

Identifying Important Features for Downscaling Soil Moisture to 1-km in the Contiguous United States

4 Eshita A. Eva^{1*}, Zack Leasor², Iliyana Dobreva¹, Steven M. Quiring¹

⁵ ¹Department of Geography, The Ohio State University, Columbus, OH, USA

⁶ ²Climate Science in the School of Natural Resources, University of Missouri, Columbia, MO

7

**Corresponding author address:* Eshita A. Eva, Department of Geography, The Ohio State University, 1145 Derby Hall, 154 N Oval Mall, Columbus, OH 43210

10 E-mail: evaeshita22@gmail.com

11

12

13 **Abstract**

14 Soil moisture is a fundamental state variable in climatology, meteorology, and hydrology. Many
15 of the available soil moisture products have a coarse spatial resolution that is not useful for
16 agricultural applications. This study used Random Forest to identify which features are most
17 helpful for accurately downscaling soil moisture to 1-km resolution. Fourteen features were
18 considered: precipitation, antecedent precipitation index, maximum daily air temperature,
19 minimum daily air temperature, mean daily air temperature, diurnal temperature range, dew
20 point temperature, elevation, slope, aspect, normalized difference vegetation index, leaf area
21 index (LAI), soil texture, and land use/land cover. The analysis of variable importance was
22 repeated using two different sources of soil moisture data (e.g., satellite-derived soil moisture
23 from NASA's Soil Moisture Active Passive (SMAP) and model-derived soil moisture from the
24 North American Land Assimilation System (NLDAS)) and two different ways of representing
25 soil saturation (e.g., volumetric water content (VWC) and percentiles). We found that dew point
26 temperature is the most important variable for downscaling SMAP percentiles (0.18), NLDAS
27 VWC (0.27), and NLDAS percentiles (0.17) over CONUS, while elevation is the most important
28 variable for downscaling SMAP VWC (0.28). Dew point temperature is crucial for downscaling
29 in most regions of the United States, except in the South and WestNorthCentral, where elevation
30 is the most important feature. The accuracy of the downscaling varies by region. In the South,
31 SMAP VWC and NLDAS VWC downscaling are relatively accurate, both have mean absolute
32 errors of ~0.07. The MAE values in the South region are 0.196 for SMAP percentiles and 0.175
33 for NLDAS percentiles.

34 **Keywords:** Soil moisture, downscaling, SMAP, NLDAS, Random Forest

36

1. Introduction

37

Soil moisture is an important state variable in the climate system. Soil moisture is
38 essential for examining, monitoring, and forecasting drought and streamflow (Abbaspour et al.
39 2015; Keesstra et al. 2016), hydrological parameter distribution (Carrijo et al. 2019; Dobriyal et
40 al. 2012; Pittelkow et al. 2015), flash flood management (Brocca et al. 2014; Wanders et al.
41 2014), drought (Ruosteenoja et al. 2020; Wagner et al. 2013) and weather forecasting
42 (Seneviratne et al. 2010; Zhang et al. 2019). Soil moisture is also important for agriculture. It
43 influences crop yield, irrigation planning, disease outbreaks, pest control, and determining
44 optimal management practices, including irrigation (Dobriyal et al. 2012; Pittelkow et al. 2015).

45

Soil moisture is a small constituent of the total available freshwater (0.0015%) and the
46 global water cycle (0.05%) (Robinson et al. 2008). However, soil moisture is a critical element
47 of land-atmosphere interactions because it plays a significant role in modulating exchanges of
48 water between the land and atmosphere through evapotranspiration and transpiration (Ford et al.
49 2016; Zhang et al. 2019). Processes such as evapotranspiration, runoff, infiltration, and
50 groundwater recharge are influenced by the soil moisture and so it also has a significant part to
51 play in the hydrologic cycle (Vereecken et al. 2008).

52

Although soil moisture is useful for many purposes, national soil moisture data are not
53 readily available at high resolution (e.g., kilometer scale). For example, satellite soil moisture
54 products are limited to 1-km spatial resolution and model-derived products are limited to 12.5-
55 km, therefore often it is not sufficient for field-scale applications in the agricultural sector. To
56 make these datasets applicable to the finer scale, downscaling is necessary. It is possible to
57 conduct soil moisture downscaling in different ways. To assess soil moisture heterogeneity at a
58 finer scale, one approach is to combine ancillary data with low-resolution soil moisture

59 estimates. This has been implemented in several studies to obtain soil moisture at high spatial
60 resolution (Alemohammad et al. 2018; Srivastava et al. 2013). The spatial heterogeneity of soil
61 moisture is influenced by numerous factors, such as topography, precipitation, temperature, soil
62 texture, and vegetation. The purpose of this study is to identify which variables are most
63 important for downscaling soil moisture to 1-km spatial resolution. We downscaled SMAP and
64 NLDAS using Random Forest. We compared the importance of the ancillary variables for two
65 different data sources and two different methods for representing soil moisture (e.g., percentiles
66 and volumetric water content). To the best of our knowledge, this is the first study to evaluate
67 feature importance over CONUS using both satellite-derived and modeled soil moisture.

68 **2. Data**

69 **2.1 Soil moisture data**

70 **2.1.1 In-situ soil moisture**

71 In-situ datasets are useful for calibration and validation of the SMAP and NLDAS soil
72 moisture. In-situ measurements of soil moisture were used to validate the results of the
73 downscaling approach. The in-situ measurement of soil moisture is based on sensors installed in
74 various national and state networks. The networks used in this study include: the U.S. Climate
75 Reference Network (CRN), Delaware Environmental Observing System (DEOS), North Carolina
76 Environment and Climate Observing Network (ECONet), Illinois Climate Network (ICN),
77 Kansas Mesonet (KS Mesonet), New Jersey Weather and Climate Network (NJWCN), NOAA
78 Hydrometeorological Testbed (NOAA), New York Mesonet (NY Mesonet), Oklahoma Mesonet
79 (OK Mesonet), Soil Climate Analysis Network (SCAN), South Dakota Mesonet (SD Mesonet),
80 Snowpack Telemetry (SNOTEL), Texas Soil Observation Network (TxSon), Georgia Automated
81 Environmental Monitoring Network (GA AEMN), and West Texas Mesonet (WTX Mesonet). A

82 total of 1542 in-situ stations were used for this study. The number of stations varies from region
83 to region greatly. For example, the South has a lot of stations, while the NorthWest has few
84 stations. In-situ data from 2001 to 2021 were used for validating the downscaled soil moisture.

85 **2.1.2 SMAP soil moisture**

86 Remote sensing data provides gridded products instead of point-based soil moisture
87 measurements and improves spatial coverage. Ford and Quiring (2019) examined the remote
88 sensing soil moisture datasets provided by SMAP (SMAP L3 and SMAP L4), SMOS, and ESA-
89 CCI and they concluded that SMAP Level 3 products consistently performed best among the
90 four datasets. Though SMAP L3 products perform better than other remote sensing products, it
91 has a significant number of missing values and dates. For that reason, SMAP L4 data are used in
92 this study. The SMAP L4 product is a model-derived value-added products of surface and root
93 zone soil moisture that support key SMAP applications. SMAP produces Level 4 data products
94 that combine surface observations with a land surface model using a data assimilation system to
95 simulate root zone soil moisture. The SMAP L4 data are available from 2015 to the present and
96 they provide surface soil moisture (0-5 cm) and root zone soil moisture (0-100 cm). This study
97 used SMAP data from 2015 to 2021.

98 **2.1.3 NLDAS soil moisture**

99 Land surface models use climate inputs and parameterizations of the environment to
100 simulate soil moisture based on model-derived equations and assumptions. The model-derived
101 soil moisture products can be achieved consistently at the global scale because the model can be
102 operated seamlessly. However, model-simulated soil moisture has limitations because there is a
103 nonlinear relationship between climate parameters and soil water content. In addition, soils and

104 vegetation are spatially heterogeneous and this is not accurately captured by models (Xia et al.
105 2015). Ford and Quiring (2019) examined the NLDAS-2 and found that it performed better than
106 the CPC-modeled soil moisture when validated against in-situ measurements. Therefore, this
107 study uses NLDAS-2 model-simulated soil moisture. The soil moisture data are provided hourly
108 at 1/8° spatial resolution by the NLDAS-2 Noah model. The data are available at four soil layers:
109 0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm. To align the temporal granularity with in-situ
110 and satellite data, we averaged the hourly data to daily. NLDAS-2 data from 2001 to 2021 were
111 used in this study. The downscaling was done every day from 2001 to 2021 within the CONUS
112 to generate a 1-km soil moisture from NLDAS-2.

113 **2.2 Ancillary variables**

114 This study evaluated a total of 14 features: precipitation, antecedent precipitation index,
115 maximum daily air temperature, minimum daily air temperature, mean daily air temperature,
116 diurnal temperature range, dew point temperature, elevation, slope, aspect, Normalized
117 Difference Vegetation Index, Leaf Area Index, soil texture, and land use/land cover.

118 Soil texture (sand, silt, and clay percentage) came from the gridded soil survey
119 geographic database (SSURGO) provided by Natural Resources Conservation Services (NRCS)
120 (<https://www.nrcs.usda.gov/>). It has a spatial resolution of 10-30 m. Precipitation, mean
121 temperature, maximum temperature, minimum temperature, and dew point temperature were
122 obtained from Parameter-elevation Regressions on the Independent Slopes Model (PRISM) lab
123 (<https://prism.oregonstate.edu/>). The spatial resolution of PRISM is 4-km. The Antecedent
124 Precipitation Index (API) was calculated from the precipitation data for each day. The antecedent
125 precipitation index (API) formula is,

126

$$API = P_i * N * 0.98$$

127 where: P_i : daily precipitation i days before a storm, N : total number of days to consider before
128 the storm, K : a recession constant that is less than 1.0 (here, a value of 0.98 was used).

129 The diurnal temperature range (DTR) was calculated based on the difference between the
130 maximum to minimum temperature. Elevation data were extracted from GTOP30 provided by
131 the United States Geological Survey (USGS), and the spatial resolution is 1-km. Slope and
132 aspect were derived from the elevation data. The Normalized Difference Vegetation Index
133 (NDVI) and Leaf Area Index (LAI) are from the Advanced Very High-Resolution Radiometer
134 (AVHRR) satellite. The spatial resolution of the AVHRR satellite is 9-km. Land use data were
135 collected from the National Land Cover Dataset (NLCD). The native spatial resolution of NLCD
136 is 30-m. Table 1 provides a description of all of the ancillary variables.

137 Table 1: Spatial and temporal resolution of variables evaluated for downscaling soil moisture

Variable Name	Temporal Domain	Temporal Resolution	Spatial Resolution	Source
Elevation	2018	N/A	1-km	USGS EROS Archive - Digital Elevation - Global 30 Arc-Second Elevation (GTOPO30)
Slope	2018	N/A	1-km	USGS EROS Archive - Digital Elevation - Global 30 Arc-Second Elevation (GTOPO30)
Aspect	2018	N/A	1-km	USGS EROS Archive - Digital Elevation - Global 30 Arc-Second Elevation (GTOPO30)
Soil Texture	2021	N/A	10 to 30-m	Gridded Soil Survey Geographic (gSSURGO) Database
Land Use	2021	N/A	30-m	National Land Cover Dataset (NLCD)
Precipitation	2001 to 2021	Daily	4-km	Parameter-elevation Relationships on Independent Slopes Model (PRISM)
Antecedent Precipitation Index (API)	2001 to 2021	Daily	4-km	Parameter-elevation Relationships on Independent Slopes Model (PRISM)
Mean Temperature	2001 to 2021	Daily	4-km	Parameter-elevation Relationships on Independent Slopes Model (PRISM)
Maximum Temperature	2001 to 2021	Daily	4-km	Parameter-elevation Relationships on Independent Slopes Model (PRISM)
Minimum Temperature	2001 to 2021	Daily	4-km	Parameter-elevation Relationships on Independent Slopes Model (PRISM)
Dew Point Temperature	2001 to 2021	Daily	4-km	Parameter-elevation Relationships on Independent Slopes Model (PRISM)
Normalized Difference Vegetation Index (NDVI)	2001 to 2021	Daily	4-km	Parameter-elevation Relationships on Independent Slopes Model (PRISM)
Normalized Difference Vegetation Index (NDVI)	2001 to 2021	Daily	9-km	Advanced very-high-resolution radiometer (AVHRR)
Leaf Area Index (LAI)	2001 to 2021	Daily	9-km	Advanced very-high-resolution radiometer (AVHRR)

138

139 2.3 Soil Moisture Standardization

140 Volumetric water content (VWC) varies according to weather conditions, soil properties,

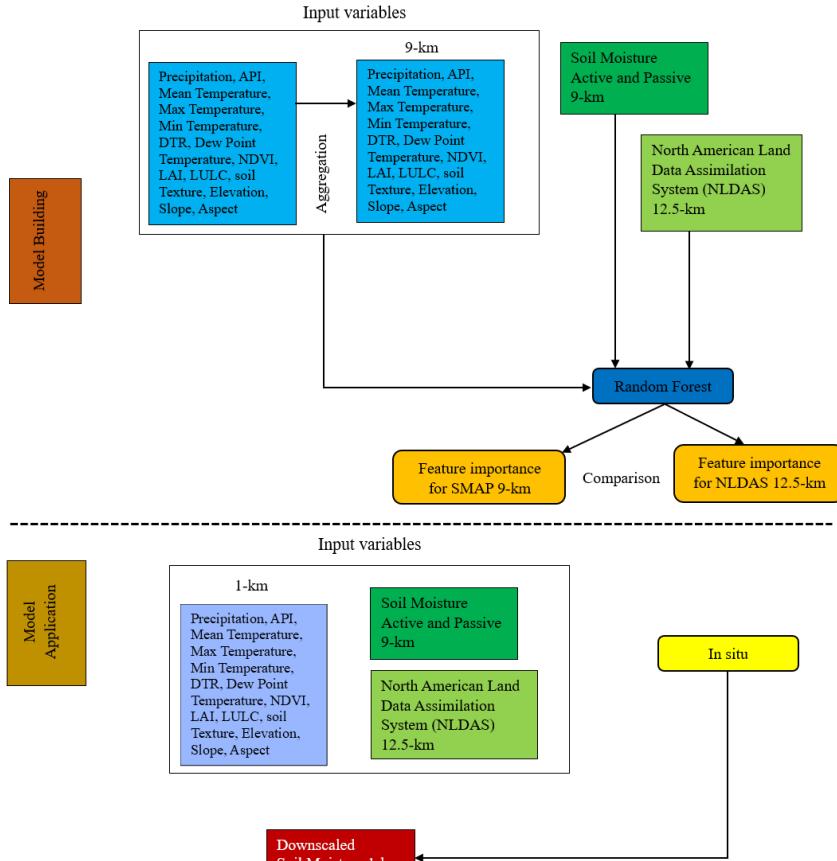
141 vegetation cover, topographic features, and various other elements. Thus, it is not possible to

142 directly compare the VWC from different locations since a fine-textured soil will almost always

143 have a higher VWC than a coarse-textured soil. Therefore, VWC is commonly standardized
144 using an approach such as soil moisture percentiles (Ford et al. 2016; Zhang et al. 2019). In this
145 paper, we converted the soil moisture datasets to percentiles using the following approach. First,
146 the VWC data were converted to VWC anomalies ($m^3 m^{-3}$) by subtracting the climatological
147 mean from the daily VWC value (Crow et al. 2012). A moving window approach was used to
148 calculate the climatological mean. Following Chen et al. (2019), a 31-day moving window was
149 used surrounding the target day, and all years of data from the period of record from that window
150 were used to calculate the mean. Next, daily percentiles were calculated using the empirical
151 cumulative distribution function based on a 31-day moving approach that used the entire period
152 of record. According to Ford et al. (2016), at least 6 years of daily data are required to create
153 stable and robust percentiles. In our case, soil moisture percentiles were calculated based on 7
154 years of SMAP data and 21 years of NLDAS data.

155 **3. Methods**

156 The NLDAS and SMAP soil moisture data were downscaled using Random Forest. This
157 algorithm was applied separately to the SMAP soil moisture (9-km) and the NLDAS soil
158 moisture (12.5-km) to generate a 1-km soil moisture dataset over CONUS. Figure 1 provides a
159 summary of the methods used to identify the most important features for downscaling soil
160 moisture. The first step was to retrieve from different sources and aggregate the ancillary
161 variables by applying nearest-neighbor interpolation. Then an RF model was generated for
162 downscaling SMAP and NLDAS soil moisture products. The third step was to summarize feature
163 importance. Each step is described in detail below.



164

165 Figure 1: Schematic representation of the methodology used in this study

166 **3.1 Nearest neighbor interpolation**

167 All ancillary data are first aggregated to a resolution of 9-km and 12.5-km to construct
168 the downscaling models. Nearest neighbor interpolation is used to resample the ancillary data
169 (Table 1). Nearest neighbor is a method of spatial resampling that calculates the value of a new
170 pixel based on the value of its nearest neighbor. This method was selected because it is
171 computationally efficient and previous soil moisture downscaling studies have applied the
172 nearest neighbor method (Alemohammad et al. 2018; Li et al. 2016; Liu et al. 2020, 2011). This

173 method was applied twice, once to generate features at the same resolution as SMAP (9-km) and
174 to generate features at the same resolution as NLDAS (12.5-km).

175 **3.2 Downscaling soil moisture with random forest**

176 Soil moisture downscaling to 1-km from the native SMAP (9-km) and NLDAS (12.5-km)
177 resolutions was done using Random Forest. Random Forest (RF) was first developed by
178 (Breiman 2001) and then later advanced by (Cutler et al. 2012). RF is an integrated learning
179 algorithm that can be used for both classification of a categorical response and regression for
180 continuous variables (Li et al. 2013; Lu et al. 2014). The advantages of RF are that it is very fast
181 to train and predict, it only depends on a few tuning parameters, and it can be used for high-
182 dimensional problems, outlier detection, and visualization (Cutler et al. 2012). The regression
183 model in RF was used for downscaling soil moisture in this study.

184 The dataset was randomly split into 80% training and 20% testing for model evaluation.
185 To optimize the model, we performed randomized search cross-validation over a set of
186 hyperparameters, including the number of trees (n_estimators): {20, 40, 60, ..., 200}, maximum
187 depth of trees (max_depth): {10, 20, 30, ..., 110, None}, maximum number of features per split
188 (max_features): {'auto', 'sqrt'}, minimum number of samples per split (min_samples_split): {2,
189 5, 10}, minimum number of samples per leaf (min_samples_leaf): {1, 2, 4}, and bootstrap
190 sampling method: {True, False}. The hyperparameter tuning is the same for each region.

191 The RF model for SMAP was generated using data from 2015 to 2021, and the RF model
192 for NLDAS was generated using data from 2001 to 2021. A 3-fold cross-validation was used for
193 cross-validation, each fold randomly selected 80% of the data for training and the remaining
194 20% was used for validation. The RF model with the highest accuracy was selected based on the

195 cross-validation. This model was used to downscale the soil moisture to 1-km resolution and this
196 downscaled soil moisture was validated using the in-situ measurements. This process was
197 repeated separately for SMAP and NLDAS.

198 **3.3 Model evaluation**

199 The correlation coefficient (R), coefficient of determination (R^2), mean absolute error
200 (MAE), mean squared error (MSE), and root mean square error (RMSE) were used for validating
201 the downscaled soil moisture data. R and R^2 measure the goodness-of-fit of the model. MAE,
202 MSE and RMSE measure the error between the actual and downscaled soil moisture values.

203

$$R = \frac{\text{Cov}(SM_o, SM_p)}{\sqrt{\text{Var}[SM_o]\text{Var}[SM_p]}}$$

204

$$R^2 = 1 - \frac{\sum_{i=1}^n [(SM_p - SM_{mp})(SM_o - SM_{mo})]^2}{\sum_{i=1}^n (SM_p - SM_{mp})^2 \sum_{i=1}^n (SM_o - SM_{mo})^2}$$

205

$$MAE = \frac{1}{n} \sum_{i=1}^n |SM_o - SM_p|$$

206

$$MSE = \frac{1}{n} \sum_{i=1}^n (SM_o - SM_p)^2$$

207

$$RMSE = \sqrt{\frac{\sum_{i=1}^n (SM_o - SM_p)^2}{n}}$$

208 Where n is the number of observations, SM_o , SM_p , SM_{mo} , SM_{po} represent the observed soil
209 moisture value, predicted soil moisture value, mean observed soil moisture value, and mean
210 predicted soil moisture value.

211 4 Results

212 4.1 Feature importance for SMAP downscaling

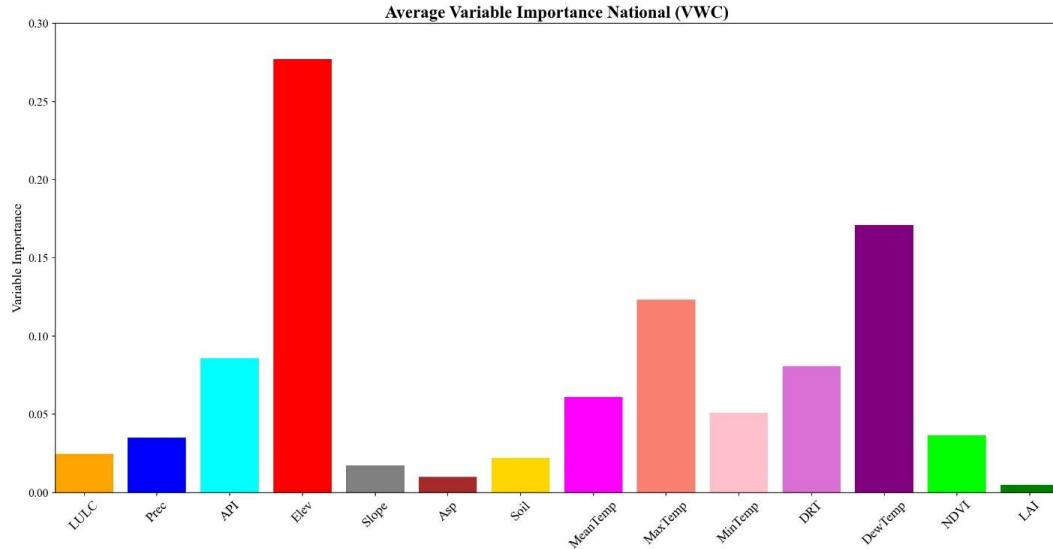
213 There are two measures that can be used to quantify the predictive power of individual
214 features in RF Regression: (1) an increased mean squared error (IncMSE) and, (2) an increase in
215 the number of nodes purified (IncNudePurity). IncMSE measures how an individual feature
216 changes when it is permuted at random. IncMSE measures the degree to which the accuracy of
217 Random Forest decreases when a feature is removed. Fourteen features were used to downscale
218 the coarse resolution of soil moisture products to 1-km resolution. The IncMSE was calculated
219 for each feature in each of the 9 regions to determine feature importance.

220 At the national (CONUS) scale, elevation is the most influential variable and dew point
221 temperature is the second most important feature (Figure 2). Maximum temperature is also
222 ranked as an important variable that improves the accuracy of downscaling of SMAP VWC over
223 CONUS. The least important features at the national scale are slope, aspect, and LAI.

224 In addition to evaluating feature importance for each region, the analysis was also
225 replicated by evaluating feature importance for different regions of CONUS. Figure 3 shows the
226 feature importance for SMAP VWC by region. The dew point temperature is the most important
227 feature in all regions, except the WestNorthCentral and South regions. Elevation is the most
228 important variable in these two regions. API is the second-most important variable in the
229 NorthWest, West, and SouthWest regions. Maximum, minimum, and mean temperature also play
230 a significant role in downscaling soil moisture. LAI is a feature that consistently is ranked as a
231 relatively unimportant feature for downscaling soil moisture (ranks from 0.1 to 0.2 across the 9
232 regions).

233 This study evaluates both VWC and soil moisture percentiles. Therefore, we can compare
234 the relative feature importance for downscaling soil moisture percentiles. At the CONUS scale,
235 dewpoint temperature is the most influential variable (Figure 4). This is followed by API and
236 elevation. The results at the CONUS scale are relatively consistent with the regional results.
237 Additionally, precipitation, maximum, mean temperatures, and DRT are all relatively important
238 variables for downscaling soil moisture percentiles at the CONUS scale (rank ranges from 3 to
239 6).

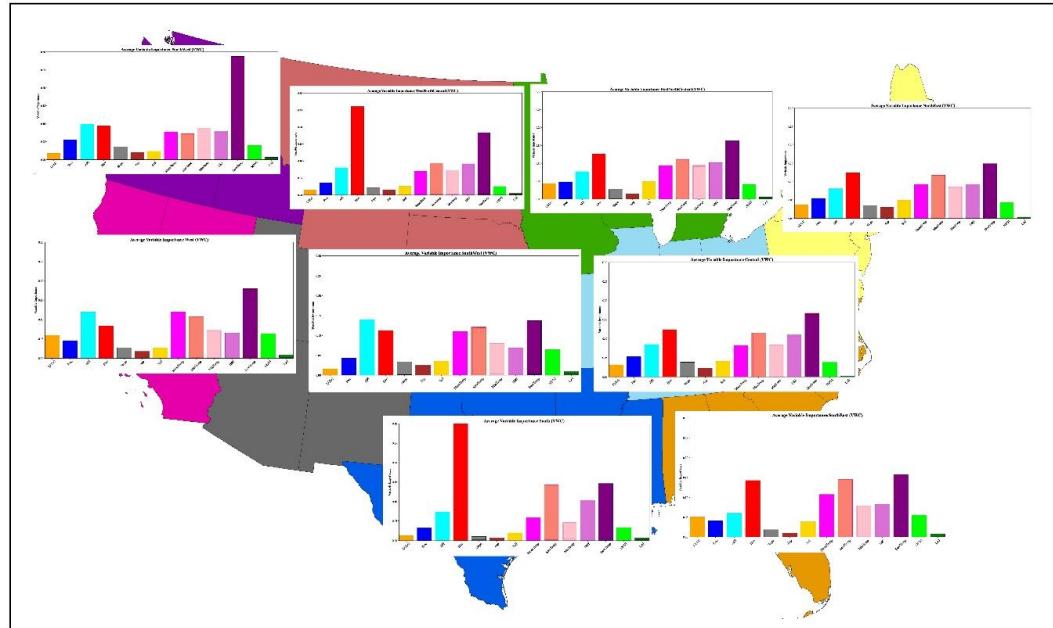
240 Similar to the results for SMAP VWC, dew point temperatures are the most influential
241 variable in all regions except the South (Figure 5). Elevation is the most influential feature in the
242 South. The second most important feature is either API or elevation. API is the second-most
243 influential variable in the NorthWest, SouthWest, and EastNorthCentral, NorthEast, SouthEast,
244 and Central regions. While elevation is the second most important feature of WestNorthCentral
245 regions. LAI, aspect, slope, NDVI, and LULC are the least important features for downscaling
246 soil moisture percentiles.



247

248

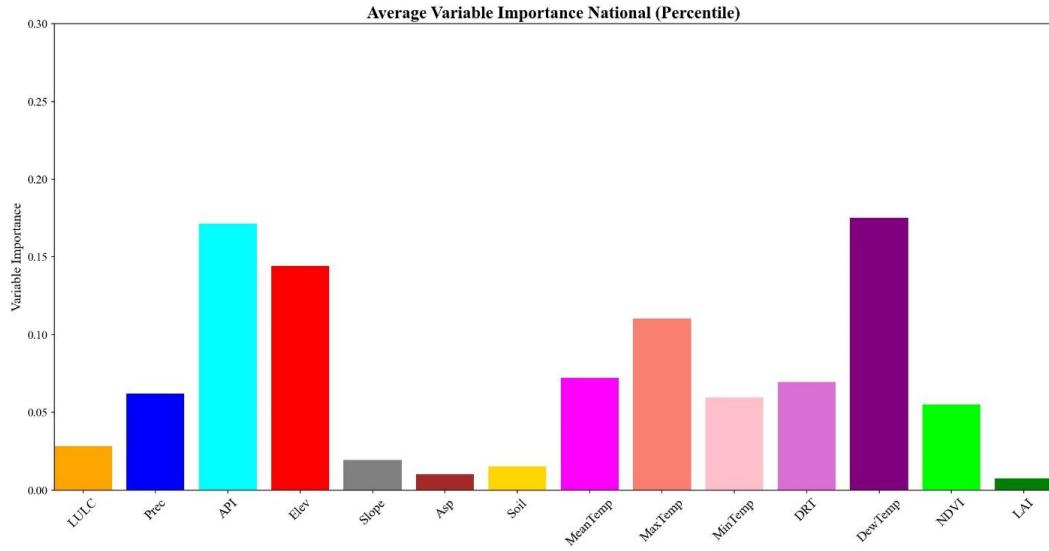
Figure 2: Feature importance (IncMSE%) for CONUS for SMAP VWC



249

Figure 3: Features importance (IncMSE%) by region for SMAP VWC

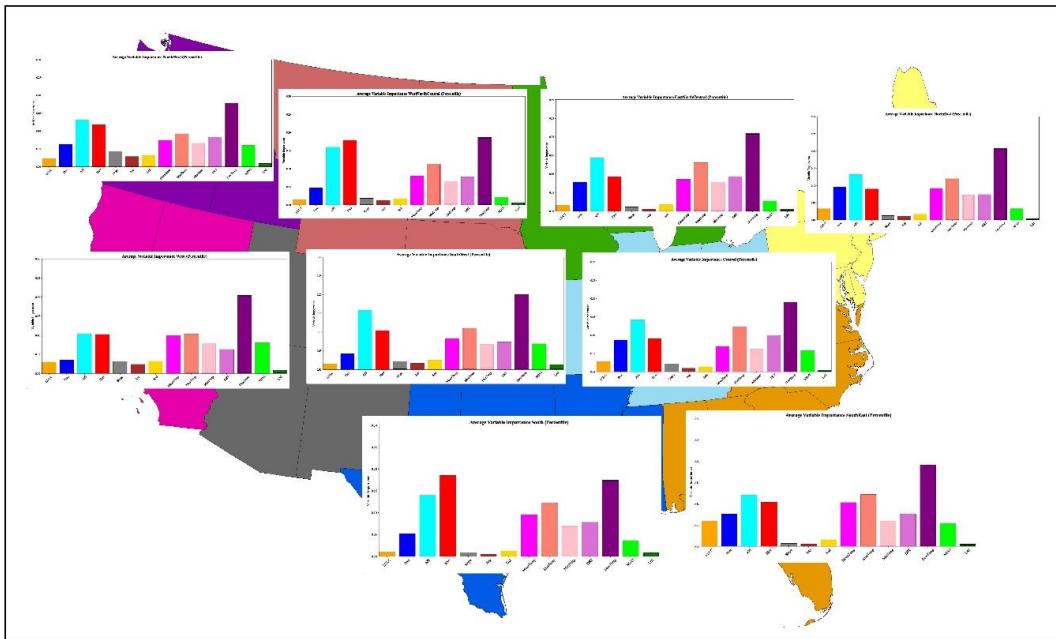
250



251

252

Figure 4: Feature importance (IncMSE%) for CONUS for SMAP percentile



253

Figure 5: Feature importance (IncMSE%) by region for SMAP percentiles

254

255

4.2 Feature importance for NLDAS downscaling

256

At the CONUS scale, dew point temperature is the most important feature (Figure 6).

257

Elevation and maximum temperature have almost the same influence and are ranked as the second and third most important features on the CONUS scale. Though elevation was the highest influential variable for SMAP VWC, elevation is ranked second here. However, as SMAP VWC, slope, aspect, LAI ranked the lowest.

261

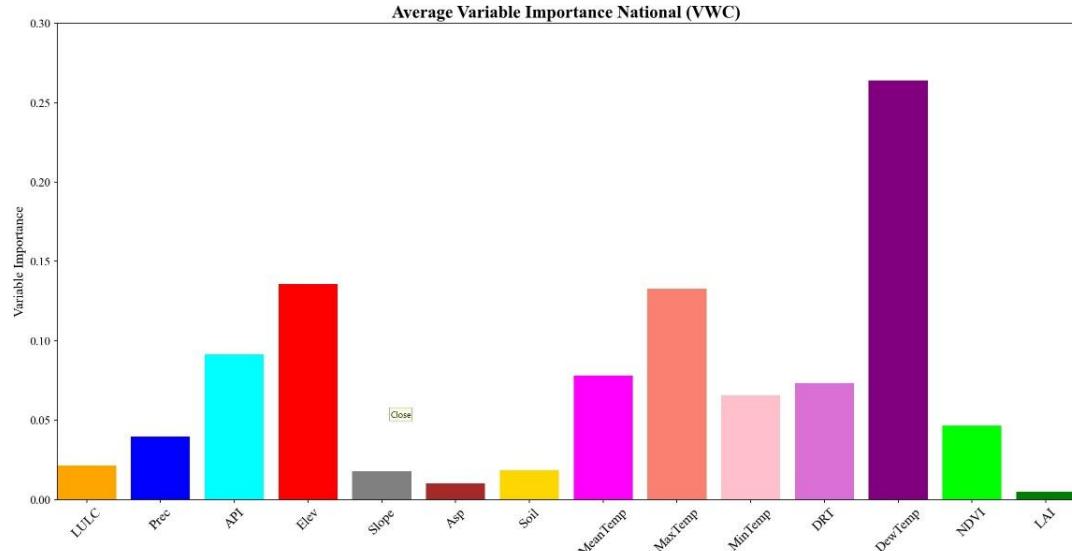
Figure 7 shows the feature importance for downscaling NLDAS VWC in each region.

262

Dew point temperature is the most important feature in all regions. Elevation is the second-highest important feature in all regions, except the NorthWest, West, SouthWest, and EastNorthCentral regions. The second most important variable for the NorthWest, SouthWest, and EastNorthCentral region is maximum temperature; for the West is mean temperature. Maximum and mean temperature are also influential features for downscaling NLDAS VWC. They typically rank as each region's 3rd or 4th most important features. While LAI and aspect are generally the least important features. These results are quite consistent with the SMAP feature importance.

270

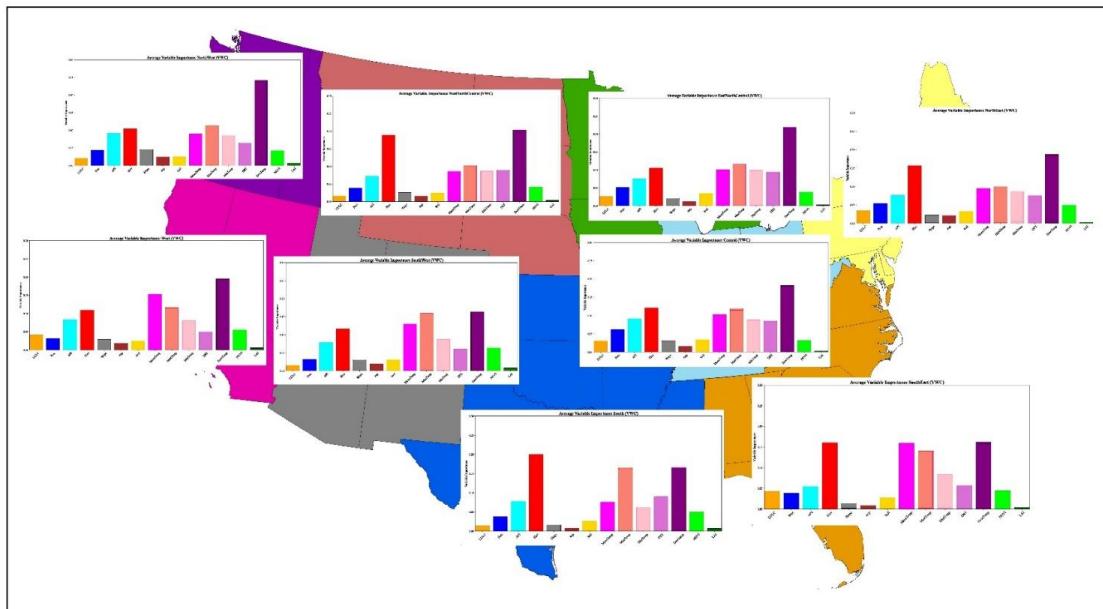
At the CONUS scale, dewpoint temperature is again the most influential feature (Figure 8). This is followed by API and elevation. Maximum and mean temperatures are also influential features at the CONUS scale. The results of the feature importance for NLDAS soil moisture percentiles are consistent with NLDAS VWC. Dew point temperature is the most important feature in all regions (Figure 9). API is the second most important feature in all regions, except the NorthWest, West, WestNorthCentral. In these regions, elevation is the second most important feature. LAI and aspect consistently have the lowest feature importance for downscaling NLDAS soil moisture percentiles.



278

279

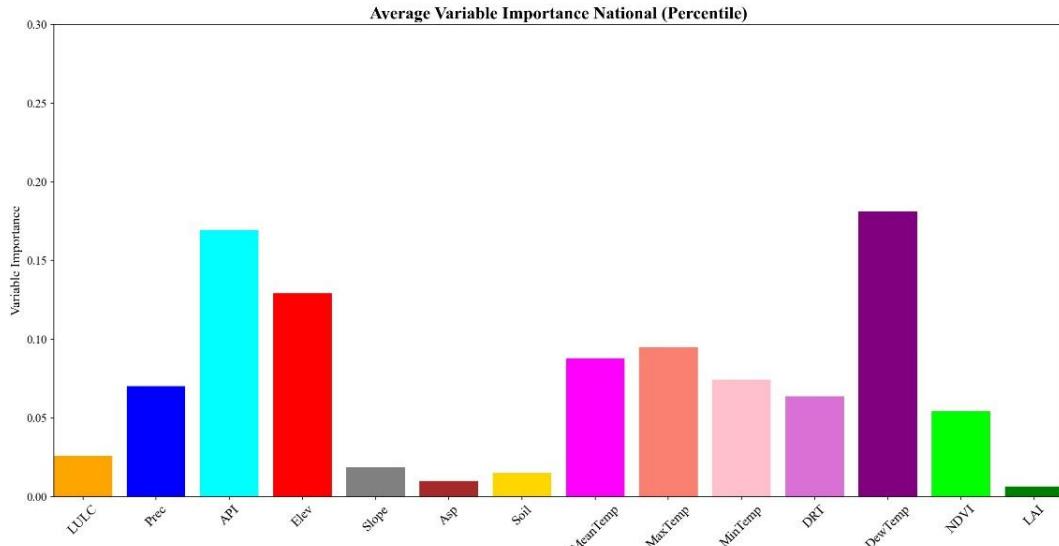
Figure 6: Feature importance (IncMSE%) for CONUS for NLDAS VWC



280

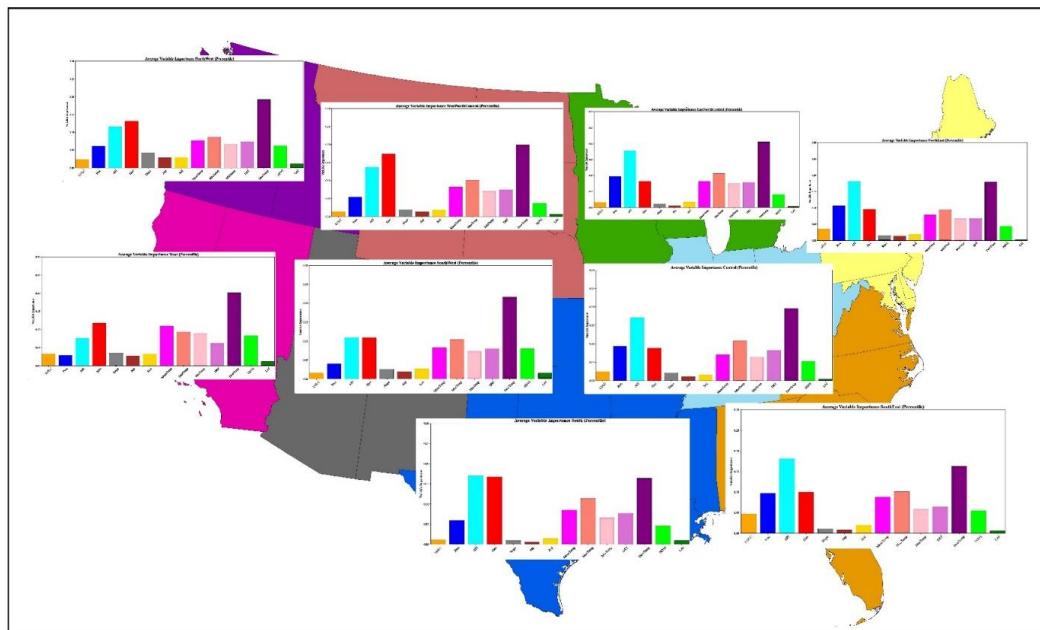
281

Figure 7: Feature importance (IncMSE%) by region for NLDAS VWC



282

Figure 8: Feature importance (IncMSE%) for CONUS for NLDAS percentiles



283

Figure 9: Feature importance (IncMSE%) by region for NLDAS percentile

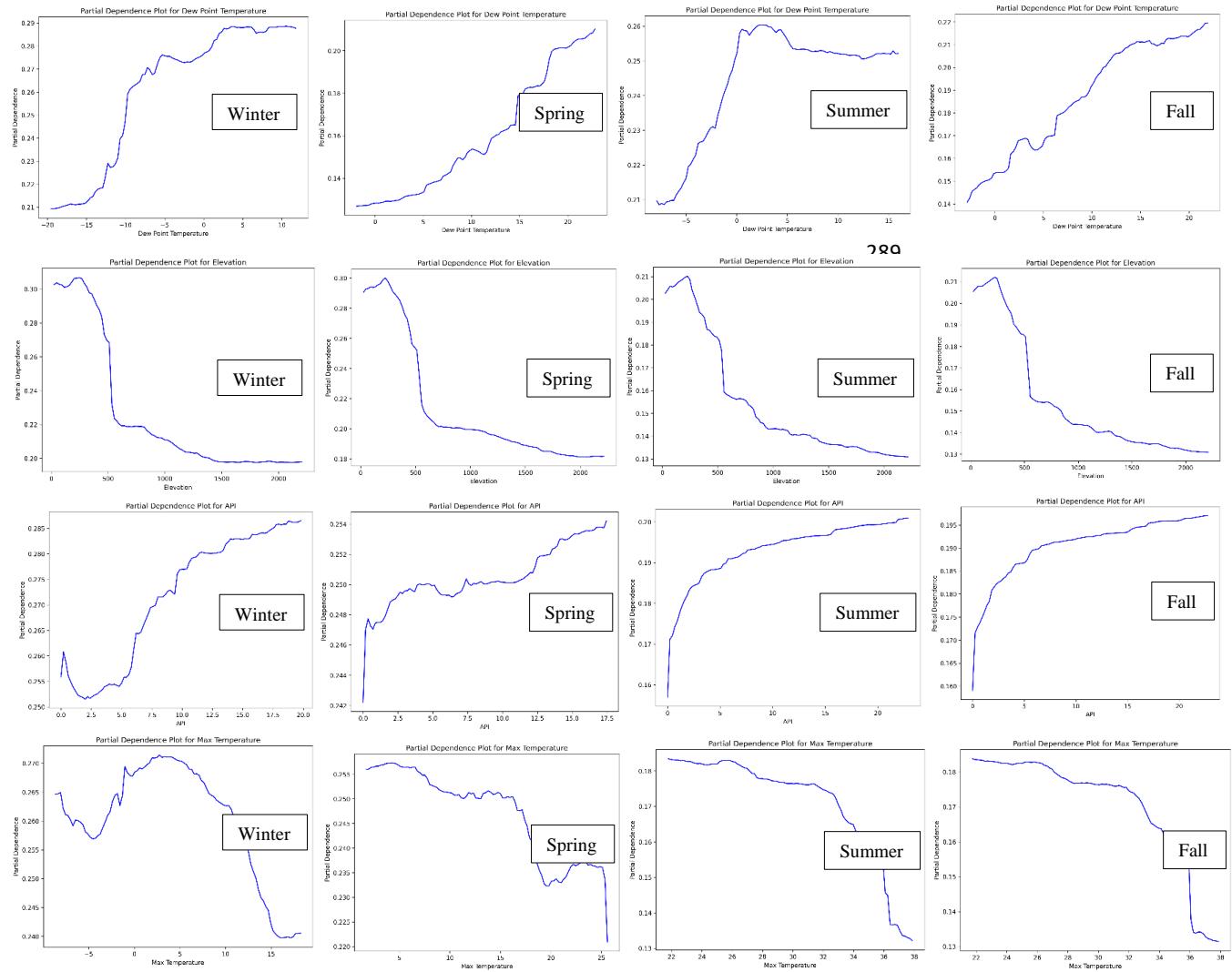
284

285 **4.3 Partial dependence plot (PDP) of variables**

286 Figure 10 represents the relationship between predicted soil moisture and the other

287 variables (dew point temperature, elevation, API, and maximum temperature).

288



300

301 Figure 10: Partial dependence plot for the four most important variables

302 The higher dew point temperature is related to the high soil moisture values in all seasons. The
303 lower elevation seems to have high soil moisture values in four seasons which is reasonable
304 because in the high elevation, the water content in the soil is low. If the API value is increasing,
305 the value of water content in the soil will be high and vice versa. On the other hand, with the
306 increasing maximum temperature, the soil moisture will be decreasing.

307 **4.3 Accuracy of VWC downscaling**

308 Table 2 shows the accuracy of the VWC downscaling in each region based on the
309 validation against in situ measurements. As shown in the table, the R-value is < 0.5 and $R^2 <$
310 0.25 for NLDAS downscaling. The average absolute difference between the SMAP downscaling
311 and observed value (MAE) ranges from 0.074 to 0.092. The Central region has a relatively low
312 MAE of 0.074, indicating a small average absolute difference between the predicted and actual
313 values. The highest value of MSE is 0.014 corresponding to SouthEast and 0.013 to
314 EastNorthCentral and the lowest value is 0.008 corresponding to South. The ubRMSE for the
315 South is 0.082 which is the lowest and for the SouthEast is 0.109 which is the highest. Although
316 the R^2 values are relatively low, the errors (MAE and ubRMSE) are also low. This indicates that
317 the downscaling is skillful.

318 Table 2: Accuracy of 1-km downscaled soil moisture (VWC) by region for SMAP and

319 NLDAS

	R		R2		MAE		MSE		RMSE		ubRMSE		Bias	
	SMAP	NLDAS	SMAP	NLDAS	SMAP	NLDAS								
Central	0.451	0.352	0.204	0.146	0.074	0.086	0.009	0.011	0.093	0.104	0.089	0.091	-0.008	-0.021

EastNorthCentral	0.403	0.494	0.157	0.248	0.092	0.072	0.013	0.010	0.115	0.097	0.093	0.087	0.053	-0.017
NorthEast	0.323	0.337	0.104	0.131	0.075	0.084	0.009	0.010	0.095	0.100	0.089	0.085	0.001	-0.017
NorthWest	0.268	0.298	0.065	0.090	0.080	0.085	0.009	0.010	0.097	0.100	0.092	0.089	0.022	0.014
South	0.568	0.551	0.323	0.304	0.072	0.069	0.008	0.007	0.091	0.086	0.082	0.080	-0.033	-0.020
SouthEast	0.419	0.622	0.176	0.386	0.094	0.084	0.014	0.010	0.116	0.101	0.109	0.090	0.034	0.010
SouthWest	0.364	0.622	0.132	0.073	0.078	0.091	0.010	0.012	0.098	0.108	0.093	0.097	-0.020	-0.004
West	0.308	0.270	0.099	0.081	0.075	0.084	0.009	0.010	0.094	0.099	0.092	0.090	0.016	0.025
WestNorthCentral	0.520	0.494	0.270	0.248	0.073	0.080	0.008	0.010	0.091	0.097	0.085	0.087	-0.011	0.004
National	0.514	0.509	0.192	0.259	0.082	0.083	0.010	0.010	0.102	0.100	0.100	0.095	-0.015	-0.011

320

4.4 Accuracy of percentile downscaling

321 Table 3 provides the evaluation metrics of soil moisture downscaling for percentiles by
322 region. The South region has the lowest MAE of 0.195, indicating the smallest average absolute
323 difference between predicted and actual values among all the regions. The MSE is also the
324 lowest which is 0.061 for this region, indicating a higher average squared difference. The RMSE
325 of 0.248 is also the lowest among the regions, indicating the smallest average absolute
326 difference. On the other hand, the NorthWest and SouthWest regions are characterized by the
327 highest MAE of 0.223, which indicates a greater average absolute difference between the
328 predicted and actual values compared to other regions. As indicated by the MSE value of ~0.076,
329 there is a greater average squared difference between the two regions. RMSE of ~0.275 indicates
330

331 Table 3: Accuracy of 1-km downscaled soil moisture (percentiles) by region for SMAP
332 and NLDAS

	R		R ²		MAE		MSE		RMSE		ubRMSE		Bias	
	SMAP	NLDAS	SMAP	NLDAS	SMAP	NLDAS	SMAP	NLDAS	SMAP	NLDAS	SMAP	NLDAS	SMAP	NLDAS
Central	0.423	0.536	0.187	0.297	0.200	0.177	0.065	0.050	0.256	0.224	0.222	0.198	-0.055	-0.016

Region	0.411	0.429	0.198	0.304	0.207	0.195	0.065	0.056	0.256	0.236	0.216	0.189	-0.026	-0.045
NorthEast	0.269	0.307	0.085	0.120	0.207	0.211	0.066	0.068	0.257	0.261	0.226	0.220	-0.048	-0.034
NorthWest	0.229	0.194	0.050	0.048	0.223	0.237	0.076	0.084	0.276	0.291	0.249	0.252	0.0276	-0.058
South	0.442	0.488	0.195	0.238	0.195	0.175	0.061	0.049	0.248	0.223	0.224	0.208	-0.068	-0.019
SouthEast	0.394	0.437	0.156	0.195	0.207	0.189	0.066	0.055	0.258	0.236	0.227	0.212	-0.081	-0.027
SouthWest	0.229	0.229	0.053	0.058	0.223	0.228	0.077	0.079	0.278	0.281	0.256	0.253	0.000	-0.042
West	0.238	0.180	0.062	0.047	0.216	0.226	0.072	0.076	0.268	0.276	0.245	0.245	-0.015	-0.025
WestNorthCentral	0.363	0.367	0.141	0.144	0.215	0.218	0.073	0.074	0.270	0.272	0.253	0.244	-0.021	-0.054
National	0.425	0.370	0.029	0.138	0.217	0.226	0.073	0.080	0.270	0.284	0.260	0.262	-0.033	-0.080

333

334 a greater average absolute difference among the regions. The lowest MAE value is 0.175 in the
335 South region. The lowest MAE value indicates the closer alignment between actual and predicted
336 values. The average squared difference between the expected and actual values ranges from
337 0.050 to 0.086. Similar patterns can be observed between MSE and RMSE values. The lowest
338 value of RMSE is 0.223 indicating good predictions for South regions.

339 **5 Discussion**

340 **5.1 Feature importance**

341 A complex interaction between pedologic, topographic, vegetative, and meteorological
342 factors is responsible for the extensive horizontal variability in surface soil moisture fields
343 (Mohanty and Skaggs 2001). It is difficult to isolate and measure these factors, however,
344 understanding their magnitude is critical for determining soil moisture upscaling strategies
345 (Crow et al. 2012).

346 Topography is another crucial factor that influences the spatial organization of soil
347 moisture at various scales. The topographic attributes such as slope, aspect affect the movement
348 of water through gravity-driven processes, such as runoff and infiltration, leading to variations in

349 soil moisture across the landscape (Crow et al. 2012). This research also complements that
350 topography is an important factor because elevation is the most influential factor and second
351 highest factor relatively in SMAP VWC and NLDAS VWC downscaling over CONUS. In
352 addition, elevation ranks third for percentile downscaling for both data sources. Understanding
353 the role of topography is essential for accurately characterizing and predicting soil moisture
354 patterns. Charpentier and Groffman (1992) suggested that variations in topography play a
355 significant role in shaping the spatial distribution of soil moisture, with more diverse topographic
356 features leading to increased variability in soil moisture. This study shows the South and
357 WestNorthCentral regions have the influences of slope regardless of data sources and units of
358 measurement. Since the WestNorthCentral region includes portions of the Rocky Mountains, and
359 the mountainous area has high variability in elevation. It has been demonstrated that relative
360 slope position significantly impacts determining soil moisture variation. When considering
361 different time scales, a straightforward averaging of soil moisture values across a slope is likely
362 to produce errors (Mohanty et al. 2000; Jacobs 2004). Here, this research shows differences
363 because slope has a relatively low impact on the downscaling for both data sources and both
364 units of measurement (VWC and percentile). In addition, the aspect (direction of slope) also has
365 less impact on the downscaling in all the regions and over CONUS too. The effects of slope on
366 soil moisture are more localized and dependent on other factors rather than being significant. It is
367 important to mention that slope influences soil moisture in various ways, including its length and
368 direction (aspect). Although these effects are generally less pronounced than those that elevation
369 has on the local microclimate and hydrology, they can be observed (Bennie et al. 2008).

370 Among these meteorological factors, precipitation is considered the single most
371 important forcing factor for soil moisture content and its distribution (Crow et al. 2012). This

372 research agrees with Crow et al. (2012) because the precipitation index (API) ranks second in
373 terms of SMAP percentile downscaling over the CONUS. Furthermore, API is also a dominant
374 factor for the South, WestNorthCentral, NorthWest, SouthWest regions. Sivapalan et al. (1987)
375 and Famiglietti et al. (1999) found the mean soil moisture trend changed with the precipitation
376 gradient. The soil moisture storage, drainage, and water budget for different climate patterns
377 changed with the intensity of rainfall (Kim et al. 1997; Salvucci 2001). To date, there has not
378 been any research that has shown that dew point temperature is useful for downscaling soil. The
379 present study found that dew point temperature is the most important feature for downscaling
380 soil moisture for both products and both measurements, except SMAP VWC over the CONUS.
381 Although elevation has the highest impact on SMAP VWC downscaling over the CONUS, dew
382 point temperature has the highest influence over all the regions except the South, and
383 WestNorthCentral regions both for SMAP VWC and percentile downscaling. For NLDAS VWC
384 and percentiles, only the South region is different.

385 There are a number of ways that the dew point temperature can influence soil moisture.
386 First, when the air temperature cools to the dew point temperature water vapor will condense,
387 forming dew on the soil surface and vegetation (Monteith, 1957, Jacobs et al. 2000). Second,
388 dew point temperature can also affect the transpiration rates of plants (Ambrose et al. 2009). Soil
389 evaporation and plant transpiration will increase as a function of the vapor pressure gradient.
390 Therefore, dew point temperature fluctuations can influence the wetting and drying cycles of the
391 soil (Zhou et al. 2008).

392 Precipitation, mean, maximum, and minimum temperatures also have an impact on soil
393 moisture. Higher temperatures tend to be associated with an increased vapor pressure deficit
394 between the soil surface and the air, and this leads to a higher evaporation rate from the soil.

395 Higher temperatures can cause the soil to dry out more rapidly, particularly from the surface of
396 the soil (Balugani et al. 2014). They can also cause vegetation to utilize more soil water and so
397 they can cause the depletion of soil moisture (Oren et al. 1999).

398 The distribution of soil moisture is significantly affected by soil heterogeneity, due to
399 variations in soil properties such as texture, organic matter content, porosity, and structure. As a
400 result of these variations, soil moisture can significantly differ over small spatial distances,
401 influencing local hydrological processes. The color of the soil can also influence the rate of
402 evaporative drying for bare or lightly vegetated soils by affecting the albedo. Soil hydraulic
403 conductivity affects processes such as water infiltration, redistribution, and drainage, which in
404 turn impact the distribution of soil moisture across a given area (Moore et al. 1988; Kim and
405 Barros 2002). Although previous research concluded that soil type has a significant impact on
406 soil moisture, this research found that soil type has minimal impact on downscaling soil
407 moisture. In addition, whether over the CONUS or for all the regions, soil type is one of the least
408 influential variables. The reason could be that other factors like elevation, prevailing climate, and
409 precipitation patterns have a greater impact than the soil texture.

410 Previous work has concluded that variations in soil moisture are more strongly influenced
411 by vegetation than by soil and topography (Crow et al. 2012). Our results do not support this
412 conclusion (at least for 1-km soil moisture) since the vegetation variables (NDVI and LAI) were
413 less important than topography. Soil moisture is spatially variable as a result of various processes
414 that involve water uptake, transpiration, and the surface energy budget. The influence of land
415 cover characteristics must be understood to accurately model and predict soil moisture dynamics.
416 Land cover affected soil moisture distribution significantly at the satellite footprint during the
417 NAFE'05 field campaign in Australia (Panciera et al. 2008). The regional distribution of soil

418 moisture was noted to be impacted by variations in land cover (Cosh et al. 2004; Joshi and
419 Mohanty 2010). However, the results of our study indicated that land cover was not an important
420 feature for downscaling soil moisture to 1-km resolution. It had minimal impact on the
421 downscaling regardless of the data sources or soil moisture measurement. These results were
422 consistent over the CONUS and all regions.

423 Drawing broad conclusions regarding the impact of soil, topography, land cover,
424 vegetation, and meteorological forcing can be challenging because feature important is strongly
425 influenced by the spatial scale of analysis and the region of interest (Crow et al. 2012). Our study
426 results demonstrate that there can be substantial region variations in feature importance and that
427 feature importance is also a function of the data source, unit of measurement and spatial
428 resolution.

429 Regions may differ in terms of climatic, geographic, and soil characteristics, which can
430 have a significant impact on the relationship between the input features and soil moisture.
431 Regions with limited or incomplete data may be difficult to predict accurately. Our analysis
432 demonstrates that other than elevation, temperature is an important feature in the South. This
433 region includes Texas, Louisiana, Mississippi, Arkansas, Kansas, and Oklahoma. It is
434 characterized by a warm and humid climate. Soil moisture is influenced by precipitation and
435 topography. Periodic droughts have a strong influence on soil water content (Bond et al. 2008;
436 Engle et al. 2008).

437 The northeastern region includes New York, Pennsylvania, Connecticut, Delaware,
438 Maine, Maryland, Massachusetts, New Hampshire, New Jersey, Vermont, and Rhode Island. It
439 has a temperate climate with distinct seasonal patterns. Seasonal variations in precipitation and
440 snowmelt can significantly impact soil moisture patterns (Daly et al. 2008). Our results

441 demonstrate that API, dew point temperature, and temperature influence soil moisture. The
442 northwestern region includes Idaho, Oregon, and Washington. It has a diverse climate ranging
443 from maritime to continental. The EastNorthCentral includes Iowa, Michigan, Minnesota, and
444 Wisconsin. It has a humid continental climate with distinct seasonal changes. The region is
445 dominated by the Great Lakes. Soil moisture depends on temperature and precipitation patterns
446 (Kunkel et al. 2013). Our results demonstrate that API and temperature have a significant impact
447 on soil moisture.

448 The WestNorthCentral includes Montana, Nebraska, North Dakota, South Dakota, and
449 Wyoming. It is characterized by a continental climate with hot summers and cold winters.
450 Snowmelt and spring rains can increase soil moisture levels (Kunkel et al. 2013). Temperature
451 and dew point temperature are important features for accurately downscaling soil moisture. The
452 West includes California and Nevada. It has a diverse range of climates, from Mediterranean to
453 arid and semi-arid. This region with mountainous terrain may experience higher soil moisture
454 levels due to increased precipitation (Nielsen et al. 2024). The SouthWest includes Arizona,
455 Colorado, New Mexico, and Utah. It has an arid to semi-arid climate. However, soil moisture is
456 lower in this region (Huxman et al. 2004) and API has an impact on the soil moisture. Moreover,
457 topographic features such as mountains and valleys can cause localized variations in soil
458 moisture (Seager et al. 2007), which is evident in the present study.

459 **5.3 Model evaluation**

460 Abbaszadeh et al. (2019) downscaled SMAP 9-km (SMAP level 3) soil moisture to 1-km
461 over the CONUS using ensemble learning methods and they found overall the ubRMSE between
462 downscaled and in-situ observations met the SMAP accuracy requirement of 0.04. The
463 downscaled soil moisture data showed a strong correlation ($R=0.325$ to 0.997 , average 0.715)

464 and high accuracy (ubRMSE=0.010 to 0.141 m³/m³, average 0.041 m³/m³) compared to the in-
465 situ soil moisture measurements (Xu et al. 2022). Our study shows that the ubRMSE value for
466 SMAP VWC is 0.100 m³/m³. The reason could be the different methods of downscaling because
467 our analysis used RF, while Xu et al. (2022) used an ensemble approach. In addition, Xu et al.
468 (2022) used SMAP level 3, while this analysis used SMAP level 4.

469 Sun and Cui (2021) downscaled VWC in the central United States using support vector
470 machine (SVM). The correlation between their downscaled soil moisture and the in-situ
471 measurements ranged from 0.174 to 0.754, and their RMSE ranged from 0.063 to 0.101. In our
472 study, the correlation between the downscaled soil moisture and in-situ measurements in the
473 central region was 0.452 for SMAP VWC and 0.352 for NLDAS VWC. The RMSE was 0.093
474 for SMAP VWC and 0.104 for NLDAS VWC. Therefore, our results are relatively comparable
475 in terms of correlation and error.

476 Guevara and Vargas (2019) downscaled the soil moisture from 27-km to 1-km by
477 training the kernel-weighted nearest neighbors across the conterminous United States. They
478 showed that the downscaled soil moisture had an R² value of 0.46. Our results generally have
479 lower correlations for all the regions, except the South. It is possible that this is because Guevara
480 and Vargas (2019) used different methods of downscaling such kernel-weighted nearest
481 neighbors, while our approach was based on. There is also the difference of spatial native
482 resolutions of soil moisture products that were used for downscaling.

483 Liu et al. (2020) downscaled soil moisture using six methods over different regions
484 including Oklahoma. The R² value for their Oklahoma region ranged from 0.287 to 0.714, and
485 the MAE ranged from 0.027 to 0.055. The MAE in the South region in our study ranged from
486 0.069 to 0.195. A similar study in Oklahoma state was done by Jiang and Cotton (2004) applying

487 the artificial neural network (ANN). Their RMSE was <0.04. Xu et al. (2021) downscaled SMAP
488 36-km soil moisture to 3-km and 1-km by applying the convolution neural network in Oklahoma.
489 Xu et al. (2021) had a correlation of 0.659 and ubRMSE of 0.052 for their 1-km downscaled soil
490 moisture using SMAP level 3 products from 1st January 2018 to 30th December 2018. While
491 these studies had lower errors than our analysis, this is likely because they focused on a single
492 state, while our region encompasses multiple states. In addition, they downscaled only one year
493 soil moisture, but we downscaled daily soil moisture from 2015 to 2021 and evaluated
494 performance using this entire period. In addition, Xu et al. (2021) utilized a convolutional neural
495 network (CNN) and we used RF for downscaling.

496 Warner et al. (2021) downscaled VWC in Delaware to 100-m resolution using kernel k-
497 nearest neighbor (KKNN) based on SSM estimates from the European Space Agency's Climate
498 Change soil moisture products. They had an MAE of 0.048 (Warner et al. 2021). In comparison,
499 our MAE in the NorthEast region, which includes Delaware, ranged from 0.076 to 0.082. Warner
500 et al. (2021) likely had greater accuracy because they their study area is a single state
501 (Delaware), while our NorthEast region includes Delaware, Connecticut, Maine, Maryland,
502 Massachusetts, New Hampshire, New York, Pennsylvania, Rhode Island, and Vermont. In
503 addition, Warner et al. (2021) downscaled different soil moisture data than our study.

504 Overall, the soil moisture downscaling is more accurate in the South, Central, and
505 NorthEast regions, as they have lower error than in other regions. The downscaling was not as
506 accurate in the NorthWest, SouthWest, West, and WestNorthCentral regions.

507 **6 Conclusions**

508 This study evaluated and compared feature importance for downscaling satellite and
509 model-derived soil moisture products across different regions. Random forest was applied to
510 predict the soil moisture products (SMAP and NLDAS) to 1-km resolution over CONUS and in-
511 situ data were used to validate the model. The conclusions are:

512 1) Results indicated that dew point temperature is the most important feature and elevation
513 is the second most important feature for downscaling soil moisture in the United States.

514 In general, the atmospheric features (e.g., temperature) have more impact on the
515 downscaling than vegetation features. Vegetation features such as NDVI and LAI, as well
516 as topographic features such as slope and aspect were not important for downscaling soil
517 moisture to 1-km resolution.

518 2) Based on the accuracy metrics, downscaling VWC is more accurate than soil moisture
519 percentiles.

520 3) Downscaled SMAP and NLDAS VWC was most accurate in the South and
521 WestNorthCentral regions.

522 Our results can be used to improve feature selection for soil moisture downscaling.

523 However, it is likely that the optimal features for downscaling soil moisture are strongly
524 dependent on the spatial resolution of the analysis and the climatic, topographic and edaphic
525 characteristics of the study region.

526 Future research can advance this work in the following ways. First, we can increase the
527 validity of the accuracy assessment by using more in-situ data to validate the downscaling. This
528 study compares the 1-km downscaled soil moisture to a single station. A better approach would
529 be to use a dense network of stations to upscale the in-situ data to match the resolution of the soil
530 moisture products. Second, given the substantial regional variations in performance, future work,

531 would benefit from including a more comprehensive set of features that account for soil moisture
532 dynamics in each region. Third, the method of upscaling the features can be improved. Last, this
533 study only used a single method for downscaling. Using other downscaling approaches may
534 result in increased accuracy and provide additional insights.

535 **Author Contributions:**

536 **EAE**-Conceptualization, methodology, formal analysis, validation, visualization, writing-
537 original draft, **ZL**- Data acquisition, validation **ID**- Data acquisition, validation **SQ**-Funding
538 acquisition, supervision, writing-review, editing.

539 **Funding:** This research was funded by the United States Department of Agriculture (USDA)
540 under Grant AQD-109872.

541 **Acknowledgments:** The authors thank the anonymous reviewers for providing such valuable
542 comments.

543 **Conflicts of Interest:** The authors declare no conflict of interest.

544

545 References

546 Abbaspour, K. C., E. Rouholahnejad, S. Vaghefi, R. Srinivasan, H. Yang, and B. Kløve, 2015: A
547 continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a
548 high-resolution large-scale SWAT model. *Journal of Hydrology*, **524**, 733–752,
549 <https://doi.org/10.1016/j.jhydrol.2015.03.027>.

550 Abbaszadeh, P., H. Moradkhani, and X. Zhan, 2019: Downscaling SMAP Radiometer Soil Moisture Over
551 the CONUS Using an Ensemble Learning Method. *Water Resources Research*, **55**, 324–344,
552 <https://doi.org/10.1029/2018WR023354>.

553 Alemohammad, S. H., J. Kolassa, C. Prigent, F. Aires, and P. Gentine, 2018: Global downscaling of
554 remotely sensed soil moisture using neural networks. *Hydrology and Earth System Sciences*, **22**,
555 5341–5356, <https://doi.org/10.5194/hess-22-5341-2018>.

556 Ambrose, A. R., S. C. Sillett, and T. E. Dawson, 2009: Effects of tree height on branch hydraulics, leaf
557 structure and gas exchange in California redwoods. *Plant, Cell & Environment*, **32**, 743–757,
558 <https://doi.org/10.1111/j.1365-3040.2009.01950.x>.

559 Baldwin, D., K. J. Naithani, and H. Lin, 2017: Combined soil-terrain stratification for characterizing
560 catchment-scale soil moisture variation. *Geoderma*, **285**, 260–269,
561 <https://doi.org/10.1016/j.geoderma.2016.09.031>.

562 Balugani, E., M. Lubczynski, and K. Metselaar, 2014: A framework for sourcing of evaporation between
563 saturated and unsaturated zone in bare soil condition. *Hydrological Sciences Journal*, **61**,
564 150527103244004, <https://doi.org/10.1080/02626667.2014.966718>.

565 Bennie, J., B. Huntley, A. Wiltshire, M. Hill, and R. Baxter, 2008: Slope, aspect and climate: Spatially
566 explicit and implicit models of topographic microclimate in chalk grassland. *Ecological
567 Modelling*, **216**, 47–59, <https://doi.org/10.1016/j.ecolmodel.2008.04.010>.

568 Bond, B. J., F. C. Meinzer, and J. R. Brooks, 2008: How Trees Influence the Hydrological Cycle in Forest
569 Ecosystems. *Hydroecology and Ecohydrology*, P.J. Wood, D.M. Hannah, and J.P. Sadler, Eds.,
570 Wiley, 7–35.

571 Breiman, L., 2001: Random Forests. *Machine Learning*, **45**, 5–32,
572 <https://doi.org/10.1023/A:1010933404324>.

573 Brocca, L., and Coauthors, 2014: Soil as a natural rain gauge: Estimating global rainfall from satellite soil
574 moisture data. *Journal of Geophysical Research: Atmospheres*, **119**, 5128–5141,
575 <https://doi.org/10.1002/2014JD021489>.

576 Carrijo, D. R., C. Li, S. J. Parikh, and B. A. Linquist, 2019: Irrigation management for arsenic mitigation
577 in rice grain: Timing and severity of a single soil drying. *Science of The Total Environment*, **649**,
578 300–307, <https://doi.org/10.1016/j.scitotenv.2018.08.216>.

579 Charpentier, M. A., and P. M. Groffman, 1992: Soil moisture variability within remote sensing pixels.
580 *Journal of Geophysical Research: Atmospheres*, **97**, 18987–18995,
581 <https://doi.org/10.1029/92JD00882>.

582 Chen, S., D. She, L. Zhang, M. Guo, and X. Liu, 2019: Spatial Downscaling Methods of Soil Moisture
583 Based on Multisource Remote Sensing Data and Its Application. *Water*, **11**, 1401,
584 <https://doi.org/10.3390/w11071401>.

585 Cosh, M., T. Jackson, and R. Bindlish, 2004: Watershed scale temporal and spatial stability of soil
586 moisture and its role in validating satellite estimates. *Remote Sensing of Environment*, **92**, 427–
587 435, <https://doi.org/10.1016/j.rse.2004.02.016>.

588 Crow, W. T., and Coauthors, 2012: Upscaling sparse ground-based soil moisture observations for the
589 validation of coarse-resolution satellite soil moisture products. *Reviews of Geophysics*, **50**,
590 <https://doi.org/10.1029/2011RG000372>.

591 Cutler, A., D. R. Cutler, and J. R. Stevens, 2012: Random Forests. *Ensemble Machine Learning: Methods*
592 *and Applications*, C. Zhang and Y. Ma, Eds., Springer US, 157–175.

593 Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P.
594 Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and
595 precipitation across the conterminous United States. *International Journal of Climatology*, **28**,
596 2031–2064, <https://doi.org/10.1002/joc.1688>.

597 Dobriyal, P., A. Qureshi, R. Badola, and S. A. Hussain, 2012: A review of the methods available for
598 estimating soil moisture and its implications for water resource management. *Journal of*
599 *Hydrology*, **s 458–459**, 110–117, <https://doi.org/10.1016/j.jhydrol.2012.06.021>.

600 Engle, D., B. Coppedge, and S. Fuhlendorf, 2008: From the Dust Bowl to the Green Glacier: Human
601 Activity and Environmental Change in Great Plains Grasslands. Vol. 196 of, 253–271.

602 Famiglietti, J. S., and Coauthors, 1999: Ground-based investigation of soil moisture variability within
603 remote sensing footprints During the Southern Great Plains 1997 (SGP97) Hydrology
604 Experiment. *Water Resources Research*, **35**, 1839–1851, <https://doi.org/10.1029/1999WR900047>.

605 Fang, B., V. Lakshmi, R. Bindlish, and T. J. Jackson, 2018: Downscaling of SMAP Soil Moisture Using
606 Land Surface Temperature and Vegetation Data. *Vadose Zone Journal*, **17**, 170198,
607 <https://doi.org/10.2136/vzj2017.11.0198>.

608 Ford, T. W., Q. Wang, and S. M. Quiring, 2016: The Observation Record Length Necessary to Generate
609 Robust Soil Moisture Percentiles. *Journal of Applied Meteorology and Climatology*, **55**, 2131–
610 2149, <https://doi.org/10.1175/JAMC-D-16-0143.1>.

611 Guevara, M., and R. Vargas, 2019: Downscaling satellite soil moisture using geomorphometry and
612 machine learning. *PLoS ONE*, **14**, e0219639, <https://doi.org/10.1371/journal.pone.0219639>.

613 Huxman, T. E., and Coauthors, 2004: Precipitation pulses and carbon fluxes in semiarid and arid
614 ecosystems. *Oecologia*, **141**, 254–268, <https://doi.org/10.1007/s00442-004-1682-4>.

615 I. D. Moore, G. J. Burch, and D. H. Mackenzie, 1988: Topographic Effects on the Distribution of Surface
616 Soil Water and the Location of Ephemeral Gullies. *Transactions of the ASAE*, **31**, 1098–1107,
617 <https://doi.org/10.13031/2013.30829>.

618 Im, J., S. Park, J. Rhee, J. Baik, and M. Choi, 2016: Downscaling of AMSR-E soil moisture with MODIS
619 products using machine learning approaches. *Environ Earth Sci*, **75**, 1120,
620 <https://doi.org/10.1007/s12665-016-5917-6>.

621 Jacobs, A. F. G., B. G. Heusinkveld, and S. M. Berkowicz, 2000: Dew measurements along a longitudinal
622 sand dune transect, Negev Desert, Israel. *Int J Biometeorol*, **43**, 184–190,
623 <https://doi.org/10.1007/s004840050007>.

624 Jacobs, J., 2004: SMEX02: Field scale variability, time stability and similarity of soil moisture. *Remote
625 Sensing of Environment*, **92**, 436–446, <https://doi.org/10.1016/j.rse.2004.02.017>.

626 Jiang, H., and W. Cotton, 2004: Soil moisture estimation using an artificial neural network: A feasibility
627 study. *Canadian Journal of Remote Sensing*, **30**, <https://doi.org/10.5589/m04-041>.

628 Joshi, C., and B. P. Mohanty, 2010: Physical controls of near-surface soil moisture across varying spatial
629 scales in an agricultural landscape during SMEX02. *Water Resources Research*, **46**,
630 2010WR009152, <https://doi.org/10.1029/2010WR009152>.

631 Keesstra, S. D., and Coauthors, 2016: The significance of soils and soil science towards realization of the
632 United Nations Sustainable Development Goals. *SOIL*, **2**, 111–128, <https://doi.org/10.5194/soil-2-111-2016>.

634 Kim, C. P., J. N. M. Stricker, and R. A. Feddes, 1997: Impact of soil heterogeneity on the water budget of
635 the unsaturated zone. *Water Resources Research*, **33**, 991–999,
636 <https://doi.org/10.1029/97WR00364>.

637 Kim, G., and A. Barros, 2002: Downscaling of remotely sensed soil moisture with a modified fractal
638 interpolation method using contraction mapping and ancillary data. *Remote Sensing of
639 Environment*, **83**, 400–413, [https://doi.org/10.1016/S0034-4257\(02\)00044-5](https://doi.org/10.1016/S0034-4257(02)00044-5).

640 Kim, M., J. Im, H. Han, J. Kim, S. Lee, M. Shin, and H.-C. Kim, 2015: Landfast sea ice monitoring using
641 multisensor fusion in the Antarctic. *GIScience & Remote Sensing*, **52**, 239–256,
642 <https://doi.org/10.1080/15481603.2015.1026050>.

643 Krueger, E. S., T. E. Ochsner, and S. M. Quiring, 2019: Development and Evaluation of Soil Moisture-
644 Based Indices for Agricultural Drought Monitoring. *Agronomy Journal*, **111**, 1392–1406,
645 <https://doi.org/10.2134/agronj2018.09.0558>.

646 Kunkel, K. E., L. E. Stevens, S. E. Stevens, and L. Sun, Regional Climate Trends and Scenarios for the
647 U.S. National Climate Assessment Part 4. Climate of the U.S. Great Plains.

648 Li, M., J. Im, and C. Beier, 2013: Machine learning approaches for forest classification and change
649 analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. *GIScience &
650 Remote Sensing*, **50**, 361–384, <https://doi.org/10.1080/15481603.2013.819161>.

651 Li, X., W. Chen, X. Cheng, and L. Wang, 2016: A Comparison of Machine Learning Algorithms for
652 Mapping of Complex Surface-Mined and Agricultural Landscapes Using ZiYuan-3 Stereo
653 Satellite Imagery. *Remote Sensing*, **8**, 514, <https://doi.org/10.3390/rs8060514>.

654 Liu, J., F. Rahmani, K. Lawson, and C. Shen, 2022: A multiscale deep learning model for soil moisture
655 integrating satellite and in-situ data. *Geophysical Research Letters*, **n/a**, e2021GL096847,
656 <https://doi.org/10.1029/2021GL096847>.

657 Liu, Q., and Coauthors, 2011: The Contributions of Precipitation and Soil Moisture Observations to the
658 Skill of Soil Moisture Estimates in a Land Data Assimilation System. *Journal of*
659 *Hydrometeorology*, **12**, 750–765.

660 Liu, Y., W. Jing, Q. Wang, and X. Xia, 2020: Generating high-resolution daily soil moisture by using
661 spatial downscaling techniques: a comparison of six machine learning algorithms. *Advances in*
662 *Water Resources*, **141**, 103601, <https://doi.org/10.1016/j.advwatres.2020.103601>.

663 Lu, Z., J. Im, J. Rhee, and M. Hodgson, 2014: Building type classification using spatial and landscape
664 attributes derived from LiDAR remote sensing data. *Landscape and Urban Planning*, **130**, 134–
665 148, <https://doi.org/10.1016/j.landurbplan.2014.07.005>.

666 Mohanty, B. P., and T. H. Skaggs, 2001: Spatio-temporal evolution and time-stable characteristics of soil
667 moisture within remote sensing footprints with varying soil, slope, and vegetation. *Advances in*
668 *Water Resources*, **24**, 1051–1067, [https://doi.org/10.1016/S0309-1708\(01\)00034-3](https://doi.org/10.1016/S0309-1708(01)00034-3).

669 Mohanty, B. P., T. H. Skaggs, and J. S. Famiglietti, 2000: Analysis and mapping of field-scale soil
670 moisture variability using high-resolution, ground-based data during the Southern Great Plains
671 1997 (SGP97) Hydrology Experiment. *Water Resources Research*, **36**, 1023–1031,
672 <https://doi.org/10.1029/1999WR900360>.

673 Nielsen, M., B. I. Cook, K. Marvel, M. Ting, and J. E. Smerdon, 2024: The Changing Influence of
674 Precipitation on Soil Moisture Drought With Warming in the Mediterranean and Western North
675 America. *Earth's Future*, **12**, e2023EF003987, <https://doi.org/10.1029/2023EF003987>.

676 Oren, R., J. S. Sperry, G. G. Katul, D. E. Pataki, B. E. Ewers, N. Phillips, and K. V. R. Schäfer, 1999:
677 Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour
678 pressure deficit. *Plant, Cell & Environment*, **22**, 1515–1526, <https://doi.org/10.1046/j.1365-3040.1999.00513.x>.

680 Panciera, R., J. P. Walker, J. D. Kalma, E. J. Kim, J. M. Hacker, O. Merlin, M. Berger, and N. Skou,
681 2008: The NAFE'05/CoSMOS Data Set: Toward SMOS Soil Moisture Retrieval, Downscaling,
682 and Assimilation. *IEEE Trans. Geosci. Remote Sensing*, **46**, 736–745,
683 <https://doi.org/10.1109/TGRS.2007.915403>.

684 Park, S., J. Im, E. Jang, and J. Rhee, 2016: Drought assessment and monitoring through blending of
685 multi-sensor indices using machine learning approaches for different climate regions.
686 *Agricultural and Forest Meteorology*, **216**, 157–169,
687 <https://doi.org/10.1016/j.agrformet.2015.10.011>.

688 Peng, J., A. Loew, O. Merlin, and N. E. C. Verhoest, 2017: A review of spatial downscaling of satellite
689 remotely sensed soil moisture: Downscale Satellite-Based Soil Moisture. *Rev. Geophys.*, **55**, 341–
690 366, <https://doi.org/10.1002/2016RG000543>.

691 Pittelkow, C. M., and Coauthors, 2015: Productivity limits and potentials of the principles of conservation
692 agriculture. *Nature*, **517**, 365–368, <https://doi.org/10.1038/nature13809>.

693 Rhee, J., S. Park, and Z. Lu, 2014: Relationship between land cover patterns and surface temperature in
694 urban areas. *GIScience & Remote Sensing*, **51**, 521–536,
695 <https://doi.org/10.1080/15481603.2014.964455>.

696 Robinson, D. A., and Coauthors, 2008: Soil Moisture Measurement for Ecological and Hydrological
697 Watershed-Scale Observatories: A Review. *Vadose Zone Journal*, **7**, 358–389,
698 <https://doi.org/10.2136/vzj2007.0143>.

699 Ruosteenoja, K., T. Markkanen, and J. Räisänen, 2020: Thermal seasons in northern Europe in projected
700 future climate. *International Journal of Climatology*, **40**, 4444–4462,
701 <https://doi.org/10.1002/joc.6466>.

702 Salvucci, G., 2001: Estimating the moisture dependence of root zone water loss using conditionally
703 averaged precipitation. *Water Resources Research - WATER RESOUR RES*, **37**, 1357–1366,
704 <https://doi.org/10.1029/2000WR900336>.

705 Seager, R., and Coauthors, 2007: Model Projections of an Imminent Transition to a More Arid Climate in
706 Southwestern North America. *Science*, **316**, 1181–1184, <https://doi.org/10.1126/science.1139601>.

707 —, A. Tzanova, and J. Nakamura, 2009: Drought in the Southeastern United States: Causes, Variability
708 over the Last Millennium, and the Potential for Future Hydroclimate Change.
709 <https://doi.org/10.1175/2009JCLI2683.1>.

710 Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J.
711 Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review.
712 *Earth-Science Reviews*, **99**, 125–161, <https://doi.org/10.1016/j.earscirev.2010.02.004>.

713 Sivapalan, M., K. Beven, and E. F. Wood, 1987: On hydrologic similarity: 2. A scaled model of storm
714 runoff production. *Water Resources Research*, **23**, 2266–2278,
715 <https://doi.org/10.1029/WR023i012p02266>.

716 Srivastava, P. K., D. Han, M. R. Ramirez, and T. Islam, 2013: Machine Learning Techniques for
717 Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for
718 Hydrological Application. *Water Resour Manage*, **27**, 3127–3144,
719 <https://doi.org/10.1007/s11269-013-0337-9>.

720 Sun, H., and Y. Cui, 2021: Evaluating Downscaling Factors of Microwave Satellite Soil Moisture Based
721 on Machine Learning Method. *Remote Sensing*, **13**, 133, <https://doi.org/10.3390/rs13010133>.

722 Vereecken, H., J. A. Huisman, H. Bogena, J. Vanderborght, J. A. Vrugt, and J. W. Hopmans, 2008: On
723 the value of soil moisture measurements in vadose zone hydrology: A review. *Water Resources
724 Research*, **44**, <https://doi.org/10.1029/2008WR006829>.

725 Wagner, W., and Coauthors, 2013: The ASCAT Soil Moisture Product: A Review of its Specifications,
726 Validation Results, and Emerging Applications. *Meteorologische Zeitschrift*, **22**, 5–33,
727 <https://doi.org/10.1127/0941-2948/2013/0399>.

728 Wanders, N., D. Karssenberg, A. de Roo, S. M. de Jong, and M. F. P. Bierkens, 2014: The suitability of
729 remotely sensed soil moisture for improving operational flood forecasting. *Hydrol. Earth Syst.
730 Sci.*, **18**, 2343–2357, <https://doi.org/10.5194/hess-18-2343-2014>.

731 Warner, D., M. Guevara, J. Callahan, and R. Vargas, 2021: Downscaling satellite soil moisture for
732 landscape applications: A case study in Delaware, USA. *Journal of Hydrology: Regional Studies*,
733 **38**, 100946, <https://doi.org/10.1016/j.ejrh.2021.100946>.

734 Xu, M., N. Yao, H. Yang, J. Xu, A. Hu, L. Goncalves, and G. Liu, 2022: Downscaling SMAP soil
735 moisture using a Wide & Deep learning method over the Continental United States. *Journal of*
736 *Hydrology*, **609**, 127784, <https://doi.org/10.1016/j.jhydrol.2022.127784>.

737 Xu, W., Z. Zhang, Z. Long, and Q. Qin, 2021: Downscaling SMAP Soil Moisture Products With
738 Convolutional Neural Network. *IEEE Journal of Selected Topics in Applied Earth Observations*
739 and *Remote Sensing*, **14**, 4051–4062, <https://doi.org/10.1109/JSTARS.2021.3069774>.

740 Zhang, N., S. M. Quiring, and T. W. Ford, 2019: *Blending SMAP, Noah and In Situ Soil Moisture Using*
741 *Multiple Methods*. Vadose Zone Hydrology/Modelling approaches,.

742 Zhao, W., N. Sánchez, H. Lu, and A. Li, 2018: A spatial downscaling approach for the SMAP passive
743 surface soil moisture product using random forest regression. *Journal of Hydrology*, **563**, 1009–
744 1024, <https://doi.org/10.1016/j.jhydrol.2018.06.081>.

745 Zhou, X., H. S. Lin, and E. A. White, 2008: Surface soil hydraulic properties in four soil series under
746 different land uses and their temporal changes. *CATENA*, **73**, 180–188,
747 <https://doi.org/10.1016/j.catena.2007.09.009>.

748 Dew - Monteith - 1957 - Quarterly Journal of the Royal Meteorological Society - Wiley Online Library.
749 <https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.49708335706> (Accessed June 6, 2024).

750