast region includes Delaware, Connecticut, Maine, Maryland,

502  Massachusetts, New Hampshire, New York, Pennsylvania, Rhode Island, and Vermont. In

503  addition, Warner et al. (2021) downscaled different soil moisture data than our study.

504 Overall, the soil moisture downscaling is more accurate in the South, Central, and
505  NorthEast regions, as they have lower error than in other regions. The downscaling was not as

506  accurate in the NorthWest, SouthWest, West, and WestNorthCentral regions.

507 6 Conclusions
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508 This study evaluated and compared feature importance for downscaling satellite and
509  model-derived soil moisture products across different regions. Random forest was applied to
510  predict the soil moisture products (SMAP and NLDAS) to 1-km resolution over CONUS and in-

511  situ data were used to validate the model. The conclusions are:

512 1) Results indicated that dew point temperature is the most important feature and elevation
513 is the second most important feature for downscaling soil moisture in the United States.
514 In general, the atmospheric features (e.g., temperature) have more impact on the

515 downscaling than vegetation features. Vegetation features such as NDVI and LA, as well
516 as topographic features such as slope and aspect were not important for downscaling soil
517 moisture to 1-km resolution.

518 2) Based on the accuracy metrics, downscaling VWC is more accurate than soil moisture
519 percentiles.

520 3) Downscaled SMAP and NLDAS VWC was most accurate in the South and

521 WestNorthCentral regions.

522 Our results can be used to improve feature selection for soil moisture downscaling.

523  However, it is likely that the optimal features for downscaling soil moisture are strongly
524  dependent on the spatial resolution of the analysis and the climatic, topographic and edaphic

525  characteristics of the study region.

526 Future research can advance this work in the following ways. First, we can increase the
527  validity of the accuracy assessment by using more in-situ data to validate the downscaling. This
528  study compares the 1-km downscaled soil moisture to a single station. A better approach would
529  be to use a dense network of stations to upscale the in-situ data to match the resolution of the soil

530  moisture products. Second, given the substantial regional variations in performance, future work,
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531  would benefit from including a more comprehensive set of features that account for soil moisture
532 dynamics in each region. Third, the method of upscaling the features can be improved. Last, this
533  study only used a single method for downscaling. Using other downscaling approaches may

534  result in increased accuracy and provide additional insights.
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