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Abstract 13 

Soil moisture is a fundamental state variable in climatology, meteorology, and hydrology. Many 14 

of the available soil moisture products have a coarse spatial resolution that is not useful for 15 

agricultural applications. This study used Random Forest to identify which features are most 16 

helpful for accurately downscaling soil moisture to 1-km resolution. Fourteen features were 17 

considered: precipitation, antecedent precipitation index, maximum daily air temperature, 18 

minimum daily air temperature, mean daily air temperature, diurnal temperature range, dew 19 

point temperature, elevation, slope, aspect, normalized difference vegetation index, leaf area 20 

index (LAI), soil texture, and land use/land cover. The analysis of variable importance was 21 

repeated using two different sources of soil moisture data (e.g., satellite-derived soil moisture 22 

from NASA’s Soil Moisture Active Passive (SMAP) and model-derived soil moisture from the 23 

North American Land Assimilation System (NLDAS)) and two different ways of representing 24 

soil saturation (e.g., volumetric water content (VWC) and percentiles). We found that dew point 25 

temperature is the most important variable for downscaling SMAP percentiles (0.18), NLDAS 26 

VWC (0.27), and NLDAS percentiles (0.17) over CONUS, while elevation is the most important 27 

variable for downscaling SMAP VWC (0.28). Dew point temperature is crucial for downscaling 28 

in most regions of the United States, except in the South and WestNorthCentral, where elevation 29 

is the most important feature. The accuracy of the downscaling varies by region. In the South, 30 

SMAP VWC and NLDAS VWC downscaling are relatively accurate, both have mean absolute 31 

errors of ~0.07. The MAE values in the South region are 0.196 for SMAP percentiles and 0.175 32 

for NLDAS percentiles. 33 

Keywords: Soil moisture, downscaling, SMAP, NLDAS, Random Forest 34 

 35 

https://doi.org/10.5194/egusphere-2025-896
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

3 

1. Introduction 36 

Soil moisture is an important state variable in the climate system. Soil moisture is 37 

essential for examining, monitoring, and forecasting drought and streamflow (Abbaspour et al. 38 

2015; Keesstra et al. 2016), hydrological parameter distribution (Carrijo et al. 2019; Dobriyal et 39 

al. 2012; Pittelkow et al. 2015), flash flood management (Brocca et al. 2014; Wanders et al. 40 

2014), drought (Ruosteenoja et al. 2020; Wagner et al. 2013) and weather forecasting 41 

(Seneviratne et al. 2010; Zhang et al. 2019). Soil moisture is also important for agriculture. It 42 

influences crop yield, irrigation planning, disease outbreaks, pest control, and determining 43 

optimal management practices, including irrigation (Dobriyal et al. 2012; Pittelkow et al. 2015).  44 

 Soil moisture is a small constituent of the total available freshwater (0.0015%) and the 45 

global water cycle (0.05%) (Robinson et al. 2008). However, soil moisture is a critical element 46 

of land-atmosphere interactions because it plays a significant role in modulating exchanges of 47 

water between the land and atmosphere through evapotranspiration and transpiration (Ford et al. 48 

2016; Zhang et al. 2019). Processes such as evapotranspiration, runoff, infiltration, and 49 

groundwater recharge are influenced by the soil moisture and so it also has a significant part to 50 

play in the hydrologic cycle (Vereecken et al. 2008).   51 

Although soil moisture is useful for many purposes, national soil moisture data are not 52 

readily available at high resolution (e.g., kilometer scale). For example, satellite soil moisture 53 

products are limited to 1-km spatial resolution and model-derived products are limited to 12.5-54 

km, therefore often it is not sufficient for field-scale applications in the agricultural sector. To 55 

make these datasets applicable to the finer scale, downscaling is necessary. It is possible to 56 

conduct soil moisture downscaling in different ways. To assess soil moisture heterogeneity at a 57 

finer scale, one approach is to combine ancillary data with low-resolution soil moisture 58 
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estimates. This has been implemented in several studies to obtain soil moisture at high spatial 59 

resolution (Alemohammad et al. 2018; Srivastava et al. 2013). The spatial heterogeneity of soil 60 

moisture is influenced by numerous factors, such as topography, precipitation, temperature, soil 61 

texture, and vegetation. The purpose of this study is to identify which variables are most 62 

important for downscaling soil moisture to 1-km spatial resolution. We downscaled SMAP and 63 

NLDAS using Random Forest. We compared the importance of the ancillary variables for two 64 

different data sources and two different methods for representing soil moisture (e.g., percentiles 65 

and volumetric water content). To the best of our knowledge, this is the first study to evaluate 66 

feature importance over CONUS using both satellite-derived and modeled soil moisture.  67 

2. Data  68 

2.1 Soil moisture data 69 

2.1.1 In-situ soil moisture 70 

In-situ datasets are useful for calibration and validation of the SMAP and NLDAS soil 71 

moisture. In-situ measurements of soil moisture were used to validate the results of the 72 

downscaling approach. The in-situ measurement of soil moisture is based on sensors installed in 73 

various national and state networks. The networks used in this study include: the U.S. Climate 74 

Reference Network (CRN), Delaware Environmental Observing System (DEOS), North Carolina 75 

Environment and Climate Observing Network (ECONet), Illinois Climate Network (ICN), 76 

Kansas Mesonet (KS Mesonet, New Jersey Weather and Climate Network (NJWCN), NOAA 77 

Hydrometeorological Testbed (NOAA), New York Mesonet (NY Mesonet), Oklahoma Mesonet 78 

(OK Mesonet), Soil Climate Analysis Network (SCAN), South Dakota Mesonet (SD Mesonet), 79 

Snowpack Telemetry (SNOTEL), Texas Soil Observation Network (TxSon), Georgia Automated 80 

Environmental Monitoring Network (GA AEMN), and West Texas Mesonet (WTX Mesonet). A 81 
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total of 1542 in-situ stations were used for this study. The number of stations varies from region 82 

to region greatly. For example, the South has a lot of stations, while the NorthWest has few 83 

stations. In-situ data from 2001 to 2021 were used for validating the downscaled soil moisture.  84 

2.1.2 SMAP soil moisture 85 

Remote sensing data provides gridded products instead of point-based soil moisture 86 

measurements and improves spatial coverage. Ford and Quiring (2019) examined the remote 87 

sensing soil moisture datasets provided by SMAP (SMAP L3 and SMAP L4), SMOS, and ESA-88 

CCI and they concluded that SMAP Level 3 products consistently performed best among the 89 

four datasets. Though SMAP L3 products perform better than other remote sensing products, it 90 

has a significant number of missing values and dates. For that reason, SMAP L4 data are used in 91 

this study. The SMAP L4 product is a model-derived value-added products of surface and root 92 

zone soil moisture that support key SMAP applications. SMAP produces Level 4 data products 93 

that combine surface observations with a land surface model using a data assimilation system to 94 

simulate root zone soil moisture. The SMAP L4 data are available from 2015 to the present and 95 

they provide surface soil moisture (0-5 cm) and root zone soil moisture (0-100 cm). This study 96 

used SMAP data from 2015 to 2021. 97 

2.1.3 NLDAS soil moisture  98 

Land surface models use climate inputs and parameterizations of the environment to 99 

simulate soil moisture based on model-derived equations and assumptions. The model-derived 100 

soil moisture products can be achieved consistently at the global scale because the model can be 101 

operated seamlessly. However, model-simulated soil moisture has limitations because there is a 102 

nonlinear relationship between climate parameters and soil water content. In addition, soils and 103 
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vegetation are spatially heterogeneous and this is not accurately captured by models (Xia et al. 104 

2015). Ford and Quiring (2019) examined the NLDAS-2 and found that it performed better than 105 

the CPC-modeled soil moisture when validated against in-situ measurements. Therefore, this 106 

study uses NLDAS-2 model-simulated soil moisture. The soil moisture data are provided hourly 107 

at 1/8° spatial resolution by the NLDAS-2 Noah model. The data are available at four soil layers: 108 

0-10 cm, 10-40 cm, 40-100 cm, and 100-200 cm. To align the temporal granularity with in-situ 109 

and satellite data, we averaged the hourly data to daily. NLDAS-2 data from 2001 to 2021 were 110 

used in this study. The downscaling was done every day from 2001 to 2021 within the CONUS 111 

to generate a 1-km soil moisture from NLDAS-2. 112 

2.2 Ancillary variables 113 

This study evaluated a total of 14 features: precipitation, antecedent precipitation index, 114 

maximum daily air temperature, minimum daily air temperature, mean daily air temperature, 115 

diurnal temperature range, dew point temperature, elevation, slope, aspect, Normalized 116 

Difference Vegetation Index, Leaf Area Index, soil texture, and land use/land cover.  117 

Soil texture (sand, silt, and clay percentage) came from the gridded soil survey 118 

geographic database (SSURGO) provided by Natural Resources Conservation Services (NRCS) 119 

(https://www.nrcs.usda.gov/). It has a spatial resolution of 10-30 m. Precipitation, mean 120 

temperature, maximum temperature, minimum temperature, and dew point temperature were 121 

obtained from Parameter-elevation Regressions on the Independent Slopes Model (PRISM) lab 122 

(https://prism.oregonstate.edu/). The spatial resolution of PRISM is 4-km. The Antecedent 123 

Precipitation Index (API) was calculated from the precipitation data for each day. The antecedent 124 

precipitation index (API) formula is, 125 
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API = Pi * N * 0.98 126 

where: Pi: daily precipitation i days before a storm, N: total number of days to consider before 127 

the storm, K: a recession constant that is less than 1.0 (here, a value of 0.98 was used). 128 

The diurnal temperature range (DTR) was calculated based on the difference between the 129 

maximum to minimum temperature. Elevation data were extracted from GTOP30 provided by 130 

the United States Geological Survey (USGS), and the spatial resolution is 1-km. Slope and 131 

aspect were derived from the elevation data. The Normalized Difference Vegetation Index 132 

(NDVI) and Leaf Area Index (LAI) are from the Advanced Very High-Resolution Radiometer 133 

(AVHRR) satellite. The spatial resolution of the AVHRR satellite is 9-km. Land use data were 134 

collected from the National Land Cover Dataset (NLCD). The native spatial resolution of NLCD 135 

is 30-m. Table 1 provides a description of all of the ancillary variables. 136 

Table 1: Spatial and temporal resolution of variables evaluated for downscaling soil moisture 137 
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  138 

2.3 Soil Moisture Standardization 139 

Volumetric water content (VWC) varies according to weather conditions, soil properties, 140 

vegetation cover, topographic features, and various other elements. Thus, it is not possible to 141 

directly compare the VWC from different locations since a fine-textured soil will almost always 142 

Variable 

Name 

Temporal 

Domain 

Temporal 

Resolution 

Spatial 

Resolution 

Source 

Elevation 2018  N/A 1-km USGS EROS Archive - Digital Elevation - 

Global 30 Arc-Second Elevation (GTOPO30) 

Slope 2018  N/A 1-km USGS EROS Archive - Digital Elevation - 

Global 30 Arc-Second Elevation (GTOPO30) 

Aspect 2018  N/A 1-km USGS EROS Archive - Digital Elevation - 

Global 30 Arc-Second Elevation (GTOPO30) 

Soil Texture 2021  N/A 10 to 30-m Gridded Soil Survey Geographic (gSSURGO) 

Database 

Land Use 2021 N/A 30-m National Land Cover Dataset (NLCD) 

Precipitation 2001 to 

2021  

Daily 4-km Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) 

Antecedent 

Precipitation 

Index (API) 

2001 to 

2021 

Daily 4-km Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) 

Mean 

Temperature 

2001 to 

2021 

Daily 4-km Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) 

Maximum 

Temperature 

2001 to 

2021 

Daily 4-km Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) 

Minimum 

Temperature 

2001 to 

2021 

Daily 4-km Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) 

Dew Point 

Temperature  

2001 to 

2021 

Daily 4-km Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) 

Normalized 

Difference 

Vegetation 

Index (NDVI) 

2001 to 

2021 

Daily 4-km Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) 

Normalized 

Difference 

Vegetation 

Index (NDVI) 

2001 to 

2021 

 Daily  9-km  Advanced very-high-resolution radiometer 

(AVHRR) 

Leaf Area 

Index (LAI) 

2001 to 

2021 

 Daily  9-km  Advanced very-high-resolution radiometer 

(AVHRR) 
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have a higher VWC than a coarse-textured soil. Therefore, VWC is commonly standardized 143 

using an approach such as soil moisture percentiles (Ford et al. 2016; Zhang et al. 2019). In this 144 

paper, we converted the soil moisture datasets to percentiles using the following approach. First, 145 

the VWC data were converted to VWC anomalies (m3 m-3) by subtracting the climatological 146 

mean from the daily VWC value (Crow et al. 2012). A moving window approach was used to 147 

calculate the climatological mean. Following Chen et al. (2019), a 31-day moving window was 148 

used surrounding the target day, and all years of data from the period of record from that window 149 

were used to calculate the mean. Next, daily percentiles were calculated using the empirical 150 

cumulative distribution function based on a 31-day moving approach that used the entire period 151 

of record. According to Ford et al. (2016), at least 6 years of daily data are required to create 152 

stable and robust percentiles. In our case, soil moisture percentiles were calculated based on 7 153 

years of SMAP data and 21 years of NLDAS data. 154 

3. Methods 155 

The NLDAS and SMAP soil moisture data were downscaled using Random Forest. This 156 

algorithm was applied separately to the SMAP soil moisture (9-km) and the NLDAS soil 157 

moisture (12.5-km) to generate a 1-km soil moisture dataset over CONUS. Figure 1 provides a 158 

summary of the methods used to identify the most important features for downscaling soil 159 

moisture. The first step was to retrieve from different sources and aggregate the ancillary 160 

variables by applying nearest-neighbor interpolation. Then an RF model was generated for 161 

downscaling SMAP and NLDAS soil moisture products. The third step was to summarize feature 162 

importance. Each step is described in detail below. 163 
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 164 

Figure 1: Schematic representation of the methodology used in this study 165 

3.1 Nearest neighbor interpolation 166 

All ancillary data are first aggregated to a resolution of 9-km and 12.5-km to construct 167 

the downscaling models. Nearest neighbor interpolation is used to resample the ancillary data 168 

(Table 1). Nearest neighbor is a method of spatial resampling that calculates the value of a new 169 

pixel based on the value of its nearest neighbor. This method was selected because it is 170 

computationally efficient and previous soil moisture downscaling studies have applied the 171 

nearest neighbor method (Alemohammad et al. 2018; Li et al. 2016; Liu et al. 2020, 2011). This 172 
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method was applied twice, once to generate features at the same resolution as SMAP (9-km) and 173 

to generate features at the same resolution as NLDAS (12.5-km). 174 

3.2 Downscaling soil moisture with random forest 175 

Soil moisture downscaling to 1-km from the native SMAP (9-km) and NLDAS (12.5-km) 176 

resolutions was done using Random Forest. Random Forest (RF) was first developed by 177 

(Breiman 2001) and then later advanced by (Cutler et al. 2012). RF is an integrated learning 178 

algorithm that can be used for both classification of a categorical response and regression for 179 

continuous variables (Li et al. 2013; Lu et al. 2014). The advantages of RF are that it is very fast 180 

to train and predict, it only depends on a few tuning parameters, and it can be used for high-181 

dimensional problems, outlier detection, and visualization (Cutler et al. 2012). The regression 182 

model in RF was used for downscaling soil moisture in this study.  183 

The dataset was randomly split into 80% training and 20% testing for model evaluation. 184 

To optimize the model, we performed randomized search cross-validation over a set of 185 

hyperparameters, including the number of trees (n_estimators): {20, 40, 60, …, 200}, maximum 186 

depth of trees (max_depth): {10, 20, 30, …, 110, None}, maximum number of features per split 187 

(max_features): {‘auto’, ‘sqrt’}, minimum number of samples per split (min_samples_split): {2, 188 

5, 10}, minimum number of samples per leaf (min_samples_leaf): {1, 2, 4}, and bootstrap 189 

sampling method: {True, False}. The hyperparameter tuning is the same for each region.  190 

The RF model for SMAP was generated using data from 2015 to 2021, and the RF model 191 

for NLDAS was generated using data from 2001 to 2021. A 3-fold cross-validation was used for 192 

cross-validation, each fold randomly selected 80% of the data for training and the remaining 193 

20% was used for validation. The RF model with the highest accuracy was selected based on the 194 
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cross-validation. This model was used to downscale the soil moisture to 1-km resolution and this 195 

downscaled soil moisture was validated using the in-situ measurements. This process was 196 

repeated separately for SMAP and NLDAS. 197 

3.3 Model evaluation 198 

The correlation coefficient (R), coefficient of determination (R2), mean absolute error 199 

(MAE), mean squared error (MSE), and root mean square error (RMSE) were used for validating 200 

the downscaled soil moisture data. R and R2 measure the goodness-of-fit of the model. MAE, 201 

MSE and RMSE measure the error between the actual and downscaled soil moisture values.  202 

R =
Cov (SMo, SMp)

√Var[SMo]Var[SMp]

 203 

𝑅2 = 1 −
∑ [(SMp − SMmp)(SMo − SMmo)]n

i=1
2

∑ (SMp − SMmp)n
i=1

2 ∑ (SMo − SMmo)n
i=1

2  204 

MAE =  
1

n
 ∑ |SMo − SMp|

n

i=1

 205 

𝑀SE =  
1

n
∑ (SMo − SMp)2

n

i=1
 206 

RMSE = √
∑ (SMo − SMp)n

i=1

n

2

 207 

Where n is the number of observations, SMo, SMp, SMmo, SMpo represent the observed soil 208 

moisture value, predicted soil moisture value, mean observed soil moisture value, and mean 209 

predicted soil moisture value. 210 
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4 Results 211 

4.1 Feature importance for SMAP downscaling 212 

There are two measures that can be used to quantify the predictive power of individual 213 

features in RF Regression: (1) an increased mean squared error (IncMSE) and, (2) an increase in 214 

the number of nodes purified (IncNudePurity). IncMSE measures how an individual feature 215 

changes when it is permuted at random. IncMSE measures the degree to which the accuracy of 216 

Random Forest decreases when a feature is removed. Fourteen features were used to downscale 217 

the coarse resolution of soil moisture products to 1-km resolution. The IncMSE was calculated 218 

for each feature in each of the 9 regions to determine feature importance.  219 

At the national (CONUS) scale, elevation is the most influential variable and dew point 220 

temperature is the second most important feature (Figure 2). Maximum temperature is also 221 

ranked as an important variable that improves the accuracy of downscaling of SMAP VWC over 222 

CONUS. The least important features at the national scale are slope, aspect, and LAI. 223 

In addition to evaluating feature importance for each region, the analysis was also 224 

replicated by evaluating feature importance for different regions of CONUS. Figure 3 shows the 225 

feature importance for SMAP VWC by region. The dew point temperature is the most important 226 

feature in all regions, except the WestNorthCentral and South regions. Elevation is the most 227 

important variable in these two regions. API is the second-most important variable in the 228 

NorthWest, West, and SouthWest regions. Maximum, minimum, and mean temperature also play 229 

a significant role in downscaling soil moisture. LAI is a feature that consistently is ranked as a 230 

relatively unimportant feature for downscaling soil moisture (ranks from 0.1 to 0.2 across the 9 231 

regions).  232 
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This study evaluates both VWC and soil moisture percentiles. Therefore, we can compare 233 

the relative feature importance for downscaling soil moisture percentiles. At the CONUS scale, 234 

dewpoint temperature is the most influential variable (Figure 4). This is followed by API and 235 

elevation. The results at the CONUS scale are relatively consistent with the regional results. 236 

Additionally, precipitation, maximum, mean temperatures, and DRT are all relatively important 237 

variables for downscaling soil moisture percentiles at the CONUS scale (rank ranges from 3 to 238 

6). 239 

 Similar to the results for SMAP VWC, dew point temperatures are the most influential 240 

variable in all regions except the South (Figure 5). Elevation is the most influential feature in the 241 

South. The second most important feature is either API or elevation. API is the second-most 242 

influential variable in the NorthWest, SouthWest, and EastNorthCentral, NorthEast, SouthEast, 243 

and Central regions. While elevation is the second most important feature of WestNorthCentral 244 

regions. LAI, aspect, slope, NDVI, and LULC are the least important features for downscaling 245 

soil moisture percentiles.  246 
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 247 

Figure 2: Feature importance (IncMSE%) for CONUS for SMAP VWC  248 

Figure 3: Features importance (IncMSE%) by region for SMAP VWC 249 

 250 
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 251 

Figure 4: Feature importance (IncMSE%) for CONUS for SMAP percentile 252 

Figure 5: Feature importance (IncMSE%) by region for SMAP percentiles 253 

 254 
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4.2 Feature importance for NLDAS downscaling 255 

At the CONUS scale, dew point temperature is the most important feature (Figure 6). 256 

Elevation and maximum temperature have almost the same influence and are ranked as the 257 

second and third most important features on the CONUS scale. Though elevation was the highest 258 

influential variable for SMAP VWC, elevation is ranked second here. However, as SMAP VWC, 259 

slope, aspect, LAI ranked the lowest. 260 

Figure 7 shows the feature importance for downscaling NLDAS VWC in each region. 261 

Dew point temperature is the most important feature in all regions. Elevation is the second-262 

highest important feature in all regions, except the NorthWest, West, SouthWest, and 263 

EastNorthCentral regions. The second most important variable for the NorthWest, SouthWest, 264 

and EastNorthCentral region is maximum temperature; for the West is mean temperature. 265 

Maximum and mean temperature are also influential features for downscaling NLDAS VWC. 266 

They typically rank as each region's 3rd or 4th most important features. While LAI and aspect 267 

are generally the least important features. These results are quite consistent with the SMAP 268 

feature importance.  269 

At the CONUS scale, dewpoint temperature is again the most influential feature (Figure 270 

8). This is followed by API and elevation. Maximum and mean temperatures are also influential 271 

features at the CONUS scale. The results of the feature importance for NLDAS soil moisture 272 

percentiles are consistent with NLDAS VWC. Dew point temperature is the most important 273 

feature in all regions (Figure 9). API is the second most important feature in all regions, except 274 

the NorthWest, West, WestNorthCentral. In these regions, elevation is the second most important 275 

feature. LAI and aspect consistently have the lowest feature importance for downscaling NLDAS 276 

soil moisture percentiles.  277 

https://doi.org/10.5194/egusphere-2025-896
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

18 

 278 

Figure 6: Feature importance (IncMSE%) for CONUS for NLDAS VWC 279 

 280 

Figure 7: Feature importance (IncMSE%) by region for NLDAS VWC 281 
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Figure 8: Feature importance (IncMSE%) for CONUS for NLDAS percentiles 282 

Figure 9: Feature importance (IncMSE%) by region for NLDAS percentile 283 

 284 
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4.3 Partial dependence plot (PDP) of variables 285 

Figure 10 represents the relationship between predicted soil moisture and the other 286 

variables (dew point temperature, elevation, API, and maximum temperature).  287 

 288 

 289 
 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

Figure 10: Partial dependence plot for the four most important variables 301 
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The higher dew point temperature is related to the high soil moisture values in all seasons. The 302 

lower elevation seems to have high soil moisture values in four seasons which is reasonable 303 

because in the high elevation, the water content in the soil is low. If the API value is increasing, 304 

the value of water content in the soil will be high and vice versa. On the other hand, with the 305 

increasing maximum temperature, the soil moisture will be decreasing. 306 

4.3 Accuracy of VWC downscaling 307 

Table 2 shows the accuracy of the VWC downscaling in each region based on the 308 

validation against in situ measurements. As shown in the table, the R-value is < 0.5 and R2 < 309 

0.25 for NLDAS downscaling. The average absolute difference between the SMAP downscaling 310 

and observed value (MAE) ranges from 0.074 to 0.092. The Central region has a relatively low 311 

MAE of 0.074, indicating a small average absolute difference between the predicted and actual 312 

values. The highest value of MSE is 0.014 corresponding to SouthEast and 0.013 to 313 

EastNorthCentral and the lowest value is 0.008 corresponding to South. The ubRMSE for the 314 

South is 0.082 which is the lowest and for the SouthEast is 0.109 which is the highest. Although 315 

the R2 values are relatively low, the errors (MAE and ubRMSE) are also low. This indicates that 316 

the downscaling is skillful.  317 

Table 2: Accuracy of 1-km downscaled soil moisture (VWC) by region for SMAP and 318 

NLDAS 319 

 
R R2 MAE MSE RMSE ubRMSE Bias 

 
SMAP NLDAS SMAP NLDAS SMAP NLDAS SMAP NLDAS SMAP NLDAS SMAP NLDAS SMAP NLDAS 

Central 
0.451 0.352 0.204 0.146 0.074 0.086 0.009 0.011 0.093 0.104 0.089 0.091 -0.008 -0.021 

https://doi.org/10.5194/egusphere-2025-896
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

22 

 320 

4.4 Accuracy of percentile downscaling 321 

Table 3 provides the evaluation metrics of soil moisture downscaling for percentiles by 322 

region. The South region has the lowest MAE of 0.195, indicating the smallest average absolute 323 

difference between predicted and actual values among all the regions. The MSE is also the 324 

lowest which is 0.061 for this region, indicating a higher average squared difference. The RMSE 325 

of 0.248 is also the lowest among the regions, indicating the smallest average absolute 326 

difference. On the other hand, the NorthWest and SouthWest regions are characterized by the 327 

highest MAE of 0.223, which indicates a greater average absolute difference between the 328 

predicted and actual values compared to other regions. As indicated by the MSE value of ~0.076, 329 

there is a greater average squared difference between the two regions. RMSE of ~0.275 indicates 330 

Table 3: Accuracy of 1-km downscaled soil moisture (percentiles) by region for SMAP 331 

and NLDAS 332 

EastNorthCentral 
0.403 0.494 0.157 0.248 0.092 0.072 0.013 0.010 0.115 0.097 0.093 0.087 0.053 -0.017 

NorthEast 
0.323 0.337 0.104 0.131 0.075 0.084 0.009 0.010 0.095 0.100 0.089 0.085 0.001 -0.017 

NorthWest 
0.268 0.298 0.065 0.090 0.080 0.085 0.009 0.010 0.097 0.100 0.092 0.089 0.022 0.014 

South 
0.568 0.551 0.323 0.304 0.072 0.069 0.008 0.007 0.091 0.086 0.082 0.080 -0.033 -0.020 

SouthEast 
0.419 0.622 0.176 0.386 0.094 0.084 0.014 0.010 0.116 0.101 0.109 0.090 0.034 0.010 

SouthWest 
0.364 0.622 0.132 0.073 0.078 0.091 0.010 0.012 0.098 0.108 0.093 0.097 -0.020 -0.004 

West 
0.308 0.270 0.099 0.081 0.075 0.084 0.009 0.010 0.094 0.099 0.092 0.090 0.016 0.025 

WestNorthCentral 
0.520 0.494 0.270 0.248 0.073 0.080 0.008 0.010 0.091 0.097 0.085 0.087 -0.011 0.004 

National 0.514 0.509 0.192 0.259 0.082 0.083 0.010 0.010 0.102 0.100 0.100 0.095 -0.015 -0.011 

 
R R2 MAE MSE RMSE ubRMSE Bias 

 
SMAP NLDAS SMAP NLDAS SMAP NLDAS SMAP NLDAS SMAP NLDAS SMAP NLDAS SMAP NLDAS 

Central 0.423 0.536 0.187 0.297 0.200 0.177 0.065 0.050 0.256 0.224 0.222 0.198 -0.055 -0.016 
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 333 

a greater average absolute difference among the regions. The lowest MAE value is 0.175 in the 334 

South region. The lowest MAE value indicates the closer alignment between actual and predicted 335 

values. The average squared difference between the expected and actual values ranges from 336 

0.050 to 0.086. Similar patterns can be observed between MSE and RMSE values. The lowest 337 

value of RMSE is 0.223 indicating good predictions for South regions.  338 

5 Discussion 339 

5.1 Feature importance 340 

A complex interaction between pedologic, topographic, vegetative, and meteorological 341 

factors is responsible for the extensive horizontal variability in surface soil moisture fields 342 

(Mohanty and Skaggs 2001). It is difficult to isolate and measure these factors, however, 343 

understanding their magnitude is critical for determining soil moisture upscaling strategies 344 

(Crow et al. 2012). 345 

Topography is another crucial factor that influences the spatial organization of soil 346 

moisture at various scales. The topographic attributes such as slope, aspect affect the movement 347 

of water through gravity-driven processes, such as runoff and infiltration, leading to variations in 348 

EastNorthCentral 0.411 0.429 0.198 0.304 0.207 0.195 0.065 0.056 0.256 0.236 0.216 0.189 -0.026 -0.045 

NorthEast 0.269 0.307 0.085 0.120 0.207 0.211 0.066 0.068 0.257 0.261 0.226 0.220 -0.048 -0.034 

NorthWest 0.229 0.194 0.050 0.048 0.223 0.237 0.076 0.084 0.276 0.291 0.249 0.252 0.0276 -0.058 

South 0.442 0.488 0.195 0.238 0.195 0.175 0.061 0.049 0.248 0.223 0.224 0.208 -0.068 -0.019 

SouthEast 0.394 0.437 0.156 0.195 0.207 0.189 0.066 0.055 0.258 0.236 0.227 0.212 -0.081 -0.027 

SouthWest 0.229 0.229 0.053 0.058 0.223 0.228 0.077 0.079 0.278 0.281 0.256 0.253 0.000 -0.042 

West 0.238 0.180 0.062 0.047 0.216 0.226 0.072 0.076 0.268 0.276 0.245 0.245 -0.015 -0.025 

WestNorthCentral 0.363 0.367 0.141 0.144 0.215 0.218 0.073 0.074 0.270 0.272 0.253 0.244 -0.021 -0.054 

National  0.425 0.370 0.029 0.138 0.217 0.226 0.073 0.080 0.270 0.284 0.260 0.262 -0.033 -0.080 
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soil moisture across the landscape (Crow et al. 2012). This research also complements that 349 

topography is an important factor because elevation is the most influential factor and second 350 

highest factor relatively in SMAP VWC and NLDAS VWC downscaling over CONUS. In 351 

addition, elevation ranks third for percentile downscaling for both data sources. Understanding 352 

the role of topography is essential for accurately characterizing and predicting soil moisture 353 

patterns. Charpentier and Groffman (1992) suggested that variations in topography play a 354 

significant role in shaping the spatial distribution of soil moisture, with more diverse topographic 355 

features leading to increased variability in soil moisture. This study shows the South and 356 

WestNorthCentral regions have the influences of slope regardless of data sources and units of 357 

measurement. Since the WestNorthCentral region includes portions of the Rocky Mountains, and 358 

the mountainous area has high variability in elevation. It has been demonstrated that relative 359 

slope position significantly impacts determining soil moisture variation. When considering 360 

different time scales, a straightforward averaging of soil moisture values across a slope is likely 361 

to produce errors (Mohanty et al. 2000; Jacobs 2004). Here, this research shows differences 362 

because slope has a relatively low impact on the downscaling for both data sources and both 363 

units of measurement (VWC and percentile). In addition, the aspect (direction of slope) also has 364 

less impact on the downscaling in all the regions and over CONUS too. The effects of slope on 365 

soil moisture are more localized and dependent on other factors rather than being significant. It is 366 

important to mention that slope influences soil moisture in various ways, including its length and 367 

direction (aspect). Although these effects are generally less pronounced than those that elevation 368 

has on the local microclimate and hydrology, they can be observed (Bennie et al. 2008). 369 

Among these meteorological factors, precipitation is considered the single most 370 

important forcing factor for soil moisture content and its distribution (Crow et al. 2012). This 371 
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research agrees with Crow et al. (2012) because the precipitation index (API) ranks second in 372 

terms of SMAP percentile downscaling over the CONUS. Furthermore, API is also a dominant 373 

factor for the South, WestNorthCentral, NorthWest, SouthWest regions. Sivapalan et al. (1987) 374 

and Famiglietti et al. (1999) found the mean soil moisture trend changed with the precipitation 375 

gradient. The soil moisture storage, drainage, and water budget for different climate patterns 376 

changed with the intensity of rainfall (Kim et al. 1997; Salvucci 2001). To date, there has not 377 

been any research that has shown that dew point temperature is useful for downscaling soil. The 378 

present study found that dew point temperature is the most important feature for downscaling 379 

soil moisture for both products and both measurements, except SMAP VWC over the CONUS. 380 

Although elevation has the highest impact on SMAP VWC downscaling over the CONUS, dew 381 

point temperature has the highest influence over all the regions except the South, and 382 

WestNorthCentral regions both for SMAP VWC and percentile downscaling. For NLDAS VWC 383 

and percentiles, only the South region is different.  384 

There are a number of ways that the dew point temperature can influence soil moisture. 385 

First, when the air temperature cools to the dew point temperature water vapor will condense, 386 

forming dew on the soil surface and vegetation (Monteith, 1957, Jacobs et al. 2000). Second, 387 

dew point temperature can also affect the transpiration rates of plants (Ambrose et al. 2009). Soil 388 

evaporation and plant transpiration will increase as a function of the vapor pressure gradient. 389 

Therefore, dew point temperature fluctuations can influence the wetting and drying cycles of the 390 

soil (Zhou et al. 2008).  391 

Precipitation, mean, maximum, and minimum temperatures also have an impact on soil 392 

moisture. Higher temperatures tend to be associated with an increased vapor pressure deficit 393 

between the soil surface and the air, and this leads to a higher evaporation rate from the soil. 394 

https://doi.org/10.5194/egusphere-2025-896
Preprint. Discussion started: 7 April 2025
c© Author(s) 2025. CC BY 4.0 License.



 
 

26 

Higher temperatures can cause the soil to dry out more rapidly, particularly from the surface of 395 

the soil (Balugani et al. 2014). They can also cause vegetation to utilize more soil water and so 396 

they can cause the depletion of soil moisture (Oren et al. 1999).  397 

The distribution of soil moisture is significantly affected by soil heterogeneity, due to 398 

variations in soil properties such as texture, organic matter content, porosity, and structure. As a 399 

result of these variations, soil moisture can significantly differ over small spatial distances, 400 

influencing local hydrological processes. The color of the soil can also influence the rate of 401 

evaporative drying for bare or lightly vegetated soils by affecting the albedo. Soil hydraulic 402 

conductivity affects processes such as water infiltration, redistribution, and drainage, which in 403 

turn impact the distribution of soil moisture across a given area (Moore et al. 1988; Kim and 404 

Barros 2002). Although previous research concluded that soil type has a significant impact on 405 

soil moisture, this research found that soil type has minimal impact on downscaling soil 406 

moisture. In addition, whether over the CONUS or for all the regions, soil type is one of the least 407 

influential variables. The reason could be that other factors like elevation, prevailing climate, and 408 

precipitation patterns have a greater impact than the soil texture.  409 

Previous work has concluded that variations in soil moisture are more strongly influenced 410 

by vegetation than by soil and topography (Crow et al. 2012). Our results do not support this 411 

conclusion (at least for 1-km soil moisture) since the vegetation variables (NDVI and LAI) were 412 

less important than topography. Soil moisture is spatially variable as a result of various processes 413 

that involve water uptake, transpiration, and the surface energy budget. The influence of land 414 

cover characteristics must be understood to accurately model and predict soil moisture dynamics. 415 

Land cover affected soil moisture distribution significantly at the satellite footprint during the 416 

NAFE'05 field campaign in Australia (Panciera et al. 2008). The regional distribution of soil 417 
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moisture was noted to be impacted by variations in land cover (Cosh et al. 2004; Joshi and 418 

Mohanty 2010). However, the results of our study indicated that land cover was not an important 419 

feature for downscaling soil moisture to 1-km resolution. It had minimal impact on the 420 

downscaling regardless of the data sources or soil moisture measurement. These results were 421 

consistent over the CONUS and all regions. 422 

Drawing broad conclusions regarding the impact of soil, topography, land cover, 423 

vegetation, and meteorological forcing can be challenging because feature important is strongly 424 

influenced by the spatial scale of analysis and the region of interest (Crow et al. 2012). Our study  425 

results demonstrate that there can be substantial region variations in feature importance and that 426 

feature importance is also a function of the data source, unit of measurement and spatial 427 

resolution.  428 

Regions may differ in terms of climatic, geographic, and soil characteristics, which can 429 

have a significant impact on the relationship between the input features and soil moisture. 430 

Regions with limited or incomplete data may be difficult to predict accurately. Our analysis 431 

demonstrates that other than elevation, temperature is an important feature in the South. This 432 

region includes Texas, Louisiana, Mississippi, Arkansas, Kansas, and Oklahoma. It is 433 

characterized by a warm and humid climate. Soil moisture is influenced by precipitation and 434 

topography. Periodic droughts have a strong influence on soil water content (Bond et al. 2008; 435 

Engle et al. 2008).  436 

The northeastern region includes New York, Pennsylvania, Connecticut, Delaware, 437 

Maine, Maryland, Massachusetts, New Hampshire, New Jersey, Vermont, and Rhode Island. It 438 

has a temperate climate with distinct seasonal patterns. Seasonal variations in precipitation and 439 

snowmelt can significantly impact soil moisture patterns (Daly et al. 2008). Our results 440 
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demonstrate that API, dew point temperature, and temperature influence soil moisture. The 441 

northwestern region includes Idaho, Oregon, and Washington. It has a diverse climate ranging 442 

from maritime to continental. The EastNorthCentral includes Iowa, Michigan, Minnesota, and 443 

Wisconsin. It has a humid continental climate with distinct seasonal changes. The region is 444 

dominated by the Great Lakes. Soil moisture depends on temperature and precipitation patterns 445 

(Kunkel et al. 2013). Our results demonstrate that API and temperature have a significant impact 446 

on soil moisture.  447 

The WestNorthCentral includes Montana, Nebraska, North Dakota, South Dakota, and 448 

Wyoming. It is characterized by a continental climate with hot summers and cold winters. 449 

Snowmelt and spring rains can increase soil moisture levels (Kunkel et al. 2013). Temperature 450 

and dew point temperature are important features for accurately downscaling soil moisture. The 451 

West includes California and Nevada. It has a diverse range of climates, from Mediterranean to 452 

arid and semi-arid. This region with mountainous terrain may experience higher soil moisture 453 

levels due to increased precipitation (Nielsen et al. 2024). The SouthWest includes Arizona, 454 

Colorado, New Mexico, and Utah. It has an arid to semi-arid climate. However, soil moisture is 455 

lower in this region (Huxman et al. 2004) and API has an impact on the soil moisture. Moreover, 456 

topographic features such as mountains and valleys can cause localized variations in soil 457 

moisture (Seager et al. 2007), which is evident in the present study.  458 

5.3 Model evaluation 459 

 Abbaszadeh et al. (2019) downscaled SMAP 9-km (SMAP level 3) soil moisture to 1-km 460 

over the CONUS using ensemble learning methods and they found overall the ubRMSE between 461 

downscaled and in-situ observations met the SMAP accuracy requirement of 0.04. The 462 

downscaled soil moisture data showed a strong correlation (R=0.325 to 0.997, average 0.715) 463 
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and high accuracy (ubRMSE=0.010 to 0.141 m³/m³, average 0.041 m³/m³) compared to the in-464 

situ soil moisture measurements (Xu et al. 2022). Our study shows that the ubRMSE value for 465 

SMAP VWC is 0.100 m³/m³. The reason could be the different methods of downscaling because 466 

our analysis used RF, while Xu et al. (2022) used an ensemble approach. In addition, Xu et al. 467 

(2022) used SMAP level 3, while this analysis used SMAP level 4. 468 

Sun and Cui (2021) downscaled VWC in the central United States using support vector 469 

machine (SVM). The correlation between their downscaled soil moisture and the in-situ 470 

measurements ranged from 0.174 to 0.754, and their RMSE ranged from 0.063 to 0.101. In our 471 

study, the correlation between the downscaled soil moisture and in-situ measurements in the 472 

central region was 0.452 for SMAP VWC and 0.352 for NLDAS VWC. The RMSE was 0.093 473 

for SMAP VWC and 0.104 for NLDAS VWC. Therefore, our results are relatively comparable 474 

in terms of correlation and error.  475 

 Guevara and Vargas (2019) downscaled the soil moisture from 27-km to 1-km by 476 

training the kernel-weighted nearest neighbors across the conterminous United States. They 477 

showed that the downscaled soil moisture had an R2 value of 0.46. Our results generally have 478 

lower correlations for all the regions, except the South. It is possible that this is because Guevara 479 

and Vargas (2019) used different methods of downscaling such kernel-weighted nearest 480 

neighbors, while our approach was based on. There is also the difference of spatial native 481 

resolutions of soil moisture products that were used for downscaling.   482 

Liu et al. (2020) downscaled soil moisture using six methods over different regions 483 

including Oklahoma. The R2 value for their Oklahoma region ranged from 0.287 to 0.714, and 484 

the MAE ranged from 0.027 to 0.055. The MAE in the South region in our study ranged from 485 

0.069 to 0.195. A similar study in Oklahoma state was done by Jiang and Cotton (2004) applying 486 
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the artificial neural network (ANN). Their RMSE was <0.04. Xu et al. (2021) downscaled SMAP 487 

36-km soil moisture to 3-km and 1-km by applying the convolution neural network in Oklahoma. 488 

Xu et al. (2021) had a correlation of 0.659 and ubRMSE of 0.052 for their 1-km downscaled soil 489 

moisture using SMAP level 3 products from 1st January 2018 to 30th December 2018. While 490 

these studies had lower errors than our analysis, this is likely because they focused on a single 491 

state, while our region encompasses multiple states. In addition, they downscaled only one year 492 

soil moisture, but we downscaled daily soil moisture from 2015 to 2021 and evaluated 493 

performance using this entire period. In addition, Xu et al. (2021) utilized a convolutional neural 494 

network (CNN) and we used RF for downscaling.  495 

Warner et al. (2021) downscaled VWC in Delaware to 100-m resolution using kernel k-496 

nearest neighbor (KKNN) based on SSM estimates from the European Space Agency’s Climate 497 

Change soil moisture products. They had an MAE of 0.048 (Warner et al. 2021). In comparison, 498 

our MAE in the NorthEast region, which includes Delaware, ranged from 0.076 to 0.082. Warner 499 

et al. (2021) likely had greater accuracy because they their study area is a single state 500 

(Delaware), while our NorthEast region includes Delaware, Connecticut, Maine, Maryland, 501 

Massachusetts, New Hampshire, New York, Pennsylvania, Rhode Island, and Vermont. In 502 

addition, Warner et al. (2021) downscaled different soil moisture data than our study.  503 

Overall, the soil moisture downscaling is more accurate in the South, Central, and 504 

NorthEast regions, as they have lower error than in other regions. The downscaling was not as 505 

accurate in the NorthWest, SouthWest, West, and WestNorthCentral regions. 506 

6 Conclusions 507 
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This study evaluated and compared feature importance for downscaling satellite and 508 

model-derived soil moisture products across different regions. Random forest was applied to 509 

predict the soil moisture products (SMAP and NLDAS) to 1-km resolution over CONUS and in-510 

situ data were used to validate the model. The conclusions are: 511 

1) Results indicated that dew point temperature is the most important feature and elevation 512 

is the second most important feature for downscaling soil moisture in the United States. 513 

In general, the atmospheric features (e.g., temperature) have more impact on the 514 

downscaling than vegetation features. Vegetation features such as NDVI and LAI, as well 515 

as topographic features such as slope and aspect were not important for downscaling soil 516 

moisture to 1-km resolution.  517 

2) Based on the accuracy metrics, downscaling VWC is more accurate than soil moisture 518 

percentiles.  519 

3) Downscaled SMAP and NLDAS VWC was most accurate in the South and 520 

WestNorthCentral regions.  521 

Our results can be used to improve feature selection for soil moisture downscaling. 522 

However, it is likely that the optimal features for downscaling soil moisture are strongly 523 

dependent on the spatial resolution of the analysis and the climatic, topographic and edaphic 524 

characteristics of the study region.  525 

Future research can advance this work in the following ways. First, we can increase the 526 

validity of the accuracy assessment by using more in-situ data to validate the downscaling. This 527 

study compares the 1-km downscaled soil moisture to a single station. A better approach would 528 

be to use a dense network of stations to upscale the in-situ data to match the resolution of the soil 529 

moisture products. Second, given the substantial regional variations in performance, future work, 530 
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would benefit from including a more comprehensive set of features that account for soil moisture 531 

dynamics in each region. Third, the method of upscaling the features can be improved. Last, this 532 

study only used a single method for downscaling. Using other downscaling approaches may 533 

result in increased accuracy and provide additional insights. 534 
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