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Abstract.

We build on the existing CAMELS data set to present a new data set aimed at hydrologic studies across North America,
with a particular focus on facilitating spatially distributed studies. The data set includes basin outlines, stream observations,
meteorological data and geospatial data for 1426 basins in the United States and Canada. To facilitate a wide variety of studies,

5 we provide the basin outlines at a lumped and semi-distributed resolution; streamflow observations at daily and hourly time
steps; variables suitable for running a wide range of models obtained and derived from different meteorological data sets at
daily (1 data set) and hourly (3 data sets) time steps; and geospatial data and derived attributes from 11 different data sets that
broadly cover climatic conditions, vegetation properties, land use, and subsurface characteristics. Forcing data are provided
at their native-original gridded resolution, as well as averaged at the basin and sub-basin level. Geospatial data are provided

10 as maps per basin, as well as summarized as catchment attributes at the basin and sub-basin level with various statistics.
Attributes are further complemented with statistics derived from the forcing data and streamflow, and have-a-partieatar-focus
on quantifying the variability of natural processes and catchment characteristics in space and time. Our goal with this data set
is to build upon existing large-sample data sets and provide the means for more detailed investigation of hydrologic behavior
across large geographical scales. In particular, we hope that this data sets-previde-set provides others with the data needed to

15 implement a wide range of modeling approaches, and to investigate the impact of basin heterogeneity on hydrologic behaviour
and similarity. The CAMELS-SPAT (Catchment Attributes and MEteorology for Large-Sample SPATially distributed analysis)
is available at: https://dx.doi.org/10.20383/103.01306.

1 Introduction

Increases in geospatial data availability and computing power have enabled rapid advances in large-domain and large-sample

20 hydrology (Cloke and Hannah, 2011; Addor et al., 2020). A key difference between these fields is the spatial continuity of the
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study area. Where large-domain studies concern themselves with obtaining predictions across continuous areas, large-sample
studies tend to select separate basins within a given area of interest. The large-sample approach strikes a balance between
spatial variability and ease of use. Large sample studies can be representative of larger spatial regions at a fraction of the
computational effort needed to run a large-domain study over the same geographical region.

Building upon the foundations laid by the MOPEX data set (Schaake et al., 2006), a driving force behind the large-sample
movement has been the “CAMELS” family of data sets. The original Catchment Attributes and MEteorology for Large-
sample Studies (CAMELS) dataset was developed as a two-part initiative. First, basin-averaged meteorological time series
were provided for several hundreds of basins across the Contiguous United States (Newman et al., 2015). Second, statistical
descriptors (referred to as catchment attributes) of each catchment’s hydroclimatic conditions were made available (Addor et al.,
2017a). This combined data set has proven useful for various purposes, mainly within the overarching themes of understanding,
quantifying and modeling hydrologic processes across a diverse range of catchments (e.g., Kratzert et al., 2019; Knoben et al.,
2020; Stein et al., 2021) and quantifying hydrologic predictability (e.g., Wood et al., 2016; Newman et al., 2017). The success
of the CAMELS dataset has motivated development of multiple (typically national) variants (see Table 1 for a summary of
these), as well as the aggregated cloud-based CARAVAN collection (Kratzert et al., 2023, see also Firber et al. (2024)).

Table 1 provides a brief overview of the main characteristics of various CAMELS(-like) data sets. Because our interest is
in hydrologic modeling, we limit this overview to data sets that include meteorologic time series that could serve as input to
hydrologic models. A commonality between most of these data sets is a focus on aggregated data: meteorologic forcing data
and catchment attributes are typically provided as basin-averaged values, and the temporal resolution of provided forcing data
is almost always at daily time steps. Similarly, most datasets provide a specific selection of forcing variables: precipitation (P)
and temperature (T) are always included, as well as a potential evapotranspiration (PET) time series or the variables necessary
to calculate PET. In modeling terms, these data sets focus strongly on catchment modeling with lumped conceptual models.
Such models treat catchments as single (i.e., lumped) entities, are typically run at daily time resolutions, and generally require
only time series of P, T and PET to function. Commonly known examples of such models are SAC-SMA (National Weather
Service, 2005), HBV (Lindstrom et al., 1997) and GR4J (Perrin et al., 2003). Such models are computationally cheap but often
criticized for their somewhat empirical and spatially lumped nature, and their lack of explicit energy balance calculations.

Spatially-distributed process-based models, such as VIC (Hamman-etal;2648)-(Liang et al., 1994) and SUMMA (Clark
et al.,, 2015a, b), address these concerns but come with the trade-off of increased computational cost and face their own
challenges. Notable challenges include the definition of appropriate parameter values and questions about the scale-dependency
of their constitutive functions (Hrachowitz and Clark, 2017). Investigating these models in large-sample studies could provide
helpful insights, but running such models is not easily possible with most of the data sets listed in Table 1. The clearest
exception to this are the LamaH-CE (Klingler et al., 2021) and LamaH-Ice data sets (Helgason and Nijssen, 2024), which
cover the Upper Danube river basin in Central Europe and interior Iceland respectively. Both data sets provide data in a
semi-distributed, spatially continuous fashion and provide a collection of forcing variables generally associated with process-
based modeling approaches. However, the spatially continuous nature of these data sets means they are somewhat constrained

geographically, covering an area of only 170,000 km? (roughly 600 by 300 km) in Central Europe and an area of 46,000
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km? (roughly 300 by 150 km) in interior Iceland, respectively. Both datasets also still aggregate data at the sub-basin level,
prohibiting the use of grid-based models. There is a clear gap in the current collection of large-sample hydrologic data sets
that (1) enables the use of spatially-distributed process-based models across a wide range of hydroclimatic conditions, and
(2) enables studies aimed at investigating spatial heterogeneity at a resolution made possible by the geospatial data sets that
underpin the current generation of large-sample hydrology data sets.

In this paper we introduce the CAMELS-SPAT data set (“Catchment Attributes and MEterology for Earge-sample-Studies
for-Large-Sample SPATially distributed analysis”). We expand on the original CAMELS data set (Newman et al., 2015; Ad-
dor et al., 2017a) in various ways. First, we provide data-at-native(.e—gridded—;-the CAMELS-SPAT data at three spatial
resolutions: (1) at its original gridded resolution; (2) spatially averaged at the sub-basin and-basin-levels-instead-of treating
each-catchment-only-as-a-lumped-entitylevel (defined as smaller areas that subdivide the area upstream of each gauge to

facilitate semi-distributed modeling); (3) spatially averaged at the basin level (equivalent to how catchments are treated as
lumped entities in the original CAMELS data set). Second, we extend the geographical domain of the data set to include
Canada, which includes various types of hydrologically challenging landscapes not included in the original CAMELS data set
(e.g., glaciated basins, regions with extensive permafrost, arctic deserts). Third, we provide a wider range of forcing variables at
a temporal resolution (i.e., hourly) suitable for process-based modeling, in addition to a commonly used daily data set. Fourth,
we-provide to facilitate sub-daily analyses, we provide streamflow data at both daily and hourly resolutions. Fifth, we provide
a wider range of catchment attributes, with the specific goal of quantifying the attributes’ ranges in time and space rather than
providing mean values only. Compared to LamaH-CE and LamaH-Ice, our main contributions can be found in the wider range
of hydroclimatic conditions found across the United States and Canada, and the inclusion of forcing and geospatial data at their
native-original (non-aggregated) resolution. Compared to HYSETS, another large-sample data set focused on North America,
our main contributions can be found in the wider range of forcing variables, a higher temporal and spatial resolution of forcing

data, and-the inclusion of forcing and geospatial data at their native-original (non-aggregated) resolutionspatial resolution, and

the inclusion of streamflow data at an hourly time step.

This paper is structured as follows. Section 2 starts by outlining our design considerations for this data set, followed by five
longer sub-sections that describe the methods and outcomes of our basin selection (Section 2.1), basin delineation (Section
2.2), streamflow observation processing (Section 2.3), forcing data processing (Section 2.4), and geospatial data processing
procedures (Section 2.5). Section 3 then provides details on how we used the geospatial data to derive over 1100 statistical
descriptors, also known as catchment attributes, for each basin. Section 4 has various recommendations for data providers
based on our experiences with constructing the CAMELS-SPAT data set (Section 4.1). as well as various recommendations
for data users based on our expectations of how the CAMELS-SPAT data might be used (Section 4.2). Section 4 also contains
some thoughts about extension of the data set to new regions (Section 4.3), and notes on the data set structure and size (Section
4.4). A summary and conclusions are given in Section 3.
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2 Design considerations and outcomes

Our goal with this data set is to enable studies that investigate spatial heterogeneity across a wide variety of catchments, with
a specific focus on spatially-distributed process-based modeling. We also envision this data set to be used to compare the
performance of these models to their more empirical counterparts, and for analyses not directly based on hydrologic models.
Consequently, we processed a variety of data sources at various levels. We provide further detail about these requirements in

the following sub-sections, as needed. Our general methodology for creating CAMELS-SPAT is as follows:
1. Define an initial set of basins of potential interest, covering the United States and Canada;
2. Create consistent basin delineations for all basins identified under (1);

3. Obtain and process streamflow observations for the basins identified under (1), removing those basins for which no

streamflow data can be found;
4. Obtain and process meteorological forcing data for the basins identified under (3);

5. Obtain and process geospatial data sets (e.g. data describing each basin’s climate, vegetation, land use, topography, soil

and geology) for the basins identified under (3);

6. Remove a number of very large basins from the basins identified under (3), and divide the remaining basins into various

sub-datasets, based on disk space considerations;
7. Calculate catchment attributes using the data processed under (3), (4) and (5).

Figure 1 shows a visual summary of the main steps and decision points in this process, and each step is explained in more
detail in the following subsections. For the reader’s benefit, we present combined descriptions of the methods and results for
each of these steps in the following seven subsections, instead of splitting these into dedicated Methods and Results sections.

The code used to generate this data set is available online (see “Code and Data Availability* statement, Section 6).
2.1 Basin preselection
2.1.1 Context

We impose two initial constraints on the basins we will consider including in this data set. First, we have chosen to focus
this dataset on (near-)natural basins. Human impacts on the earth system are critically important but substantially complicate
hydrologic behaviour and are typically difficult to quantify and thus difficult to account for during analyses. Such impacts
include but are not limited to: (i) the construction of water management structures such as dams and drainage ditches at the
local level, of which the location and size are difficult to ascertain and usually unreported in the continental scale data sets
CAMELS-SPAT relies on; (ii) the construction of large water management infrastructure such as diversions and reservoirs,

which may appear in continental scale data sets but for which operating procedures are typically unknown; (iii) surface and
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Figure 1. Overview of the CAMELS-SPAT workflow. Grey boxes and light blue call-outs indicate specific folders on the GitHub repository,

where the necessary code to reproduce these steps can be found. Note that repository folder 4_data_structure_prep is not listed in this figure

because it contains no methodological choices.

groundwater abstractions fer-e-g-(e.g., agricultural and industrial use), for which abstraction and return volumes are typically

unknown. That said, it is almost unavoidable that any selected basin includes at least some human impacts (tourism/recreation,

drainage, forest management, etc.). We rely on existing classifications to select basins that are closer to the natural end of this

continuum. Second, we require the availability of at least some streamflow observations at a sub-daily resolution. Process-based

models are typically run at sub-daily time steps to more accurately simulate diurnal variation in processes such as evaporation,

transpiration, sublimation and snow melt. In certain basins such diurnal variability is visible in the streamflow record, and sub-
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daily observations are necessary to evaluate the appropriateness of process-based model equations. Daily data is by definition

too coarse to distinguish such patterns.
2.1.2 Methods and outcomes

For basins in the United States, we rely on the basin selection made by Newman et al. (2015) that was used for the CAMELS
data set (Addor et al., 2017a). This ensures that some level of comparison between outcomes of studies using either CAMELS

or CAMELS-SPAT is possible. We refer the reader to Section 2.1 in Newman et al. (2015) for a description of the criteria

used to create this selection of 671 basins—, and note that, despite meeting these criteria, no basins in Alaska, Hawaii and
Puerto Rico were included in the original CAMELS data set due to limited spatial coverage of the Daymet data at the time.
Our primary forcing data set (see Section 2.4) does not have the coverage to include basins in Hawaii or Puerto Rico, but cold

region processes as may be found in Alaska are covered by our selection of Canadian basins.
For basins in Canada, we start with the list of 1027 gauges included in the “Reference Hydrometric Basin Network” (RHBN,

Environment and Climate Change Canada, 2020a, retrieved: 2022-08-18). These gauges have a minimum data availability of
20 years and minimal anthropogenic impacts as quantified by the presence of agriculture, built-up areas, and water management
infrastructure, as well as population and road density. These criteria are comparable to those described in Newman et al. (2015).
Note that agriculture presence in the Canadian prairie provinces (Alberta, Saskatchewan, Manitoba) and southern Ontario is
substantial, and above the 10% area threshold used for the other provinces and territories (Pellerin and Nzokou Tanekou, 2020,
p- 7). Excluding these basins would severely reduce the number Canadian gauges we could include in the data set, and we thus
retain these gauges but include various data products in CAMELS-SPAT that can be used to quantify or filter by the presence
of agriculture.

Our initial basin selection included 1698 basins across the United States and Canada. Various basins had to be removed
due a lack of streamflow estimates or sub-daily data (see Section 2.3). We further removed several of the largest basins from
the data set, under the assumption that any new insights that could be gained from these extremely large basins are minimal
(especially given that these basins are severely under-gauged for their size) and do not outweigh the extra disk space needed to
store the data for these basins (see Section 3 in the Supplementary Materials for details). Our final selection consists of 1426
basins, with an approximately even spread between the United States and Canada. For clarity, any outcomes shown in Sections
2.2 to 4.4 only show the final 1426 basins we have made publicly available, rather than the 1698 basins that are the outcome of

this basin pre-selection step.
2.2 Basin delineation
2.2.1 Context

Hydrologic data sets such as this are conditional on having accurate basin outlines. Basin outlines are used to estimate a
drainage basin’s area, to crop meteorological and geospatial data to the area of interest, and to define the spatial extent of

model configurations. Basin area estimates are also often used to convert the units of fluxes from volume-per-time to depth-
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357! to mms~1). Using incorrect basin area estimates can lead to large conversion errors

per-time or vice versa (e.g. from m
that propagate into any further analysis (McMillan et al., 2023).

The basin polygons provided as part of the CAMELS data (Newman et al., 2014; Addor et al., 2017b) are administrative
boundaries. These polygons are not based on gauge locations, and the polygons thus tend to overestimate the basins’ drainage
areas. Estimated area errors (derived from a comparison of reported upstream area for each gauge and actual area of the basin
polygon) are typically in the order of some percent (below 2% for approximately 70% of basins), but can be substantial (above
10% for approximately 8.5% of basins, with individual cases well above 100%). Additionally, openly available polygons for
the Canadian gauges did at the time of project initialization not fully cover all 1027 basins listed in the Reference Hydrometric
Basin Network (Environment and Climate Change Canada, 2020b, retrieved: 2022-01-31).

To address both concerns, we delineated new basin outlines for all basins identified as potential candidates in Section 2.1.

Our specific goals were to (1) identify the upstream area of each gauge, and (2) divide this upstream area into sub-basin

polygons of roughly equal size.
2.2.2 Method and outcomes

We obtained gauge metadata (location, name, reference areas, etc.), as well as reference basin outline polygons if these were
available, for all gauges identified in the first step. For the US gauges, metadata and polygons showing each basin’s outline were
obtained from the CAMELS data set (Newman et al., 2014; Addor et al., 2017b). For the Canadian gauges, an initial download
of the Reference Hydrometric Basin Network (RHBN) metadata was used to identify which gauges are included in the RHBN
version released in 2020. Further metadata (location, name) were then extracted from the HYDAT database (Environment and
Climate Change Canada, 2010). Two different sets of reference polygons were available (Environment and Climate Change
Canada, 2020b; Government of Canada, 2022, accessed: 2022-08-23, 2022-08-18, respectively), of which we preferentially
used the newer polygons if these were available for our basins of interest.

To divide larger basins into smaller sub-basins we used the MERIT Basins data set (Lin et al., 2019). This data set contains
vectorized river basins and river networks, derived from the MERIT Hydro data (Yamazaki et al., 2019). The mean sub-basin
size in the MERIT Basins data is 45.6 km? (median: 36.8 km?). We refer the reader to Lin et al. (2019) for further details.
We also obtained the MERIT Hydro flow direction and accumulation grids (Yamazaki et al., 2019). The MERIT Hydro data
is provided as gridded data in a regular longitude/latitude coordinate system (EPSG:4326). This is a common format (most
of the meteorological data and many of the geospatial data sets we discuss in Sections 2.4 and 2.5 are also only available
in EPSG:4326) and we adopt this as the standard in CAMELS-SPAT to the extent feasible. The one exception is rawRDRS
foreing-data-the RDRS meteorological data set, which is natively-originally provided on a custom rotated latitude/longitude
grid. Any area calculations and certain shapefile intersection operations are performed in the North America Albers Equal Area
Conic projection (ESRI:102008) .

The MERIT Basin network was derived independently from gauges and the sub-basins in this data set therefore do not align
with gauge locations as reported by the United States Geological Survey and the Water Survey of Canada. For a given basin we

thus needed to clip the most downstream sub-basin polygon to the gauge. We therefore first mapped the gauge locations onto
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the MERIT Hydro river network using automated techniques. This mapping is intended to guarantee that delineation of the
upstream are-area of a given gauge starts from a pixel in the flow direction grid that is part of the main river (rather than the most
downbhill pixel of a single hillslope). However, there are various scenarios where automatic mapping is inaccurate and manual
intervention is needed. We identified those cases through a combination of accuracy metrics (area comparison between new
basin delineation and reported reference area(s), and percentage overlap between new basin delineation and reference polygon
if any were available), and visual inspection of the new basin delineation, reference polygon, underlying MERIT Hydro data
grids, and satellite images. If necessary, we manually defined a better outlet location to delineate the basin from and tracked
this intervention in the CAMELS-SPAT metadata. We also assigned confidence ratings to our new basin polygons based on
these quality assurance checks. As the final step, we identified all cases of nested gauges where a larger basin includes a smaller
one. In such cases we split the sub-basin polygon that contains the nested gauge and assign unique identifiers to the upstream
and downstream parts of the sub-basin and river segment.

Figure 2 shows the resulting polygons for the 1426 basins that form the final CAMELS-SPAT data set, with colors indicating

our-confidenceratings-the confidence ratings we assigned based on the checks listed previously (i.e., automated overlap and
area checks, as well as manual inspection of polygons and satellite images). “Unknown” refers to cases where no confidence

rating could be assigned, mainly due to lacking reference polygons. “Low” ratings are assigned when evidence suggests that
our basin delineations are inaccurate and we were unable to manually find a better outlet location that would lead to improved
basin outlines. “Medium” ratings indicate that there are substantial differences between our new delineations and existing ones
and/or reference areas, but that it is difficult to decide whether our new delineation or the reference(s) are more accurate.
“High” ratings are assigned when there is a clear match between our new polygons and the reference(s), or when evidence
suggests our new delineations are more accurate than the reference(s). Detailed reasons for these ratings are tracked as part
of the CAMELS-SPAT metadata. Medium and low confidence ratings occur primarily in regions with flat topography where

finding the true outline of any drainage basin is difficult.
2.3 Streamflow observations
2.3.1 Context

Streamflow is a key variable for many hydrologic studies. Streamflow estimates are typically provided as either instantaneous
values (i.e., valid at a given point in time) or as averages over a given time interval. It is critical to know what type of values
(instantaneous or time-averages) are available, as well as the time zones data are provided in.

The United States Geological Survey (USGS) typically collects instantaneous streamflow observations at 15- or 60-minute
intervals. USGS also provides daily average values, computed from the instantaneous data from 00:00 to 24:00 Local Standard
Time (LST; USGS, personal communication, 2023-06-20). Both instantaneous values and daily averages are publicly available.

The Water Survey of Canada (WSC) typically collects instantaneous streamflow observations at 5-minute intervals, and from
these calculates daily averages that are reported in LST through the HYDAT database (WSC, personal communication, 2023-

07-04). However, when instantaneous values are extracted through the WSC API, the time series are converted to UTC before
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Figure 2. Location and delineation confidence of 1426 CAMELS-SPAT basins. Political boundaries by Commission for Environmental

Cooperation (2022, accessed 2023-12-20)

being given to the user (Government of Canada, accessed: 2023-12-22). Instantaneous streamflow observations are publiely
available-available through this API for the period between present and minus 18 months. Recently, WSC has also released
sub-daily data going back to 2011 (last access: 2025-06-02 Water Survey of Canada, 2025), though this cannot be accessed

through the standard API. To expand the hourly data availability for Canadian basins we included this data source in our

processing. Daily average values are available for the full time period for which a gauge has been active.

Our goal with this project is to provide data useful for running and evaluating process-based hydrological models. We
therefore include daily average streamflow values as available through USGS and WSC. We also include hourly average
streamflow values to match the temporal resolution of our selected meteorological data sets. Hourly average flow data are

computed from the sub-daily instantaneous data available through both agencies. All flow data, as well as meteorological
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forcing data, are included in the CAMELS-SPAT data set in Local Standard Time. The timezone of each gauge is tracked as
part of the meta data.

2.3.2 Method and outcomes

For the gauges in the United States, daily average streamflow data and instantaneous (sub-daily) data can both be extracted
through API requests (https://nwis.waterservices.usgs.gov/nwis/dv/ and https://nwis.waterservices.usgs.gov/nwis/iv/,
respectively; accessed 2023-06-16). For the Canadian gauges, sub-daily data were extracted from the Environment and Climate
Change Canada Web-Serviee-LinksInterface(;-aceessed2023-04-05)—FTP server (https://collaboration.cmc.ec.gc.ca/cmc
/hydrometrics/www/UnitValueData/; accessed 2025-05-31). Daily data were extracted from the HYDAT database, version
20230505. We excluded 4 gauges in the United States, as well as 180 Canadian gauges from the original 1697 preselected
stations because sub-daily data was not available for these stations. We removed a further 13 Canadian gauges for lacking daily
discharge values. Manual checks of these gauges through the WSC website (https://wateroffice.ec.gc.ca/search/historical_e.h
tml; last access: 2025-02-06) indicate that these stations are measuring water levels in lakes.

Daily average values for both countries are provided in Local Standard Time (LST). We updated the time indices for the
sub-daily instantaneous values to match. For the gauges in the USA, this meant shifting the time series by 1 hour for time steps
that were provided in local daylight saving time for gauges in states where daylight saving time is observed. For the Canadian
gauges, this meant shifting the entire time series for each gauge by the offset needed to convert UTC to LST. We then set
any negative streamflow values to zero, and used a mass-conserving averaging approach to turn instantaneous flow data into
hourly averages (see Section 1 in the Supplementary Materials for more details about the averaging procedure). We specified
the condition that every hourly average must be based on at least one observation during that time window. Hours for which
no data observations were available were set to Not-a-Number (NaN).

Note the critical assumption that we calculated the average hourly flows as the value at the full-top of the hour (e.g., 12:00)
using a forward-looking window (i.e., in this case the value at 12:00 is the average during the time window 12:00-13:00).
This matches the daily flows, which are provided under the same assumption by USGS and WSC (e.g., the Jan-1 2000 value
is calculated from data between 00:00 Jan-1 and 24:00 Jan-1; USGS, personal communication, 2023-06-20; WSC, personal
communication, 2023-06-26). This information is also stored in the time_bnds (time bounds) variable available in the provided
NetCDF files.

Daily and sub-daily observations were originally provided in text-based formats. We converted these to NetCDF4 formats,
to ensure consistency between gauges in the two countries and to track metadata in a more accessible way (compared to
storing the metadata in separate files or headers in text files). For both USGS and WSC data we retained the quality flags that
accompany the data and stored these in the same NetCDF files that contain the streamflow observations. These quality flags
indicate conditions that may adversely affect the observations (e.g., gauge malfunction, ice conditions) and whether data has
been formally approved or is still considered provisional.

Figure 3 shows aggregated flow data availability for the 1426 catchments included in the CAMELS-SPAT data set, with

total record length in blue (number of years between first and last available streamflow observation) and missing values in red
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Figure 3. Flow data availability for gauges included in CAMELS-SPAT. Record length refers to the period between the first publicly available
flow record for a given station, and its last. Missing values occur within this record period and are given here in the same units as the record

length itself. Note that both y-axes are truncated: in (a), missing-vaties has-a—count-there are 556 cases where the number of H3-for-tinre

is-missing values falls between 0 sand 1 +-years of total (although note that these missing values are not necessarily consecutive and in fact

in many cases are caused by seasonally active gauges). Also truncated is the record length has-a-ecount-bar showing the 498 cases where the
length of 566-fortinte =+:2:in-hourly data record is between 12 and 13 years. In (b), missing values has eeunts-a count of H56-and++2-898

for time is [0,1]and-t. (a, 2b) Please note that the colors are partly transparent, respeetivelyand that overlaps between the record length and
missing values bars will appear as dark red.

number of years within the record length for which no observations are available). Hourly flow data comes in two distinct
categories: short{<2-years)records for the Canadian gauges and-muchJonger-are around a decade in length, while sub-dail
records for gauges loeated-in the United States are typically two to three times longer. This is a consequence of Water Survey

of Canada’s policy to make high-resolution gauge data only publicly available for a relatively short historical period. Missing
data for these shorter records are however typically low (see also Fig. Al). For approximately 8660% of gauges, missing hourly
observations account for up to 10% of record length. Data may be missing for up to 40% of the record for most remaining
gauges, with a handful of gauges having extremely large data gaps. Daily data record lengths are similar for Canadian and
United States gauges. Missing values are relatively rare (<101% for up to +356-849 out of our 1426 gauges, and <10% for

1070 out of 1426 gauges), though can be substantial (up to 80-te-95%fer-the-remaining-gaungesapproximately 60%; see Fig.
A1l). The period with the greatest overlap of data records is 1990-2020; hourly observations are available for only a handful

of gauges before this time. Some further statistics about the streamflow regimes available in CAMELS-SPAT are discussed in
Section 3.5.
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2.4 Forcing data
2.4.1 Context

Meteorological forcing data in existing data sets is typically provided as catchment-averaged (lumped) daily data, and tends
to be limited to precipitation, temperature and potential evapotranspiration variables (Table 1). While a large number of the
more conceptual models can be run with only precipitation, temperature and potential evapotranspiration inputs (see e.g.,
Knoben et al., 2019; Trotter et al., 2022), more complex hydrologic models typically require a wider array of inputs at higher
temporal resolution. Table 2 shows a brief overview of meteorological data requirements for a selection of process-based
hydrological models. Typical variables include (1) precipitation, (2) air temperature, (3) radiationterms, often distinguishing
between shortwave and longwave radiation, (4) air pressure, (5) humidity, and (6) wind speed.

It is clear from Table 2 that it is impossible to define a small set of forcing variables that would allow the use of a large
number of process-based hydrologic models. We therefore decided to include a broad selection of meteorological variables,
accepting that this comes at the cost of extra disk space. We provide these variables at hourly time steps, at their native-original
gridded resolution as well as averaged at the sub-basin level. To facilitate the use of the broadest range of modeling tools we
also include time series of potential evaporation (see footnote in Table 3) and forcing variables aggregated at the lumped basin

level.
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Table 2. Meteorological data needs for CATFLOW (Maurer and Zehe, 2007), CHM (Marsh et al., 2020), CHRM (Pomeroy et al., 2007), ES-
CROC (Lafaysse et al., 2017), HYPE (SMHI, 2022), MESH (Mekonnen and Brauner, 2020), Noah LSM (Mitchell et al., 2005), PARFLOW
(Maxwell et al., 2019), MM-PIHM (PIHM team, 2007; Yuning Shi, 2018), SUMMA (Clark et al., 2015a, b; Nijssen, 2017), VIC (Liang
et al., 1994; Hamman et al., 2018) and WaSIM (Schulla, 2021). Models are listed alphabetically. Optional inputs indicated with *. t indicates

an arbitrary time unit.

Variable CATFLOW CHM CHRM ES-CROC HYPE MESH
Precipitation [mt] [mm t~!] [mm t '] kem™2s7']  [mmt™’] kgm™2s™!]
Downward shortwave radiation ~ [W m™?] [Wm™2] [Wm™?] MIm™2d~'*  [Wm™?
Downward longwave radiation [Wm™2] [Wm™?] [Wm™?]
Air temperature [C] [C] [C] K] [C] K]

Air pressure [Pa] [Pa]
Specific humidity kg kg™
Wind speed (U-direction) [ms™!]*

Wind speed (V-direction) [ms™!]*

Sunshine duration

Reflected shortwave radiation [Wm™2]

Net radiation [Wm™2] [Wm™2]

Vapor pressure

Relative humidity (%] (%] (%] (%] [—]*

Wind speed (mean) [ms™!] [ms™!] [ms™!] [ms™!] [ms™!] [ms™!]
Wind direction [degrees] [degrees]

Variable Noah LSM PARFLOW  MM-PIHM SUMMA VIC WaSIM
Precipitation [inch30min~'] [mms™}] kem™2s7!] [kgm™2s7']  [mmt?] [mm]
Downward shortwave radiation ~ [W m™?] [Wm™2] [Wm™2] [Wm™2] [Wm™?] [Whm™2]
Downward longwave radiation ~ [W m™2] [Wm™2] [Wm™2] [Wm™2] [Wm™?]

Air temperature [C] K] K] K] [C] [C]

Air pressure [mbar] [Pa] [Pa] [Pa] [kPa]

Specific humidity [kgkg™!] gg™!]

Wind speed (U-direction) [ms™!]

Wind speed (V-direction) [ms™!]

Sunshine duration -]
Reflected shortwave radiation

Net radiation

Vapor pressure [kPa]

Relative humidity -] (%] -]

Wind speed (mean) [ms™!] [ms™!] [ms™!] [ms™!] [ms™!]

Wind direction
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2.4.2 Methods and outcomes

CAMELS-SPAT includes four forcing data sets, each with a specific focus:

1. First, we primarily use the high-resolution RDRS v2.1 data set (Gasset et al., 2021, available at 10km or approximately
0.09° resolution). RDRS covers the North American continent and provides those variables needed to run process-based

models directly and derive most other variables listed in Table 2. A key advantage of RDRS is that it assimilates

precipitation observations, which should improve the accuracy of its precipitation field.

2. Second, for continuity with the original CAMELS data set, we include the Daymet v4 R1 data set (Thornton et al., 2021,
available at 1km or approximately 0.009° resolution). Daymet is based on weather station observations and gridded
terrain data, and available at daily resolution between 1980 and 2023 on a 365-day calendar (i-e—during leap years
December 315¢ is missing). The data set does not include all the forcing variables needed to run process-based models,
but, if combined with an appropriate estimate of potential evapotranspiration (PET), provides sufficient information to
run more conceptual and data-driven models. We infill the missing day in leap years as a linearly interpolated value
between the preceding and following daydays. Following Newman et al. (2015), we add a Priestley-Taylor PET estimate
(Priestley and Taylor, 1972, further details available in the Supplementary Materials).

3. Third, to facilitate possible extension of CAMELS-SPAT beyond North America, as well as provide hourly data for
gauges with observations before 1980 (i.e., outside the time period covered by RDRS), we include the globally available
ERAS data (Hersbach et al., 2020, available at 0.25° resolution). Like RDRS, ERAS provides all variables needed to
run process-based models directly, and derive most other variables listed in Table 2. However, unlike the other data sets
listed here, ERAS is a reanalysis product and does not integrate station observations. Local accuracy may thus be lower

for ERAS data than for data sets that do use station observations.

4. Fourth, to partly address this weakness of ERAS data, we include the high-resolution EM-Earth data set (Tang et al.,
2022b, available at 0.10° resolution). Previous work has shown that using station-based precipitation and temperature
data from EM-Earth provides better modeling results for our-area-of-interest-the North American continent than using
ERAS alone (Rakovec et al., 2023). However, note that the EM-Earth has a fixed temporal coverage of 1950-2019,

whereas our selected gauges have data beyond 2019.

Table 3 shows an overview of forcing variables available as time series in the CAMELS-SPAT data set. Compared to Table
2, we provide net radiation terms at the surface separated into net shortwave and net longwave terms, and do not provide
a summed net radiation component nor a reflected shortwave variable. Either can be easily derived from the provided net
shortwave and longwave components (see Hogan (2015), but also footnote 2 in Table 3). We also do not provide sunshine
duration because this is not available in RDRS, Daymet and EM-Earth. While sunshine duration is available in ERAS, it is not
an independent variable: it is derived directly from downward shortwave radiation using a threshold of 120 Wm™2 (Hogan,

2015). We complement the forcing data sets with various additional variables derived from the downloaded data in cases where
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we judged the processing to be too cumbersome to pass down to the user (i.e., vapor pressure, relative humidity, wind direction),
or the variable seemed to be of general interest (i.e., mean wind speed, PET). Potential evapotranspiration estimates for Daymet
were derived using the Priestly-Taylor formula (Priestley and Taylor, 1972); PET estimates for RDRS were derived using the
FOA-56 Penman-Monteith method (Allen et al., 1998). The equations used to derive data are provided in the Supplementary
Materials. While this-the list of variables in Table 3 is unlikely to completely cover all models’ data needs, it will provide a
reasonable starting point for a large number of models.

We retained the original variable names used in each data set so that users may easily refer to the existing documentation

of RDRS, Daymet, ERA5 and EM-Earth if needed. For convenience and simplicity from a user perspective, we converted all

hourly data to use a consistent set of units—Fhis—, though we kept the units of the daily data (Daymet) to be more directl
applicable to the types of models more commonly run at daily time steps. Unit conversion of hourly data is mostly straightfor-

ward but required an assumption for the density of water which we set at a constant value of 1000 kg m~3. Data are provided
for the full time period covered by the observational record of each individual gauge when possible, including time steps
for which streamflow data are missing (see also Section 4.2.2 and Table 4). For all variables, metadata (descriptions, units,
derivations if applicable) are stored as variable attributes in the NetCDF files.

We provide the forcing data at three different spatial aggregation levels: (1) as gridded values at the native-original spatial
resolution of each data set, clipped to the basin outline; (2) aggregated at the sub-basin level; (3) aggregated at the basin level
(i.e., the level at which most of the data sets listed in Table 1 provide data). Averaging of the gridded data to (sub-)basin
polygons was done with the EASYMORE toolbox (Gharari et al., 2023).

RDRS, ERAS5 and EM-Earth provide data at hourly resolution, in Coordinated Universal Time (UTC). We process these
time indices to be in each gauge’s Local Standard Time (LST) instead, so that the time indices in the forcing file align with
those used for the flow observations. We make a slight adjustment for the 57 basins that are located in regions following

Newfoundland Standard Time (NST [UTC — 3h30], National Research Council Canada (2019)). Ad-The time series of all

forcing data products are-enly-available-at-whele-hours;-only provide values at the top of each hour (12:00, 1:00, etc.), and thus

cannot easily be converted to NST without making assumptions about how to interpolate the data between the times for which
it is available. We treat these basins as following Atlantic Standard Time (AST [UTC — 4h00]) instead. Note that this leads

to a 30-minute offset between forcing data and streamflow observations for these basins. Daymet data is already provided as
daily average values calculated in LST and requires no further adjustment.

Variables in these forcing data sets are either instantaneous (i.e., representative of conditions at a specific point in time) or
time-averaged (i.e., representative of conditions over a given time window), and this means the time stamps in each NetCDF file
must be interpreted differently for different variables. For any instantaneous variable, a value is valid at the specific moment
in time given by the time stamp (European Centre for Medium-range Weather Forecasting, 2023c). For any time-averaged
variables, we need to distinguish between two cases. RDRS and ERAS use period-ending or backward-looking time stamps,
meaning that, for example, the average precipitation rate at time 12:00 is the average rate over the interval 11:00-12:00 (N.
Gasset, personal communication, 2024; European Centre for Medium-range Weather Forecasting, 2023b, Section: “Mean

rates/fluxes and accumulations”). EM-Earth’s precipitation variable instead uses period-beginning or forward-looking time
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stamps, meaning that, for example, the average precipitation rate at time 12:00 is the average rate over the interval 12:00-
360 13:00 (G. Tang, personal communication, 2024). Table 3 provides an overview of all forcing variables and summarizes this

information.
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Table 3. CAMELS-SPAT meteorological variables. Variable names shown in bold indicate derived variables. “Flux validity” indicates how

time-averaged variables must be interpreted.

Data set RDRS DPaymetERAS EM-Earth Daymet
Resolution Hourly Daily-Hourly Hourly Daily
Flux validity ~ Period-ending® nfa-Period-ending?  Period-beginning® n/a_
Time-averaged variables Units Name in NetCDF files
Precipitation rate [kem™2s™'] RDRS_v2.I_A_PRO_SFC  mitpr. prcp TP
Potential evapotranspiration rate  [kgm™?s™] mper”
Precipitation rate_ [mm day ] prep
Potential evapotranspiration rate  [mm day '] pet
Downward shortwave radiation [Wm™2] srad-msdwswrf srad
Downward longwave radiation [Wm™2] msdwlwrf
Net surface shortwave radiation ~ [W m™?] msnswrf*
Net surface longwave radiation [Wm™2] msnlwrf* et e e e e e
Instantaneous variables Units Name in NetCDF files
Downward shortwave radiation (W m72] RDRS_v2.1_P_FB_SFC
Downward longwave radiation (W m72] RDRS_v2.1_P_FI_SFC
Potential evapotranspiration rate  [kgm™2s™']  pet
Air temperature K] RDRS_v2.1_P_TT_1.5m t tmean
Minimum daily air temperature [C] A tmin_
Maximum daily air temperature  [C] trax- tmax.
Daylight length [sday™] dayl- dayl
Air pressure [Pa] RDRS_v2.1_P_P0O_SFC sp
Specific humidity kgkg™!] RDRS_v2.1_ P HU_1.5m q
Relative humidity [kPakPa~!] RDRS_v2.1_P_HR_15m rh
Vapor pressure [kPa] e vp-e
Vapor pressure [Pa] Y
Wind speed (U-direction) [ms™!] RDRS_v2.1_P_UUC_10m u
Wind speed (V-direction) [ms™!] RDRS v2.1 P VVC_10m v
Wind speed (mean) [ms™!] RDRS v2.1 P UVC_10m w
Wind direction [degrees] phi® phi®

L N. Gasset, personal communication, 2024.

2 See: https://confluence.ecmwf.int/pages/viewpage.action?pageld=82870405#ERAS5:datadocumentation-Table4 (last access: 2024-01-03),

https://confluence.ecmwf.int/pages/viewpage.action?pageld=82870405#ERAS5:datadocumentation-Table9 (last access: 2024-01-03),
https://confluence.ecmwf.int/pages/viewpage.action?pageld=82870405#ERA5:datadocumentation-Table2 (last access: 2024-01-03).

3 G. Tang, personal communication, 2024.

4 Note that these net radiation terms are based on interactions between the atmospheric and land surface components of the ERA5 modeling chain, and should thus only be used carefully as model i

to prevent cases where the user’s model duplicates processes already accounted for by the ERAS models.

5 Assumptions underlying this variable are described here: https:/codes.ecmwrf.int/grib/param-db/?id=228251 (last access: 2024-01-01). Note that we provide the equivalent variable as a mean rate

part of the CAMELS-SPAT data, but the URL for that variable lacks a clear description: https://codes.ecmwf.int/grib/param-db/?id=235070 (last access: 2024-01-01).

SWe derived most additional variables before averaging the gridded data onto (sub-)basins, but this is not easily possible for wind direction. Instead, we calculate wind direction separately for the


https://confluence.ecmwf.int/pages/viewpage.action?pageId=82870405#ERA5:datadocumentation-Table4
https://confluence.ecmwf.int/pages/viewpage.action?pageId=82870405#ERA5:datadocumentation-Table9
https://confluence.ecmwf.int/pages/viewpage.action?pageId=82870405#ERA5:datadocumentation-Table2
https://codes.ecmwf.int/grib/param-db/?id=228251
https://codes.ecmwf.int/grib/param-db/?id=235070
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2.5 Geospatial data
2.5.1 Context

Geospatial data in existing data set-sets covers four broad categories: (1) meteorology (as time series and derived summary
statistics), (2) vegetation and land use; (3) topography; (4) soil and geology. In the-current large-sample data sets, geospatial
data are typically not provided as maps in their original formats but tend to be presented as spatial statistics (mean, mode, etc.).
These statistical summaries of the original data, commonly referred to as catchment attributes, can be helpful to succinctly
characterize a location’s hydroclimatic conditions and support classification efforts. For modeling purposes, geospatial data
play a key role in defining model configurations and parameter values. For example, models such as Noah-LSM (Niu et al.,
2011) and SUMMA (Clark et al., 2015a, b) rely on vegetation and soil classes to provide initial values for a number of land
use and soil parameters. More generally, models might require the height of the vegetation canopy in the vertical direction,
or the fraction of the basin covered by open water in the horizontal direction as inputs. It is practically impossible to cover
all possible use ease;-cases through statistical summaries of the data (i.e., through attributes) alone, and we therefore provide
the geospatial data as maps clipped to the basin outlines. The maps will allow users to derive model parameters and further
catchment delineations (such as elevation zones, or land cover polygons), and to derive additional catchment attributes if our
existing selection of attributes does not cover a particular study’s needs (see Section 3). Figure 4 shows an overview of the 11

different data sets we selected for use in CAMELS-SPAT.
2.5.2 Methods and outcomes

For internal consistency of the CAMELS-SPAT data, we selected various geospatial data sets that cover at least the United
States and Canada. The specific processing steps vary, but in general processing for each data set involved downloading the data
at continental or larger scales and clipping the data to the basin polygons (see Figure 1). We also ensured all geospatial maps
are provided in a regular latitude/longitude coordinate system (EPSG:4326). Figure 4 provides an overview of the geospatial
data layers, using a single basin as an example.

Climate: Long-term monthly means of several climate variables can be obtained from the WorldClim data set (Fick and
Hijmans, 2017). The advantage over calculating these means from gridded forcing data is WorldClim’s much higher spatial
resolution. Available variables are long-term means computed from 30 years each, showing minimum, mean and maximum
monthly temperature, as well as monthly precipitation, solar radiation, wind speed and water vapor pressure. WorldClim’s data
license does not allow redistribution of their raw data, but does allow the data to be used to calculate derived statistics and
redistribute those. We primarily use the WorldClim data to calculate various attributes that quantify the spatial heterogeneity
in climatic conditions, and include various derived-maps-maps of derived variables as part of CAMELS-SPAT.

Vegetation: Process-based hydrological models typically include explicit representations of vegetation cover in a catchment.
CAMELS-SPAT includes two data sets from which vegetation parameters may be derived. First, we included time series of
Leaf Area Index (LAI) observations, derived from MODIS satellite observations (Myneni et al., 2021, MCD15A2H.061).

These observations are available at an 8-day temporal resolution and cover the period 2002-07-04 to 2023-10-08. Certain
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models may be able to ingest these maps directly, or typical seasonal LAI patterns may be derived from them. In addition,
we included estimates of forest height in 2000 and 2020 (Potapov et al., 2021, part of the Global Land Cover and Land Use
Change, 2000-2020 data).

Land cover and land use: To further assist parametrization and classification efforts, we included three different products
related to land cover and land use. First, the Landsat-Derived Global Rainfed and Irrigated-Cropland Product (LGRIP30,
Thenkabail et al., 2021; Teluguntla et al., 2023) can be used to estimate the magnitude and type of agriculture practiced in each
basin. Second, we include a map of International Geosphere—Biosphere Programme (IGBP) land classes in each basin, derived
from MODIS satellite observations (Friedl and Sulla-Menashe, 2022). Third, we include high-resolution Global Land Cover
and Land Use 2019 maps (Hansen et al., 2022). This is very high-resolution data derived from Landsat satellite observations,
used to classify the landscape into several broad categories (inland water, permanent snow and ice, cropland, built-up, terra
firma and wetlands) with several of these consisting of subclasses based on build-up area extent, and vegetation extent and
height.

Open water: We include cutouts of the HydroLAKES data (Messager et al., 2016) to quantify the extent, type and volumes
of open water bodies in each basin. This data can be used to estimate each catchment’s open water area, retention volumes and
parametrization of reservoir and lakes modules in hydrologic and/or routing models.

Topography: The MERIT Hydro Digital Elevation Model (DEM) used for basin delineation (Yamazaki et al., 2019) is
also part of the maps provided for each catchment. We used the DEM to derive separate maps of slope and aspect because of
their hydrologic relevance. For both, the DEM was first reprojected into ESRI: 102009 (NAD 1983 Lambert North America)
to ensure consistency between horizontal and vertical units. We then calculated slope maps expressed as angles (i.e., degrees),
and aspect maps in degrees indicating which direction a slope faces (with 0/90/180/270° being North/East/South/West-facing
slopes respectively). Additional variables such as elevation bands may be derived from the DEM map, but due the subjectivity
involved in deciding where the boundaries between the elevations bands are we have not done so. The DEM data ean-may also
be useful to apply elevation-dependent lapse rates to meteorologic variables.

Soil and geology: We provide maps from three different data sets to characterize each catchment’s subsurface. First, SOIL-
GRIDS 2.0 (Poggio et al., 2021) provides estimates of various soil properties (bulk density, percentage coarse fragments,
organic carbon content, and sand, silt and clay percentages) at six different depths (0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-
100 cm, 100-200 cm). These maps are given for mean values, but also for 8:055", 50" and 95" percentiles and an uncertainty
estimate. To match the geological attributes described later in this paragraph we also derive porosity and conductivity estimates
from the mean sand and clay values for each layer using the regression equations described by Cosby et al. (1984). However,
SOILGRIDS data are estimated for depths up to 2 meters everywhere, without taking into account the actual depth to bedrock
of any location. Thus, second, we included maps from the Pelletier soil database (Pelletier et al., 2016a, b). These distinguish
between uplands, valley bottoms and lowlands and provide estimates of the depths of soil, intact regolith, and sedimentary
deposits above unweathered bedrock. These variables may be used to set more realistic soil depths in models compared to a
spatially uniform depth. Third, we include cut-outs from the GLHYMPS data (Gleeson et al., 2014; Gleeson, 2018) as poly-

gons. Contained as attributes are estimates of geologic permeability and porosity, which may be used to parametrize models.
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Leaf Area Index

Data: MCD15A2H.061

Original resolution: 500m

LAl estimates for 2002-07-04 to
2023-10-08 at 8-day steps.

Agriculture

Data: LGRIP30v001

Original resolution: 30m

Land use classification into rainfed,
irrigated or no agriculture.

Land cover

Data: Global Land Cover & Land Use
Original resolution: 30m

Land use classification distinguishing
primarily between cropland, urban,
wetlands and solid ground.

Topography

Data: MERIT Hydro

Original resolution: 3 arcsecond
Surface elevation, slope, aspect.

Soil properties

Data: Pelletier

Original resolution: 30 arcsecond
Estimates of soil, intact regolith
and sedimentary layer depth.

Long-term monthly climate means
Data: WorldClim

Original resolution: 30 arcsecond

Monthly climate variable means based

on 1970-2000 data. Used to derive various
values (source data cannot be
redistributed).

Forest height

Data: Global Land Cover & Land Use Change
Original resolution: 30m

Estimated vegetation height in 2000 and 2020.

Land cover

Data: MCD12Q1.061

Original resolution: 500m

Land use classification into 17 broad
types such as deciduous broadleaf
forest, tundra and urban.

Open water

Data: HydroLAKES

Original resolution: n/a (polygon)
Various characteristics about lakes
and reservoirs.

Soil properties

Data: SOILGRIDS 2.0

Original resolution: 250m

Various soil properties at 6 depths,
including uncertainty estimates.

Geology

Data: GLHYMPS

Original resolution: n/a (polygon)
Estimates of permeability and porosity.

Figure 4. Overview of geospatial maps provided for each catchment in the CAMELS-SPAT data set, using a transboundary basin as an

example (Canadian gauge ID: 05AD003; sub-basin outlines given in black in all data layers apart from topography). The topography layer

also shows the basin’s gauge location as a red circle, the different sub-basins with white outlines, and the river network and lakes in blue.
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3 Catchment Attributes

Existing large-sample data sets eover-a-wide-variety-of-catchment-attributesdo not provide the maps of geospatial data that we
include as part of CAMELS-SPAT (see Section 2.5), and instead only provide statistical summaries of such maps known as
catchment attributes (for example, a data set might include the mean catchment elevation but not the Digital Elevation Model

from which this mean elevation is calculated). An informal analysis of some of the CAMELS data sets listed in Table 1 shows
that these data sets together contain close to 300 different attributes, though any given individual data set contains no more
than 50 to slightly over a 100 of those. Overlap between attributes provided by existing data sets is moderate at best, partly as a
consequence of the differences in data products included in each individual data set. This lack of uniformity is compounded by
a lack of unified terminology, where different data sets may use the same terms to describe different calculations, or different
terms to describe the same attribute. This is in line with findings by Tarasova et al. (2023), who analyze how 742 journal
articles describe the hydroclimatic conditions of their study areas. They find that authors use a wide variety of attributes
with only occasional verification of their attributes’ usefulness. Relevant for our work, and in line with a cursory overview
of attributes provided by the data sets listed in Table 1, they also find that the existing literature only rarely uses catchment
descriptors that attempt to quantify the range a particular variable may cover in a given catchment (the CAMELS-SE data set,
Teutschbein (2024), is a notable exception).

We thus made a necessarily subjective choice in which attributes to calculate for the CAMELS-SPAT basins. We aimed
for overlap with existing data sets when possible, and to be mindful of the findings of Tarasova et al. (2023). In particular, in
addition to the commonly provided mean attribute values we also selected statistics that describe the range of an attribute’s
values. Examples include the minimum, maximum and standard deviation of vegetation height to give an impression of the
spatial variability in the forest height data, and the inclusion of monthly mean forcing variables to give an impression of the
climatic seasonality that is only superficially captured by average seasonality attributes commonly found in other data sets. A
list of all 1178 attributes, divided into five main categories: (1) climate; (2) topography and open water; (3) vegetation and land
cover; (4) subsurface; and (5) hydrology, can be found in Tables A1-A11. We calculate the attribute values at both the basin and
the sub-basin level (excepting streamflow statistics, which are only available at the basin outlet). Further details are provided
in the following sub-sections, though for obvious reasons we do not discuss every individual attribute. We focus the following
description of CAMELS-SPAT attributes instead on providing various examples that highlight why the recommendations in

Tarasova et al. (2023) are important.
3.1 Climate attributes

The climatic data included-inused in the development of CAMELS-SPAT, time series of meteorological forcing variables from
RDRS and monthly maps of mean climatic conditions from WorldClim, provide a unique opportunity to characterize each
catchment’s climatic conditions in time and space. From the RDRS data we are able to determine seasonal variability, and its

variance over multiple years. From the WorldClim data we are able to characterize the seasonal variability and its variance
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across space. This leads to a relatively large number of climatic attributes compared to other data sets, and provides some
insight in the variability in time and space of the-drivers-this driver of hydrologic behaviour.

Tables A1-A4 list the climatic attributes provided with CAMELS-SPAT. These cover annual mean values of variables of
interest (such as precipitation, potential evapotranspiration and snow) commonly found in other datasets, as well as standard
deviations for these values. We expand upon existing data sets by also providing monthly means and monthly standard de-
viations of all forcing variables, to allow more in-depth investigation of each catchment’s seasonality. Figure 5 shows why
going beyond annual mean values may be important. Figures 5a and 5b show long-term average aridity and the fraction of
precipitation falling as snow (determined on a per-timestep basis using a 0°C threshold; see also Section 4.2.8 for some further
discussion about the PET estimates available in CAMELS-SPAT.). The broad geographical patterns seen here are not particu-
larly surprising, but are, importantly, not necessarily representative of climatic variability on a year-to-year basis (Figure Sc, 5d)
or of the range of conditions within each catchment (Figure Se, 5f). For example, across the great plains area and particularly in
the southwestern United States the year-to-year variability in aridity (Figure 5c) can be quite large and certain catchments may
fluctuate between arid and humid states on annual timescales. The fraction of precipitation falling as snow equally shows large
inter-annual variability (Figure 5d), with standard deviations close to 10% across a large part of the domain. Within-catchment
variability of aridity (Figure 5e) seems modest in most cases but is rather large for snowfall (Figure 5f), highlighting why

treating these catchments in a more spatially distributed fashion may be helpful.
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(a) Aridity (b) Snow fraction
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Figure 5. Selection of climate attributes. (a-d) Statistics derived from RDRS data, showing mean and variability in time. (e-f) Statistics
derived from WorldClim data, showing variability within each catchment.
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3.2 Topography and open water attributes

Topography is a critical control on hydrologic behaviour on both the large and small scale. For example, mountains influence
precipitation patterns at the large scale, while at the small scale slope angles affect lateral drainage and topographic features can
lead to the formation of lakes. Tables A5 and A6 provide an overview of topographic and open water attributes, respectively.
These cover various basic catchment descriptors, such as location and area, and various statistics about the topography and
resulting drainage network. Figure 6a and 6b show the catchment elevation mean and standard deviation, respectively. As
expected, elevation varies strongly throughout the domain, ranging from sea level to well over 3000 meter above sea level
(m.a.s.l.). Elevation differences within catchments can be very high in mountainous regions, with prime examples being
the northwestern United States and southwestern Canada: the within-catchment standard deviations in elevation are close to
500 m here. Statistics that quantify basin slope (not shown for brevity) show similar patterns, showing that within-ecatehment
topographic drivers of hydrologic behaviour can be highly variable within catchments. Topographic conditions lead to a certain
amount of open water in the CAMELS-SPAT catchments, with lakes larger than +6-0.1 km? being more prevalent in the
Canadian basins (Figure 6¢) than in basins in the United States. Water storage in these can be considerable (Figure 6d). Stream
lengths (Figure 6e and 6f) vary considerably based on the drainage area upstream of each gauge, emphasizing a need for
within-catchment routing approaches. The examples in Figure 6 are intended to highlight the variability of conditions within
catchments and thus emphasize the need to go beyond treating basins as lumped entities. These examples (particularly Figure
6a and 6b, and 6e and 6f) also illustrate that attributes can show high correlations, suggesting that adding more attributes to an
analysis will not necessarily increase the useful information by the same amount. Selecting which attribute to incorporate in

any analysis must thus be done somewhat carefully (see also Section 4.2.7).
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(a) Elevation
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Figure 6. Selection of topographic attributes. Open water (c, d) estimates are obtained from the HydroLAKES database which uses a
threshold of 10 ha (0.1 ] km2lfor lake and reservoir identification. (e, f) Stream length statistics are derived by starting at each headwater
sub-basin upstream of a given gauge, and tracing the flow path down until the gauge location is reached. From this ensemble of flaw path

lengths upstream of a given gauge, the mean and standard deviation of stream lengths are calculated.
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3.3 Land cover attributes

Table A7 provides an overview of vegetation and land cover attributes. Briefly, these cover various statistics about vegetation
height during specific years, monthly Leaf Area Index (LAI) catchment mean and standard deviation, as well as per-catchment
counts of three different land class products. We refer the reader to the original publications that describe each dataset for further
information about the classes included. Figure 7 provides an example of the spatial (Figure 7a, 7b) and temporal (Figure 7c,
7d) variability in vegetation characteristics. As may be expected, there is considerable variation in vegetation height in space,
on both the continental and within-catchment scale. Forested areas in particular exhibit large standard deviations in vegetation
height (see for example the Pacific Northwest and western Canada). On a seasonal scale, Leaf Area Index exhibits large
variability throughout the domain as a consequence of summer and winter patterns. Vegetation is a key control on hydrologic
processes like interception and transpiration, and these images show that mean values-attribute values alone do not necessarily

capture the complex vegetation patterns that may explain spatial and temporal variability in these processes.
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Figure 7. Selection of vegetation attributes. (a, b) The mean and standard deviation of forest height within each basin are derived from the

Global Land Cover and Land Use Change data set and are shown here for the year 2020. (c, d) Leaf Area Index values are derived from the

MODIS MCDI15A2H.061 data set and are shown here as long-term averages values for February and August.
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3.4 Subsurface attributes

Attributes describing each catchment’s subsurface characteristics are listed in Tables A8 and A9. Figure 8a and 8b show
SOILGRIDS estimated sand content in the top layer of each catchment and the within-catchment standard deviation of this
estimate, respectively. Sand content is often combined with clay and silt content estimates to derive soil parameters used in
models, such as porosity and drainage rates. Within-catchment standard deviations tend to be around 20% of the estimated
sand content, suggesting that within-catchments drainage properties can vary considerably. For a given depth, the SOILGRIDS
property of interest (here: sand content) is estimated with a lower bound (Q0.05), median (Q0.50) and mean value, and upper
bound (QO0.95). The prediction uncertainty is then calculated as the ratio of the 90% prediction interval (Q0.95-Q0.05) and
the median (QO0.50). Prediction uncertainty (Figure 8c) adds more variability to the sand content estimates, though this is
somewhat modest compared to within-basin variability of sand content estimates (Figure 8b). The spatial standard deviation
of the uncertainty estimates is even smaller: a couple of percent-point difference at most (Figure 8d). This suggests that the
prediction intervals for sand content, in this layer at least, are relatively narrow. The main variability occurs within each
catchment, further emphasizing that going beyond lumped representations of hydrologic behaviour may be useful. This is
further supported by Figure 8e and 8f, showing the estimated thickness of sedimentary deposits and their spatial standard
deviation, respectively. There are clear large-scale patterns of the catchment mean values, where plains and flat areas show the
thickest layers. Within-catchment variability is particularly large in catchments with sharp topographic relief (compare Figure
6b) showing the difference in soil structure between high, steep mountains and valley bottoms. However, soil properties are
difficult to measure and as a result can be highly uncertain. We urge readers to consult the publications describing these data

sets to understand how these values were derived, and how they may feed into new work.
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Figure 8. Selection of subsurface attributes. (e-da-d) Sand-Properties derived from the SOILGRIDS 2.0 data set through spatial averagin

for each catchment. (a, b) Mean and spatial standard deviation of sand content in the top SOILGRIDS layer. (c, d) Mean and spatial

standard deviation of sand content uncertaintyis—, defined as the ratio between the 90-percentile prediction interval and the median pre-

diction Mean and spatial standard deviation of sedimentary deposit thickness estimates in the Pelletier data set.
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3.5 Hydrologic signatures

Statistics that describe flow regimes, commonly called signatures, are an active area of research (e.g., McMillan, 2021). As an
initial start, we provide the same signatures as provided in the original CAMELS data set and expand upon these in a handfal
number of ways: (1) in addition to mean values, we provide standard deviations when applicable; (2) we provide monthly
runoff signatures to complement the monthly climate attributes; (3) we expand the no, low and high flow duration signatures
to include median, skew-skewness and kurtosis values. For the signatures in Table A10, we calculate the signature per year of
data first, and then find the mean and standard deviation (if applicable) across years. For the statistics about no, low and high
flow periods (Table A11), we instead use all years together and calculate the statistics from this single longer time series.

A subset of these hydrologic signatures is shown in Figure 9. As expected, the signatures show strong relations to the climate
attributes in Figure 5a and 5b. Mean discharge (Figure 9a) is particularly high in non-arid areas, and the standard deviation of
annual mean discharge (Figure 9b) suggests strong intra-annual variability in the observed runoff at most gauges. The influence
of snow processes can be clearly seen in the differences between May and December mean runoff values (Figure 9c, 9d). Low
flow duration (Figure 9e; defined as days where discharge is below 20% of the mean discharge for the basin) emphasizes the
seasonality in runoff patterns in most of these these basins. However, these mean values are likely not particularly representative
of the duration of low-runoff events. In the majority of basins, the distributions of low flow durations (as well as no flow and
high flow durations; not shown for brevity) are positively skewed (Figure 9f). This indicates that these distributions have heavy
tails, and that the mean values wil-may be heavily biased by a relatively small number of events. In many basins, the median
duration will-may provide a more representative value of the typical no, low and high flow durations. Almost all recent large-
sample data sets provide mean duration of no, low and high flow events, but the skewness and kurtosis of the underlying
distributions are typically not accounted for. This leads to an overestimation of the typical duration of these events, and may
hinder classification efforts. We strongly suggest that the shape of the duration distributions is accounted for in fartherfuture

work.
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Figure 9. Selection of hydrologic signatures
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derived from timeseries of daily data provided by USGS and WSC.
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4 Discussion
550 4.1 Recommendations for data providers
4.1.1 Dimension boundary information in publicly available data

In Sections 2.3 and 2.4 we describe the processing of streamflow observations and meteorological data, respectively. One
challenge here is determining the representativeness (or validity) of data values in time and space. Data can be instantaneous
(i.e., valid at a specific point in time) or time-averaged (i.e., valid over a specific time window), and treating one as the other
555 leads to incorrect estimates of fluxes and thus state changes in the system (see also the derivation of hourly flow values in the
Supplementary Materials). The same concern applies to space: values may be representative for a specific point, or averaged
over a given region. Accounting for these differences is not always straightforward, in particular because information about
the spatial and temporal validity of publicly available data is not always easily available and may require informal inquiries to
obtain. This hampers the correct application and interpretation of data, and can lead to easily preventable biases in analyses
560 and modeling efforts.

A simple solution is provided by the NetCDF Climate and Forecast (CF) Metadata Conventions (see Section 7 in Eaton
et al., 2023). These conventions describe the specification of bounds for coordinate variables (i.e., dimensions such as latitude,
longitude and time) that indicate between which coordinate values a given data value is considered valid. Specific examples
for spatial, gridded data can be found in Section 7.1 in Eaton et al. (2023); time bounds are discussed in Examples 7.5 and

565 7.6. The CF conventions are designed for NetCDF files but the principle of specifying dimension bounds in time and space
between which data values are valid +-is widely applicable. We strongly recommend that including these bounds as part of data

distributions becomes standard practice.
4.1.2 Sub-daily flow data derivations

Process-based models can be useful for long-term water assessments, provided that they are parametrized well and that the
570 theoretical underpinnings of the model are valid (e.g., Kirchner, 2006; Clark et al., 2016). In the case of process-based
models, assessing a model’s physical realism requires observations at sub-daily resolution. In CAMELS-SPAT we there-
fore construct hourly streamflow series from time series of instantaneous streamflow observations that are publicly avail-
able. However, the phrase “streamflow observations” (though common) is somewhat misleading: in almost all cases the ob-
servations are of water levels and streamflow values are estimated for a given water level with rating curves. Especially at
575 high observation frequencies these water levels may be subject to random fluctuations unrelated to streamflow magnitude
(e.g., due to wind or small eddies), which will translate into streamflow estimates affected by this noise. A cleaner approach
would be to find the average hourly water level, and estimate the average hourly flow from this through the station’s rat-

ing curve. Development and maintenance of rating curves is complex however and rating curves tend to change through time

LY

see for example the description of WSC'’s procedures in Gharari et al., 2024
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. Computing robust sub-daily streamflow estimates will be easier at institutional levels (not least because it requires access to

the rating curves) and we express the hope that this may become standard practice.
4.2 Guidelines for practical use

Here we outline various considerations that may be useful to readers. Our goal with these is to set expectations for data set use,

and highlight potential pitfalls that may not be immediately obvious.

4.2.1 Summary sheets of basin conditions

Following Delaigue et al. (2024), we created summary sheets of the conditions in each basin. These summaries are intended to

aid quick assessments of each basin and cover the following elements: (1) identifier, location and long-term statistics (i.e., mean

and (3) various maps showing the spatial variability of various key attributes (i.e., elevation, land cover, agriculture presence

2

forest height, soil class and soil depth). An example can be found in the Supporting Information, Section SS. The full collection
of summary sheets is available on the data repository. Section S5 also contains an example that highlights the need to apply a
basin mask when working with the GeoTIFE maps provided as part of the CAMELS-SPAT data: in certain cases, pixel values
outside the basin boundaries will contain values that are within the valid data range (for example, forest height values outside

the basin are set to 0 m). Applying a basin mask ensures that only values within the basin boundaries are used in any analysis
that relies on the GeoTIFF files.

4.2.2 Selection of time periods

Our aim with CAMELS-SPAT is to facilitate a wide range of studies, and we have therefore provided as much data for each
gauge as seemed feasible. In particular, this meant that we only excluded station observations before 1950, because none of the
forcing data sets covers this period, and also accepted the fact that not all forcing products are available for the full period for
a given gauge. For different purposes, it will thus be necessary to subset the data we provide to shorter time periods. Table 4
provides an overview of the time periods covered by the various data products that may assist in selecting appropriate periods

for specific studies.
4.2.3 Utilization of streamflow data quality flags

We retained streamflow observation quality flags provided by the USGS and WSC during processing and stored these in
the same NetCDF files as the streamflow observations themselves. These flags indicate conditions affecting the streamflow
measurement, such as the presence of river ice, backwater effects, water levels below sensor level, or equipment malfunction.
These conditions suggest that streamflow data at these time steps are-inaceurate-may be inaccurate (even if the discharge data

at such time steps is corrected by the data provider, large uncertainties may remain; see Gharari et al. (2024)) and this may
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Table 4. Time periods covered by the different data sets included in CAMELS-SPAT. Geospatial data not listed are static products that have

no time dimension.

Streamflow data  Resolution  Start (min)  End (max) Notes

USGS Hourly 1956-12-07  2023-01-03  Varies per gauge, see Fig. 3 and Fig. Al
USGS Daily 1950-01-01  2023-01-02  Varies per gauge, see Fig. 3 and Fig. Al
WSC Hourly 2021-06-01  2023-01-02  Varies per gauge, see Fig. 3 and Fig. Al
WSC Daily 1950-01-01  2022-12-31  Varies per gauge, see Fig. 3 and Fig. Al
Forcing data Resolution  Start End

RDRS Hourly 1980-01-01  2018-12-31

Daymet Daily 1980-01-01  2023-12-31

ERAS Hourly 1950-01-01  2023-01-03

EM-Earth Hourly 1950-01-01  2019-12-31

Geospatial data ~ Resolution ~ Start End

MODIS LAI 8-daily 2002-07-04  2023-10-08

Forest height 20-yearly 2000-01-01  2020-01-01

affect analyses that use these data. For example, it is known that errors-differences between observed and simulated streamflow
at individual time steps may have disproportionate effects on aggregated efficiency scores that are used in modeling (e.g.,
Newman et al., 2015; Clark et al., 2021), and if one tries to match incorrect “observations” this may negatively impact the
quality of the resulting model configuration. Excluding streamflow observations from efficiency score calculations based on
data quality flags is a possible way to limit the impacts of knewn-potentially erroneous streamflow values.

4.2.4 Spatial validity of meteorological forcing data

CAMELS-SPAT contains meteorological data from four different data sets at their original gridded resolution, as well as
averaged at the basin and sub-basin level. During this averaging process we assumed that values provided at specific coordinates
are valid for a grid cell around this point. This is a simplistic approach but it is somewhat difficult to justify more elaborate
assumptions (such as some form of interpolation), because in reality the change of meteorological variables in space would be
dependent on local topography at scales smaller than the typical forcing data grid cell. Interpolation methods may yield more

realistic sub-basin and basin averaged values, but it is beyond the scope of this paper to investigate these.

4.2.5 Combing soil depth and soil properties estimates

CAMELS-SPAT contains both estimates of soil depth (derived from the Pelletier data set; Pelletier et al. (20164, b)) and soil
roperties (derived from the SOILGRIDS 2.0 data set; Poggio et al. (2021)). Because the SOILGRIDS data assumes a uniform
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depth of 2.0 meters everywhere, soil properties will thus be unknown for actual soil depths greater than 2 meter, or incorrectly.
provided for actual soil depths less than 2 meters. For estimated depths below 2 meters, an appropriate approach may be to
only use the SOILGRIDS layers that correspond to the estimated soil depth. For estimated soil depths greater than 2 meters,
recommendations are more difficult to provide. Appropriate approaches may be the derivation of pedotransfer functions, or
reliance on simple assumptions that extend the available layer information to deeper depths.

4.2.6 Modelling the Prairie Pothole region

Model performance across the United States is known to change regionally, where model performance is at its worst in the
drier central regions (e.g., Newman et al., 2015; Towler et al., 2023). In CAMELS-SPAT we compound this problem by
including basins from the so-called Prairie Pothole region. This area covers parts of southern Alberta, Saskatchewan, Manitoba,
North Dakota, South Dakota, Minnesota and Iowa, and is colloquially known as “the graveyard of hydrological models” (e.g.,
Muhammad et al., 2019; Budhathoki et al., 2020; Ahmed et al., 2023). The landscape in the Prairie Pothole region is relatively
young on geological time scales and large parts of it have not yet eroded into traditional river networks. Surface depressions are
common and typically not connected to the stream network, except through very slow groundwater drainage and the occasional
fill-and-spill event (Hayashi et al., 2016; Clark and Shook, 2022). In the basins we provide as part of the CAMELS-SPAT data,
all sub-basins are connected to the stream network. However, surface depressions below the resolution of the MERIT DEM
are common and will affect hydrologic behaviour in these (sub)basins. We recommend that users account for these potholes in
their analyses and modeling efforts, possibly through the use of stand-alone models or post-processing tools (e.g., Clark and
Shook, 2022) ;-or by adapting existing models with an appropriate landscape module (e.g., Ahmed et al., 2023), or to adjust

their expectations about model performance accordingly.
4.2.7 Selection and extension of catchment attributes

We derived various catchment attributes for the basins in CAMELS-SPAT for ease of use and comparison with existing data
sets. However, the number of attributes included in CAMELS-SPAT is rather high and we encourage others to make a careful
selection of which attributes to use in their own work. Attribute values can show considerable correlations, and using larger
number of attributes will not necessarily add an equal amount of new information. Larger numbers of attributes will, however,
increase computation and analysis times for applications such as regionalization, clustering and data-driven modeling. A more
fruitful approach likely relies on defining hypotheses that can be tested with catchment attributes, and deliberately selecting
the right attributes for these tests. If our initial attribute calculations do not offer the right choices, new attributes can easily
be derived from the data products included in CAMELS-SPAT. We refer the reader to Tarasova et al. (2023) for a deeper
discussion and recommendations on the use of catchment descriptors. We particularly encourage investigations that evaluate

the usefulness of our provided attributes for catchment characterization purposes, in line with those recommendations.

36



655

660

665

670

675

680

685

4.2.8 Potential evapotranspiration estimates

In order to facilitate a wide range of modeling studies, CAMELS-SPAT contains a variety of estimates of potential evapotran-
spiration (PET). These can be used as inputs to certain types of models, and to calculate certain climatic attributes such as a
basin’s aridity. However, there are multiple ways to estimate PET depending on data availability and purpose (McMahon et al.,
2013) and this results in a certain amount of uncertainty in these PET estimates and any values derived from them. Here we
provide a brief overview of the various PET estimates available in CAMELS-SPAT along with a brief assessment that may

help users decide which data to use. Table 5 summarizes this overview.
CAMELS-SPAT contains time series of potential evapotranspiration (PET)-data-directly-obtained-from-data (PET; variable

name mper) that are provided as an extra output of the ERAS5 modelling chain (though note that this variable is not used directl
in the production of ERAS or the generation of forecasts). However, Clere-Sehwarzenbach-et-al<2024)-these values are known
to be locally deficient in regions without low vegetation (see: https://confluence.ecmwf.int/display/ CKB/ERA5%3 A+data+do

cumentation#ERAS5:datadocumentation-Knownissues, section Known Issues, bullet point 15; accessed 2025-05-09). This is
also reported by Clerc-Schwarzenbach et al. (2024), who point out that PET data obtained from ERA5-Land must be treated
carefully and may include severely-unrealistic values. Preliminary-analysissuggests-this-applies-to PET-values-obtainedfrom
ERAS-too-{see-Section 4 in the Supplementary Materials jcontains some preliminary analysis that identifies where these issues
are present in the mper data included in CAMELS-SPAT. We have kept the ERAS PET estimates as a reference for users who

wish to investigate this further, but urge caution about their use.

CAMELS-SPAT also contains time series of PET estimates obtained with the Penman-Monteith method and hourly RDRS
data, as well as time series of PET estimates obtained with the Priestly-Taylor method and daily Daymet data. Finally, we
included spatial PET estimates using the temperature-based method in Oudin et al. (2005), applied to monthly averaged World-
Clim data. Equations for all three approaches can be found in Section 2.5 in the Supplementary Materials. We compared these
to the PET estimates from Singer et al. (2021) and their overview of mean annual PET estimates from various products in their
Figure 1 and Table 2. Preliminary analysis (see Section 4 in the Supplementary Materials) suggests that our PET estimates from
RDRS, Daymet and WorldClim all exhibit similar spatial patterns as the five data sets shown in Singer et al. (2021). Visual
comparison also suggests that there is some spread in the magnitude of our estimates. Monthly estimates based on WorldClim
data are low compared to the other methods and data sources, and comparable to those in GLEAM. Daily estimates based on
Daymet data are close to the middle of the range of estimates. Hourly estimates based RDRS data are within the ranges of
estimates provided by the other methods and data sets, though somewhat high compared to most other products.

Due to the lack of uniformity in PET definitions and calculation methods (e.g. McMahon et al., 2013), it is difficult to say
which estimates are the most accurate. For time series, any expected systematic biases could be corrected before using the time
series as model input. Derived statistics with clear physical interpretations, such as aridity, are more difficult. A basin may be
classified as either water-limited or energy-limited solely as a consequence of the data and PET estimation method used, and
this may hinder classification and interpretation efforts. Possible ways around this may involve the use of multiple estimates of

PET-related attributes. We thus recommend caution when selecting and interpreting any PET estimates for further use.

37


https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation#ERA5:datadocumentation-Knownissues
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation#ERA5:datadocumentation-Knownissues
https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation#ERA5:datadocumentation-Knownissues

690

695

700

705

Table 5. Overview of PET estimates in CAMELS-SPAT, their-usehow they are used within CAMELS-SPAT, and a summary of how these

values compare to each other as well as the estimates from five other PET estimates listed in Singer et al. (2021).

Source data  Temporal resolution  PET estimation method Used for Assessment

ERAS hourly - Likely incorrect in multiplelocations
Energy _ balance locations with no or high vegetation.
assuming well-watered mixed

crops’.
RDRS hourly Penman-Monteith Climate attributes ~ Plausible patterns; values somewhat
high compared to most estimates.
Daymet daily Priestly-Taylor - Plausible patterns; values close to the
middle of all estimates.
WorldClim  monthly Eq. 3 in Oudin et al. (2005) Climate attributes  Plausible patterns; values on the lower

end of all estimates.

L PET variable mper is derived from variable pev. For more details about the calculation of pev see: https://codes.ecmwf.int/grib/param-db/228251 (last access: 2025-05-09).

4.3 Potential improvements

CAMELS-SPAT represents a substantial data processing effort, but further enhancements are possible. We briefly list these
here. First, approximately 15% of our basin outlines have been assigned confidence ratings of medium or low. Future efforts

can focus on refining these outlines, through further manual intervention, or higher resolution DEMs, or both. Second, we were

would-be-helpful—Third;-wenecessarily needed to limit the extent of our geographical domain and this means there is a limit

to the different types of landscapes our data set covers. However, apart from Daymet and RDRS, all data sets used here have

global coverage. Combination with local streamflow observations, and possibly high-quality local data sets, should allow for
straightforward-extension of the data set to other regions. The code available on our GitHub repository could provide a starting
point for such efforts. FeurthThird, extending the dataset to include observations or estimates of variables of interest other
than streamflow would help with multi-variate analysis and model evaluation. Examples include satellite observations of snow

cover, or estimates of evaporation fluxes or water storage in the soil.
4.4 Data set structure and size

For convenience, we divided the collection of 1426 CAMELS-SPAT gauges into various subsets. At the highest level, we
structured the data set with different folders for attributes, forcing data, geospatial data, observations and shapefiles. At the

next level, we divided the data set into three categories of headwater, meso-scale and macro-scale basins. Headwater basins are

defined as catchments with only a single sub-basin in our delineation (note that for these basins, the lumped and distributed
cases are identical). Meso-scale basins are basins that are not headwaters and below a total area of 10% km?, and macro-scale
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basins are those with areas between 10 km? and 10* km?. Headwater basins account for 304 out of 1426 total (mean area of
approximately 60 km?), 727 basins fall in our meso-scale category (mean area ~ 400 km?, with on average 9 sub-basins), and
the remaining 446 basins are macro-scale basins (mean area =~ 3000 km?, on average 66 sub-basins). From here we divided
the data set into further subfolders when convenient.

The total size of the CAMELS-SPAT data is approximately 5.5TB. Almost all of this is forcing data (5.4TB) and specifically
the gridded variants of the forcing data (4.3TB). Basin-averaged data (summed for all four forcing data sets) sums up to 85GB,
while distributed forcing data (i.e., averaged at the sub-basin level) sums up to not quite 1.2TB. A full overview of the size
of various components of the dataset can be found on the data repository. This overview, combined with the overall folder
structure should allow users to fine-tune their downloads easily. Further instructions to include or exclude components from

the download can be found on the data repository.

5 Conclusions

This paper describes the development of the CAMELS-SPAT data set. Our goal is to enable a wide range of hydrologic studies,
with a particular focus on hydrologic modeling, by performing a wide range of data processing steps and sharing both the code
and outcomes of these. We extend the original CAMELS data (Newman et al., 2015; Addor et al., 2017a) in feur-five ways to
achieve this goal. First, we extend the geographical domain of the data set beyond the contiguous United States by including
Canadian basins. Second, we provided meteorological data specifically aimed at spatially-distributed physics-based hydrologic
models, in addition to the inputs needed to run lumped, conceptual models. Third, we provide streamflow data at both daily
and hourly time steps for each basin. Fourth, we provide maps of multiple geospatial data sets for each basin, rather than only
a selection of summary statistics derived from these maps. FeurthFifth, we provide a variety of catchment attributes intended
to describe the spatial and temporal range of our attributes, in addition to the more commonly provided mean attribute values.

CAMELS-SPAT thus consists of meteorological data, streamflow observations and geospatial data for 1426 basins across
the United States and Canada. The meteorological data includes a number of variables typically associated with process-
based models, as well as potential evapotranspiration estimates that can be used with the more conceptual model types, at
hourly time steps (daily for the Daymet data). This forcing data is provided in gridded format at its ewn-original resolution,
as well as spatially averaged at the sub-basin and basin level. Streamflow observations are provided at daily time steps and
complemented with hourly observations when these are available. Geospatial data, covering vegetation, land use, topography,
soil and geology, are provided as geo-referenced maps for each basin, from which model inputs or summary statistics that
go beyond our provided attributes can easily be derived. Finally, the information for each gauge (streamflow, meteorological,
geospatial data) are summarized in an extensive number of catchment attributes, at both the basin and sub-basin level.

In developing CAMELS-SPAT, we focused on providing the necessary data for a wide variety of studies. We envision the
data being helpful for a variety of studies aimed at improving our understanding of hydrologic processes and our ability to
model those processes. By removing the need for a considerable amount of cumbersome data processing, we hope CAMELS-

SPAT can support a wide range of hydrologic investigations at a fraction of the effort otherwise needed.
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The data set can be accessed through the Federated Research Data Repository (FRDR) through: https://doi.org/10.20383/1
03.01306. When using CAMELS-SPAT, please note the attribution and license requirements for data set components outlined

Section 6.

6 Code and data availability

The complete CAMELS-SPAT data set can be accessed through the Federated Research Data Repository (FRDR) through:
https://doi.org/10.20383/103.01306. Code needed to reproduce CAMELS-SPAT data preparation is available on GitHub:
https://github.com/ch-earth/camels_spat. Data source used in the preparation of this manuscript are listed below, separated
into data used but not redistributed and data that is redistributed. These data products are provided under a variety of licenses.
Please see the individual licenses for detail, and note that attribution is in almost all cases mandatory. We have provided a
data_citation.bib file available on the CAMELS-SPAT data repository and ask users to cite each separate data set that we
redistribute in any publications that use CAMELS-SPAT. Elements in CAMELS-SPAT not covered below (processing code,
attributes) are provided under a CC-BY-NC 4.0 license.

6.1 Data (redistributed)
Listed here are details about each of the data sets used in the creation of and partly reproduced in the CAMELS-SPAT data.
6.1.1 Meteorological data

Meteorological forcing fields were obtained from the Daymet v4.1 data set (Thornton et al., 2021, 2022), which is openly
shared, without restriction, in accordance with the NASA Earth Science Data and Information System (ESDIS) Project Data
Use Policy. For license terms, see https://www.earthdata.nasa.gov/learn/use-data/data-use-policy (accessed: 2024-05-24).

Meteorological forcing fields were obtained from the ERAS data set (Hersbach et al., 2020, 2017, 2023) under the Copernicus
Data License (https://cds.climate.copernicus.eu/cdsapp#!/home). For license terms, see: https://cds.climate.copernicus.eu/
api/v2/terms/static/licence- to-use-copernicus-products.pdf (accessed: 2023-12-18). Redistributed ERAS data were generated
using Copernicus Climate Change Service information [2023] in the case of the gridded forcing files. CAMELS-SPAT also
contains modified Copernicus Climate Change Service information [2023] in the case of the (sub)basin-averaged forcing files.
Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or
data it contains.

Meteorological forcing fields were obtained from the Deterministic EM-Earth data set Tang et al. (2022a, b) under a CC-BY
4.0 license (https://www.frdr-dfdr.ca/repo/dataset/8d30ab02-2bd-4d05-ae43-11f4a387e5ad).

Meteorological forcing fields were obtained from the RDRS v2.1 data set (Gasset et al., 2021, data source: Environment and
Climate Change Canada) under the Environment and Climate Change Canada Data Server End-Use Licence version 2.1. For

license terms, see: https://eccc-msc.github.io/open-data/licence/readme_en/ (accessed 2025-02-07).
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6.1.2 Basin outlines

Sub-basin polygons were obtained from the MERIT Basins data set (Lin et al., 2019, http://hydrology.princeton.edu/data/mpa
n/MERIT_Basins/). No formal license is stated in the paper, but data has since been moved elsewhere (https://www.reachhyd
ro.org’/home/params/merit-basins, last access: 2025-02-07) and is available there under a CC-BY-NC-SA 4.0 license.

Reference shapefiles for the basins in the United States were obtained from the CAMELS data set (Newman et al., 2015;
Addor et al., 2017a, https://doi.org/10.5065/D6MW2F4D). The source of these shapefiles if the U.S. Geological Survey
HCDN-2009 data set (Lins, 2012), and as such considered to be in the public domain (see: https://www.usgs.gov/information
-policies-and-instructions/copyrights-and-credits, [last access: 2024-03-21]).

The first set of reference shapefiles for the basins in Canada were obtained from the National hydrometric network basin
polygons data set (Environment and Climate Change Canada, 2020b, https://open.canada.ca/data/en/dataset/Oc121878-ac23-4
6£5-95df-eb9960753375), available under the Open Government License - Canada (https://open.canada.ca/en/open-governm
ent-licence-canada, [last access: 2024-03-21]).

The second set of reference shapefiles for the basins in Canada were obtained from the Reference Hydrometric Basin
Network (Government of Canada, 2022, https://www.canada.ca/en/environment-climate-change/services/water-overview/
quantity/monitoring/survey/data-products-services/reference-hydrometric-basin-network.html), available under unknown

license.
6.1.3 Streamflow data

Daily flow data for the basins in the United States were obtained from the Daily Values Service, courtesy of the U.S. Geological
Survey (https://nwis.waterservices.usgs.gov/docs/dv-service/daily-values-service-details/, [last access: 2024-03-21]). Data
are considered to be in the public domain (see: https://www.usgs.gov/information-policies-and-instructions/copyrights-and-c
redits, [last access: 2024-03-21])

Hourly flow data for the basins in the United States were derived from the high-resolution Instantaneous Values Service
(source: U.S. Geological Survey, https://nwis.waterservices.usgs.gov/docs/instantaneous- values/instantaneous- values-details/,
[last access: 2024-03-21]). Data are considered to be in the public domain (see: https://www.usgs.gov/information-policies-a
nd-instructions/copyrights-and-credits, [last access: 2024-03-21]).

Daily flow data for the basins in Canada were obtained from the HYDAT database version 20230505, courtesy of the Water
Survey of Canada (https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/su
rvey/data-products-services/national-archive-hydat.html, [last access: 2024-03-21]). Data are considered public information
(see: https://wateroffice.ec.gc.ca/disclaimer_info_e.html for full terms and details, [last access: 2024-03-21]). Note that the
HYDAT database gets continuously updated, and superseded versions are not publicly available.

Hourly flow data for the basins in Canada were derived from the high-resolution data available en-the-Web-Serviee-Links

{souree—online from the Government of Canada (source Water Survey of Canada, https://collaboration.cmc.ec.gc.ca/cmc
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/hydrometrics/www/UnitValueData/, [last access: 2024-03-212025-05-31]). Data are considered public information (see:
https://wateroffice.ec.gc.ca/disclaimer_info_e.html for full terms and details, [last access: 2024-03-21]).

6.1.4 Geospatial data

Forest height grids were obtained from the Global Land Cover and Land Use Change, 2000-2020 data set (Potapov et al., 2021)
under a CC-BY license (https://glad.umd.edu/dataset/GLCLUC2020/).

Leaf Area Index grids were obtained from the MCD15A2H.061 data set (Myneni et al., 2021, https://Ipdaac.usgs.gov/produc
ts/mcd15a2hv061/). Data can be redistributed with no restriction. See: https://Ipdaac.usgs.gov/data/data-citation-and-policies/
(accessed: 2023-10-17).

Agriculture grids were obtained from the LGRIP30 data set (Thenkabail et al., 2021; Teluguntla et al., 2023, https://lpdaac
.usgs.gov/products/lgrip30v001/). Data can be redistributed with no restriction. See: https://Ipdaac.usgs.gov/data/data-citatio
n-and-policies/ (accessed: 2023-10-17).

Land cover and land use grids were obtained from the MCD12Q1.061 data set (Friedl and Sulla-Menashe, 2022, https:
/Mpdaac.usgs.gov/products/mcd12q1v061/). Data can be redistributed with no restriction. See: https://lpdaac.usgs.gov/data/dat
a-citation-and-policies/ (accessed: 2023-10-17).

Land cover and land use grids were obtained from the Global land cover and land use 2019 data set (Hansen et al., 2022)
under a CC-BY 4.0 license (https://glad.umd.edu/dataset/global-land-cover-land-use-v1).

Lakes polygons were obtained from the HydroLAKES data set (Messager et al., 2016) under a CC-BY 4.0 license (https:
/lwww.hydrosheds.org/products/hydrolakes).

Digital Elevation Model grids were obtained from the Merit Hydro Adjusted Elevations data set (Yamazaki et al., 2019)
under CC-BY-NC 4.0 or ODbL 1.0 licenses (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/).

Soil property grids were obtained from the SOILGRIDS 2.0 data set (Poggio et al., 2021) under a CC-BY-NC 4.0 license
(https://soilgrids.org/).

Soil property grids were obtained from the Pelletier data set (Pelletier et al., 2016b, a, https://daac.ornl.gov/SOILS/guides
/Global_Soil_Regolith_Sediment.html). Data can be redistributed with no restriction. See: https://www.earthdata.nasa.gov/lea
rn/use-data/data-use-policy (accessed: 2023-12-18).

Geology polygons were obtained from the GLHYMPS data set (Gleeson et al., 2014; Gleeson, 2018) under a CC-BY 4.0
license (https://borealisdata.ca/dataset.xhtml?persistentld=doi: 10.5683/SP2/DLGXYO).

6.2 Data (not redistributed)

Listed here are details about each of the data sets used in the creation of, but not distributed as part of, the CAMELS-SPAT
data.
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6.2.1 Basin delineation

Flow direction grids were obtained from the Merit Hydro Adjusted Elevations data set (Yamazaki et al., 2019) under CC-BY-
NC 4.0 or ODbL 1.0 licenses (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/).
Flow accumulation grids were obtained from the Merit Hydro Adjusted Elevations data set (Yamazaki et al., 2019) under

CC-BY-NC 4.0 or ODbL 1.0 license (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/).
6.2.2 Geospatial data

Climate grids were obtained from the WorldClim data set (Fick and Hijmans, 2017, https://www.worldclim.org/data/worldcl
im21.html). WorldClim data were used to calculate high-resolution climate attributes and derive a number of maps. The source

data cannot be redistributed.

Appendix A: Streamflow data availability

Figure A1 shows streamflow data availability at a more granular level than the aggregated data in Figure 3.
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Figure Al. Flow data availability for gauges included in CAMELS-SPAT. The period on the lower x-axis refers to the period between the
first publicly available flow record for a given station and its last, with this record period given in blue for each gauge. Missing values occur

within this record period and are given here as pereentages{raction of total record length in red on the top x-axis.
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Table Al. Climate attributes: annual statistics.

Attribute Description Units Data source
num_years_rdrs Number of years of RDRS data used to calculate attributes years RDRS
PRO_mean Mean annual average precipitation total mmyear ! RDRS!
PRO_std Standard deviation of annual average precipitation total mmyear_! RDRS!
prec_mean Mean annual average precipitation total mm year~ ! WorldClim
prec_std Standard deviation of annual average precipitation total mm year— !  WorldClim
petl_mean Mean annual average potential evapotranspiration (PET) total mmyear ! RDRS!
petl_std Standard deviation of annual average PET total mmyear_! RDRS!
pet2_mean Mean annual average potential evapotranspiration (PET) total mmyear ' WorldClim?
pet2_std Standard deviation of annual average PET total mmyear ' WorldClim?
TT_mean Mean of annual mean daily average temperature °C RDRS'
TT_std Standard deviation of annual mean daily average temperature °C RDRS!
tavg_mean Mean annual average temperature °C WorldClim
tavg_std Spatial standard deviation of annual average temperature °C WorldClim
aridityl_mean Mean annual aridity (PET/P) - RDRS
aridity1_std Standard deviation of annual aridity (PET/P) - RDRS
aridity2_mean Mean annual aridity (PET/P) — WorldClim
aridity2_std Standard deviation of annual aridity (PET/P) — WorldClim
seasonality]l_mean  Mean precipitation seasonality compared to temperature seasonality* - RDRS
seasonality1_std Standard deviation of precipitation seasonality compared to temperature seasonality® — — RDRS
seasonality2_mean  Mean precipitation seasonality compared to temperature seasonality® — WorldClim
seasonality2_std Standard deviation of precipitation seasonality compared to temperature seasonality®  — WorldClim
fracsnow1_mean Mean annual snow fraction (°C degree threshold) — RDRS
fracsnow1_std Standard deviation of annual snow fraction (°C degree threshold) — RDRS
fracsnow2_mean Mean annual snow fraction (°C degree threshold) — WorldClim
fracsnow?2_std Standard deviation of annual snow fraction (°C degree threshold) — WorldClim

! For consistency, we converted the RDRS units into those used in WorldClim.

2 Computed using WorldClim’s srad and tavg variables, and Equation 3 in Oudin et al. (2005).

3 For consistency, we converted the WorldClim units into those used in RDRS.

4 Calculated using Eq.14 in Woods (2009) for daily data from individual years, then finding the mean and standard deviation across years.

5 Calculated using Eq.14 in Woods (2009) using monthly data; i.e. a much coarser temporal resolution then RDRS.
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Table A2. Climate attributes - continued: frequency, duration and timing of high and low precipitation, and high and low temperature periods.

Attribute Description Units Data source
low_temp_freq Frequency of cold days (< 0°C) daysyear™! RDRS
low_temp_dur_mean Mean duration of cold days (< 0°C) days RDRS
low_temp_dur_median Median duration of cold days (< 0°C) days RDRS
low_temp_dur_skew Skew of cold day durations (< °C) — RDRS
low_temp_dur_kurtosis  Kurtosis of cold day durations (< 0°C) - RDRS
low_temp_timing Season during which most cold days occur (< °C) season RDRS
high_temp_freq Frequency of hot days (> mean daily max +5°C)* daysyear—! RDRS
high_temp_dur_mean Mean duration of hot days (> mean daily max +5°C) days RDRS
high_temp_dur_median =~ Median duration of hot days (> mean daily max +5°C) days RDRS
high_temp_dur_skew Skew of hot day durations (> mean daily max +5°C) - RDRS
high_temp_dur_kurtosis  Kurtosis of hot day durations (> mean daily max +5°C) - RDRS
high_temp_timing Season during which most hot days occur (> mean daily max +5°C) season RDRS
low_prec_freq Frequency of dry? days (< 1 mm day 1) daysyear™' RDRS
low_prec_dur_mean Mean duration of dry days (< I mm day ') days RDRS
low_prec_dur_median Median duration of dry days (< 1 mm day ') days RDRS
low_prec_dur_skew Skew of dry day durations(< 1 mm day ') - RDRS
low_prec_dur_kurtosis Kurtosis of dry day durations (< 1 mm day %) — RDRS
low_prec_timing Season during which most dry days occur (< 1 mm day ~!) season RDRS
high_prec_freq Frequency of wet® days (> 5 times mean daily precipitation) daysyear™* RDRS
high_prec_dur_mean Mean duration of wet days (> 5 times mean daily precipitation) days RDRS
high_prec_dur_median Median duration of wet days (> 5 times mean daily precipitation) days RDRS
high_prec_dur_skew Skew of wet day durations (> 5 times mean daily precipitation) - RDRS
high_prec_dur_kurtosis ~ Kurtosis of wet day durations (> 5 times mean daily precipitation) - RDRS
high_prec_timing Season during which most wet days occur (> 5 times mean daily precipitation) season RDRS

! Derived from the World Meteorological Organization’s definition of heat waves: a 5-day or longer period with maximum daily temperatures 5°C above the "standard" daily
maximum temperature. Standard is defined as the mean daily max on each day, using the period 1961-1990 as base. Here we define a hot day as a day where the maximum temperature
is at least 5°C over the long-term daily maximum temperature. We do not have data for the period 1961-1990 for all basins, and therefore use all data available for a given basin to find

the long-term daily maximum temperatures.

2 For consistency, we use the same definitions of dry and wet days as used in Addor et al. (2017a).
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Table A3. Climate attributes - continued: spatial and temporal variability in climatic conditions. Attributes ending in _{X/ are calculated
per month, with X ranging from 0/ to /2. Statistics derived from RDRS are calculated over time; statistics derived from WorldClim are

calculated across space.

Attribute Description Units Data source
PRO_mean_month_{X} Mean monthly average precipitation total mmmonth™" RDRS*
PRO_std_month_{X} Standard deviation of monthly average precipitation total mmmonth™!  RDRS!
prec_mean_month_{X} Mean monthly average precipitation total mm month™!  WorldClim
prec_std_month_{X} Standard deviation of monthly average precipitation total mmmonth™!  WorldClim
petl_mean_month_{X} Mean monthly average potential evapotranspiration (PET) total mmmonth™" RDRS*
petl_std_time_month_{X} Standard deviation of monthly average PET total mmmonth™  RDRS!
pet2_mean_month_{X} Mean monthly average potential evapotranspiration (PET) total mm month™  WorldClim?
pet2_std_month_{X} Standard deviation of monthly average PET total mmmonth™!  WorldClim?
tdavg_mean_month_{X} Mean of monthly mean daily average temperature °C RDRS*
tdavg_std_month_{X} Standard deviation of monthly mean daily average temperature °C RDRS!
tavg_mean_month_{X} Mean monthly average temperature °C WorldClim
tavg_std_month_{X} Spatial standard deviation of monthly average temperature °C WorldClim
tdmin_mean_month_{X} Mean of monthly mean daily minimum temperature °C RDRS*
tdmin_std_time_month_{X}  Standard deviation of monthly mean daily minimum temperature ~ °C RDRS!
tmin_mean_month_{X} Mean monthly minimum temperature °C WorldClim
tmin_std_month_{X} Standard deviation of monthly minimum temperature °C WorldClim
tdmax_mean_month_{X} Mean of monthly mean daily maximum temperature °C RDRS*
tdmax_std_month_{X} Standard deviation of monthly mean daily maximum temperature ~ °C RDRS!
tmax_mean_month_{X} Mean monthly maximum temperature °C WorldClim
tmax_std_month_{X} Standard deviation of monthly maximum temperature °C WorldClim
FB_mean_month_{X} Mean monthly downward shortwave radiation Wm™? RDRS
FB_std_month_{X} Standard deviation of monthly downward shortwave radiation Wm™? RDRS
srad_mean_month_{X} Mean monthly downward shortwave radiation Wm™? WorldClim?®
srad_std_month_{X} Standard deviation of monthly downward shortwave radiation Wm™? WorldClim?®

L For consistency, we converted the RDRS units into those used in WorldClim.
2 Computed using WorldClim’s srad and tavg variables, and Equation 3 in Oudin et al. (2005).

3 For consistency, we converted the WorldClim units into those used in RDRS.
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Table A4. Climate attributes - continued: spatial and temporal variability in climatic conditions. Attributes ending in _{X} are calculated per
month, with X ranging from 01 to /2. Statistics derived from ERAS are calculated over time; statistics derived from WorldClim are calculated

across space.

Attribute Description Units Data source
FI_mean_month_{X} Mean monthly downward longwave radiation Wm2 RDRS
FI_std_month_{X} Standard deviation of monthly downward longwave radiation =~ W m ™2 RDRS
PO_mean_month_{X} Mean monthly surface pressure kPa RDRS!
PO_std_month_{X} Standard deviation of monthly surface pressure kPa RDRS!
vapr_mean_month_{X} Mean monthly vapor pressure kPa WorldClim
vapr_std_month_{X} Standard deviation of monthly vapor pressure kPa WorldClim
HU_mean_month_{X} Mean monthly specific humidity kgkg™? RDRS
HU_std_month_{X} Standard deviation of monthly specific humidity kgkg™! RDRS
HR_mean_month_{X} Mean monthly relative humidity kPakPa~! RDRS
HR_std_month_{X} Standard deviation of monthly relative humidity kPakPa~! RDRS
UVC_mean_month_{X} Mean monthly wind speed ms™t RDRS
UVC_std_month_{X} Standard deviation of monthly wind speed ms? RDRS
wind_mean_month_{X} Mean monthly wind speed ms WorldClim
wind_std_month_{X} Standard deviation of monthly wind speed ms? WorldClim
phi_mean_month_{X} Circular mean monthly wind direction °© RDRS
phi_std_month_{X} Circular standard deviation of monthly wind direction © RDRS
aridityl_mean_month_{X} Mean monthly aridity (PET/P) — RDRS
aridity1_std_month_{X} Standard deviation of monthly aridity — RDRS
aridity2_mean_month_{X} Mean monthly aridity (PET/P) — WorldClim
aridity2_std_month_{X} Standard deviation of monthly aridity — WorldClim
fracsnow1_mean_month_{X} Mean monthly snow fraction (°C degree threshold) — RDRS
fracsnow1_std_month_{X} Standard deviation of monthly snow fraction — RDRS
fracsnow2_mean_month_{X} Mean monthly snow fraction (°C degree threshold) — WorldClim
fracsnow?2_std_month_{X} Standard deviation of monthly snow fraction — WorldClim

! For consistency, we converted the RDRS units into those used in WorldClim.
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Table AS. Topographic attributes.

Attribute Description Units Data source
centroid_lat Basin centroid latitude degrees Varies

centroid_lon Basin centroid longitude degrees Varies

gauge_lat Station latitude degrees Varies

gauge_lon Station longitude degrees Varies

basin_area Basin area km? MERIT Hydro
elev_min Minimum elevation m.a.s.l. MERIT Hydro
elev_mean Mean elevation m.a.s.l. MERIT Hydro
elev_max Maximum elevation m.a.s.l. MERIT Hydro
elev_std Standard deviation of elevation m.a.s.l. MERIT Hydro
slope_min Minimum slope degrees’ MERIT Hydro
slope_mean Mean slope degrees MERIT Hydro
slope_max Maximum slope degrees MERIT Hydro
slope_std Standard deviation of slope degrees MERIT Hydro
aspect_min Minimum aspect degrees?  MERIT Hydro
aspect_mean Mean aspect degrees MERIT Hydro
aspect_max Maximum aspect degrees MERIT Hydro
aspect_std Standard deviation of aspect degrees MERIT Hydro
stream_length_min Minimum length from headwater to gauge km MERIT Hydro Basins
stream_length_mean  Mean length from headwaters to gauge km MERIT Hydro Basins
stream_length_max  Maximum length from headwater to gauge km MERIT Hydro Basins
stream_length_std Standard deviation of length from headwaters to gauge km MERIT Hydro Basins
stream_length_total ~ Total stream length km MERIT Hydro Basins
stream_order_max Stream order at gauge — MERIT Hydro Basins
stream_density Ratio of total stream length and area km™* Derived
elongation_ratio Ratio of diameter of circle with same size as basin and longest stream  — Derived

1 Slope angle.

2 Azimuth that slopes are facing, with 0° indicating North-facing slopes, 90° means East-facing, 180° South-facing, and 270° West-facing.
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Table A6. Open water attributes. For basins with no identified open water bodies or reservoirs, these attributes will be 0 and NaN.

Attribute Description Units Data source

open_water_number Number of open water bodies larger than 10 ha  — HydroLAKES
known_reservoirs Number of water bodies identified as reservoirs — — HydroLAKES
open_water_area_min Minimum open water area km? HydroLAKES
open_water_area_mean Mean open water area km? HydroLAKES
open_water_area_max Maximum open water area km? HydroLAKES
open_water_area_std Standard deviation of open water area km? HydroLAKES
open_water_area_total Total open water area km? HydroLAKES
open_water_volume_min Minimum open water volume km? HydroLAKES
open_water_volume_mean Mean open water volume km? HydroLAKES
open_water_volume_max Maximum open water volume km? HydroLAKES
open_water_volume_std Standard deviation of open water volume km? HydroLAKES
open_water_volume_total ~ Total open water volume km? HydroLAKES
reservoir_area_min Minimum reservoir area km? HydroLAKES
reservoir_area_mean Mean reservoir area km? HydroLAKES
reservoir_area_max Maximum reservoir area km? HydroLAKES
reservoir_area_std Standard deviation of reservoir area km?  HydroLAKES
reservoir_area_total Total reservoir area km? HydroLAKES
reservoir_volume_min Minimum reservoir volume km? HydroLAKES
reservoir_volume_mean Mean reservoir volume km? HydroLAKES
reservoir_volume_max Maximum reservoir volume km? HydroLAKES
reservoir_volume_std Standard deviation of reservoir volume km? HydroLAKES
reservoir_volume_total Total reservoir volume km? HydroLAKES
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Table A7. Vegetation and land cover attributes. Attributes ending in _{X/ are calculated per month, with X ranging from 01 to /2. Attributes
ending in _{Y} are calculated for specific years. Attributes ending in _{Z} are categorical attributes, where Z varies between different data

sets.

Attribute Description Units Data source
lai_mean_month_{X} Mean monthly Leaf Area Index m?m~2 MCDI5A2H.061
lai_std_month_{X} Standard deviation of monthly Leaf Area Index m?m~2 MCDI15A2H.061

forest_height_{Y}_min Minimum forest height in year 2000/2020 m GLCLUC 2000-2020
forest_height_{Y}_mean Mean forest height in year 2000/2020 m GLCLUC 2000-2020
m GLCLUC 2000-2020
m GLCLUC 2000-2020

forest_height {Y}_max  Maximum forest height in year 2000/2020
forest_height_{Y}_std Standard deviation of forest height in year 2000/2020

Ic1_{Z}_fraction Fraction of land cover class present in the basin — GLCLU 2019
1c2_{Z}_fraction Fraction of land cover class present in the basin — MCD12Q1.061
1c3_{Z}_fraction Fraction of land cover class present in the basin — LGRIP30
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Table A8. Subsurface attributes.

Attribute Description Units Data source
regolith_thickness_min Minimum upland and hillslope regolith thickness m Pelletier”
regolith_thickness_mean Mean upland and hillslope regolith thickness m Pelletier
regolith_thickness_max Maximum upland and hillslope regolith thickness m Pelletier
regolith_thickness_std Standard deviation of upland and hillslope regolith thickness m Pelletier
soil_thickness_min Minimum upland and hillslope soil thickness m Pelletier
soil_thickness_mean Mean upland and hillslope soil thickness m Pelletier
soil_thickness_max Maximum upland and hillslope soil thickness m Pelletier
soil_thickness_std Standard deviation of upland and soil regolith thickness m Pelletier
sedimentary_thickness_min Minimum upland, valley bottom and lowland sedimentary deposit thickness m Pelletier
sedimentary_thickness_mean  Mean upland, valley bottom and lowland sedimentary deposit thickness m Pelletier
sedimentary_thickness_max  Maximum upland, valley bottom and lowland sedimentary deposit thickness m Pelletier
sedimentary_thickness_std Standard deviation of upland, valley bottom and lowland sedimentary deposit thickness m Pelletier
average_thickness_min Minimum average soil and sedimentary deposit thicknesses m Pelletier
average_thickness_mean Mean average soil and sedimentary deposit thicknesses m Pelletier
average_thickness_max Maximum average soil and sedimentary deposit thicknesses m Pelletier
average_thickness_std Standard deviation of average soil and sedimentary deposit thicknesses m Pelletier
porosity_min Minimum porosity - GLHYMPS
porosity_mean Mean porosity — GLHYMPS
porosity_max Maximum porosity - GLHYMPS
porosity_std Standard deviation of porosity - GLHYMPS
log_permeability_min Minimum permeability? m? GLHYMPS
log_permeability_mean Mean permeability m? GLHYMPS
log_permeability_max Maximum permeability m? GLHYMPS
log_permeability_std Standard deviation of permeability m? GLHYMPS

1 For definitions and user notes, see: https://daac.ornl.gov/SOILS/guides/Global_Soil_Regolith_Sediment.html (last access: 2024-03-06).

2 Note that permeability & in the GLHYMPS database is given as log10(k), due to the many decimals places otherwise needed.
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Table A9. Subsurface attributes - continued: properties derived from Soilgrids data. Attributes are provided at six depths {D}: 0 — bcm,
5 —15cm, 15 — 30cm, 30 — 60cm, 60 — 100cm and 100 — 200cm, and for the Soilgrids mean (abbreviated in the table as {M}) and uncer-
tainty ({U} in the table) data fields. The mean values may be seen as expected values for a given grid cell, while the uncertainty is defined as

the 90% prediction interval divided by the median value for the cell.

Attribute Description Units Data source
bdod_{M/U}_{D}_min Minimum bulk density of fine earth cg cm ™3 Soilgrids
bdod_{M/U}_{D}_mean Mean bulk density of fine earth cgem ™3 Soilgrids
bdod_{M/U}_{D}_max Maximum bulk density of fine earth cgem™3 Soilgrids
bdod_{M/U}_{D}_std Standard deviation of bulk density of fine earth cgem™3 Soilgrids
cfvo_{M/U}_{D}_min Minimum volumetric content of fragments > 2 mm cm® dm~3 Soilgrids
cfvo_{M/U}_{D}_mean Mean volumetric content of fragments > 2 mm cm®dm™®  Soilgrids
cfvo_{M/U}_{D}_max Maximum volumetric content of fragments > 2 mm em®dm™  Soilgrids
cfvo_{M/U}_{D}_std Standard deviation of volumetric content of fragments >2 mm  cm®dm™2  Soilgrids
clay_{M/U}_{D}_min Minimum clay fraction gkg™! Soilgrids
clay_{M/U}_{D}_mean Mean clay fraction gkg™! Soilgrids
clay_{M/U}_{D}_max Maximum clay fraction gkg™! Soilgrids
clay_{M/U}_{D}_std Standard deviation of clay fraction gkg™! Soilgrids
sand_{M/U}_{D}_min Minimum sand fraction g kg*1 Soilgrids
sand_{M/U}_{D}_mean Mean sand fraction gkg™! Soilgrids
sand_{M/U}_{D}_max Maximum sand fraction gkg™! Soilgrids
sand_{M/U}_{D}_std Standard deviation of sand fraction gkg™! Soilgrids
silt_{M/U}_{D}_min Minimum silt fraction gkg™! Soilgrids
silt_{M/U}_{D}_mean Mean silt fraction gkg™! Soilgrids
silt_{M/U}_{D}_max Maximum silt fraction gkg™! Soilgrids
silt_{M/U}_{D}_std Standard deviation of silt fraction gkg™! Soilgrids
soc_{M/U}_{D}_min Minimum organic carbon content dgkg™? Soilgrids
soc_{M/U}_{D}_mean Mean organic carbon content dgkg™? Soilgrids
soc_{M/U}_{D}_max Maximum organic carbon content dgkg™* Soilgrids
soc_{M/U}_{D}_std Standard deviation of organic carbon content dgkg™* Soilgrids
porosity_{M}_{D}_min Minimum soil porosity — Soilgrids
porosity_{M}_{D}_mean Mean soil porosity - Soilgrids
porosity_{M}_{D}_max Maximum soil porosity — Soilgrids
porosity_{M}_{D}_std Standard deviation of soil porosity — Soilgrids
conductivity_{M}_{D}_min Minimum soil conductivity cmhr? Soilgrids
conductivity_{M}_{D}_mean Harmonic mean of soil conductivity? cmhr™! Soilgrids
conductivity_{M}_{D}_max Maximum soil conductivity cmhr? Soilgrids
conductivity_{M}_{D}_std Standard deviation of soil conductivity? cmhr™! Soilgrids

1 See: https://www.isric.org/explore/soilgrids/fag-soilgrids (last access: 2024-03-07).


https://www.isric.org/explore/soilgrids/faq-soilgrids

Table A10. Hydrologic signatures. Note that streamflow observations have been converted from m® s ™! to mm day ~! using the basin areas

of our newly delineated basin outlines. Please note the uncertainty in these area estimates (Figure 2). For each signature, we calculated a

sequence of yearly values, and then found the mean and standard deviation across all years for which data was available.

Attribute Description Units Data source
num_years_hyd Years of daily data used to calculate signatures years -
daily_discharge_mean Mean daily discharge mmday~*  USGS/WSC
daily_discharge_std Standard deviation of daily discharge mmday~'  USGS/WSC
daily_discharge_mean_month_{X}  Mean daily discharge for month X mmday~!  USGS/WSC
daily_discharge_std_month_{X} Standard deviation of average daily discharge in month X mmday '  USGS/WSC
runoff_ratio_mean Ratio of mean daily discharge to mean daily precipitation - USGS/WSC, RDRS
runoff_ratio_std Ratio of mean daily discharge to mean daily precipitation — USGS/WSC, RDRS
streamflow_elasticity Streamflow sensitivity to changes in precipitation® - USGS/WSC, RDRS
slope_fdc_mean Slope of the log-transformed flow duration curve (33" to 66!*  — USGS/WSC

percentile)®
slope_fdc_std Standard deviation of the log-transformed flow duration curve®  — USGS/WSC
bfi_mean Mean baseflow index (ratio of mean daily baseflow? to mean — USGS/WSC

daily discharge)
bfi_std Standard deviation of baseflow index — USGS/WSC
hfd_mean Circular mean half flow date® day of year USGS/WSC
hfd_std Circular standard deviation of half flow dates days USGS/WSC
q{Y}_mean* Mean Y% flow quantile, where q1 are low flows mmday~! USGS/WSC
q{Y}_std? Standard deviation of Y% flow quantiles mmday~! USGS/WSC

1 Calculated as described in Eq. 7 of Sankarasubramanian et al. (2001), with the modification described in Table 3 in Addor et al. (2017a).

2 Calculated from time series of baseflow derived using the Eckhardt (2005) digital filter method, as recommend and implemented by Xie et al. (2020).

3 Calculated as the day when cumulative flow in a water year passes half the total flow for that water year.

4Y is one of: [0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90. 0.95, 0.99].

5 In cases with zero flows, 0.1% of the mean flow is added to prevent issues with calculating the logarithm. Time steps with missing flow observations are removed from the calculation.
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Table A11. Hydrologic signatures - continued: frequency, duration and timing of high and low flow events.

Attribute Description Units Data source
no_flow_freq Frequency of no flow days daysyear~! USGS/WSC
no_flow_dur_mean Mean duration of no flow days days USGS/WSC
no_flow_dur_median Median duration of no flow days days USGS/WSC
no_flow_dur_skew Skew of no flow day durations — USGS/WSC
no_flow_dur_kurtosis Kaurtosis of no flow day durations — USGS/WSC
no_flow_timing Season during which most no flow days occur season USGS/WSC
low_flow_freq Frequency of low flow days (< 0.2 times the mean daily flow)* daysyear~' USGS/WSC
low_flow_dur_mean Mean duration of low flow days (< 0.2 times the mean daily flow) days USGS/WSC
low_flow_dur_median Median duration of low flow days (< 0.2 times the mean daily flow) days USGS/WSC
low_flow_dur_skew Skew of low flow day durations (< 0.2 times the mean daily flow) — USGS/WSC
low_flow_dur_kurtosis Kurtosis of low flow day durations (< 0.2 times the mean daily flow) — USGS/WSC
low_flow_timing Season during which most low flow days occur (< 0.2 times the mean daily flow)  season USGS/WSC
high_flow_freq Frequency of high flow days (> 9 times the median daily flow)* daysyear~' USGS/WSC
high_flow_dur_mean Mean duration of high flow days (> 9 times the median daily flow) days USGS/WSC
high_flow_dur_median =~ Median duration of high flow days (> 9 times the median daily flow) days USGS/WSC
high_flow_dur_skew Skew of high flow day durations (> 9 times the median daily flow) — USGS/WSC
high_flow_dur_kurtosis  Kurtosis of high flow day durations (> 9 times the median daily flow) — USGS/WSC
high_flow_timing Season during which most high flow days occur (> 9 times the median daily flow) season USGS/WSC

! For consistency, we use the same definitions of dry and wet days as used in Addor et al. (2017a).
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