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Abstract.

We present a new data set aimed at hydrologic studies across North America, with a particular focus on facilitating spatially

distributed studies. The data set includes basin outlines, stream observations, meteorological data and geospatial data for 1426

basins in the United States and Canada. To facilitate a wide variety of studies, we provide the basin outlines at a lumped and

semi-distributed resolution; streamflow observations at daily and hourly time steps; variables suitable for running a wide range5

of models obtained and derived from different meteorological data sets at daily (1 data set) and hourly (3 data sets) time steps;

and geospatial data and derived attributes from 11 different data sets that broadly cover climatic conditions, vegetation proper-

ties, land use, and subsurface characteristics. Forcing data are provided at their native gridded resolution, as well as averaged

at the basin and sub-basin level. Geospatial data are provided as maps per basin, as well as summarized as catchment attributes

at the basin and sub-basin level with various statistics. Attributes are further complemented with statistics derived from the10

forcing data and streamflow, and have a particular focus on quantifying the variability of natural processes and catchment

characteristics in space and time. Our goal with this data set is to build upon existing large-sample data sets and provide the

means for more detailed investigation of hydrologic behavior across large geographical scales. In particular, we hope that this

data sets provide others with the data needed to implement a wide range of modeling approaches, and to investigate the impact

of basin heterogeneity on hydrologic behaviour and similarity. The CAMELS-SPAT (Catchment Attributes and MEteorology15

for Large-Sample SPATially distributed analysis) is available at: https://dx.doi.org/10.20383/103.01216.

1 Introduction

Increases in geospatial data availability and computing power have enabled rapid advances in large-domain and large-sample

hydrology (Cloke and Hannah, 2011; Addor et al., 2020). A key difference between these fields is the spatial continuity of the

study area. Where large-domain studies concern themselves with obtaining predictions across continuous areas, large-sample20
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studies tend to select separate basins within a given area of interest. The large-sample approach strikes a balance between

spatial variability and ease of use. Large sample studies can be representative of larger spatial regions at a fraction of the

computational effort needed to run a large-domain study over the same geographical region.

Building upon the foundations laid by the MOPEX data set (Schaake et al., 2006), a driving force behind the large-sample

movement has been the “CAMELS” family of data sets. The original Catchment Attributes and MEteorology for Large-25

sample Studies (CAMELS) dataset was developed as a two-part initiative. First, basin-averaged meteorological time series

were provided for several hundreds of basins across the Contiguous United States (Newman et al., 2015). Second, statistical

descriptors (referred to as catchment attributes) of each catchment’s hydroclimatic conditions were made available (Addor et al.,

2017a). This combined data set has proven useful for various purposes, mainly within the overarching themes of understanding,

quantifying and modeling hydrologic processes across a diverse range of catchments (e.g., Kratzert et al., 2019; Knoben et al.,30

2020; Stein et al., 2021) and quantifying hydrologic predictability (e.g., Wood et al., 2016; Newman et al., 2017). The success

of the CAMELS dataset has motivated development of multiple (typically national) variants (see Table 1 for a summary of

these), as well as the aggregated cloud-based CARAVAN collection (Kratzert et al., 2023, see also Färber et al. (2024)).

Table 1 provides a brief overview of the main characteristics of various CAMELS(-like) data sets. Because our interest is

in hydrologic modeling, we limit this overview to data sets that include meteorologic time series that could serve as input to35

hydrologic models. A commonality between most of these data sets is a focus on aggregated data: meteorologic forcing data

and catchment attributes are typically provided as basin-averaged values, and the temporal resolution of provided forcing data

is almost always at daily time steps. Similarly, most datasets provide a specific selection of forcing variables: precipitation (P)

and temperature (T) are always included, as well as a potential evapotranspiration (PET) time series or the variables necessary

to calculate PET. In modeling terms, these data sets focus strongly on catchment modeling with lumped conceptual models.40

Such models treat catchments as single (i.e., lumped) entities, are typically run at daily time resolutions, and generally require

only time series of P, T and PET to function. Commonly known examples of such models are SAC-SMA (National Weather

Service, 2005), HBV (Lindström et al., 1997) and GR4J (Perrin et al., 2003). Such models are computationally cheap but often

criticized for their somewhat empirical and spatially lumped nature, and their lack of explicit energy balance calculations.

Spatially-distributed process-based models, such as VIC (Hamman et al., 2018) and SUMMA (Clark et al., 2015a, b), address45

these concerns but come with the trade-off of increased computational cost and face their own challenges. Notable challenges

include the definition of appropriate parameter values and questions about the scale-dependency of their constitutive functions

(Hrachowitz and Clark, 2017). Investigating these models in large-sample studies could provide helpful insights, but running

such models is not easily possible with most of the data sets listed in Table 1. The clearest exception to this are the LamaH-CE

(Klingler et al., 2021) and LamaH-Ice data sets (Helgason and Nijssen, 2024), which cover the Upper Danube river basin50

in Central Europe and interior Iceland respectively. Both data sets provide data in a semi-distributed, spatially continuous

fashion and provide a collection of forcing variables generally associated with process-based modeling approaches. However,

the spatially continuous nature of these data sets means they are somewhat constrained geographically, covering an area of

only 170,000 km2 (roughly 600 by 300 km) in Central Europe and an area of 46,000 km2 (roughly 300 by 150 km) in interior

Iceland, respectively. Both datasets also still aggregate data at the sub-basin level, prohibiting the use of grid-based models.55
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There is a clear gap in the current collection of large-sample hydrologic data sets that (1) enables the use of spatially-distributed

process-based models across a wide range of hydroclimatic conditions, and (2) enables studies aimed at investigating spatial

heterogeneity at a resolution made possible by the geospatial data sets that underpin the current generation of large-sample

hydrology data sets.

In this paper we introduce the CAMELS-SPAT data set (“Catchment Attributes and MEterology for Large-sample Studies60

for SPATially distributed analysis”). We expand on the original CAMELS data set (Newman et al., 2015; Addor et al., 2017a)

in various ways. First, we provide data at native (i.e. gridded), sub-basin and basin levels, instead of treating each catchment

only as a lumped entity. Second, we extend the geographical domain of the data set to include Canada, which includes various

types of hydrologically challenging landscapes not included in the original CAMELS data set (e.g., glaciated basins, regions

with extensive permafrost, arctic deserts). Third, we provide a wider range of forcing variables at a temporal resolution (i.e.,65

hourly) suitable for process-based modeling, in addition to a commonly used daily data set. Fourth, we provide a wider range

of catchment attributes, with the specific goal of quantifying the attributes’ ranges in time and space rather than providing

mean values only. Compared to LamaH-CE and LamaH-Ice, our main contributions can be found in the wider range of hy-

droclimatic conditions found across the United States and Canada, and the inclusion of forcing and geospatial data at their

native (non-aggregated) resolution. Compared to HYSETS, another large-sample data set focused on North America, our main70

contributions can be found in the wider range of forcing variables, a higher temporal and spatial resolution of forcing data, and

the inclusion of forcing and geospatial data at their native (non-aggregated) resolution.
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2 Design considerations and outcomes

Our goal with this data set is to enable studies that investigate spatial heterogeneity across a wide variety of catchments, with

a specific focus on spatially-distributed process-based modeling. We also envision this data set to be used to compare the75

performance of these models to their more empirical counterparts, and for analyses not directly based on hydrologic models.

Consequently, we processed a variety of data sources at various levels. We provide further detail about these requirements in

the following sub-sections, as needed. Our general methodology for creating CAMELS-SPAT is as follows:

1. Define an initial set of basins of potential interest, covering the United States and Canada;

2. Create consistent basin delineations for all basins identified under (1);80

3. Obtain and process streamflow observations for the basins identified under (1), removing those basins for which no

streamflow data can be found;

4. Obtain and process meteorological forcing data for the basins identified under (3);

5. Obtain and process geospatial data sets (e.g. data describing each basin’s climate, vegetation, land use, topography, soil

and geology) for the basins identified under (3);85

6. Remove a number of very large basins from the basins identified under (3), and divide the remaining basins into various

sub-datasets, based on disk space considerations;

7. Calculate catchment attributes using the data processed under (3), (4) and (5).

Figure 1 shows a visual summary of the main steps and decision points in this process, and each step is explained in more

detail in the following subsections. For the reader’s benefit, we present combined descriptions of the methods and results for90

each of these steps in the following seven subsections, instead of splitting these into dedicated Methods and Results sections.

The code used to generate this data set is available online (see “Code and Data Availability“ statement, Section 6).

2.1 Basin preselection

2.1.1 Context

We impose two initial constraints on the basins we will consider including in this data set. First, we have chosen to focus this95

dataset on (near-)natural basins. Human impacts on the earth system are critically important but substantially complicate hy-

drologic behaviour and are typically difficult to quantify and thus difficult to account for during analyses. Such impacts include

but are not limited to: (i) the construction of water management structures such as dams and drainage ditches at the local level,

of which the location and size are difficult to ascertain and usually unreported in the continental scale data sets CAMELS-SPAT

relies on; (ii) the construction of large water management infrastructure such as diversions and reservoirs, which may appear in100

continental scale data sets but for which operating procedures are typically unknown; (iii) surface and groundwater abstractions
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Figure 1. Overview of the CAMELS-SPAT workflow. Grey boxes and light blue call-outs indicate specific folders on the GitHub repository,

where the necessary code to reproduce these steps can be found. Note that repository folder 4_data_structure_prep is not listed in this figure

because it contains no methodological choices.

for e.g. agricultural and industrial use, for which abstraction and return volumes are typically unknown. That said, it is almost

unavoidable that any selected basin includes at least some human impacts (tourism/recreation, drainage, forest management,

etc.). We rely on existing classifications to select basins that are closer to the natural end of this continuum. Second, we require

the availability of at least some streamflow observations at a sub-daily resolution. Process-based models are typically run at105

sub-daily time steps to more accurately simulate diurnal variation in processes such as evaporation, transpiration, sublimation

and snow melt. In certain basins such diurnal variability is visible in the streamflow record, and sub-daily observations are nec-
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essary to evaluate the appropriateness of process-based model equations. Daily data is by definition too coarse to distinguish

such patterns.

2.1.2 Methods and outcomes110

For basins in the United States, we rely on the basin selection made by Newman et al. (2015) that was used for the CAMELS

data set (Addor et al., 2017a). This ensures that some level of comparison between outcomes of studies using either CAMELS

or CAMELS-SPAT is possible. We refer the reader to Section 2.1 in Newman et al. (2015) for a description of the criteria used

to create this selection of 671 basins.

For basins in Canada, we start with the list of 1027 gauges included in the “Reference Hydrometric Basin Network” (RHBN,115

Environment and Climate Change Canada, 2020a, retrieved: 2022-08-18). These gauges have a minimum data availability of

20 years and minimal anthropogenic impacts as quantified by the presence of agriculture, built-up areas, and water management

infrastructure, as well as population and road density. These criteria are comparable to those described in Newman et al. (2015).

Note that agriculture presence in the Canadian prairie provinces (Alberta, Saskatchewan, Manitoba) and southern Ontario is

substantial, and above the 10% area threshold used for the other provinces and territories (Pellerin and Nzokou Tanekou, 2020,120

p. 7). Excluding these basins would severely reduce the number Canadian gauges we could include in the data set, and we thus

retain these gauges but include various data products in CAMELS-SPAT that can be used to quantify or filter by the presence

of agriculture.

Our initial basin selection included 1698 basins across the United States and Canada. Various basins had to be removed

due a lack of streamflow estimates or sub-daily data (see Section 2.3). We further removed several of the largest basins from125

the data set, under the assumption that any new insights that could be gained from these extremely large basins are minimal

(especially given that these basins are severely under-gauged for their size) and do not outweigh the extra disk space needed to

store the data for these basins (see Section 3 in the Supplementary Materials for details). Our final selection consists of 1426

basins, with an approximately even spread between the United States and Canada. For clarity, any outcomes shown in Sections

2.2 to 4.4 only show the final 1426 basins we have made publicly available, rather than the 1698 basins that are the outcome of130

this basin pre-selection step.

2.2 Basin delineation

2.2.1 Context

Hydrologic data sets such as this are conditional on having accurate basin outlines. Basin outlines are used to estimate a

drainage basin’s area, to crop meteorological and geospatial data to the area of interest, and to define the spatial extent of135

model configurations. Basin area estimates are also often used to convert the units of fluxes from volume-per-time to depth-

per-time or vice versa (e.g. from m3 s−1 to mm s−1). Using incorrect basin area estimates can lead to large conversion errors

that propagate into any further analysis (McMillan et al., 2023).
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The basin polygons provided as part of the CAMELS data (Newman et al., 2014; Addor et al., 2017b) are administrative

boundaries. These polygons are not based on gauge locations, and the polygons thus tend to overestimate the basins’ drainage140

areas. Estimated area errors (derived from a comparison of reported upstream area for each gauge and actual area of the basin

polygon) are typically in the order of some percent (below 2% for approximately 70% of basins), but can be substantial (above

10% for approximately 8.5% of basins, with individual cases well above 100%). Additionally, openly available polygons for

the Canadian gauges did at the time of project initialization not fully cover all 1027 basins listed in the Reference Hydrometric

Basin Network (Environment and Climate Change Canada, 2020b, retrieved: 2022-01-31).145

To address both concerns, we delineated new basin outlines for all basins identified as potential candidates in Section 2.1.

Our specific goals were to (1) identify the upstream area of each gauge, and (2) divide this upstream area into sub-basin

polygons of roughly equal size.

2.2.2 Method and outcomes

We obtained gauge metadata (location, name, reference areas, etc.), as well as reference basin outline polygons if these were150

available, for all gauges identified in the first step. For the US gauges, metadata and polygons showing each basin’s outline were

obtained from the CAMELS data set (Newman et al., 2014; Addor et al., 2017b). For the Canadian gauges, an initial download

of the Reference Hydrometric Basin Network (RHBN) metadata was used to identify which gauges are included in the RHBN

version released in 2020. Further metadata (location, name) were then extracted from the HYDAT database (Environment and

Climate Change Canada, 2010). Two different sets of reference polygons were available (Environment and Climate Change155

Canada, 2020b; Government of Canada, 2022, accessed: 2022-08-23, 2022-08-18, respectively), of which we preferentially

used the newer polygons if these were available for our basins of interest.

To divide larger basins into smaller sub-basins we used the MERIT Basins data set (Lin et al., 2019). This data set contains

vectorized river basins and river networks, derived from the MERIT Hydro data (Yamazaki et al., 2019). The mean sub-basin

size in the MERIT Basins data is 45.6 km2 (median: 36.8 km2). We refer the reader to Lin et al. (2019) for further details.160

We also obtained the MERIT Hydro flow direction and accumulation grids (Yamazaki et al., 2019). The MERIT Hydro data

is provided as gridded data in a regular longitude/latitude coordinate system (EPSG:4326). This is a common format (most

of the meteorological data and many of the geospatial data sets we discuss in Sections 2.4 and 2.5 are also only available

in EPSG:4326) and we adopt this as the standard in CAMELS-SPAT to the extent feasible. The one exception is raw RDRS

forcing data, which is natively provided on a custom rotated latitude/longitude grid. Any area calculations and certain shapefile165

intersection operations are performed in the North America Albers Equal Area Conic projection (ESRI:102008) .

The MERIT Basin network was derived independently from gauges and the sub-basins in this data set therefore do not align

with gauge locations as reported by the United States Geological Survey and the Water Survey of Canada. For a given basin

we thus needed to clip the most downstream sub-basin polygon to the gauge. We therefore first mapped the gauge locations

onto the MERIT Hydro river network using automated techniques. This mapping is intended to guarantee that delineation of170

the upstream are of a given gauge starts from a pixel in the flow direction grid that is part of the main river (rather than the most

downhill pixel of a single hillslope). However, there are various scenarios where automatic mapping is inaccurate and manual
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intervention is needed. We identified those cases through a combination of accuracy metrics (area comparison between new

basin delineation and reported reference area(s), and percentage overlap between new basin delineation and reference polygon

if any were available), and visual inspection of the new basin delineation, reference polygon, underlying MERIT Hydro data175

grids, and satellite images. If necessary, we manually defined a better outlet location to delineate the basin from and tracked

this intervention in the CAMELS-SPAT metadata. We also assigned confidence ratings to our new basin polygons based on

these quality assurance checks. As the final step, we identified all cases of nested gauges where a larger basin includes a smaller

one. In such cases we split the sub-basin polygon that contains the nested gauge and assign unique identifiers to the upstream

and downstream parts of the sub-basin and river segment.180

Figure 2 shows the resulting polygons for the 1426 basins that form the final CAMELS-SPAT data set, with colors indicat-

ing our confidence ratings. “Unknown” refers to cases where no confidence rating could be assigned, mainly due to lacking

reference polygons. “Low” ratings are assigned when evidence suggests that our basin delineations are inaccurate and we were

unable to manually find a better outlet location that would lead to improved basin outlines. “Medium” ratings indicate that

there are substantial differences between our new delineations and existing ones and/or reference areas, but that it is difficult185

to decide whether our new delineation or the reference(s) are more accurate. “High” ratings are assigned when there is a clear

match between our new polygons and the reference(s), or when evidence suggests our new delineations are more accurate

than the reference(s). Detailed reasons for these ratings are tracked as part of the CAMELS-SPAT metadata. Medium and

low confidence ratings occur primarily in regions with flat topography where finding the true outline of any drainage basin is

difficult.190

2.3 Streamflow observations

2.3.1 Context

Streamflow is a key variable for many hydrologic studies. Streamflow estimates are typically provided as either instantaneous

values (i.e., valid at a given point in time) or as averages over a given time interval. It is critical to know what type of values

(instantaneous or time-averages) are available, as well as the time zones data are provided in.195

The United States Geological Survey (USGS) typically collects instantaneous streamflow observations at 15- or 60-minute

intervals. USGS also provides daily average values, computed from the instantaneous data from 00:00 to 24:00 Local Standard

Time (LST; USGS, personal communication, 2023-06-20). Both instantaneous values and daily averages are publicly available.

The Water Survey of Canada (WSC) typically collects instantaneous streamflow observations at 5-minute intervals, and from

these calculates daily averages that are reported in LST through the HYDAT database (WSC, personal communication, 2023-200

07-04). However, when instantaneous values are extracted through the WSC API, the time series are converted to UTC before

being given to the user (Government of Canada, accessed: 2023-12-22). Instantaneous streamflow observations are publicly

available for the period between present and minus 18 months. Daily average values are available for the full time period for

which a gauge has been active.
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Figure 2. Location and delineation confidence of 1426 CAMELS-SPAT basins. Political boundaries by Commission for Environmental

Cooperation (2022, accessed 2023-12-20)

.

Our goal with this project is to provide data useful for running and evaluating process-based hydrological models. We205

therefore include daily average streamflow values as available through USGS and WSC. We also include hourly average

streamflow values to match the temporal resolution of our selected meteorological data sets. Hourly average flow data are

computed from the sub-daily instantaneous data available through both agencies. All flow data, as well as meteorological

forcing data, are included in the CAMELS-SPAT data set in Local Standard Time. The timezone of each gauge is tracked as

part of the meta data.210
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2.3.2 Method and outcomes

For the gauges in the United States, daily average streamflow data and instantaneous (sub-daily) data can both be extracted

through API requests (https://nwis.waterservices.usgs.gov/nwis/dv/ and https://nwis.waterservices.usgs.gov/nwis/iv/,

respectively; accessed 2023-06-16). For the Canadian gauges, sub-daily data were extracted from the Environment and Climate

Change Canada Web Service Links Interface (https://wateroffice.ec.gc.ca/services/links_e.html; accessed 2023-04-05). Daily215

data were extracted from the HYDAT database, version 20230505. We excluded 4 gauges in the United States, as well as

180 Canadian gauges from the original 1697 preselected stations because sub-daily data was not available for these stations.

We removed a further 13 Canadian gauges for lacking daily discharge values. Manual checks of these gauges through the

WSC website (https://wateroffice.ec.gc.ca/search/historical_e.html; last access: 2025-02-06) indicate that these stations are

measuring water levels in lakes.220

Daily average values for both countries are provided in Local Standard Time (LST). We updated the time indices for the

sub-daily instantaneous values to match. For the gauges in the USA, this meant shifting the time series by 1 hour for time steps

that were provided in local daylight saving time for gauges in states where daylight saving time is observed. For the Canadian

gauges, this meant shifting the entire time series for each gauge by the offset needed to convert UTC to LST. We then set

any negative streamflow values to zero, and used a mass-conserving averaging approach to turn instantaneous flow data into225

hourly averages (see Section 1 in the Supplementary Materials for more details about the averaging procedure). We specified

the condition that every hourly average must be based on at least one observation during that time window. Hours for which

no data observations were available were set to Not-a-Number (NaN).

Note the critical assumption that we calculated the average hourly flows as the value at the full hour (e.g., 12:00) using a

forward-looking window (i.e., in this case the value at 12:00 is the average during the time window 12:00-13:00). This matches230

the daily flows, which are provided under the same assumption by USGS and WSC (e.g., the Jan-1 2000 value is calculated

from data between 00:00 Jan-1 and 24:00 Jan-1; USGS, personal communication, 2023-06-20; WSC, personal communication,

2023-06-26). This information is also stored in the time_bnds (time bounds) variable available in the provided NetCDF files.

Daily and sub-daily observations were originally provided in text-based formats. We converted these to NetCDF4 formats,

to ensure consistency between gauges in the two countries and to track metadata in a more accessible way (compared to235

storing the metadata in separate files or headers in text files). For both USGS and WSC data we retained the quality flags that

accompany the data and stored these in the same NetCDF files that contain the streamflow observations. These quality flags

indicate conditions that may adversely affect the observations (e.g., gauge malfunction, ice conditions) and whether data has

been formally approved or is still considered provisional.

Figure 3 shows aggregated flow data availability for the 1426 catchments included in the CAMELS-SPAT data set. Hourly240

flow data comes in two distinct categories: short (< 2 years) records for the Canadian gauges and much longer records for

gauges located in the United States. This is a consequence of Water Survey of Canada’s policy to make high-resolution gauge

data only publicly available for a short historical period. Missing data for these shorter records are however typically low (see

also Fig. A1). For approximately 80% of gauges, missing hourly observations account for up to 10% of record length. Data
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Figure 3. Flow data availability for gauges included in CAMELS-SPAT. Record length refers to the period between the first publicly available

flow record for a given station, and its last. Missing values occur within this record period and are given here in the same units as the record

length itself. Note that both y-axes are truncated: in (a), missing values has a count of 913 for time is [0,1], and record length has a count of

560 for time = [1,2]; in (b), missing values has counts of 1156 and 112 for time is [0,1] and [1,2], respectively.

may be missing for up to 40% of the record for most remaining gauges, with a handful of gauges having extremely large data245

gaps. Daily data record lengths are similar for Canadian and United States gauges. Missing values are relatively rare (<10%

for up to 1350 out of our 1426 gauges), though can be substantial (up to 80 to 95% for the remaining gauges; see Fig. A1). The

period with the greatest overlap of data records is 1990-2020; hourly observations are available for only a handful of gauges

before this time.

2.4 Forcing data250

2.4.1 Context

Meteorological forcing data in existing data sets is typically provided as catchment-averaged (lumped) daily data, and tends

to be limited to precipitation, temperature and potential evapotranspiration variables (Table 1). While a large number of the

more conceptual models can be run with only precipitation, temperature and potential evapotranspiration inputs (see e.g.,

Knoben et al., 2019; Trotter et al., 2022), more complex hydrologic models typically require a wider array of inputs at higher255

temporal resolution. Table 2 shows a brief overview of meteorological data requirements for a selection of process-based

hydrological models. Typical variables include (1) precipitation, (2) air temperature, (3) radiation terms, often distinguishing

between shortwave and longwave radiation, (4) air pressure, (5) humidity, and (6) wind speed.

It is clear from Table 2 that it is impossible to define a small set of forcing variables that would allow the use of a large

number of process-based hydrologic models. We therefore decided to include a broad selection of meteorological variables,260

accepting that this comes at the cost of extra disk space. We provide these variables at hourly time steps, at their native gridded

resolution as well as averaged at the sub-basin level. To facilitate the use of the broadest range of modeling tools we also
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include time series of potential evaporation (see footnote in Table 3) and forcing variables aggregated at the lumped basin

level.
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Table 2. Meteorological data needs for CATFLOW (Maurer and Zehe, 2007), CHM (Marsh et al., 2020), CHRM (Pomeroy et al., 2007), ES-

CROC (Lafaysse et al., 2017), HYPE (SMHI, 2022), MESH (Mekonnen and Brauner, 2020), Noah LSM (Mitchell et al., 2005), PARFLOW

(Maxwell et al., 2019), MM-PIHM (PIHM team, 2007; Yuning Shi, 2018), SUMMA (Clark et al., 2015a, b; Nijssen, 2017), VIC (Liang

et al., 1994; Hamman et al., 2018) and WaSIM (Schulla, 2021). Models are listed alphabetically. Optional inputs indicated with *. t indicates

an arbitrary time unit.

Variable CATFLOW CHM CHRM ES-CROC HYPE MESH

Precipitation [m t−1] [mm t−1] [mm t−1] [kg m−2 s−1] [mm t−1] [kg m−2 s−1]

Downward shortwave radiation [W m−2] [W m−2] [W m−2] [MJm−2 d−1]* [W m−2]

Downward longwave radiation [W m−2] [W m−2] [W m−2]

Air temperature [C] [C] [C] [K] [C] [K]

Air pressure [Pa] [Pa]

Specific humidity [kg kg−1]

Wind speed (U-direction) [m s−1]*

Wind speed (V-direction) [m s−1]*

Sunshine duration

Reflected shortwave radiation [W m−2]

Net radiation [W m−2] [W m−2]

Vapor pressure

Relative humidity [%] [%] [%] [%] [−]*

Wind speed (mean) [m s−1] [m s−1] [m s−1] [m s−1] [m s−1] [m s−1]

Wind direction [degrees] [degrees]

Variable Noah LSM PARFLOW MM-PIHM SUMMA VIC WaSIM

Precipitation [inch 30min−1] [mm s−1] [kg m−2 s−1] [kg m−2 s−1] [mm t−1] [mm]

Downward shortwave radiation [W m−2] [W m−2] [W m−2] [W m−2] [W m−2] [Whm−2]

Downward longwave radiation [W m−2] [W m−2] [W m−2] [W m−2] [W m−2]

Air temperature [C] [K] [K] [K] [C] [C]

Air pressure [mbar] [Pa] [Pa] [Pa] [kPa]

Specific humidity [kg kg−1] [g g−1]

Wind speed (U-direction) [m s−1]

Wind speed (V-direction) [m s−1]

Sunshine duration [−]

Reflected shortwave radiation

Net radiation

Vapor pressure [kPa]

Relative humidity [−] [%] [−]

Wind speed (mean) [m s−1] [m s−1] [m s−1] [m s−1] [m s−1]

Wind direction
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2.4.2 Methods and outcomes265

CAMELS-SPAT includes four forcing data sets, each with a specific focus:

1. First, we primarily use the high-resolution RDRS v2.1 data set (Gasset et al., 2021, available at 10km or approximately

0.09◦ resolution). RDRS covers the North American continent and provides those variables needed to run process-based

models directly and derive most other variables listed in Table 2. A key advantage of RDRS is that it assimilates

precipitation observations.270

2. Second, for continuity with the original CAMELS data set, we include the Daymet v4 R1 data set (Thornton et al., 2021,

available at 1km or approximately 0.009◦ resolution). Daymet is based on weather station observations and gridded

terrain data, and available at daily resolution between 1980 and 2023 on a 365-day calendar (i.e., during leap years

December 31st is missing). The data set does not include all the forcing variables needed to run process-based models,

but, if combined with an appropriate estimate of potential evapotranspiration (PET), provides sufficient information to275

run more conceptual and data-driven models. We infill the missing day in leap years as a linearly interpolated value

between the preceding and following day. Following Newman et al. (2015), we add a Priestley-Taylor PET estimate

(Priestley and Taylor, 1972, further details available in the Supplementary Materials).

3. Third, to facilitate possible extension of CAMELS-SPAT beyond North America, as well as provide hourly data for

gauges with observations before 1980 (i.e., outside the time period covered by RDRS), we include the globally available280

ERA5 data (Hersbach et al., 2020, available at 0.25◦ resolution). Like RDRS, ERA5 provides all variables needed to

run process-based models directly, and derive most other variables listed in Table 2. However, unlike the other data sets

listed here, ERA5 is a reanalysis product and does not integrate station observations. Local accuracy may thus be lower

for ERA5 data than for data sets that do use station observations.

4. Fourth, to partly address this weakness of ERA5 data, we include the high-resolution EM-Earth data set (Tang et al.,285

2022b, available at 0.10◦ resolution). Previous work has shown that using station-based precipitation and temperature

data from EM-Earth provides better modeling results for our area of interest than using ERA5 alone (Rakovec et al.,

2023). However, note that the EM-Earth has a fixed temporal coverage of 1950-2019, whereas our selected gauges have

data beyond 2019.

Table 3 shows an overview of forcing variables available as time series in the CAMELS-SPAT data set. Compared to Table290

2, we provide net radiation terms at the surface separated into net shortwave and net longwave terms, and do not provide

a summed net radiation component nor a reflected shortwave variable. Either can be easily derived from the provided net

shortwave and longwave components (see Hogan (2015), but also footnote 2 in Table 3). We also do not provide sunshine

duration because this is not available in RDRS, Daymet and EM-Earth. While sunshine duration is available in ERA5, it is not

an independent variable: it is derived directly from downward shortwave radiation using a threshold of 120 W m−2 (Hogan,295

2015). We complement the forcing data sets with various additional variables derived from the downloaded data in cases where
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we judged the processing to be too cumbersome to pass down to the user (i.e., vapor pressure, relative humidity, wind direction),

or the variable seemed to be of general interest (i.e., mean wind speed, PET). Potential evapotranspiration estimates for Daymet

were derived using the Priestly-Taylor formula (Priestley and Taylor, 1972); PET estimates for RDRS were derived using the

FOA-56 Penman-Monteith method (Allen et al., 1998). The equations used to derive data are provided in the Supplementary300

Materials. While this list of variables is unlikely to completely cover all models’ data needs, it will provide a reasonable starting

point for a large number of models.

We retained the original variable names used in each data set so that users may easily refer to the existing documentation of

RDRS, Daymet, ERA5 and EM-Earth if needed. For convenience and simplicity from a user perspective, we converted all data

to use a consistent set of units. This is mostly straightforward but required an assumption for the density of water which we set305

at 1000 kg m−3. Data are provided for the full time period covered by the observational record of each individual gauge when

possible, including time steps for which streamflow data are missing (see also Section 4.2.1 and Table 4). For all variables,

metadata (descriptions, units, derivations if applicable) are stored as variable attributes in the NetCDF files.

We provide the forcing data at three different spatial aggregation levels: (1) as gridded values at the native resolution of each

data set, clipped to the basin outline; (2) aggregated at the sub-basin level; (3) aggregated at the basin level (i.e., the level at310

which most of the data sets listed in Table 1 provide data). Averaging of the gridded data to (sub-)basin polygons was done

with the EASYMORE toolbox (Gharari et al., 2023a).

RDRS, ERA5 and EM-Earth provide data at hourly resolution, in Coordinated Universal Time (UTC). We process these time

indices to be in each gauge’s Local Standard Time (LST) instead, so that the time indices in the forcing file align with those used

for the flow observations. We make a slight adjustment for the 57 basins that are located in regions following Newfoundland315

Standard Time (NST [UTC− 3h30], National Research Council Canada (2019)). All forcing data products are only available

at whole hours, and thus cannot easily be converted to NST. We treat these basins as following Atlantic Standard Time (AST

[UTC− 4h00]) instead. Note that this leads to a 30-minute offset between forcing data and streamflow observations for these

basins. Daymet data is already provided as daily average values calculated in LST and requires no further adjustment.

Variables in these forcing data sets are either instantaneous (i.e., representative of conditions at a specific point in time) or320

time-averaged (i.e., representative of conditions over a given time window), and this means the time stamps in each NetCDF file

must be interpreted differently for different variables. For any instantaneous variable, a value is valid at the specific moment

in time given by the time stamp (European Centre for Medium-range Weather Forecasting, 2023c). For any time-averaged

variables, we need to distinguish between two cases. RDRS and ERA5 use period-ending or backward-looking time stamps,

meaning that, for example, the average precipitation rate at time 12:00 is the average rate over the interval 11:00-12:00 (N.325

Gasset, personal communication, 2024; European Centre for Medium-range Weather Forecasting, 2023b, Section: “Mean

rates/fluxes and accumulations”). EM-Earth’s precipitation variable instead uses period-beginning or forward-looking time

stamps, meaning that, for example, the average precipitation rate at time 12:00 is the average rate over the interval 12:00-

13:00 (G. Tang, personal communication, 2024). Table 3 provides an overview of all forcing variables and summarizes this

information.330
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Table 3. CAMELS-SPAT meteorological variables. Variable names shown in bold indicate derived variables. “Flux validity” indicates how

time-averaged variables must be interpreted.

Data set RDRS Daymet ERA5 EM-Earth

Resolution Hourly Daily Hourly Hourly

Flux validity Period-ending1 n/a Period-ending2 Period-beginning3

Time-averaged variables Units Name in NetCDF files

Precipitation rate [kg m−2 s−1] RDRS_v2.1_A_PR0_SFC prcp mtpr prcp

Downward shortwave radiation [W m−2] srad msdwswrf

Downward longwave radiation [W m−2] msdwlwrf

Net surface shortwave radiation [W m−2] msnswrf4

Net surface longwave radiation [W m−2] msnlwrf4

Potential evapotranspiration rate [kg m−2 s−1] pet mper5

Instantaneous variables Units Name in NetCDF files

Downward shortwave radiation [W m−2] RDRS_v2.1_P_FB_SFC

Downward longwave radiation [W m−2] RDRS_v2.1_P_FI_SFC

Potential evapotranspiration rate [kg m−2 s−1] pet

Air temperature [K] RDRS_v2.1_P_TT_1.5m t tmean

Minimum daily air temperature [K] tmin

Maximum daily air temperature [K] tmax

Daylight length [s day−1] dayl

Air pressure [Pa] RDRS_v2.1_P_P0_SFC sp

Specific humidity [kg kg−1] RDRS_v2.1_P_HU_1.5m q

Relative humidity [kPa kPa−1] RDRS_v2.1_P_HR_1.5m rh

Vapor pressure [kPa] e vp e

Wind speed (U-direction) [m s−1] RDRS_v2.1_P_UUC_10m u

Wind speed (V-direction) [m s−1] RDRS_v2.1_P_VVC_10m v

Wind speed (mean) [m s−1] RDRS_v2.1_P_UVC_10m w

Wind direction [degrees] phi6 phi6

1 N. Gasset, personal communication, 2024.
2 See: https://confluence.ecmwf.int/pages/viewpage.action?pageId=82870405#ERA5:datadocumentation-Table4 (last access: 2024-01-03),

https://confluence.ecmwf.int/pages/viewpage.action?pageId=82870405#ERA5:datadocumentation-Table9 (last access: 2024-01-03),

https://confluence.ecmwf.int/pages/viewpage.action?pageId=82870405#ERA5:datadocumentation-Table2 (last access: 2024-01-03).

3 G. Tang, personal communication, 2024.

4 Note that these net radiation terms are based on interactions between the atmospheric and land surface components of the ERA5 modeling chain, and should thus only be

used carefully as model input to prevent cases where the user’s model duplicates processes already accounted for by the ERA5 models.
5 Assumptions underlying this variable are described here: https://codes.ecmwf.int/grib/param-db/?id=228251 (last access: 2024-01-01). Note that we provide the equivalent

variable as a mean rate as part of the CAMELS-SPAT data, but the URL for that variable lacks a clear description: https://codes.ecmwf.int/grib/param-db/?id=235070 (last

access: 2024-01-01).
6We derived most additional variables before averaging the gridded data onto (sub-)basins, but this is not easily possible for wind direction. Instead, we calculate wind

direction separately for the gridded, semi-distributed and lumped cases from u- and v-components after (sub-)basin averages of these variables were created. We use the

meteorological wind direction as defined by ECMWF (European Centre for Medium-range Weather Forecasting, 2023a): wind direction in this case indicates the direction

the wind comes from, not where it goes. 17
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2.5 Geospatial data

2.5.1 Context

Geospatial data in existing data set covers four broad categories: (1) meteorology (as time series and derived summary statis-

tics), (2) vegetation and land use; (3) topography; (4) soil and geology. In the current large-sample data sets, geospatial data

are typically not provided as maps in their original formats but tend to be presented as spatial statistics (mean, mode, etc.).335

These statistical summaries of the original data, commonly referred to as catchment attributes, can be helpful to succinctly

characterize a location’s hydroclimatic conditions and support classification efforts. For modeling purposes, geospatial data

play a key role in defining model configurations and parameter values. For example, models such as Noah-LSM (Niu et al.,

2011) and SUMMA (Clark et al., 2015a, b) rely on vegetation and soil classes to provide initial values for a number of land

use and soil parameters. More generally, models might require the height of the vegetation canopy in the vertical direction, or340

the fraction of the basin covered by open water in the horizontal direction as inputs. It is practically impossible to cover all

possible use case, and we therefore provide the geospatial data as maps clipped to the basin outlines. The maps will allow users

to derive model parameters and further catchment delineations (such as elevation zones, or land cover polygons), and to derive

additional catchment attributes if our existing selection of attributes does not cover a particular study’s needs (see Section 3).

Figure 4 shows an overview of the 11 different data sets we selected for use in CAMELS-SPAT.345

2.5.2 Methods and outcomes

For internal consistency of the CAMELS-SPAT data, we selected various geospatial data sets that cover at least the United

States and Canada. The specific processing steps vary, but in general processing for each data set involved downloading the

data at continental or larger scales and clipping the data to the basin polygons. We also ensured all geospatial maps are provided

in a regular latitude/longitude coordinate system (EPSG:4326). Figure 4 provides an overview of the geospatial data layers,350

using a single basin as an example.

Climate: Long-term monthly means of several climate variables can be obtained from the WorldClim data set (Fick and

Hijmans, 2017). The advantage over calculating these means from gridded forcing data is WorldClim’s much higher spatial

resolution. Available variables are long-term means computed from 30 years each, showing minimum, mean and maximum

monthly temperature, as well as monthly precipitation, solar radiation, wind speed and water vapor pressure. WorldClim’s data355

license does not allow redistribution of their raw data, but does allow the data to be used to calculate derived statistics and

redistribute those. We primarily use the WorldClim data to calculate various attributes that quantify the spatial heterogeneity

in climatic conditions, and include various derived maps as part of CAMELS-SPAT.

Vegetation: Process-based hydrological models typically include explicit representations of vegetation cover in a catchment.

CAMELS-SPAT includes two data sets from which vegetation parameters may be derived. First, we included time series of360

Leaf Area Index (LAI) observations, derived from MODIS satellite observations (Myneni et al., 2021, MCD15A2H.061).

These observations are available at an 8-day temporal resolution and cover the period 2002-07-04 to 2023-10-08. Certain

models may be able to ingest these maps directly, or typical seasonal LAI patterns may be derived from them. In addition,
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we included estimates of forest height in 2000 and 2020 (Potapov et al., 2021, part of the Global Land Cover and Land Use

Change, 2000-2020 data).365

Land cover and land use: To further assist parametrization and classification efforts, we included three different products

related to land cover and land use. First, the Landsat-Derived Global Rainfed and Irrigated-Cropland Product (LGRIP30,

Thenkabail et al., 2021; Teluguntla et al., 2023) can be used to estimate the magnitude and type of agriculture practiced in each

basin. Second, we include a map of International Geosphere–Biosphere Programme (IGBP) land classes in each basin, derived

from MODIS satellite observations (Friedl and Sulla-Menashe, 2022). Third, we include high-resolution Global Land Cover370

and Land Use 2019 maps (Hansen et al., 2022). This is very high-resolution data derived from Landsat satellite observations,

used to classify the landscape into several broad categories (inland water, permanent snow and ice, cropland, built-up, terra

firma and wetlands) with several of these consisting of subclasses based on build-up area extent, and vegetation extent and

height.

Open water: We include cutouts of the HydroLAKES data (Messager et al., 2016) to quantify the extent, type and volumes375

of open water bodies in each basin. This data can be used to estimate each catchment’s open water area, retention volumes and

parametrization of reservoir and lakes modules in hydrologic and/or routing models.

Topography: The MERIT Hydro Digital Elevation Model (DEM) used for basin delineation (Yamazaki et al., 2019) is

also part of the maps provided for each catchment. We used the DEM to derive separate maps of slope and aspect because of

their hydrologic relevance. For both, the DEM was first reprojected into ESRI:102009 (NAD 1983 Lambert North America)380

to ensure consistency between horizontal and vertical units. We then calculated slope maps expressed as angles (i.e., degrees),

and aspect maps in degrees indicating which direction a slope faces (with 0/90/180/270o being North/East/South/West-facing

slopes respectively). Additional variables such as elevation bands may be derived from the DEM map, but due the subjectivity

involved in deciding where the boundaries between the elevations bands are we have not done so. The DEM data can may also

be useful to apply elevation-dependent lapse rates to meteorologic variables.385

Soil and geology: We provide maps from three different data sets to characterize each catchment’s subsurface. First, SOIL-

GRIDS 2.0 (Poggio et al., 2021) provides estimates of various soil properties (bulk density, percentage coarse fragments,

organic carbon content, and sand, silt and clay percentages) at six different depths (0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-

100 cm, 100-200 cm). These maps are given for mean values, but also for 0.05th, 50th and 95th percentiles and an uncertainty

estimate. To match the geological attributes described later in this paragraph we also derive porosity and conductivity estimates390

from the mean sand and clay values for each layer using the regression equations described by Cosby et al. (1984). However,

SOILGRIDS data are estimated for depths up to 2 meters everywhere, without taking into account the actual depth to bedrock

of any location. Thus, second, we included maps from the Pelletier soil database (Pelletier et al., 2016a, b). These distinguish

between uplands, valley bottoms and lowlands and provide estimates of the depths of soil, intact regolith, and sedimentary

deposits above unweathered bedrock. These variables may be used to set more realistic soil depths in models compared to a395

spatially uniform depth. Third, we include cut-outs from the GLHYMPS data (Gleeson et al., 2014; Gleeson, 2018) as poly-

gons. Contained as attributes are estimates of geologic permeability and porosity, which may be used to parametrize models.
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Figure 4. Overview of geospatial maps provided for each catchment in the CAMELS-SPAT data set, using a transboundary basin as an

example (Canadian gauge ID: 05AD003; sub-basin outlines given in black in all data layers apart from topography). The topography layer

also shows the basin’s gauge location as a red circle, the different sub-basins with white outlines, and the river network and lakes in blue.
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3 Catchment Attributes

Existing large-sample data sets cover a wide variety of catchment attributes. An informal analysis of some of the CAMELS

data sets listed in Table 1 shows that these data sets together contain close to 300 different attributes, though any given in-400

dividual data set contains no more than 50 to slightly over a 100 of those. Overlap between attributes provided by existing

data sets is moderate at best, partly as a consequence of the data products included in each individual data set. This lack of

uniformity is compounded by a lack of unified terminology, where different data sets may use the same terms to describe

different calculations, or different terms to describe the same attribute. This is in line with findings by Tarasova et al. (2023),

who analyze how 742 journal articles describe the hydroclimatic conditions of their study areas. They find that authors use a405

wide variety of attributes with only occasional verification of their attributes’ usefulness. Relevant for our work, and in line

with a cursory overview of attributes provided by the data sets listed in Table 1, they also find that the existing literature only

rarely uses catchment descriptors that attempt to quantify the range a particular variable may cover in a given catchment (the

CAMELS-SE data set, Teutschbein (2024), is a notable exception).

We thus made a necessarily subjective choice in which attributes to calculate for the CAMELS-SPAT basins. We aimed410

for overlap with existing data sets when possible, and to be mindful of the findings of Tarasova et al. (2023). In particular, in

addition to the commonly provided mean attribute values we also selected statistics that describe the range of an attribute’s

values. Examples include the minimum, maximum and standard deviation of vegetation height to give an impression of the

spatial variability in the forest height data, and the inclusion of monthly mean forcing variables to give an impression of the

climatic seasonality that is only superficially captured by average seasonality attributes commonly found in other data sets. A415

list of all 1178 attributes, divided into five main categories: (1) climate; (2) topography and open water; (3) vegetation and land

cover; (4) subsurface; and (5) hydrology, can be found in Tables A1-A11. We calculate the attribute values at both the basin and

the sub-basin level (excepting streamflow statistics, which are only available at the basin outlet). Further details are provided

in the following sub-sections, though for obvious reasons we do not discuss every individual attribute. We focus the following

description of CAMELS-SPAT attributes instead on providing various examples that highlight why the recommendations in420

Tarasova et al. (2023) are important.

3.1 Climate attributes

The climatic data included in CAMELS-SPAT, time series of meteorological forcing variables from RDRS and monthly maps of

mean climatic conditions from WorldClim, provide a unique opportunity to characterize each catchment’s climatic conditions

in time and space. From the RDRS data we are able to determine seasonal variability, and its variance over multiple years.425

From the WorldClim data we are able to characterize the seasonal variability and its variance across space. This leads to a

relatively large number of climatic attributes compared to other data sets, and provides some insight in the variability in time

and space of the drivers of hydrologic behaviour.

Tables A1-A4 list the climatic attributes provided with CAMELS-SPAT. These cover annual mean values of variables of

interest (such as precipitation, potential evapotranspiration and snow) commonly found in other datasets, as well as standard430
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deviations for these values. We expand upon existing data sets by also providing monthly means and monthly standard de-

viations of all forcing variables, to allow more in-depth investigation of each catchment’s seasonality. Figure 5 shows why

going beyond annual mean values may be important. Figures 5a and 5b show long-term average aridity and the fraction of

precipitation falling as snow (determined on a per-timestep basis using a 0oC threshold; see also Section 4.2.6 for some further

discussion about the PET estimates available in CAMELS-SPAT.). The broad geographical patterns seen here are not particu-435

larly surprising, but are, importantly, not necessarily representative of climatic variability on a year-to-year basis (Figure 5c, 5d)

or of the range of conditions within each catchment (Figure 5e, 5f). For example, across the great plains area and particularly in

the southwestern United States the year-to-year variability in aridity (Figure 5c) can be quite large and certain catchments may

fluctuate between arid and humid states on annual timescales. The fraction of precipitation falling as snow equally shows large

inter-annual variability (Figure 5d), with standard deviations close to 10% across a large part of the domain. Within-catchment440

variability of aridity (Figure 5e) seems modest in most cases but is rather large for snowfall (Figure 5f), highlighting why

treating these catchments in a more spatially distributed fashion may be helpful.
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Figure 5. Selection of climate attributes. (a-d) Statistics derived from RDRS data, showing mean and variability in time. (e-f) Statistics

derived from WorldClim data, showing variability within each catchment.
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3.2 Topography and open water attributes

Topography is a critical control on hydrologic behaviour on both the large and small scale. For example, mountains influence

precipitation patterns at the large scale, while at the small scale slope angles affect lateral drainage and topographic features445

can lead to the formation of lakes. Tables A5 and A6 provide an overview of topographic and open water attributes, respec-

tively. These cover various basic catchment descriptors, such as location and area, and various statistics about the topography

and resulting drainage network. Figure 6a and 6b show the catchment elevation mean and standard deviation, respectively. As

expected, elevation varies strongly throughout the domain, ranging from sea level to well over 3000 m.a.s.l.. Elevation differ-

ences within catchments can be very high in mountainous regions, with prime examples being the northwestern United States450

and southwestern Canada: the within-catchment standard deviations in elevation are close to 500 m here. Statistics that quantify

basin slope (not shown for brevity) show similar patterns, showing that within-catchment topographic drivers of hydrologic

behaviour can be highly variable. Topographic conditions lead to a certain amount of open water in the CAMELS-SPAT catch-

ments, with lakes larger than 10 ha being more prevalent in the Canadian basins (Figure 6c) than in basins in the United States.

Water storage in these can be considerable (Figure 6d). Stream lengths (Figure 6e and 6f) vary considerably based on the455

drainage area upstream of each gauge, emphasizing a need for within-catchment routing approaches. The examples in Figure

6 are intended to highlight the variability of conditions within catchments and thus emphasize the need to go beyond treating

basins as lumped entities. These examples (particularly Figure 6a and 6b, and 6e and 6f) also illustrate that attributes can show

high correlations, suggesting that adding more attributes to an analysis will not necessarily increase the useful information

by the same amount. Selecting which attribute to incorporate in any analysis must thus be done somewhat carefully (see also460

Section 4.2.5).
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Figure 6. Selection of topographic attributes. Open water (c, d) estimates are obtained from the HydroLAKES database which uses a

threshold of 10 ha for lake and reservoir identification. (e, f) Stream length statistics are derived by starting at each headwater sub-basin

upstream of a given gauge, and tracing the flow path down until the gauge location is reached. From this ensemble of flaw path lengths

upstream of a given gauge, the mean and standard deviation of stream lengths are calculated.
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3.3 Land cover attributes

Table A7 provides an overview of vegetation and land cover attributes. Briefly, these cover various statistics about vegetation

height during specific years, monthly Leaf Area Index (LAI) catchment mean and standard deviation, as well as per-catchment

counts of three different land class products. We refer the reader to the original publications that describe each dataset for further465

information about the classes included. Figure 7 provides an example of the spatial (Figure 7a, 7b) and temporal (Figure 7c,

7d) variability in vegetation characteristics. As may be expected, there is considerable variation in vegetation height in space,

on both the continental and within-catchment scale. Forested areas in particular exhibit large standard deviations in vegetation

height (see for example the Pacific Northwest and western Canada). On a seasonal scale, Leaf Area Index exhibits large

variability throughout the domain as a consequence of summer and winter patterns. Vegetation is a key control on hydrologic470

processes like interception and transpiration, and these images show that mean values do not necessarily capture the complex

vegetation patterns that may explain spatial and temporal variability in these processes.

3.4 Subsurface attributes

Attributes describing each catchment’s subsurface characteristics are listed in Tables A8 and A9. Figure 8a and 8b show

SOILGRIDS estimated sand content in the top layer of each catchment and the within-catchment standard deviation of this475

estimate, respectively. Sand content is often combined with clay and silt content estimates to derive soil parameters used in

models, such as porosity and drainage rates. Within-catchment standard deviations tend to be around 20% of the estimated

sand content, suggesting that within-catchments drainage properties can vary considerably. For a given depth, the SOILGRIDS

property of interest (here: sand content) is estimated with a lower bound (Q0.05), median (Q0.50) and mean value, and upper

bound (Q0.95). The prediction uncertainty is then calculated as the ratio of the 90% prediction interval (Q0.95-Q0.05) and480

the median (Q0.50). Prediction uncertainty (Figure 8c) adds more variability to the sand content estimates, though this is

somewhat modest compared to within-basin variability of sand content estimates (Figure 8b). The spatial standard deviation

of the uncertainty estimates is even smaller: a couple of percent-point difference at most (Figure 8d). This suggests that the

prediction intervals for sand content, in this layer at least, are relatively narrow. The main variability occurs within each

catchment, further emphasizing that going beyond lumped representations of hydrologic behaviour may be useful. This is485

further supported by Figure 8e and 8f, showing the estimated thickness of sedimentary deposits and their spatial standard

deviation, respectively. There are clear large-scale patterns of the catchment mean values, where plains and flat areas show the

thickest layers. Within-catchment variability is particularly large in catchments with sharp topographic relief (compare Figure

6b) showing the difference in soil structure between high, steep mountains and valley bottoms. However, soil properties are

difficult to measure and as a result can be highly uncertain. We urge readers to consult the publications describing these data490

sets to understand how these values were derived, and how they may feed into new work.
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Figure 7. Selection of vegetation attributes.
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Figure 8. Selection of subsurface attributes. (c-d) Sand content uncertainty is defined as the ratio between the 90-percentile prediction interval

and the median prediction.
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3.5 Hydrologic signatures

Statistics that describe flow regimes, commonly called signatures, are an active area of research (e.g., McMillan, 2021). As an

initial start, we provide the same signatures as provided in the original CAMELS data set and expand upon these in a handful of

ways: (1) in addition to mean values, we provide standard deviations when applicable; (2) we provide monthly runoff signatures495

to complement the monthly climate attributes; (3) we expand the no, low and high flow duration signatures to include median,

skew and kurtosis values. For the signatures in Table A10, we calculate the signature per year of data first, and then find the

mean and standard deviation (if applicable) across years. For the statistics about no, low and high flow periods (Table A11),

we instead use all years together and calculate the statistics from this single longer time series.

A subset of these hydrologic signatures is shown in Figure 9. As expected, the signatures show strong relations to the climate500

attributes in Figure 5a and 5b. Mean discharge (Figure 9a) is particularly high in non-arid areas, and the standard deviation of

annual mean discharge (Figure 9b) suggests strong intra-annual variability in the observed runoff at most gauges. The influence

of snow processes can be clearly seen in the differences between May and December mean runoff values (Figure 9c, 9d). Low

flow duration (Figure 9e; defined as days where discharge is below 20% of the mean discharge for the basin) emphasizes the

seasonality in runoff patterns in most of these these basins. However, these mean values are likely not particularly representative505

of the duration of low-runoff events. In the majority of basins, the distributions of low flow durations (as well as no flow and

high flow durations; not shown for brevity) are positively skewed (Figure 9f). This indicates that these distributions have heavy

tails, and that the mean values will be heavily biased by a relatively small number of events. In many basins, the median duration

will provide a more representative value of the typical no, low and high flow durations. Almost all recent large-sample data

sets provide mean duration of no, low and high flow events, but the skewness and kurtosis of the underlying distributions are510

typically not accounted for. This leads to an overestimation of the typical duration of these events, and may hinder classification

efforts. We strongly suggest that the shape of the duration distributions is accounted for in further work.
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Figure 9. Selection of hydrologic signatures.
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4 Discussion

4.1 Recommendations for data providers

4.1.1 Dimension boundary information in publicly available data515

In Sections 2.3 and 2.4 we describe the processing of streamflow observations and meteorological data, respectively. One

challenge here is determining the representativeness (or validity) of data values in time and space. Data can be instantaneous

(i.e., valid at a specific point in time) or time-averaged (i.e., valid over a specific time window), and treating one as the other

leads to incorrect estimates of fluxes and thus state changes in the system (see also the derivation of hourly flow values in the

Supplementary Materials). The same concern applies to space: values may be representative for a specific point, or averaged520

over a given region. Accounting for these differences is not always straightforward, in particular because information about

the spatial and temporal validity of publicly available data is not always easily available and may require informal inquiries to

obtain. This hampers the correct application and interpretation of data, and can lead to easily preventable biases in analyses

and modeling efforts.

A simple solution is provided by the NetCDF Climate and Forecast (CF) Metadata Conventions (see Section 7 in Eaton525

et al., 2023). These conventions describe the specification of bounds for coordinate variables (i.e., dimensions such as latitude,

longitude and time) that indicate between which coordinate values a given data value is considered valid. Specific examples

for spatial, gridded data can be found in Section 7.1 in Eaton et al. (2023); time bounds are discussed in Examples 7.5 and

7.6. The CF conventions are designed for NetCDF files but the principle of specifying dimension bounds in time and space,

between which data values are valid, is widely applicable. We strongly recommend that including these bounds as part of data530

distributions becomes standard practice.

4.1.2 Sub-daily flow data derivations

Process-based models can be useful for long-term water assessments, provided that they are parametrized well and that the

theoretical underpinnings of the model are valid (e.g., Kirchner, 2006; Clark et al., 2016). In the case of process-based models,

assessing a model’s physical realism requires observations at sub-daily resolution. In CAMELS-SPAT we therefore construct535

hourly streamflow series from time series of instantaneous streamflow observations that are publicly available. However, the

phrase “streamflow observations” (though common) is somewhat misleading: in almost all cases the observations are of water

levels and streamflow values are estimated for a given water level with rating curves. Especially at high observation frequencies

these water levels may be subject to random fluctuations unrelated to streamflow magnitude (e.g., due to wind or small eddies),

which will translate into streamflow estimates affected by this noise. A cleaner approach would be to find the average hourly540

water level, and estimate the average hourly flow from this through the station’s rating curve. Development and maintenance

of rating curves is complex however and rating curves tend to change through time (see for example the description of WSC’s

procedures in Gharari et al., 2023b). Computing robust sub-daily streamflow estimates will be easier at institutional levels (not

least because it requires access to the rating curves) and we express the hope that this may become standard practice.
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4.2 Guidelines for practical use545

Here we outline various considerations that may be useful to readers. Our goal with these is to set expectations for data set use,

and highlight potential pitfalls that may not be immediately obvious.

4.2.1 Selection of time periods

Our aim with CAMELS-SPAT is to facilitate a wide range of studies, and we have therefore provided as much data for each

gauge as seemed feasible. In particular, this meant that we only excluded station observations before 1950, because none of the550

forcing data sets covers this period, and also accepted the fact that not all forcing products are available for the full period for

a given gauge. For different purposes, it will thus be necessary to subset the data we provide to shorter time periods. Table 4

provides an overview of the time periods covered by the various data products that may assist in selecting appropriate periods

for specific studies.

Table 4. Time periods covered by the different data sets included in CAMELS-SPAT. Geospatial data not listed are static products that have

no time dimension.

Streamflow data Resolution Start (min) End (max) Notes

USGS Hourly 1956-12-07 2023-01-03 Varies per gauge, see Fig. 3 and Fig. A1

USGS Daily 1950-01-01 2023-01-02 Varies per gauge, see Fig. 3 and Fig. A1

WSC Hourly 2021-06-01 2023-01-02 Varies per gauge, see Fig. 3 and Fig. A1

WSC Daily 1950-01-01 2022-12-31 Varies per gauge, see Fig. 3 and Fig. A1

Forcing data Resolution Start End

RDRS Hourly 1980-01-01 2018-12-31

Daymet Daily 1980-01-01 2023-12-31

ERA5 Hourly 1950-01-01 2023-01-03

EM-Earth Hourly 1950-01-01 2019-12-31

Geospatial data Resolution Start End

MODIS LAI 8-daily 2002-07-04 2023-10-08

Forest height 20-yearly 2000-01-01 2020-01-01

4.2.2 Utilization of streamflow data quality flags555

We retained streamflow observation quality flags provided by the USGS and WSC during processing and stored these in

the same NetCDF files as the streamflow observations themselves. These flags indicate conditions affecting the streamflow

measurement, such as the presence of river ice, backwater effects, water levels below sensor level, or equipment malfunction.
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These conditions suggest that streamflow data at these time steps are inaccurate and this may affect analyses that use these data.

For example, it is known that errors at individual time steps may have disproportionate effects on aggregated efficiency scores560

that are used in modeling (e.g., Newman et al., 2015; Clark et al., 2021). Excluding streamflow observations from efficiency

score calculations based on data quality flags is a possible way to limit the impacts of known erroneous streamflow values.

4.2.3 Spatial validity of meteorological forcing data

CAMELS-SPAT contains meteorological data from four different data sets at their original gridded resolution, as well as

averaged at the basin and sub-basin level. During this averaging process we assumed that values provided at specific coordinates565

are valid for a grid cell around this point. This is a simplistic approach but it is somewhat difficult to justify more elaborate

assumptions (such as some form of interpolation), because in reality the change of meteorological variables in space would be

dependent on local topography at scales smaller than the typical forcing data grid cell. Interpolation methods may yield more

realistic sub-basin and basin averaged values, but it is beyond the scope of this paper to investigate these.

4.2.4 Modelling the Prairie Pothole region570

Model performance across the United States is known to change regionally, where model performance is at its worst in the

drier central regions (e.g., Newman et al., 2015; Towler et al., 2023). In CAMELS-SPAT we compound this problem by

including basins from the so-called Prairie Pothole region. This area covers parts of southern Alberta, Saskatchewan, Manitoba,

North Dakota, South Dakota, Minnesota and Iowa, and is colloquially known as “the graveyard of hydrological models” (e.g.,

Muhammad et al., 2019; Budhathoki et al., 2020; Ahmed et al., 2023). The landscape in the Prairie Pothole region is relatively575

young on geological time scales and large parts of it have not yet eroded into traditional river networks. Surface depressions are

common and typically not connected to the stream network, except through very slow groundwater drainage and the occasional

fill-and-spill event (Hayashi et al., 2016; Clark and Shook, 2022). In the basins we provide as part of the CAMELS-SPAT data,

all sub-basins are connected to the stream network. However, surface depressions below the resolution of the MERIT DEM

are common and will affect hydrologic behaviour in these (sub)basins. We recommend that users account for these potholes in580

their analyses and modeling efforts, possibly through the use of stand-alone models or post-processing tools (e.g., Clark and

Shook, 2022), or by adapting existing models with an appropriate landscape module (e.g., Ahmed et al., 2023), or to adjust

their expectations about model performance accordingly.

4.2.5 Selection and extension of catchment attributes

We derived various catchment attributes for the basins in CAMELS-SPAT for ease of use and comparison with existing data585

sets. However, the number of attributes included in CAMELS-SPAT is rather high and we encourage others to make a careful

selection of which attributes to use in their own work. Attribute values can show considerable correlations, and using larger

number of attributes will not necessarily add an equal amount of new information. Larger numbers of attributes will, however,

increase computation and analysis times. A more fruitful approach likely relies on defining hypotheses that can be tested with

33

https://doi.org/10.5194/egusphere-2025-893
Preprint. Discussion started: 12 March 2025
c© Author(s) 2025. CC BY 4.0 License.



catchment attributes, and deliberately selecting the right attributes for these tests. If our initial attribute calculations do not offer590

the right choices, new attributes can easily be derived from the data products included in CAMELS-SPAT. We refer the reader

to Tarasova et al. (2023) for a deeper discussion and recommendations on the use of catchment descriptors. We particularly

encourage investigations that evaluate the usefulness of our provided attributes for catchment characterization purposes, in line

with those recommendations.

4.2.6 Potential evapotranspiration estimates595

In order to facilitate a wide range of modeling studies, CAMELS-SPAT contains a variety of estimates of potential evapotran-

spiration (PET). These can be used as inputs to certain types of models, and to calculate certain climatic attributes such as a

basin’s aridity. However, there are multiple ways to estimate PET depending on data availability and purpose (McMahon et al.,

2013) and this results in a certain amount of uncertainty in these PET estimates and any values derived from them. Here we

provide a brief overview of the various PET estimates available in CAMELS-SPAT along with a brief assessment that may600

help users decide which data to use. Table 5 summarizes this overview.

CAMELS-SPAT contains time series of potential evapotranspiration (PET) data directly obtained from ERA5. However,

Clerc-Schwarzenbach et al. (2024) point out that PET data obtained from ERA5-Land must be treated carefully and may

include severely unrealistic values. Preliminary analysis suggests this applies to PET values obtained from ERA5 too (see

Section 4 in the Supplementary Materials). We have kept the ERA5 PET estimates for users who wish to investigate this605

further, but urge caution about their use.

CAMELS-SPAT also contains time series of PET estimates obtained with the Penman-Monteith method and hourly RDRS

data, as well as time series of PET estimates obtained with the Priestly-Taylor method and daily Daymet data. Finally, we

included spatial PET estimates using the temperature-based method in Oudin et al. (2005), applied to monthly averaged World-

Clim data. Equations for all three approaches can be found in Section 2.5 in the Supplementary Materials. We compared these610

to the PET estimates from Singer et al. (2021) and their overview of mean annual PET estimates from various products in their

Figure 1 and Table 2. Preliminary analysis (see Section 4 in the Supplementary Materials) suggests that our PET estimates from

RDRS, Daymet and WorldClim all exhibit similar spatial patterns as the five data sets shown in Singer et al. (2021). Visual

comparison also suggests that there is some spread in the magnitude of our estimates. Monthly estimates based on WorldClim

data are low compared to the other methods and data sources, and comparable to those in GLEAM. Daily estimates based on615

Daymet data are close to the middle of the range of estimates. Hourly estimates based RDRS data are within the ranges of

estimates provided by the other methods and data sets, though somewhat high compared to most other products.

Due to the lack of uniformity in PET definitions and calculation methods (e.g. McMahon et al., 2013), it is difficult to say

which estimates are the most accurate. For time series, any expected systematic biases could be corrected before using the time

series as model input. Derived statistics with clear physical interpretations, such as aridity, are more difficult. A basin may be620

classified as either water-limited or energy-limited solely as a consequence of the data and PET estimation method used, and

this may hinder classification and interpretation efforts. Possible ways around this may involve the use of multiple estimates of

PET-related attributes. We thus recommend caution when selecting and interpreting any PET estimates for further use.
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Table 5. Overview of PET estimates in CAMELS-SPAT, their use, and a summary of how these values compare to each other as well as the

estimates from five other PET estimates listed in Singer et al. (2021).

Source data Temporal resolution PET estimation method Used for Assessment

ERA5 hourly Unknown - Likely incorrect in multiple locations.

RDRS hourly Penman-Monteith Climate attributes Plausible patterns; values somewhat

high compared to most estimates.

Daymet daily Priestly-Taylor - Plausible patterns; values close to the

middle of all estimates.

WorldClim monthly Eq. 3 in Oudin et al. (2005) Climate attributes Plausible patterns; values on the lower

end of all estimates.

4.3 Potential improvements

CAMELS-SPAT represents a substantial data processing effort, but further enhancements are possible. We briefly list these625

here. First, approximately 15% of our basin outlines have been assigned confidence ratings of medium or low. Future efforts

can focus on refining these outlines, through further manual intervention, or higher resolution DEMs, or both. Second, we

were somewhat limited in our ability to obtain hourly streamflow observations for the Canadian basins. Extension of these

records would be helpful. Third, we necessarily needed to limit the extent of our geographical domain and this means there

is a limit to the different types of landscapes our data set covers. However, apart from Daymet and RDRS, all data sets used630

here have global coverage. Combination with local streamflow observations, and possibly high-quality local data sets, should

allow for straightforward extension of the data set to other regions. The code available on our GitHub repository could provide

a starting point for such efforts. Fourth, extending the dataset to include observations or estimates of variables of interest other

than streamflow would help with multi-variate analysis and model evaluation. Examples include satellite observations of snow

cover, or estimates of evaporation fluxes or water storage in the soil.635

4.4 Data set structure and size

For convenience, we divided the collection of 1426 CAMELS-SPAT gauges into various subsets. At the highest level, we

structured the data set with different folders for attributes, forcing data, geospatial data, observations and shapefiles. At the

next level, we divided the data set into three categories of headwater, meso-scale and macro-scale basins. Headwater basins are

defined as catchments with only a single sub-basin in our delineation. Meso-scale basins are basins that are not headwaters and640

below a total area of 103 km2, and macro-scale basins are those with areas between 103 km2 and 104 km2. Headwater basins

account for 304 out of 1426 total (mean area of approximately 60 km2), 727 basins fall in our meso-scale category (mean area

≈ 400 km2, with on average 9 sub-basins), and the remaining 446 basins are macro-scale basins (mean area ≈ 3000 km2, on

average 66 sub-basins). From here we divided the data set into further subfolders when convenient.
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The total size of the CAMELS-SPAT data is approximately 5.5TB. Almost all of this is forcing data (5.4TB) and specifically645

the gridded variants of the forcing data (4.3TB). Basin-averaged data (summed for all four forcing data sets) sums up to 85GB,

while distributed forcing data (i.e., averaged at the sub-basin level) sums up to not quite 1.2TB. A full overview of the size

of various components of the dataset can be found on the data repository. This overview, combined with the overall folder

structure should allow users to fine-tune their downloads easily. Further instructions to include or exclude components from

the download can be found on the data repository.650

5 Conclusions

This paper describes the development of the CAMELS-SPAT data set. Our goal is to enable a wide range of hydrologic studies,

with a particular focus on hydrologic modeling, by performing a wide range of data processing steps and sharing both the

code and outcomes of these. We extend the original CAMELS data (Newman et al., 2015; Addor et al., 2017a) in four ways to

achieve this goal. First, we extend the geographical domain of the data set beyond the contiguous United States by including655

Canadian basins. Second, we provided meteorological data specifically aimed at spatially-distributed physics-based hydrologic

models, in addition to the inputs needed to run lumped, conceptual models. Third, we provide maps of multiple geospatial data

sets for each basin, rather than only a selection of summary statistics derived from these maps. Fourth, we provide a variety of

catchment attributes intended to describe the spatial and temporal range of our attributes, in addition to the more commonly

provided mean attribute values.660

CAMELS-SPAT thus consists of meteorological data, streamflow observations and geospatial data for 1426 basins across

the United States and Canada. The meteorological data includes a number of variables typically associated with process-based

models, as well as potential evapotranspiration estimates that can be used with the more conceptual model types, at hourly time

steps. This forcing data is provided in gridded format at its own resolution, as well as spatially averaged at the sub-basin and

basin level. Streamflow observations are provided at daily time steps and complemented with hourly observations when these665

are available. Geospatial data, covering vegetation, land use, topography, soil and geology, are provided as geo-referenced maps

for each basin, from which model inputs or summary statistics that go beyond our provided attributes can easily be derived.

Finally, the information for each gauge (streamflow, meteorological, geospatial data) are summarized in an extensive number

of catchment attributes, at both the basin and sub-basin level.

In developing CAMELS-SPAT, we focused on providing the necessary data for a wide variety of studies. We envision the670

data being helpful for a variety of studies aimed at improving our understanding of hydrologic processes and our ability to

model those processes. By removing the need for a considerable amount of cumbersome data processing, we hope CAMELS-

SPAT can support a wide range of hydrologic investigations at a fraction of the effort otherwise needed.

The data set can be accessed through the Federated Research Data Repository (FRDR) through: https://doi.org/10.20383/1

03.01216. When using CAMELS-SPAT, please note the attribution and license requirements for data set components outlined675

Section 6.
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6 Code and data availability

The complete CAMELS-SPAT data set can be accessed through the Federated Research Data Repository (FRDR) through:

https://doi.org/10.20383/103.01216. Code needed to reproduce CAMELS-SPAT data preparation is available on GitHub:

https://github.com/ch-earth/camels_spat. Data source used in the preparation of this manuscript are listed below, separated680

into data used but not redistributed and data that is redistributed. These data products are provided under a variety of licenses.

Please see the individual licenses for detail, and note that attribution is in almost all cases mandatory. We have provided a

data_citation.bib file available on the CAMELS-SPAT data repository and ask users to cite each separate data set that we

redistribute in any publications that use CAMELS-SPAT. Elements in CAMELS-SPAT not covered below (processing code,

attributes) are provided under a CC-BY-NC 4.0 license.685

6.1 Data (redistributed)

Listed here are details about each of the data sets used in the creation of and partly reproduced in the CAMELS-SPAT data.

6.1.1 Meteorological data

Meteorological forcing fields were obtained from the Daymet v4.1 data set (Thornton et al., 2021, 2022), which is openly

shared, without restriction, in accordance with the NASA Earth Science Data and Information System (ESDIS) Project Data690

Use Policy. For license terms, see https://www.earthdata.nasa.gov/learn/use-data/data-use-policy (accessed: 2024-05-24).

Meteorological forcing fields were obtained from the ERA5 data set (Hersbach et al., 2020, 2017, 2023) under the Copernicus

Data License (https://cds.climate.copernicus.eu/cdsapp#!/home). For license terms, see: https://cds.climate.copernicus.eu/

api/v2/terms/static/licence-to-use-copernicus-products.pdf (accessed: 2023-12-18). Redistributed ERA5 data were generated

using Copernicus Climate Change Service information [2023] in the case of the gridded forcing files. CAMELS-SPAT also695

contains modified Copernicus Climate Change Service information [2023] in the case of the (sub)basin-averaged forcing files.

Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or

data it contains.

Meteorological forcing fields were obtained from the Deterministic EM-Earth data set Tang et al. (2022a, b) under a CC-BY

4.0 license (https://www.frdr-dfdr.ca/repo/dataset/8d30ab02-f2bd-4d05-ae43-11f4a387e5ad).700

Meteorological forcing fields were obtained from the RDRS v2.1 data set (Gasset et al., 2021, data source: Environment and

Climate Change Canada) under the Environment and Climate Change Canada Data Server End-Use Licence version 2.1. For

license terms, see: https://eccc-msc.github.io/open-data/licence/readme_en/ (accessed 2025-02-07).

6.1.2 Basin outlines

Sub-basin polygons were obtained from the MERIT Basins data set (Lin et al., 2019, http://hydrology.princeton.edu/data/mpa705

n/MERIT_Basins/). No formal license is stated in the paper, but data has since been moved elsewhere (https://www.reachhyd

ro.org/home/params/merit-basins, last access: 2025-02-07) and is available there under a CC-BY-NC-SA 4.0 license.
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Reference shapefiles for the basins in the United States were obtained from the CAMELS data set (Newman et al., 2015;

Addor et al., 2017a, https://doi.org/10.5065/D6MW2F4D). The source of these shapefiles if the U.S. Geological Survey

HCDN-2009 data set (Lins, 2012), and as such considered to be in the public domain (see: https://www.usgs.gov/information710

-policies-and-instructions/copyrights-and-credits, [last access: 2024-03-21]).

The first set of reference shapefiles for the basins in Canada were obtained from the National hydrometric network basin

polygons data set (Environment and Climate Change Canada, 2020b, https://open.canada.ca/data/en/dataset/0c121878-ac23-4

6f5-95df-eb9960753375), available under the Open Government License - Canada (https://open.canada.ca/en/open-governm

ent-licence-canada, [last access: 2024-03-21]).715

The second set of reference shapefiles for the basins in Canada were obtained from the Reference Hydrometric Basin

Network (Government of Canada, 2022, https://www.canada.ca/en/environment-climate-change/services/water-overview/

quantity/monitoring/survey/data-products-services/reference-hydrometric-basin-network.html), available under unknown

license.

6.1.3 Streamflow data720

Daily flow data for the basins in the United States were obtained from the Daily Values Service, courtesy of the U.S. Geological

Survey (https://nwis.waterservices.usgs.gov/docs/dv-service/daily-values-service-details/, [last access: 2024-03-21]). Data

are considered to be in the public domain (see: https://www.usgs.gov/information-policies-and-instructions/copyrights-and-c

redits, [last access: 2024-03-21])

Hourly flow data for the basins in the United States were derived from the high-resolution Instantaneous Values Service725

(source: U.S. Geological Survey, https://nwis.waterservices.usgs.gov/docs/instantaneous-values/instantaneous-values-details/,

[last access: 2024-03-21]). Data are considered to be in the public domain (see: https://www.usgs.gov/information-policies-a

nd-instructions/copyrights-and-credits, [last access: 2024-03-21]).

Daily flow data for the basins in Canada were obtained from the HYDAT database version 20230505, courtesy of the Water

Survey of Canada (https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/su730

rvey/data-products-services/national-archive-hydat.html, [last access: 2024-03-21]). Data are considered public information

(see: https://wateroffice.ec.gc.ca/disclaimer_info_e.html for full terms and details, [last access: 2024-03-21]). Note that the

HYDAT database gets continuously updated, and superseded versions are not publicly available.

Hourly flow data for the basins in Canada were derived from the high-resolution data available on the Web Service Links

(source: Water Survey of Canada, https://wateroffice.ec.gc.ca/services/links_e.html, [last access: 2024-03-21]). Data are735

considered public information (see: https://wateroffice.ec.gc.ca/disclaimer_info_e.html for full terms and details, [last access:

2024-03-21]).

6.1.4 Geospatial data

Forest height grids were obtained from the Global Land Cover and Land Use Change, 2000-2020 data set (Potapov et al., 2021)

under a CC-BY license (https://glad.umd.edu/dataset/GLCLUC2020/).740
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Leaf Area Index grids were obtained from the MCD15A2H.061 data set (Myneni et al., 2021, https://lpdaac.usgs.gov/produc

ts/mcd15a2hv061/). Data can be redistributed with no restriction. See: https://lpdaac.usgs.gov/data/data-citation-and-policies/

(accessed: 2023-10-17).

Agriculture grids were obtained from the LGRIP30 data set (Thenkabail et al., 2021; Teluguntla et al., 2023, https://lpdaac

.usgs.gov/products/lgrip30v001/). Data can be redistributed with no restriction. See: https://lpdaac.usgs.gov/data/data-citatio745

n-and-policies/ (accessed: 2023-10-17).

Land cover and land use grids were obtained from the MCD12Q1.061 data set (Friedl and Sulla-Menashe, 2022, https:

//lpdaac.usgs.gov/products/mcd12q1v061/). Data can be redistributed with no restriction. See: https://lpdaac.usgs.gov/data/dat

a-citation-and-policies/ (accessed: 2023-10-17).

Land cover and land use grids were obtained from the Global land cover and land use 2019 data set (Hansen et al., 2022)750

under a CC-BY 4.0 license (https://glad.umd.edu/dataset/global-land-cover-land-use-v1).

Lakes polygons were obtained from the HydroLAKES data set (Messager et al., 2016) under a CC-BY 4.0 license (https:

//www.hydrosheds.org/products/hydrolakes).

Digital Elevation Model grids were obtained from the Merit Hydro Adjusted Elevations data set (Yamazaki et al., 2019)

under CC-BY-NC 4.0 or ODbL 1.0 licenses (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/).755

Soil property grids were obtained from the SOILGRIDS 2.0 data set (Poggio et al., 2021) under a CC-BY-NC 4.0 license

(https://soilgrids.org/).

Soil property grids were obtained from the Pelletier data set (Pelletier et al., 2016b, a, https://daac.ornl.gov/SOILS/guides

/Global_Soil_Regolith_Sediment.html). Data can be redistributed with no restriction. See: https://www.earthdata.nasa.gov/lea

rn/use-data/data-use-policy (accessed: 2023-12-18).760

Geology polygons were obtained from the GLHYMPS data set (Gleeson et al., 2014; Gleeson, 2018) under a CC-BY 4.0

license (https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP2/DLGXYO).

6.2 Data (not redistributed)

Listed here are details about each of the data sets used in the creation of, but not distributed as part of, the CAMELS-SPAT

data.765

6.2.1 Basin delineation

Flow direction grids were obtained from the Merit Hydro Adjusted Elevations data set (Yamazaki et al., 2019) under CC-BY-

NC 4.0 or ODbL 1.0 licenses (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/).

Flow accumulation grids were obtained from the Merit Hydro Adjusted Elevations data set (Yamazaki et al., 2019) under

CC-BY-NC 4.0 or ODbL 1.0 license (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/).770
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6.2.2 Geospatial data

Climate grids were obtained from the WorldClim data set (Fick and Hijmans, 2017, https://www.worldclim.org/data/worldcl

im21.html). WorldClim data were used to calculate high-resolution climate attributes and derive a number of maps. The source

data cannot be redistributed.

Appendix A: Streamflow data availability775

Figure A1 shows streamflow data availability at a more granular level than the aggregated data in Figure 3.
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Figure A1. Flow data availability for gauges included in CAMELS-SPAT. The period on the lower x-axis refers to the period between the

first publicly available flow record for a given station and its last, with this record period given in blue for each gauge. Missing values occur

within this record period and are given here as percentages in red on the top x-axis.
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Table A1. Climate attributes: annual statistics.

Attribute Description Units Data source

num_years_rdrs Number of years of RDRS data used to calculate attributes years RDRS

PR0_mean Mean annual average precipitation total mm RDRS1

PR0_std Standard deviation of annual average precipitation total mm RDRS1

prec_mean Mean annual average precipitation total mm WorldClim

prec_std Standard deviation of annual average precipitation total mm WorldClim

pet1_mean Mean annual average potential evapotranspiration (PET) total mm RDRS1

pet1_std Standard deviation of annual average PET total mm RDRS1

pet2_mean Mean annual average potential evapotranspiration (PET) total mm WorldClim2

pet2_std Standard deviation of annual average PET total mm WorldClim2

TT_mean Mean of annual mean daily average temperature oC RDRS1

TT_std Standard deviation of annual mean daily average temperature oC RDRS1

tavg_mean Mean annual average temperature oC WorldClim

tavg_std Spatial standard deviation of annual average temperature oC WorldClim

aridity1_mean Mean annual aridity (PET/P) − RDRS

aridity1_std Standard deviation of annual aridity (PET/P) − RDRS

aridity2_mean Mean annual aridity (PET/P) − WorldClim

aridity2_std Standard deviation of annual aridity (PET/P) − WorldClim

seasonality1_mean Mean precipitation seasonality compared to temperature seasonality4 − RDRS

seasonality1_std Standard deviation of precipitation seasonality compared to temperature seasonality4 − RDRS

seasonality2_mean Mean precipitation seasonality compared to temperature seasonality5 − WorldClim

seasonality2_std Standard deviation of precipitation seasonality compared to temperature seasonality5 − WorldClim

fracsnow1_mean Mean annual snow fraction (oC degree threshold) − RDRS

fracsnow1_std Standard deviation of annual snow fraction (oC degree threshold) − RDRS

fracsnow2_mean Mean annual snow fraction (oC degree threshold) − WorldClim

fracsnow2_std Standard deviation of annual snow fraction (oC degree threshold) − WorldClim

1 For consistency, we converted the RDRS units into those used in WorldClim.

2 Computed using WorldClim’s srad and tavg variables, and Equation 3 in Oudin et al. (2005).

3 For consistency, we converted the WorldClim units into those used in RDRS.

4 Calculated using Eq.14 in Woods (2009) for daily data from individual years, then finding the mean and standard deviation across years.

5 Calculated using Eq.14 in Woods (2009) using monthly data; i.e. a much coarser temporal resolution then RDRS.
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Table A2. Climate attributes - continued: frequency, duration and timing of high and low precipitation, and high and low temperature periods.

Attribute Description Units Data source

low_temp_freq Frequency of cold days (< 0oC) days year−1 RDRS

low_temp_dur_mean Mean duration of cold days (< 0oC) days RDRS

low_temp_dur_median Median duration of cold days (< 0oC) days RDRS

low_temp_dur_skew Skew of cold day durations (< oC) − RDRS

low_temp_dur_kurtosis Kurtosis of cold day durations (< 0oC) − RDRS

low_temp_timing Season during which most cold days occur (< oC) season RDRS

high_temp_freq Frequency of hot days (> mean daily max +5oC)1 days year−1 RDRS

high_temp_dur_mean Mean duration of hot days (> mean daily max +5oC) days RDRS

high_temp_dur_median Median duration of hot days (> mean daily max +5oC) days RDRS

high_temp_dur_skew Skew of hot day durations (> mean daily max +5oC) − RDRS

high_temp_dur_kurtosis Kurtosis of hot day durations (> mean daily max +5oC) − RDRS

high_temp_timing Season during which most hot days occur (> mean daily max +5oC) season RDRS

low_prec_freq Frequency of dry2 days (< 1 mmday−1) days year−1 RDRS

low_prec_dur_mean Mean duration of dry days (< 1 mmday−1) days RDRS

low_prec_dur_median Median duration of dry days (< 1 mmday−1) days RDRS

low_prec_dur_skew Skew of dry day durations(< 1 mmday−1) − RDRS

low_prec_dur_kurtosis Kurtosis of dry day durations (< 1 mmday−1) − RDRS

low_prec_timing Season during which most dry days occur (< 1 mmday−1) season RDRS

high_prec_freq Frequency of wet2 days (≥ 5 times mean daily precipitation) days year−1 RDRS

high_prec_dur_mean Mean duration of wet days (≥ 5 times mean daily precipitation) days RDRS

high_prec_dur_median Median duration of wet days (≥ 5 times mean daily precipitation) days RDRS

high_prec_dur_skew Skew of wet day durations (≥ 5 times mean daily precipitation) − RDRS

high_prec_dur_kurtosis Kurtosis of wet day durations (≥ 5 times mean daily precipitation) − RDRS

high_prec_timing Season during which most wet days occur (≥ 5 times mean daily precipitation) season RDRS

1 Derived from the World Meteorological Organization’s definition of heat waves: a 5-day or longer period with maximum daily temperatures 5oC above the "standard" daily

maximum temperature. Standard is defined as the mean daily max on each day, using the period 1961-1990 as base. Here we define a hot day as a day where the maximum temperature

is at least 5oC over the long-term daily maximum temperature. We do not have data for the period 1961-1990 for all basins, and therefore use all data available for a given basin to find

the long-term daily maximum temperatures.

2 For consistency, we use the same definitions of dry and wet days as used in Addor et al. (2017a).
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Table A3. Climate attributes - continued: spatial and temporal variability in climatic conditions. Attributes ending in _{X} are calculated

per month, with X ranging from 01 to 12. Statistics derived from RDRS are calculated over time; statistics derived from WorldClim are

calculated across space.

Attribute Description Units Data source

PR0_mean_month_{X} Mean monthly average precipitation total mm RDRS1

PR0_std_month_{X} Standard deviation of monthly average precipitation total mm RDRS1

prec_mean_month_{X} Mean monthly average precipitation total mm WorldClim

prec_std_month_{X} Standard deviation of monthly average precipitation total mm WorldClim

pet1_mean_month_{X} Mean monthly average potential evapotranspiration (PET) total mm RDRS1

pet1_std_time_month_{X} Standard deviation of monthly average PET total mm RDRS1

pet2_mean_month_{X} Mean monthly average potential evapotranspiration (PET) total mm WorldClim2

pet2_std_month_{X} Standard deviation of monthly average PET total mm WorldClim2

tdavg_mean_month_{X} Mean of monthly mean daily average temperature oC RDRS1

tdavg_std_month_{X} Standard deviation of monthly mean daily average temperature oC RDRS1

tavg_mean_month_{X} Mean monthly average temperature oC WorldClim

tavg_std_month_{X} Spatial standard deviation of monthly average temperature oC WorldClim

tdmin_mean_month_{X} Mean of monthly mean daily minimum temperature oC RDRS1

tdmin_std_time_month_{X} Standard deviation of monthly mean daily minimum temperature oC RDRS1

tmin_mean_month_{X} Mean monthly minimum temperature oC WorldClim

tmin_std_month_{X} Standard deviation of monthly minimum temperature oC WorldClim

tdmax_mean_month_{X} Mean of monthly mean daily maximum temperature oC RDRS1

tdmax_std_month_{X} Standard deviation of monthly mean daily maximum temperature oC RDRS1

tmax_mean_month_{X} Mean monthly maximum temperature oC WorldClim

tmax_std_month_{X} Standard deviation of monthly maximum temperature oC WorldClim

FB_mean_month_{X} Mean monthly downward shortwave radiation W m−2 RDRS

FB_std_month_{X} Standard deviation of monthly downward shortwave radiation W m−2 RDRS

srad_mean_month_{X} Mean monthly downward shortwave radiation W m−2 WorldClim3

srad_std_month_{X} Standard deviation of monthly downward shortwave radiation W m−2 WorldClim3

1 For consistency, we converted the RDRS units into those used in WorldClim.

2 Computed using WorldClim’s srad and tavg variables, and Equation 3 in Oudin et al. (2005).

3 For consistency, we converted the WorldClim units into those used in RDRS.
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Table A4. Climate attributes - continued: spatial and temporal variability in climatic conditions. Attributes ending in _{X} are calculated per

month, with X ranging from 01 to 12. Statistics derived from ERA5 are calculated over time; statistics derived from WorldClim are calculated

across space.

Attribute Description Units Data source

FI_mean_month_{X} Mean monthly downward longwave radiation W m−2 RDRS

FI_std_month_{X} Standard deviation of monthly downward longwave radiation W m−2 RDRS

P0_mean_month_{X} Mean monthly surface pressure kPa RDRS1

P0_std_month_{X} Standard deviation of monthly surface pressure kPa RDRS1

vapr_mean_month_{X} Mean monthly vapor pressure kPa WorldClim

vapr_std_month_{X} Standard deviation of monthly vapor pressure kPa WorldClim

HU_mean_month_{X} Mean monthly specific humidity kg kg−1 RDRS

HU_std_month_{X} Standard deviation of monthly specific humidity kg kg−1 RDRS

HR_mean_month_{X} Mean monthly relative humidity kPa kPa−1 RDRS

HR_std_month_{X} Standard deviation of monthly relative humidity kPa kPa−1 RDRS

UVC_mean_month_{X} Mean monthly wind speed ms−1 RDRS

UVC_std_month_{X} Standard deviation of monthly wind speed ms−1 RDRS

wind_mean_month_{X} Mean monthly wind speed ms−1 WorldClim

wind_std_month_{X} Standard deviation of monthly wind speed ms−1 WorldClim

phi_mean_month_{X} Circular mean monthly wind direction o RDRS

phi_std_month_{X} Circular standard deviation of monthly wind direction o RDRS

aridity1_mean_month_{X} Mean monthly aridity (PET/P) − RDRS

aridity1_std_month_{X} Standard deviation of monthly aridity − RDRS

aridity2_mean_month_{X} Mean monthly aridity (PET/P) − WorldClim

aridity2_std_month_{X} Standard deviation of monthly aridity − WorldClim

fracsnow1_mean_month_{X} Mean monthly snow fraction (oC degree threshold) − RDRS

fracsnow1_std_month_{X} Standard deviation of monthly snow fraction − RDRS

fracsnow2_mean_month_{X} Mean monthly snow fraction (oC degree threshold) − WorldClim

fracsnow2_std_month_{X} Standard deviation of monthly snow fraction − WorldClim

1 For consistency, we converted the RDRS units into those used in WorldClim.
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Table A5. Topographic attributes.

Attribute Description Units Data source

centroid_lat Basin centroid latitude degrees Varies

centroid_lon Basin centroid longitude degrees Varies

gauge_lat Station latitude degrees Varies

gauge_lon Station longitude degrees Varies

basin_area Basin area km2 MERIT Hydro

elev_min Minimum elevation m.a.s.l. MERIT Hydro

elev_mean Mean elevation m.a.s.l. MERIT Hydro

elev_max Maximum elevation m.a.s.l. MERIT Hydro

elev_std Standard deviation of elevation m.a.s.l. MERIT Hydro

slope_min Minimum slope degrees1 MERIT Hydro

slope_mean Mean slope degrees MERIT Hydro

slope_max Maximum slope degrees MERIT Hydro

slope_std Standard deviation of slope degrees MERIT Hydro

aspect_min Minimum aspect degrees2 MERIT Hydro

aspect_mean Mean aspect degrees MERIT Hydro

aspect_max Maximum aspect degrees MERIT Hydro

aspect_std Standard deviation of aspect degrees MERIT Hydro

stream_length_min Minimum length from headwater to gauge km MERIT Hydro Basins

stream_length_mean Mean length from headwaters to gauge km MERIT Hydro Basins

stream_length_max Maximum length from headwater to gauge km MERIT Hydro Basins

stream_length_std Standard deviation of length from headwaters to gauge km MERIT Hydro Basins

stream_length_total Total stream length km MERIT Hydro Basins

stream_order_max Stream order at gauge − MERIT Hydro Basins

stream_density Ratio of total stream length and area km−1 Derived

elongation_ratio Ratio of diameter of circle with same size as basin and longest stream − Derived

1 Slope angle.

2 Azimuth that slopes are facing, with 0o indicating North-facing slopes, 90o means East-facing, 180o South-facing, and 270o West-facing.
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Table A6. Open water attributes. For basins with no identified open water bodies or reservoirs, these attributes will be 0 and NaN.

Attribute Description Units Data source

open_water_number Number of open water bodies larger than 10 ha − HydroLAKES

known_reservoirs Number of water bodies identified as reservoirs − HydroLAKES

open_water_area_min Minimum open water area km2 HydroLAKES

open_water_area_mean Mean open water area km2 HydroLAKES

open_water_area_max Maximum open water area km2 HydroLAKES

open_water_area_std Standard deviation of open water area km2 HydroLAKES

open_water_area_total Total open water area km2 HydroLAKES

open_water_volume_min Minimum open water volume km2 HydroLAKES

open_water_volume_mean Mean open water volume km2 HydroLAKES

open_water_volume_max Maximum open water volume km2 HydroLAKES

open_water_volume_std Standard deviation of open water volume km2 HydroLAKES

open_water_volume_total Total open water volume km2 HydroLAKES

reservoir_area_min Minimum reservoir area km2 HydroLAKES

reservoir_area_mean Mean reservoir area km2 HydroLAKES

reservoir_area_max Maximum reservoir area km2 HydroLAKES

reservoir_area_std Standard deviation of reservoir area km2 HydroLAKES

reservoir_area_total Total reservoir area km2 HydroLAKES

reservoir_volume_min Minimum reservoir volume km2 HydroLAKES

reservoir_volume_mean Mean reservoir volume km2 HydroLAKES

reservoir_volume_max Maximum reservoir volume km2 HydroLAKES

reservoir_volume_std Standard deviation of reservoir volume km2 HydroLAKES

reservoir_volume_total Total reservoir volume km2 HydroLAKES
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Table A7. Vegetation and land cover attributes. Attributes ending in _{X} are calculated per month, with X ranging from 01 to 12. Attributes

ending in _{Y} are calculated for specific years. Attributes ending in _{Z} are categorical attributes, where Z varies between different data

sets.

Attribute Description Units Data source

lai_mean_month_{X} Mean monthly Leaf Area Index m2 m−2 MCD15A2H.061

lai_std_month_{X} Standard deviation of monthly Leaf Area Index m2 m−2 MCD15A2H.061

forest_height_{Y}_min Minimum forest height in year 2000/2020 m GLCLUC 2000-2020

forest_height_{Y}_mean Mean forest height in year 2000/2020 m GLCLUC 2000-2020

forest_height_{Y}_max Maximum forest height in year 2000/2020 m GLCLUC 2000-2020

forest_height_{Y}_std Standard deviation of forest height in year 2000/2020 m GLCLUC 2000-2020

lc1_{Z}_fraction Fraction of land cover class present in the basin − GLCLU 2019

lc2_{Z}_fraction Fraction of land cover class present in the basin − MCD12Q1.061

lc3_{Z}_fraction Fraction of land cover class present in the basin − LGRIP30
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Table A8. Subsurface attributes.

Attribute Description Units Data source

regolith_thickness_min Minimum upland and hillslope regolith thickness m Pelletier1

regolith_thickness_mean Mean upland and hillslope regolith thickness m Pelletier

regolith_thickness_max Maximum upland and hillslope regolith thickness m Pelletier

regolith_thickness_std Standard deviation of upland and hillslope regolith thickness m Pelletier

soil_thickness_min Minimum upland and hillslope soil thickness m Pelletier

soil_thickness_mean Mean upland and hillslope soil thickness m Pelletier

soil_thickness_max Maximum upland and hillslope soil thickness m Pelletier

soil_thickness_std Standard deviation of upland and soil regolith thickness m Pelletier

sedimentary_thickness_min Minimum upland, valley bottom and lowland sedimentary deposit thickness m Pelletier

sedimentary_thickness_mean Mean upland, valley bottom and lowland sedimentary deposit thickness m Pelletier

sedimentary_thickness_max Maximum upland, valley bottom and lowland sedimentary deposit thickness m Pelletier

sedimentary_thickness_std Standard deviation of upland, valley bottom and lowland sedimentary deposit thickness m Pelletier

average_thickness_min Minimum average soil and sedimentary deposit thicknesses m Pelletier

average_thickness_mean Mean average soil and sedimentary deposit thicknesses m Pelletier

average_thickness_max Maximum average soil and sedimentary deposit thicknesses m Pelletier

average_thickness_std Standard deviation of average soil and sedimentary deposit thicknesses m Pelletier

porosity_min Minimum porosity − GLHYMPS

porosity_mean Mean porosity − GLHYMPS

porosity_max Maximum porosity − GLHYMPS

porosity_std Standard deviation of porosity − GLHYMPS

log_permeability_min Minimum permeability2 m2 GLHYMPS

log_permeability_mean Mean permeability m2 GLHYMPS

log_permeability_max Maximum permeability m2 GLHYMPS

log_permeability_std Standard deviation of permeability m2 GLHYMPS

1 For definitions and user notes, see: https://daac.ornl.gov/SOILS/guides/Global_Soil_Regolith_Sediment.html (last access: 2024-03-06).

2 Note that permeability k in the GLHYMPS database is given as log10(k), due to the many decimals places otherwise needed.
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Table A9. Subsurface attributes - continued: properties derived from Soilgrids data. Attributes are provided at six depths {D}: 0− 5cm,

5− 15cm, 15− 30cm, 30− 60cm, 60− 100cm and 100− 200cm, and for the Soilgrids mean (abbreviated in the table as {M}) and uncer-

tainty ({U} in the table) data fields. The mean values may be seen as expected values for a given grid cell, while the uncertainty is defined as

the 90% prediction interval divided by the median value for the cell1.

Attribute Description Units Data source

bdod_{M/U}_{D}_min Minimum bulk density of fine earth cg cm−3 Soilgrids

bdod_{M/U}_{D}_mean Mean bulk density of fine earth cg cm−3 Soilgrids

bdod_{M/U}_{D}_max Maximum bulk density of fine earth cg cm−3 Soilgrids

bdod_{M/U}_{D}_std Standard deviation of bulk density of fine earth cg cm−3 Soilgrids

cfvo_{M/U}_{D}_min Minimum volumetric content of fragments > 2 mm cm3 dm−3 Soilgrids

cfvo_{M/U}_{D}_mean Mean volumetric content of fragments > 2 mm cm3 dm−3 Soilgrids

cfvo_{M/U}_{D}_max Maximum volumetric content of fragments > 2 mm cm3 dm−3 Soilgrids

cfvo_{M/U}_{D}_std Standard deviation of volumetric content of fragments > 2 mm cm3 dm−3 Soilgrids

clay_{M/U}_{D}_min Minimum clay fraction g kg−1 Soilgrids

clay_{M/U}_{D}_mean Mean clay fraction g kg−1 Soilgrids

clay_{M/U}_{D}_max Maximum clay fraction g kg−1 Soilgrids

clay_{M/U}_{D}_std Standard deviation of clay fraction g kg−1 Soilgrids

sand_{M/U}_{D}_min Minimum sand fraction g kg−1 Soilgrids

sand_{M/U}_{D}_mean Mean sand fraction g kg−1 Soilgrids

sand_{M/U}_{D}_max Maximum sand fraction g kg−1 Soilgrids

sand_{M/U}_{D}_std Standard deviation of sand fraction g kg−1 Soilgrids

silt_{M/U}_{D}_min Minimum silt fraction g kg−1 Soilgrids

silt_{M/U}_{D}_mean Mean silt fraction g kg−1 Soilgrids

silt_{M/U}_{D}_max Maximum silt fraction g kg−1 Soilgrids

silt_{M/U}_{D}_std Standard deviation of silt fraction g kg−1 Soilgrids

soc_{M/U}_{D}_min Minimum organic carbon content dg kg−1 Soilgrids

soc_{M/U}_{D}_mean Mean organic carbon content dg kg−1 Soilgrids

soc_{M/U}_{D}_max Maximum organic carbon content dg kg−1 Soilgrids

soc_{M/U}_{D}_std Standard deviation of organic carbon content dg kg−1 Soilgrids

porosity_{M}_{D}_min Minimum soil porosity − Soilgrids

porosity_{M}_{D}_mean Mean soil porosity − Soilgrids

porosity_{M}_{D}_max Maximum soil porosity − Soilgrids

porosity_{M}_{D}_std Standard deviation of soil porosity − Soilgrids

conductivity_{M}_{D}_min Minimum soil conductivity cmhr−1 Soilgrids

conductivity_{M}_{D}_mean Harmonic mean of soil conductivity2 cmhr−1 Soilgrids

conductivity_{M}_{D}_max Maximum soil conductivity cmhr−1 Soilgrids

conductivity_{M}_{D}_std Standard deviation of soil conductivity2 cmhr−1 Soilgrids

1 See: https://www.isric.org/explore/soilgrids/faq-soilgrids (last access: 2024-03-07).

2 Following Addor et al. (2017a).

3 Note that no harmonic equivalent of a standard deviation exists, and this is a regular standard deviation.
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Table A10. Hydrologic signatures. Note that streamflow observations have been converted from m3 s−1 to mmday−1 using the basin areas

of our newly delineated basin outlines. Please note the uncertainty in these area estimates (Figure 2). For each signature, we calculated a

sequence of yearly values, and then found the mean and standard deviation across all years for which data was available.

Attribute Description Units Data source

num_years_hyd Years of daily data used to calculate signatures years -

daily_discharge_mean Mean daily discharge mmday−1 USGS/WSC

daily_discharge_std Standard deviation of daily discharge mmday−1 USGS/WSC

daily_discharge_mean_month_{X} Mean daily discharge for month X mmday−1 USGS/WSC

daily_discharge_std_month_{X} Standard deviation of average daily discharge in month X mmday−1 USGS/WSC

runoff_ratio_mean Ratio of mean daily discharge to mean daily precipitation − USGS/WSC, RDRS

runoff_ratio_std Ratio of mean daily discharge to mean daily precipitation − USGS/WSC, RDRS

streamflow_elasticity Streamflow sensitivity to changes in precipitation1 − USGS/WSC, RDRS

slope_fdc_mean Slope of the log-transformed flow duration curve (33th to 66th

percentile)5
− USGS/WSC

slope_fdc_std Standard deviation of the log-transformed flow duration curve5 − USGS/WSC

bfi_mean Mean baseflow index (ratio of mean daily baseflow2 to mean

daily discharge)

− USGS/WSC

bfi_std Standard deviation of baseflow index − USGS/WSC

hfd_mean Circular mean half flow date3 day of year USGS/WSC

hfd_std Circular standard deviation of half flow dates days USGS/WSC

q{Y}_mean4 Mean Y% flow quantile, where q1 are low flows mmday−1 USGS/WSC

q{Y}_std4 Standard deviation of Y% flow quantiles mmday−1 USGS/WSC

1 Calculated as described in Eq. 7 of Sankarasubramanian et al. (2001), with the modification described in Table 3 in Addor et al. (2017a).

2 Calculated from time series of baseflow derived using the Eckhardt (2005) digital filter method, as recommend and implemented by Xie et al. (2020).

3 Calculated as the day when cumulative flow in a water year passes half the total flow for that water year.

4 Y is one of: [0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90. 0.95, 0.99].

5 In cases with zero flows, 0.1% of the mean flow is added to prevent issues with calculating the logarithm. Time steps with missing flow observations are removed from the calculation.
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Table A11. Hydrologic signatures - continued: frequency, duration and timing of high and low flow events.

Attribute Description Units Data source

no_flow_freq Frequency of no flow days days year−1 USGS/WSC

no_flow_dur_mean Mean duration of no flow days days USGS/WSC

no_flow_dur_median Median duration of no flow days days USGS/WSC

no_flow_dur_skew Skew of no flow day durations − USGS/WSC

no_flow_dur_kurtosis Kurtosis of no flow day durations − USGS/WSC

no_flow_timing Season during which most no flow days occur season USGS/WSC

low_flow_freq Frequency of low flow days (< 0.2 times the mean daily flow)1 days year−1 USGS/WSC

low_flow_dur_mean Mean duration of low flow days (< 0.2 times the mean daily flow) days USGS/WSC

low_flow_dur_median Median duration of low flow days (< 0.2 times the mean daily flow) days USGS/WSC

low_flow_dur_skew Skew of low flow day durations (< 0.2 times the mean daily flow) − USGS/WSC

low_flow_dur_kurtosis Kurtosis of low flow day durations (< 0.2 times the mean daily flow) − USGS/WSC

low_flow_timing Season during which most low flow days occur (< 0.2 times the mean daily flow) season USGS/WSC

high_flow_freq Frequency of high flow days (> 9 times the median daily flow)1 days year−1 USGS/WSC

high_flow_dur_mean Mean duration of high flow days (> 9 times the median daily flow) days USGS/WSC

high_flow_dur_median Median duration of high flow days (> 9 times the median daily flow) days USGS/WSC

high_flow_dur_skew Skew of high flow day durations (> 9 times the median daily flow) − USGS/WSC

high_flow_dur_kurtosis Kurtosis of high flow day durations (> 9 times the median daily flow) − USGS/WSC

high_flow_timing Season during which most high flow days occur (> 9 times the median daily flow) season USGS/WSC

1 For consistency, we use the same definitions of dry and wet days as used in Addor et al. (2017a).
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