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Abstract. We used aerosol data from surface-based AErosol RObotic NETwork (AERONET) and day-ahead aerosol optical

depth (AOD) forecasts from the Copernicus Atmosphere Monitoring Service (CAMS) to examine the spatiotemporal variations

in AOD at selected sites worldwide. We evaluated three methods for day-ahead AOD forecasting: AERONET 1-day (and 2-

day) persistence or monthly mean, along with CAMS forecast. High values of daily mean AOD indicates larger day-to-day

variability in AOD and lower predictability. Using radiative transfer modeling, we quantify deviations in forecasts of cloud-free5

direct normal irradiance (DNI) induced by errors in AOD forecasts. The performance of each AOD forecast method in DNI

forecast is assessed and compared. Taking into account the characteristic aerosol types at selected locations, we also draw

quantitative implications about the reliability and usability of CAMS AOD forecasts for DNI forecasts as alternatives to AOD

forecasts based on approaches using ground-based measurements. For example, CAMS forecasts perform better at more sites

than AERONET persistence approaches do, among them many urban-industrial aerosol sites. AERONET persistence forecasts10

AOD with lower errors at dust aerosol sites. To date, none of the forecast methods for AOD discussed here reliably achieve an

accuracy of < 5 % deviation in day-ahead forecasts of direct normal irradiation (daily sum), but most of the sites can expect

better DNI forecasts with a threshold of 20 % DNI deviation.

1 Introduction

Besides solar photovoltaics (PV), concentrating solar power (CSP) is another promising solar energy technology growing15

fast in recent years (IEA, 2020). CSP only operates in regions with high direct normal irradiance (DNI, > 200 Wm−2) and

low cloud cover (Schroedter-Homscheidt et al., 2013). In such high-DNI regions, tracked PV also yields e.g. 25-35 % more

using dual-axis tracking than fixed-tilt systems (Wang et al., 2023). Accurate and reliable forecasts of solar resources thus are

important for both PV systems and CSP plants (Yang et al., 2022), which possess the potential to mitigate energy crisis and

climate change at the regional and global scales.20

Solar forecasts of global irradiance for PV systems are primarily affected by the uncertainty of clouds. DNI, as on component

of global irradiance, is attenuated by aerosols to a larger extent than the diffuse component. Therefore, aerosols play the main

role in DNI forecasts for CSP applications in regions with high insolation and low cloudiness (Xu et al., 2016). The intensity of

aerosols critically affects surface solar radiation (SSR) availability in some of the most sunshine-privileged regions, including

North Africa (Mona et al., 2023; Xiong et al., 2020; Neher et al., 2017), Middle East (AL-Rasheedi et al., 2020; Gueymard25
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and Jimenez, 2018), and the Mediterranean (Tuna Tuygun and Elbir, 2024; Masoom et al., 2023; Fountoulakis et al., 2021),

concurrent with low cloudiness. . Even Central Europe belongs to a much-affected region with higher sensitivity of solar energy

production to aerosols (Blaga et al., 2024). In desert regions or regions suffered from air pollution such as Northern China (Gao

et al., 2024; Tang et al., 2023) and India (Masoom et al., 2021), the soiling of solar collectors due to dust is a concern (Yang

et al., 2022).30

The extinction of solar radiation by atmospheric aerosols is conventionally quantified by aerosol optical depth (AOD).

Studies show that the disagreement in irradiances between models and measurements is often linked to models’ AOD input

(Yang et al., 2022; Gueymard, 2010). To forecast short-term AOD (e.g., within two days ahead) before assessing its effect

on DNI, it is essential to understand its temporal variability in the first place. Sources of AOD data can be ground-based

measurements (e.g., the AErosol RObotic NETwork, AERONET, Holben et al. (1998), or the Global Atmosphere Watch35

Precision Filter Radiometer, GAW-PFR Network, Kazadzis et al. (2018)) or satellite observations. On the one hand, ground-

based stations measure aerosols more accurately based on passive remote sensing using radiometers and active remote sensing

using LiDARs. However, compared to measurement stations dedicated to other meteorological parameters such as temperature

and precipitation, ground sites measuring AOD remain sparse at the global scale (Sengupta et al., 2021). On the other hand,

contemporary satellite observations provide vast spatial coverage and long records with relatively high sampling frequency40

(Gkikas et al., 2021).

The literature contains several studies that investigated the effect of aerosols on solar radiation forecasts: Gueymard (2012)

introduced the Aerosol Variability Index to describe the temporal variability of AOD from daily to yearly scales and the Aerosol

Sensitivity Index to quantify the effects of absolute variations in AOD on relative variations in SSR. Schroedter-Homscheidt

et al. (2013) examined the DNI deviation induced by deviations in AOD across the globe using ground-based measurements45

and atmospheric modeling data. They then discussed the usability of AOD products in solar radiation forecasting, especially

DNI under clear-sky conditions. Salamalikis et al. (2021) also evaluated the influence of AOD accuracy on uncertainties in

cloud-free DNI estimates using AOD reanalysis products of global coverage. More recently, Chen et al. (2023) classified

four aerosol types based on size distributions and absorptivity using AERONET data and determined the influence of aerosol

properties on surface aerosol radiative forcing efficiency. Ansari and Ramachandran (2024) compared the aerosol products50

from Copernicus Atmosphere Monitoring Service (CAMS) and MERRA-2 in terms of physical properties and spatiotemporal

variability over Asia and discovered a superior performance of CAMS in modeling AOD.

However, it remains unclear to which degree we can reconcile the reliability of ground-based measurements of AOD with

the wide coverage of model-based AOD for use cases of DNI forecasts worldwide. The questions include which AOD source

can provide day-ahead forecasts of irradiance with what level of accuracy and which forecast method to use at a site with55

certain aerosol types. Using the more recent CAMS AOD forecast, this study revisits Schroedter-Homscheidt et al. (2013) with

a similar approach and metrics as suggested by them more than a decade ago. We aim to first examine AOD data sets based

on ground-based measurements at selected sites worldwide and quantify the day-to-day AOD variation. We then evaluate three

methods to forecast AOD. Next, using the radiative transfer model (RTM) calculations, deviations in cloud-free DNI caused

by differences in AOD forecast are quantified, which are directly linked to the accuracy of DNI forecasts. One objective is to60
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assess the reliability and usability of model-based data for AOD forecasts as alternatives to AOD forecasts based on approaches

using ground measurements. Last but not least, we also assess DNI forecasts on locations with different aerosol types and draw

implications.

2 Data

We used the following aerosol data sets: Level-2 (cloud screened and quality assured) ground-based AOD measurements65

from the AERONET Version 3 (Giles et al., 2019) and AOD forecasts from CAMS (Bouarar et al., 2024). AERONET AOD

measurement is commonly used as the ground truth for validating and assessing satellite retrievals or reanalysis-based AOD

products (Zhang et al., 2024). CAMS obtains the initial conditions of each forecast by combining a previous forecast with cur-

rent satellite observations through data assimilation (Bozzo et al., 2020). The aerosol modeling scheme includes the following

components: dust, organic carbon, black carbon, sulfate AOD and sea salt. CAMS forecasts are validated against ground-based70

measurements from AERONET and are available from 2015, providing hourly forecasts up to five days ahead. Validation of

CAMS reanalysis with AERONET data (Inness et al., 2019) suggests a mean bias of -0.003 ± 0.110 in total AOD globally for

the period 2003-2016, with positive mean biases over North America and Africa, and largest standard deviation (0.184) over

Southeast Asia.

We selected 21 AERONET sites worldwide for the analysis (Fig. 1). Our first criterion of the AERONET site selection75

is the length of the records with consecutive days from 2010 to 2020. At most sites selected, more than 1200 daily values

(average calculated from at least three measurements during the day) for consecutive days from 2010 to 2020 are available.

The second criterion follows the aerosol classification by Hamill et al. (2016), which classifies AERONET sites worldwide

according to five major aerosol types: biomass, dust, maritime, mixed and urban-industrial. A wide geographical distribution

is also considered as the third selection criterion. Therefore, the sites with consecutive days of records < 1000 (Beijing, Capo80

Verde and Kuwait) are nevertheless included in our analysis. Selected sites with representative aerosol types and country are

listed in Table 1. The coordinates and elevation (above sea level) of the sites can be found in Table A1 in the Appendix.

The SSR simulation of DNI for cloud-free conditions was performed using the uvspec model from the libRadtran package

(Emde et al., 2016; Mayer and Kylling, 2005). Besides AOD, AE and solar zenith angle (SZA), other input parameters needed

are the total column water vapor (TCWV), single scattering albedo (SSA), total ozone column (TOC) and the Earth’s albedo.85

TCWV and SSA are both available from AERONET, where we adopted monthly mean SSA calculated from daily values. We

obtained TOC from the Ozone Monitoring Instrument (OMI) TOMS-Like Level-3 product (Bhartia, 2012), which is available

daily on a 1°×1° global grid. Pre-calculated look-up tables (LUT) provide hourly solar irradiance values using combinations of

possible parameters. Papachristopoulou et al. (2022a) described the interpolation applied on the spectrally integrated irradiance

to derive finer LUTs covering over millions of RTM runs: AOD (0:0.05:2, 2.5, 3), AE (0:0.4:2), TCWV (0:1:3, in cm), SSA90

(0.6:0.1:1), TOC (200:100:400, in Dobson Unit) and SZA (1:1:89, in °) and the surface albedo was set to 0.2. Table 2 provides

an overview of the used datasets.
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Table 1. 21 AERONET sites grouped by main aerosol type used in this study, with country and mean AOD. Sites marked with * are classified

with more than one typical aerosol type.

Aerosol type Site Country mean AOD Other aerosol type

Biomass

Alta Floresta Brazil 0.29 /

Buenos Aires* Argentina 0.33 Mixed

Lake Argyle Australia 0.12 /

Mongu Zambia 0.28 /

Urban-

industrial

Arica* Chile 0.19 Mixed

Belsk Poland 0.21 /

GSFC USA 0.15 /

Lille France 0.18 /

Mexico City* Mexico 0.34 Biomass, mixed

São Paulo* Brazil 0.21 Mixed

Thessaloniki Greece 0.21 /

Mixed

Bandung Indonesia 0.45 /

Beijing China 0.57 /

Kanpur* India 0.70 Dust

Osaka Japan 0.26 /

Dust

Banizoumbou Niger 0.48 /

Capo Verde Capo Verde 0.12 /

Kuwait Kuwait 0.37 /

Tamanrasset Algeria 0.26 /

Maritime
Lampedusa* Italy 0.17 Dust

Santa Cruz Tenerife* Spain 0.15 Dust

Table 2. Overview of the used datasets.

Data source Parameter Spatial resolution Temporal coverage Reference

AERONET AOD, AE, WV, SSA by site varies by sites Giles et al. (2019)

CAMS forecast AOD 0.4°× 0.4° hourly since 2015 Bouarar et al. (2024)

OMI TOMS-Like O3 1°× 1° daily since 2004-10-01 Bhartia (2012)
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Figure 1. Map of 21 selected AERONET sites.

3 Methodology

Since the intra-day variation of AOD results in small variation of DNI for most AERONET sites (Schroedter-Homscheidt

et al., 2013), we used daily AOD (average calculated from at least three measurements during the day) at the wavelength of95

500 nm (AOD500) from AERONET sites as the reference. Hourly forecasts of AOD at 550 nm (AOD550) on the following

day are extracted from CAMS based on the coordinates of the AERONET sites. The Ångström exponent (AE) between 440

and 870 nm from AERONET is applied in the Ångström formula to interpolate AOD to the common wavelength 500 nm with

AERONET as expressed in Eq. 1:

AOD500 =
AOD550

( 550500 )
−AE

(1)100

Day-to-day AOD variation is quantified for each site. To forecast the day-ahead AOD, we examined three approaches:

1. persistence (assumes daily AOD remains the same in one or two days) using AERONET,

2. monthly mean (2010-2020) AOD from AERONET,

3. CAMS AOD forecast product.

Compared with the day-ahead AOD measurement from AERONET, Pearson correlation coefficients and root-mean-square105

error (RMSE), mean absolute error (MAE) and mean bias error (MBE) with standard deviation by each method are computed

for each site. Based on these accuracy measures in AOD forecasts compared with AERONET measurements, the optimal
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forecast method is identified for each site. We also discuss the characteristics of AOD forecasts at different locations with

representative aerosol types. Relative deviation in DNI caused by deviation in AOD forecast is computed for individual sites.

While focusing in more detail on the selected sites with certain aerosol characteristics, we also draw implications at a regional110

scale.

To take into account the diurnal variability of AOD, we compared the effect of using daily or hourly AOD forecasts by CAMS

on simulated DNI for the sites Beijing, Lake Argyle and Thessaloniki, which have high, low and moderate AOD variability,

respectively. Intra-hour AOD measurements from AERONET are assigned timestamps of the closest hour to match the hourly

AOD forecasts from CAMS. Next, we computed daily integrals of DNI estimates based on AOD by three forecast methods115

and other parameters listed in Table 2, before calculating the percentage of days with predefined thresholds of DNI deviation

compared with simulated DNI using AOD measurements from AERONET.

4 Results and discussion

We first present the results of daily AOD at 500 nm at the 21 selected AERONET sites. Figure 2 shows the distribution of

daily AOD for all the sites grouped by regions. In general, European and American sites have the lowest mean AOD, as found120

in Papachristopoulou et al. (2022b). The majority of the sites have its 3rd quartile lower than 0.5. Kanpur, an Indian site

characterized by mixed and dust aerosols, has the highest AOD median, partly because South Asia is heavily influenced by the

coarse mode dust aerosol from seasonal transport (Ansari and Ramachandran, 2024). Also a mixed aerosol site, Beijing has

the largest interquartile range (IQR) in daily AOD.

Dust aerosol-dominated sites such as Banizoumbou and Tamanrasset in Northern Africa, as well as Kuwait in Middle East125

generally have over-average high AOD values. The mixed aerosol site Bandung (Indonesia) is also among the sites with the

highest daily AOD. Lampedusa and Santa Cruz de Tenerife, both islands near the African coast, belong to maritime aerosol

sites and have lower daily AOD than dust sites.

At the three selected European sites (Belsk, Lille and Thessaloniki), all of them characterized by urban-industrial aerosols,

the IQR of daily AOD is similar. In Japan, a significant amount of urban-industrial aerosols exists (Hamill et al., 2016), as130

the site Osaka exemplifies. Another urban site, Arica (Chile), has the smallest IQR in daily AOD among all selected sites.

Compared to Arica, the site GSFC (Goddard Space Flight Center, situated in suburban Washington, D.C., USA) has a lower

limit on daily AOD. There, local emissions are dominated by automobiles rather than industry (Smirnov et al., 2002).

Sites with biomass aerosols Alta Floresta in the Amazonia, Lake Argyle (Australia) and Mongu in Southern Africa share a

similar pattern, with the range of the 3rd quartile much larger than the 2nd one. The Southern American sites Buenos Aires and135

São Paulo both have considerable amount of mixed aerosols, yet Buenos Aires has overall the lowest AOD among the selected

sites.
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Figure 2. Distribution of daily AOD at 500 nm for 21 AERONET sites in this study. Boxes expand the interquartile range (IQR) of the

differences. Whiskers correspond to 1.5 times the IQR. Outliers are not plotted. For readability, we set the y-axis limit to be 1.5, which cut

the upper whisker of the Beijing box.

4.1 Day-to-day AOD variability

The distribution of absolute day-to-day differences in AOD (Fig. 3) for the selected sites shares a similar pattern to the distri-

bution of mean daily AOD (Fig. 2). Beijing is the site with the largest day-to-day AOD variability among them, exceeding 1 at140

the upper limit. The day-to-day AOD variability is sufficiently close between Bandung and Kanpur, both among the highest.

Mexico City also has a higher than average day-to-day variation in AOD. For these aforementioned sites, the proportion of

mixed aerosols is considerable. On the other side, Arica, Buenos Aires and Lake Argyle have the smallest day-to-day AOD

variability, with the IQR smaller than other sites. Sites with day-to-day AOD variability on the lower end (the 3rd quartile or

median < 0.1) further include Alta Floresta, Belsk, GSFC, Lampedusa and Santa Cruz de Tenerife. Therefore, sites classified145

as predominantly biomass aerosols, maritime aerosols and some urban-industrial aerosol sites have lower day-to-day AOD

variability than sites with other major aerosol types.
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Figure 3. Distribution of absolute day-to-day difference in daily mean AOD for 21 AERONET sites in this study. Boxes expand the in-

terquartile range (IQR) of the differences. Whiskers correspond to 1.5 times the IQR. Outliers are not plotted. For readability, we set the

y-axis limit to be 0.8, which cut the upper whisker of the Beijing box.

The monthly distribution of absolute day-to-day difference in AOD for three selected sites is shown in Fig. 4. Alta Floresta is

characterized by drastically increased aerosol load from September, which could be associated with seasonal biomass burning

in Amazonia (Schumacher and Setzer, 2024). Arica, situated on the northwestern Chilean coast, has a low day-to-day AOD150

variation throughout the year (also low seasonal variability) despite its arid desert climate. Beijing, as mentioned earlier, has

relatively high day-to-day AOD variation all year round, although most pronounced during summer. In addition, anthropogenic

emissions in autumn and winter result in frequent severe haze events in Beijing, significantly reducing available SSR there

(Cheng et al., 2022).
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Figure 4. Monthly distribution of the absolute day-to-day difference in daily mean AOD for three selected sites, representing seasonal

variability, small and large intra-annual variability. The vertical range is homogenized to be [-1, 1].

4.2 AOD Forecasts155

We investigated both 1-day and 2-day forecasts based on AERONET. This was based on the fact that even if most AERONET

data can be derived in near real time for forecasting SSR for the next day energy market, AERONET data of today could

be available only at the end of the day, thus next-day forecast should be performed relatively late for such applications. In

terms of which method forecasts 2-day-ahead AOD the best, Table 3 summarizes the best-performing forecasting methods for

each site based on Pearson correlation coefficient, RMSE or MAE. At 10 of 21 sites, CAMS forecasts perform the best with160

the maximum correlation and the minimum errors. The site Lake Argyle has the highest correlation and lowest errors by the

AERONET 2-day persistence method. Based on the minimization of both errors, AERONET monthly mean performs the best

at six sites, although the correlation and MAE would suggest using one of the two other forecast methods at five of these sites

except Mexico City: in Arica and Bandung, the highest correlation can be achieved by 2-day persistence, whereas using the

AERONET monthly mean leads to the smallest errors; in Beijing and Kuwait, CAMS forecast has the highest correlation.165

If grouped by aerosol types, at three biomass aerosol sites, CAMS forecast has the advantage. It also performs the best for the

two maritime sites (both also partly loaded with dust aerosols). Three of the four dust-aerosol sites favor CAMS forecasts, and

the site Kuwait obtained better results from AERONET monthly mean in terms of RMSE and MAE. As for the urban-industrial

sites, which are the most numerous in our analysis, CAMS forecasts support more sites (5) than the AERONET methods (2).

In the following, the three accuracy measures are examined individually for each forecast method. Figure 5 shows the170

correlation coefficients of the AERONET measurement with the AOD forecast by forecast methods detailed earlier. Based on

the correlation, CAMS forecasts perform the best at 11 of the 21 sites, and the second best at 5 other sites, thus generally

outperforming the forecast methods using AERONET AOD. The correlation can be as high as nearly 85 % by AERONET

1-day persistence at several sites to as low as < 15 % by CAMS forecast in Mexico City. For one site, such as Buenos Aires,

forecasts by these three methods can differ a lot or be fairly close, such as in Kanpur. CAMS forecasts perform the worst among175

the forecast methods only at the site Mexico City. Furthermore, Mexico City, Bandung, Osaka and Beijing are sites where all

the forecast methods fail to achieve a correlation coefficient higher than 0.5. Hamill et al. (2016) pointed out that Mexico City
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Table 3. 21 AERONET sites, corresponding aerosol types and the best-performing forecasting methods (AERONET 2-day persistence is

denoted as p, AERONET monthly mean as m, and CAMS forecasts as c) for each site based on maximum Pearson correlation coefficient

(corr) or minimum errors (RMSE or MAE). Sites marked with * are classified with more than one typical aerosol type (Table 1).

Aerosol type Site max corr min RMSE min MAE

Biomass

Alta Floresta c c c

Buenos Aires* c c c

Lake Argyle p p p

Mongu c c c

Urban-

industrial

Arica* p m m

Belsk c c c

GSFC c c c

Lille c c c

Mexico City* m m m

São Paulo* c c m

Thessaloniki c c c

Mixed

Bandung p m m

Beijing c m m

Kanpur* c m c

Osaka c m m

Dust

Banizoumbou c c c

Capo Verde c c c

Kuwait c m m

Tamanrasset c c m

Maritime
Lampedusa* c c m

Santa Cruz Tenerife* c c c

is one of the most difficult sites to classify since besides urban-industrial aerosols, biomass and mixed aerosols are almost

equal-proportionally present there. Besides, Mexico City is a site that is advised to exclude due to volcanic eruptions when

calculating the global mean using CAMS reanalysis (Inness et al., 2019).180

Figure 6 shows the MAE (top) and RMSE (bottom) of the AOD forecast by forecast methods compared with the AERONET

measurements. Arica and Buenos Aires are sites with the sites with the lowest errors. On the contrary, Beijing and Kanpur are

among the sites with the highest errors. At most sites, MAE and RMSE in AOD forecasts are close using all these forecasting

methods; exceptions are Kuwait and Mexico City, where CAMS forecasts produce much larger errors than using AERONET-

based forecasting methods. With smaller differences in errors, CAMS forecasts also perform the worst among the these forecast185

methods at the site Lake Argyle.
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Figure 5. Correlation coefficients of the AERONET measurement with the daily mean AOD forecast by three forecast methods: CAMS

forecast (green rectangles), AERONET 1-day (purple circles) and 2-day (orange circles) persistence and AERONET monthly mean (yellow

diamonds), sorted in descending order by CAMS forecast.

At the sites Lampedusa and Tamanrasset, both loaded with dust aerosols, despite the discrepancy of forecast methods based

on minimum RMSE or MAE, the MAE using the AERONET monthly mean does not differ much from CAMS forecast, which

supports the use of CAMS as the optimal forecast method. At the site Kanpur and São Paulo, where the minimum MAE and

minimum RMSE also indicate distinct optimal forecast methods, Fig. 6 reveals that the errors by AERONET monthly mean is190

very close to that by CAMS forecast.
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Figure 6. MAE (top) and RMSE (bottom) of the daily mean AOD forecast by three forecast methods: CAMS forecast (green rectangles),

AERONET 1-day (purple circles) and 2-day (orange circles) persistence and AERONET monthly mean (yellow diamonds), sorted in ascend-

ing order by CAMS forecast in terms of RMSE.
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4.3 Intraday AOD variability

In this work, we have used daily AOD values in order to forecast AOD for the next 1 or 2 days. However, these averages from

both AERONET and CAMS are calculated based on all available data within a day. In order to investigate the effect of this

averaging approach on our results, we performed a sensitivity study calculating deviation in DNI with two different methods.195

Table 4 shows the accuracy measures of DNI using daily or hourly AOD from CAMS for the sites Beijing, Lake Argyle

and Thessaloniki. The correlation of DNI using daily AOD from CAMS with daily AOD from AERONET measurements is

generally higher than when hourly AOD is used. At the same time, using daily CAMS AOD leads to smaller errors in DNI

than hourly values, except for mean bias error (MBE) at the site Lake Argyle. Note that the hourly AOD measurements at

AERONET sites are limited and irregular, resulting in few coincident data points with the hourly AOD by CAMS. Thus, the200

comparison of hourly AOD is based on much fewer data points than using interpolated daily AOD.

Table 4. Comparison of accuracy measures of DNI (corr unitless, the other measures in Wm−2) using daily or hourly AOD from CAMS for

the sites Beijing, Lake Argyle and Thessaloniki.

Daily Hourly

Beijing:

corr 0.678 0.298

RMSE 242 340

MAE 183 275

MBE ± std -92.5 ± 224 -116 ± 319

Lake Argyle:

corr 0.955 0.855

RMSE 90.0 115

MAE 63.2 84.5

MBE ± std -46.9 ± 76.7 -32 ± 110

Thessaloniki:

corr 0.957 0.719

RMSE 73.4 146

MAE 53.0 112

MBE ± std -13.6 ± 72.1 -17.8 ± 145
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4.4 DNI forecasts

Figure 7 presents an example of the 2-day AOD variation versus the relative deviation of DNI forecasts for the site Thessaloniki

from July 2015 to December 2020 based on AERONET 2-day persistence or CAMS forecasts with AERONET measurement.

There is a concentration of data points at the origin in both plots. Both forecasts reveal a negative relationship between 2-day205

AOD variation and relative deviation in DNI forecasts, with the distinction that AERONET 2-day persistence also forecasts

sporadic data pairs with a positive correlation.

Figure 7. Relative deviation of DNI forecasts versus 2-day AOD variation in Thessaloniki from July 2015 to December 2020 based on

AERONET 2-day persistence (left) or CAMS forecast (right) with AERONET measurement.

When all selected sites are considered, we can find a positive relationship between the relative RMSE of DNI forecasts based

on AERONET 2-day persistence and mean absolute 2-day AOD variation, as shown in Fig. 8. Color codes denote the mean

AOD of each site. The majority of these sites have a mean AOD below 0.4. The mean absolute 2-day AOD variation at most210

sites is below 0.2, corresponding relative RMSE lower than 30 %. Beijing has a slightly lower mean AOD than Kanpur, yet

the mean absolute 2-day AOD variation in Beijing is much higher than other sites, which results in a relative RMSE in DNI

much higher, reaching > 60 %. On the other hand, it can be confirmed again that Arica, as one of the sites with the smallest

2-day AOD variation, experiences the smallest relative errors in DNI forecasts using AOD by AERONET 2-day persistence.

Fig. 8 quantifies the relationship between mean 2-day difference in AOD and relative RMSE in DNI, which aids in estimating215

the DNI deviation for further sites once the mean difference in AOD is known.

To summarize the performance of each AOD forecast method in 2-day-ahead DNI forecasting, Fig. 9 presents the percentage

of days at each site with DNI deviation > 5 % and Fig. 10 with the percentage > 20% due to 2-day AOD variation using

AERONET persistence, CAMS forecasts and AERONET climatology. For most sites, when the threshold is set to 5 %, more

than 70 % of the days (up to 100 %), the DNI deviation is higher than this threshold, regardless of the forecast method used220

for AOD. If a DNI deviation of within 20 % is chosen, most sites have at least half of the days satisfying this criterion (10–50

% of the days failing), notably the southern American site Arica and the Australian site Lake Argyle (< 10 % of the days with
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Figure 8. Relative deviation of DNI forecasts versus mean 2-day AOD variation by AERONET 2-day persistence for 21 sites. Color codes

denote the mean AOD of each site.

> 20 % DNI deviation). Exceptions include Beijing, which would have more than 60 % of the days with DNI deviation > 20

% using any of the three forecast methods for AOD. The site Kuwait in the Middle East would also experience 50-60 % of

the days with higher than 20 % deviation in DNI forecasts when CAMS AOD forecast is used; the percentage of such days225

would decrease to < 40 %, when adopting forecast methods from AERONET (persistence or monthly mean). Kosmopoulos

et al. (2017) pointed out that CAMS overestimates DNI under high aerosol loads, which to a certain extent explains the inferior

performance of CAMS forecast for the sites Beijing and Mexico City, where there are predominantly mixed aerosols. Another

location to take caution is the northwestern African site Banizoumbou (situated south of the Saharan desert) since all three

forecast methods report ±50 % of days surpassing the DNI deviation threshold of 20 %, which indicates less reliable forecasts230

there than at fellow dust aerosol sites. In the end, an acceptable deviation in DNI depends on the location-specific requirements

of user groups.
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Figure 9. Percentage of days with > 5 % deviation in daily sum of DNI due to day-to-day AOD variation using CAMS forecasts (top),

AERONET 2-day persistence (middle), and AERONET climatology (bottom).
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Figure 10. Percentage of days with > 20 % deviation in daily sum of DNI due to day-to-day AOD variation using AERONET 2-day

persistence (top), CAMS forecasts (middle) and AERONET climatology (bottom).

17



Last but not least, Figure 11 shows the relative RMSE (rRMSE) in DNI forecasts due to 2-day AOD variation using the

three forecast methods. The relative RMSE in DNI at most sites is lower than 30 %. The sites Arica and Lake Argyle have

the minimum rRMSE (down to < 10 %), and Beijing has the maximum, by both AERONET 2-day persistence and monthly235

mean. The sites Beijing, Mexico City, Kanpur and Kuwait could expect improvements in the CAMS AOD forecast to reduce

the deviations in DNI forecasts there.

5 Summary and outlook

To sum up, this study analyzes the spatiotemporal variability in AOD from ground measurements. CAMS AOD forecast is

compared with forecast methods based on AERONET measurements. The induced deviation in DNI forecasts due to day-to-240

day AOD variation is also quantified, and implications in terms of geographical regions as well as aerosol types are derived.

Day-to-day AOD variability is high at locations with high aerosol load, e.g., Beijing and Mexico City, both characterized by

mixed aerosols. At dust aerosol sites, we also found high day-to-day AOD variability.

At different sites, the optimal AOD forecasts with the highest correlation or the smallest errors come from different data

sources and forecast methods, which the sites’ representative aerosol types can sometimes inform, providing information about245

the usability of model-based AOD forecasts as alternatives to AOD forecasts using ground measurements. CAMS forecasts

perform better at more sites than AERONET persistence, among them many urban-industrial aerosol sites. AERONET persis-

tence forecasts AOD with lower errors at dust aerosol sites. Under cloudless conditions, AOD variability results in the deviation

of DNI forecasts from actual values, which demonstrates the anti-correlation of AOD levels with DNI forecast accuracy. At the

accuracy level of 5 % deviation in 2-day-ahead DNI forecasts, none of the AOD forecast methods discussed here satisfactorily250

meet the requirements. We can expect better results achievable at many more sites with a threshold of 20 % DNI deviation, e.g.

70 - 80 % of the time in Europe and North America. Still, the performance of CAMS forecasts at dust aerosol sites in desert

regions needs improvement.

For prospect research, seasonal and interannual variability or trends of AOD could be examined. Relative deviations in hourly

DNI caused by deviations in hourly AOD forecast could be quantified and compared with clear-sky climatology. Moreover,255

to corroborate or elaborate on the findings about the usability of model-based AOD forecasts or forecasts based on ground

measurements presented here, more site-specific case studies are needed. One can further investigate the characteristics of

direct solar irradiance forecasts on locations with different aerosol types. In addition, research in this field would benefit from

longer quality-assured surface-based aerosol measurements.

Code and data availability. Version 3 AOD data are freely available from the AERONET website (https://aeronet.gsfc.nasa.gov, last access:260

1 December 2024). All the used and processed data for this paper can be requested from the corresponding author.
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Figure 11. Relative RMSE in DNI forecasts due to day-to-day AOD variation using CAMS forecasts (top), AERONET 2-day persistence

(middle), and AERONET climatology (bottom).
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Table A1. Information on the stations (alphabetically ordered) from the AERONET used in this study. N refers to the number of quality-

assured consecutive days at each site.

Site lat. [°] lon. [°] Elevation [m] N

Alta Floresta 9.87 S 56.10 W 277 1718

Arica 18.47 S 70.31 W 25 2191

Bandung 6.90 S 107.60 E 826 1522

Banizoumbou 13.55 N 2.67 E 274 2839

Beijing 39.98 N 116.38 E 92 739

Belsk 51.84 N 20.79 E 190 1611

Capo Verde 16.73 N 22.94 W 60 534

CEILAP-BA (Buenos Aires) 34.56 S 58.51 W 26 2277

GSFC (Washington D.C.) 38.99 N 76.84 E 87 2810

Kanpur 26.51 N 80.23 E 123 2647

Kuwait(_Uni) 29.30 N 48.00 E 42 600

Lake_Argyle 16.10 S 128.70 E 150 2170

Lampedusa 35.52 N 12.63 E 45 1569

Lille 50.61 N 3.14 E 160 1965

Mexico City 19.33 N 99.18 W 2268 2061

Mongu(_Inn) 15.30 S 23.10 E 1040 1558

Osaka 34.65 N 135.60 E 50 2216

Santa Cruz Tenerife 28.47 N 16.25 W 52 2850

Sao Paulo 23.56 S 46.74 W 786 1237

Tamanrasset(_Inn) 22.79 N 5.53 E 1377 2728

Thessaloniki 40.63 N 22.96 E 60 2017
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