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Abstract. The atmospheric CO, growth rate (CGR) is characterised by large interannual variability, mainly due to variations
in the land carbon uptake, the most uncertain component in the global carbon budget. We explore the relationships between
CGR and global terrestrial water storage (TWS) from the GRACE satellites. A strong negative correlation (r = -0.70, p <
0.01, based on monthly data) between these quantities over 2002-2023 indicates that drier years correspond to a higher CGR,
suggesting reduced land uptake. We then show regional TWS-CGR correlations and use a metric to assess their contributions
to the global correlation. The tropics can account for the entire global TWS-CGR correlation, with small cancelling contri-
butions from the Northern and Southern Hemisphere extratropics. Tropical America makes the dominant contribution (69%)
to the global TWS-CGR correlation, despite occupying < 12% of the land surface. Aggregating TWS by MODIS land cover
type, tropical forests exhibit the strongest CGR correlations and contribute most to the global TWS-CGR correlation (39%),
despite semi-arid and cropland/grassland regions both having more interannual TWS variability. Tropical forests exhibit the
strongest CGR correlations due to their high productivity and sensitivity to water stress, which strongly influences interannual
variations in carbon uptake. An ensemble mean of eight atmospheric CO- flux inversion products also indicate a 66% tropical
contribution to CGR variability, with tropical America/Africa contributing 27%/28% respectively. Regarding land cover type,
semi-arid/tropical forests contribute almost equally (37%/35%) to CGR variability, although tropical forests cover a much
smaller surface area (25%/10%). Time series of global and regional TWS and CO5 flux inversions through 2002-2023 also
show changing regional contributions between global CGR events, which are discussed in relation to regional drought and
ENSO events. Our study advances previous work by providing a more detailed analysis of regional contributions and doing a

temporal breakdown of contributions.

1 Introduction

The atmospheric CO» growth rate (CGR) exhibits large amounts of year-to-year variability, which holds high significance in
the context of climate change mitigation and projection. This variability is predominantly driven by fluctuations in the land

carbon uptake, which has a year-to-year variability of about 1 GtCyr—*

, with smaller contributions from oceanic uptake and
anthropogenic emissions (Friedlingstein et al., 2023). The land carbon sink results from an imbalance between the uptake

of carbon through photosynthesis (GPP), the loss of carbon through ecosystem respiration (ER), and carbon losses through
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other disturbances (D), such as fire and land use change. The net carbon flux is termed the net biome production (NBP),
where NBP = GPP - ER - D. This land carbon sink plays a crucial role in offsetting anthropogenic CO» emissions, accounting
for approximately 30% of these emissions each year (Friedlingstein et al., 2020). However, NBP remains the most uncertain
component of the global carbon budget, with modelling studies indicating significant uncertainties in both the magnitude and
sign of future projections of the sink (Ahlstrom et al., 2012). Reducing these uncertainties will require a better understanding of
the processes underlying the CO4 fluxes and how they might change in the future, which will be essential for shaping effective
mitigation policies.

It is well documented that the CGR interannual variability (IAV) is closely related to El Nifio-Southern Oscillations (ENSO)
(Gurney et al., 2012). There are noticeable increases in CGR during El Nifio events and decreases during La Nifia events (Keel-
ing and Revelle, 1985). There is also a widespread consensus that variations in tropical ecosystems exert the most significant
influence on global CGR, with numerous studies concentrating their efforts on the Tropics (e.g., Wang et al., 2013, 2014; Liu
et al., 2023; Luo and Keenan, 2022). In particular, tropical temperature is found to have a strong positive correlation with
CGR (Wang et al., 2013). Other physical factors governing the land carbon uptake remain elusive. Given that tropical tem-
peratures are typically considered optimal for photosynthesis (Huang et al., 2019), any elevation in these temperatures are
anticipated to have a dampening effect on GPP while simultaneously elevating ER. This combined impact may amplify the
role of temperature as a significant driver of CGR variability.

While many studies have pointed to the influence of temperature on CGR (e.g., Cox et al., 2013; Wang et al., 2013), recent
research is increasingly highlighting the significance of water availability as a primary control. The launch of the Gravity
Recovery and Climate Experiment (GRACE) satellites in 2002 has largely helped to support this notion by providing accurate
terrestrial water storage (TWS) data based on gravitational measurements. Humphrey et al. (2018) used the GRACE data and
demonstrated that there is a strong negative correlation between CGR variability and observed changes in global TWS (monthly
r =-0.65 and yearly r = -0.85) , revealing that drier years, especially in the tropics, coincide with higher CGR. The study also
highlighted that this water storage relationship is clearer than for precipitation, as previous studies find there is a weaker and
lagged response to precipitation. Most vegetation responds to soil moisture (Wang et al., 2016), which is a component of TWS,
whereas precipitation anomalies only account for water input and do not consider losses from evapotranspiration or runoff.
Even when combined, water flux observations inadequately capture the interannual variations observed by GRACE (Petch
et al., 2023a). He et al. (2022) demonstrated that interannual variability in atmospheric VPD was also significantly negatively
correlated with net ecosystem productivity and hence to the interannual variability of the CGR, although this analysis relied
upon VPD estimates from FluxCOM and TRENDY. In this study, we focus on the influence of TWS on CGR due to the
availability of large-scale, observation-based data from the GRACE satellite mission. In contrast, VPD at global or continental
scales is typically derived from model-based products or reanalysis data. While TWS is not necessarily a better explanatory
variable to temperature or VPD, it offers a complementary perspective and allows us to leverage independent observational
datasets.

Separating the individual contributions of various climatic drivers to CGR fluctuations can be challenging due to their often

intertwined nature. For example, VPD and soil moisture are coupled, where high VPD usually corresponds to dry soils and
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low VPD to wet soil. As a result, vegetation responses to water stress are likely to reflect the combined influence of both
variables, making their individual effects difficult to disentangle. Temperature and water availability are also interrelated,
further complicating attribution. Nevertheless, Humphrey et al. (2018) showed that the relationship between CGR and TWS
stands independently of temperature influences, suggesting that TWS captures a distinct and meaningful component of CGR
variability.

Wang et al. (2022) then showed that the relative influence of temperature and water on net ecosystem exchange (NEE) IAV
shifts across different regions and seasons. They employed three different approaches: atmospheric inversions, process-based
vegetation models from TRENDY, and a data-driven model (FLUXCOM). Their findings reveal broad agreement that the
tropics are a key driver of global correlations; however, the dominant driver of global NEE IAV varied due to disagreements
regarding the seasonal temperature effects in the Northern Hemisphere. This underscores the critical importance of understand-
ing the relative magnitudes of water and temperature contributions in the Northern Hemisphere for determining the dominant
drivers of NEE IAV. Another recent study by Liu et al. (2023) provides evidence that the coupling between interannual CGR
and TWS is becoming increasingly strong. They report an increase of around 35% in CGR sensitivity to tropical water vari-
ations from 1989-2018 compared to 1960-1989, however, existing climate models do not exhibit signs of this rising trend in
tropical water-CGR coupling (Liu et al., 2023). Models are also found to have a tendency to underestimate the strength of the
coupling (Humphrey et al., 2018). In general, interactions between TWS variations and the carbon cycle are a key uncertainty
in current climate models that could strongly influence CGR over the coming decades.

Despite the dominant role of terrestrial ecosystems in influencing CGR variability, the heterogeneity of these ecosystems
means pinpointing the specific land regions contributing to IAV can be challenging and there are inconsistencies among previ-
ous studies concerning the land cover types contributing to IAV. Ahlstrém et al. (2015) used process based models and found
that semi-arid ecosystems could explain 39% of the global NBP variability over 1982-2011, thereby exerting dominant con-
trol over carbon sink interannual fluctuations, while the mean sink was primarily influenced by tropical forests. Zhang et al.
(2016) found that semi-arid regions contributed 57% of the detrended interannual variability in global GPP. These results are
supported by Humphrey et al. (2018), who used GRACE to demonstrate that TWS in semi-arid regions contribute the most to
the global storage variability, while also mentioning a possible role of TWS in tropical forests which is also well correlated
with the CGR.

Marcolla et al. (2017) examined the IAV in the terrestrial carbon budget using three different datastreams: terrestrial ecosys-
tem level observations from FLUXNET (La Thuile and 2015 releases; Baldocchi et al., 2001), a bottom-up global product
resulting from upscaling site level fluxes (the MPI-MTE; le Maire et al., 2010), and a top-down inversion product (Jena Car-
bonscope; Rodenbeck et al., 2003). They found significant discrepancies among these datastreams regarding the main sources
of temporal variability, particularly in the tropics, where there is a lack of atmospheric and ecosystem observations. However,
all products unanimously identified several crucial global features, in particular the high relative IAV in the terrestrial carbon
cycle in water-limited ecosystems. Similarly, Piao et al. (2020) used three different approaches, including land carbon cycle
models, a data-driven model (FLUXCOM; Jung et al., 2019), and atmospheric inversion models (taking the mean of CAMS

and Jena CarbonScope; Chevallier et al., 2010; Rodenbeck et al., 2003), to investigate regional contributions to global terres-
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trial carbon IAV. They found the share in contributions of tropical semi-arid regions versus tropical non-semi-arid regions was
similar between approaches. However, they found relatively larger contributions from the extratropics in atmospheric inver-
sions compared to other approaches, possibly due to limited surface CO5 observations over the tropics. These data are used
exclusively in the atmospheric inversions, affecting their ability to discern IAV between the tropics and the extratropics.

Our research first aims to assess the global relationship between TWS and CGR interannual variability, extending Humphrey
et al. (2018) analysis in time from 2016 up until 2023 and highlighting the global CGR variability we are seeking to explain.
This period notably includes some of the largest values of CGR on record. We then look to regionalise the contributions
based on both land cover type and large spatial regions, and look at interannual variability events through the whole period.
Additionally, we use eight atmospheric CO5 inversion products to infer regional contributions of CO, fluxes. This approach
allows us to make similar assessments without relying on assumptions of the relationships between water and CGR. We assess
the agreement between the inversion products and GRACE, as well as the consistency among inversion products. We also
look at major temporal events in the CGR record to examine which regions are contributing most at different times and assess
the consistency between these approaches. We also use the inversions to estimate regional-scale sensitivity of NBP to TWS
variability.

Section 2 discusses the data and analysis methods we use to attribute the regional contributions to global signals. In section
3, we examine the relationships between GRACE TWS on global and regional scales, and the CGR signal on interannual
timescales from 2002-2023. Section 4 looks at eight atmospheric CO; inversion models from GBC2023 (Friedlingstein et al.,
2023) and their ability to regionalise the terrestrial sources of CO5 over the same time period. Section 5 discusses these results

in relation to meteorological conditions through the period, and section 6 provides a summary and conclusions.

2 Data and Methods
2.1 GRACE

Terrestrial water storage data are obtained from the Gravity Recovery and Climate Experiment (GRACE) and its successor
mission, GRACE Follow-On (GRACE-FO). The version used here is the Jet Propulsion Laboratory (JPL) Mascon RL0O6v2
(Wiese et al., 2016). This dataset contains gridded monthly global water storage/height anomalies relative to a time-mean,
derived from GRACE and GRACE-FO and processed at JPL using the Mascon approach. The water storage/height anomalies
are given in equivalent water thickness units (cm). This version of the data employs a Coastal Resolution Improvement filter
that reduces signal leakage errors across coastlines. Data can be obtained from http://grace.jpl.nasa.gov/data/get-data/jpl_
global_mascons/. There were a small number of months with missing data which were filled with monthly climatology plus

the temporal interpolation of monthly storage anomalies.
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2.2 GML surface flasks

Measurements of atmospheric CO, concentration are taken from the Global Monitoring Laboratory (GML) of the National
Ocean and Atmospheric Administration (NOAA) (Lan et al., 2023). This dataset compiles measurements from the Cooperative
Global Air Sampling Network, where air samples are collected approximately weekly from a globally distributed network of

sites. Data can be found at https://gml.noaa.gov/ccgg/trends/global.html.
2.3 Atmospheric CO5 inversions

This study uses eight different atmospheric COs inversion products, summarised in Table 1, selected based on their temporal
coverage, all of which span at least from 2002 to 2022. These products are from GCB2023 where the land biosphere fluxes have
been adjusted to a common fossil fuel emissions dataset (Friedlingstein et al., 2023). Other similar products were discounted
on the grounds they only cover shorter periods. Top-down inverse models provide spatially and temporally resolved estimates
of the net CO5 flux exchanged between the surface and the atmosphere. They are generated as source/sink solutions using
atmospheric transport models made to fit surface flask based atmospheric CO5 mole fraction measurements within their un-
certainties, at various locations (Ciais et al., 2022). Typically, these inversion products employ a Bayesian statistical approach,
where an optimal surface CO; flux is determined as the maximum likelihood estimate within a statistical distribution of pos-
sible fluxes. The products also use prior surface flux values and their associated uncertainty distributions. We also examined
the interannual variability in the prior fluxes, where available, and in all cases found very little relationship with the posterior
fluxes, and hence conclude that the prior choices were not directly influencing our results.

Atmospheric CO5 inversion products differ in their use of transport models, meteorological inputs, and prior flux assump-
tions—all of which can significantly influence flux estimates, particularly when comparing tropical and extratropical regions
(Peylin et al., 2013; Chevallier et al., 2010). In the tropics, flux estimates are especially sensitive to how transport models
represent deep convection and vertical mixing, while extratropical estimates are more influenced by synoptic-scale advection
and boundary layer dynamics. Prior flux assumptions, such as prescribed seasonal cycles or vegetation responses, can also
introduce regional biases—especially in the tropics where these assumptions often fail to capture complex climate—ecosystem
interactions (Munassar et al., 2022; Gaubert et al., 2019). Moreover, the relative scarcity of COy observations in tropical re-
gions amplifies the impact of model structure and prior uncertainty, whereas denser observational networks in the extratropics
provide stronger constraints on inversion results (Patra et al., 2005; Schuh et al., 2019).

The UoE and CT NOAA products both adopt an ensemble Kalman filter (EnKF) approach, whereas NISMON-CO5 employ
a BFGS-based quasi-Newton method. CAMS on the other hand uses a variational approach and Jena CarboScope employs
a Bayesian inversion framework. For the prior terrestrial fluxes UoE and CT NOAA use the CASA biogeochemical model
introduced by Potter et al. (1993), NISMON-COs use data from the Vegetation Integrative SImulator for Trace gases (VISIT)
(Tto, 2019), whereas the land priors are climatological in the CAMS product. MIROC uses both CASA and VISIT Chandra
et al. (2021), and Jena Carboscope uses the LPJ biosphere model (Sitch et al., 2000). The 8 products share harmonized fossil
fuel and fire emissions, all using the same version of the Global Fire Emissions Database (GFED) (van der Werf et al., 2017).
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Table 1. Summary of atmospheric CO2 flux inversion products.

Product Transport model Meteorol. fields Fossils Reference
CAMS LMDZ ERAS5-Interim GCP-GridFED Chevallier (2023),
Chevallier et al.
(2005)
UoE GEOS-Chem MERRA2 Oda and Maksyu- Feng et al. (2009),
tov (2011) Feng et al. (2016)
NISMON-CO. 1 NICAM-TM JCDAS, JRA-55 GCP-GridFED (Niwa et al., 2022),
Niwa et al. (2017)
NOAA Carbon- TM5S ERAS5-Interim Millier, ODIAC Jacobson et al.
Tracker (2023)
CarbonTracker Eu- TMS5 ERA-Interim EDGAR4.2 van der Laan-
rope (CTE) Luijkx et al. (2017)
Jena CarboScope T™M3 NCEP reanalysis EDGAR Rodenbeck et al.
(2003, 2018)
IAPCAS GEOS-Chem GEOS-5 Oda and Maksyu- Feng et al. (2016);
tov (2011) Yang et al. (2021)
MIROC4-ACTM MIROC4-ACTM JRA-55 GridFED Chandra et al

(2021)

2.4 MODIS

Land cover types are classified using the Terra and Aqua combined Moderate Resolution Imaging Spectro-radiometer (MODIS)
Land Cover Climate Modelling Grid product MCD12Q1 Version 6.1, available from https://lpdaac.usgs.gov. We use the Inter-
national Geosphere-Biosphere Programme (IGBP) legacy classification schemes, and group into six surface classes, shown in

Supplementary Figure 1. These will be used to determine aggregated flux information.
2.5 Data processing and analysis framework

The CGR is derived by taking the differential of monthly atmospheric CO5 concentration data. We calculate the interannual
variability by first removing the mean seasonal cycle from the monthly data, then removing the linear trend. We assume that
by removing the linear trend this removes the main fossil fuel driving signal. However, this could also remove any trend in
biogenic and ocean fluxes. The CGR time series and COs inversion products are then smoothed with a 12 month moving
mean, while the GRACE TWS data is smoothed using a 6 month moving mean, following (Humphrey et al., 2018). Different
smoothing windows are used because the CGR data is inherently noisier than the TWS data, therefore requiring slightly stronger

smoothing to reveal meaningful interannual variability. To convert the global CGR from ppm to GtC we use the conversion


https://lpdaac.usgs.gov

170

175

180

185

190

195

factor 1 ppm by volume of atmosphere CO5 = 2.13 GtC. We generate an ensemble mean of inversion products spanning from
January 2002 to December 2022, with each product equally weighted.

To assess the importance of different regions to a global total, we use the “contribution index” (f;), as defined by Ahlstrom
et al. (2015) also adopted by Zhang et al. (2019) and Humphrey et al. (2018). This index quantifies the spatial contributions to
the global monthly time series ¢, scoring regions based on how consistent their regional flux IAV is with the sign and magnitude

of the global TAV. It is given by:

P Vi v 1)
! Zt| Xt|

where x;; represents the detrended regional data j at time ¢, and X; = ) _ x;; denotes the detrended global value. Regions with
higher positive values of f; contribute more to the global variations. This is used on both the regional GRACE TWS variations,
and on regional CO4 fluxes from the atmospheric inversion products. Regions may represent continental areas or areas with
particular land cover classes depicted in Supplementary Figure 1.

To connect the TWS and CGR time series we use the Pearson correlation coefficient (r). Additionally, we look to iden-
tify the regional origin of the global TWS (GTWS) correlation with CGR. Let GTWS represent the global TWS signal and
TWS; represent the storage signal at grid point ¢. The relationship between the global correlation r¢Tws,ccr, and grid point

correlations r7w s, cGR, can be expressed as;

TGTWS,CGR X 0GTWS X A= E TTWS;,CGR X OTWS; X G, ()

where a; is the area of grid box 4, A is the total land surface area such that A = Ziai, and ogrws and orws, are the
temporal standard deviations of the global and grid point storage signals, respectively. This equation holds due to the additivie
properties of covariance. Hence, the contribution of a particular region (R) to the global GTWS-CGR correlation, which we

will denote as g, can be expressed as a percentage as follows;

icrR@ XOTWS; X TTWS;,CGR
Licr i : x 100. 3)

g(R) =
AXogrws X TGTWS,CGR

This helps identify regions which may have a smaller contribution to the GTWS variability but which are more strongly

correlated to CGR variations. This is similar to the metric used by Wang et al. (2022) in their equation (4).

3 CO; Growth Rate (CGR) and Terrestrial Water Storage (TWS)

Extending the results from Figure la of Humphrey et al. (2018), our Figure 1 shows the de-trended time series of global
terrestrial water storage from GRACE (note the reversed axis direction for TWS), and the CGR derived from surface flasks, for

the period January 2002 to December 2023. It is important to note that, although atmospheric CO5 concentrations continue to
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increase each year, the CGR has been detrended; therefore, negative CGR anomalies reflect periods of below-average growth
relative to the long-term mean growth rate. A negative correlation of » = -0.70 (p < 0.01) is found, implying that reduced
terrestrial water availability corresponds to lower net land uptake of carbon, consequently leading to a higher atmospheric
CGR. A correlation of r = -0.69 is observed for the period from 2002 to 2016 as analysed by Humphrey et al. (2018), and
r = -0.74 from 2016 to 2023. The strongest CGR peak in 2016 is clearly associated with the strong El Nifio that occurred,
with associated drying across many land areas (Santoso et al., 2017; Wigneron et al., 2020). We will investigate regional
relationships later in the paper, but this figure clearly underscores the persistence of the TWS-CGR relationship beyond 2016
shown by Humphrey et al. (2018).

Global CGR and GRACE TWS 2002-2023
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Figure 1. Comparison of the interannual variability of global terrestrial water storage (GTWS) from GRACE (right inverted axes) and
atmospheric CO2 growth rate (CGR) (left axes) from 2002 to 2023. Time series have been de-seasoned and de-trended. The grey dashed line
marks the end of the Humphrey et al. (2018) analysis.

To highlight smaller scale features of this relationship, Figure 2a shows the monthly correlation between GRACE TWS IAV
at each grid point and the global CGR time series. The map has been filtered to only show correlations significant at the level
of p < 0.01, which corresponds to a minimum correlation coefficient of » = + 0.16. We also calculated the map using the
Spearman’s correlation coefficient (results not shown) and the spatial patterns were the same as in Figure 2a. The most promi-
nent negative correlations appear over the eastern Amazon and extend across eastern parts of tropical South America. Other

areas of negative correlation in the tropics extend through India, Southeast Asia and northern Australia. There is also a sub-
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stantial region in northeastern Siberia showing strong negative correlation. However, not all areas with high local correlations
contribute meaningfully to the total GTWS—CGR relationship. This is often due to either a small magnitude of TWS variability
or a limited spatial extent, which reduces their overall influence on the global signal. To address this, we evaluate the contri-
bution of each 1°x1° grid cell to the global GTWS signal using Equation 1, as shown in Figure 2b. This contribution metric
effectively downweights regions with minimal influence due to low TWS variance allowing a clearer assessment of the regions
that dominate GTWS TAV. In this representation, tropical areas stand out much more strongly, as the metric incorporates the
magnitude of TWS variability in addition to correlation strength.

From Figure 2, it can be seen that in certain regions, TWS variability exhibits positive correlations with the global CGR,
such as in South Brazil and East China. There could be possible biophysical explanations for this result, for instance, it was
suggested that the Brazilian Southeast is a transition region characterized by rainfall anomalies with opposite signals related
to ENSO (Coelho et al., 2002). It is also possible that these regions simply do not contribute substantially to the global CGR,
and the observed positive correlations may reflect local or regional processes that are largely cancelled out at the global scale.
Determining the underlying causes of these correlations would require reliable estimates of regional-scale carbon fluxes, but
as will be discussed in Section 4, atmospheric CO- inversion products currently do not do a good job at capturing fine scale

interannual variability, limiting their utility for such attribution.
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Figure 2. (a) Correlation map of GRACE TWS and CGR for the period 2002-2023. Only areas with p < 0.01 are shown. (b) Contribution of

each 1°x1° grid point to total global TWS signal, expressed as a percentage.

Figure 3 shows correlations between regional TWS and the global CGR in blue on the left axis, and the right axis shows the
regional contribution to the GTWS signal (f, based on equation (1) in red, and the regional contributions to the GTWS-CGR
correlation (g) following equation (3) in orange. To aid interpretation, the regional domains cover the following proportions
global land area: Northern Hemisphere extratropics (54%), Southern Hemisphere extratropics (8%), Tropical America (12%),
Tropical Africa (18%), and Tropical Eurasia and Australia (8%). Percentage coverage by vegetation type is as follows: Crop-

lands and Grasslands (32%), Semi-arid (25%), Tundra and Arctic shrubland (15%), Sparsely vegetated (12%), Tropical forest
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Table 2. Regional correlations between GRACE TWS and global Atmospheric CGR variability (first column), regional contributions to the
global TWS signal (second column), and contributions to the global TWS-CGR correlation (third column) from 2002 to 2023. Percentage of

total land surface area (fourth column).

Region Correlation Contrib. to GTWS Sig-  Contrib. to GTWS- Land Area %
nal CGR Correlation

Global -0.70 1.0 1.0 100

Tropics -0.61 0.74 0.98 37

Extratropics 0.02 0.26 0.02 63

Amazon -0.51 0.13 0.28 4

All Africa -0.21 0.23 0.15 23

All India -0.33 0.09 0.10 2

All Australia -0.11 -0.01 0.05

(10%), and Extratropical forest (5%). The continental values in Figure 3a show that the tropics alone can explain all of the
GTWS-CGR correlation, with the Northern Hemisphere (NH) and Southern Hemisphere (SH) extratropics providing small
cancelling contributions.

The tropics play a disproportionately large role in driving the covariance between CGR and regional TWS. This is due to a
combination of factors: (i) the tropics exhibit some of the largest magnitudes of TWS IAV (ii) Climate anomalies such as ENSO
events often synchronise drought and temperature anomalies across vast tropical regions, creating spatially coherent signals
that are amplified at the global scale. In contrast, temperate regions typically experience more localized and less synchronised
climate variability, resulting in smaller contributions to global CGR variance.

Notably, tropical America makes the largest contribution to the GTWS-CGR correlation (g = 69 %), despite only representing
around 12% of the land surface area. Table 2 shows the aggregated correlations and contributions for some additional regions.
However, it is important to note when aggregating grid boxes into regional or global averages, compensatory effects can arise,
where TWS anomalies in different regions covary negatively (e.g., due to ENSO patterns), potentially cancelling each other
out. This can obscure the true influence of individual regions on the global signal, as spatial covariances are not fully accounted
for, leading to an oversimplification of their relative contributions. For example, Jung et al. (2017) demonstrates that the effects
of soil moisture on NEE operate at relatively small spatial scales (in comparison to temperature), however, this does not prevent
the strong impact of TWS on the CGR at the global scale, as seen by Humphrey et al. (2018) and in our results.

Figure 3b captures TWS variability by land cover type across the whole time period. The correlation between TWS and
CGR variations is strongest in tropical forests (r = -0.55, p < 0.01), followed by semi-arid regions (r = -0.46, p < 0.01), but
correlation alone does not consider the actual magnitude of TWS variations. The contribution index to GTWS signal (equation
1) and the contribution to the GTWS-CGR correlation (equation 3), also shown in Figure 3b, provide greater insight into the

role of each land cover type. Croplands and grasslands, as the dominant land cover type covering 32% of the Earth’s land

10
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Figure 3. (a) Correlation between TWS signal for different regions and global CGR is represented by the blue bar on left axis. Contribution
of continental/hemispheric regions to global TWS-CGR correlation is shown in orange, and contribution to global TWS signal is shown in
red against the right axis. (b) This shows the contributions from each land cover type, using the same colour key. The dashed line represents

the global TWS-CGR correlation.

surface area, largely contribute to GTWS signal (f = 22%). However, they have a relatively low correlation with CGR and
overall do not contribute much to the GTWS-CGR correlation (g = 15%). Tropical forests on the other hand, emerge as the
255 primary land cover type influencing the GTWS-CGR correlation (¢ = 37%), despite only covering 10% of the land surface.

Semi-arid regions also play an important part, contributing a substantial fraction to both the GTWS signal (f = 25%) and
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the GTWS-CGR correlation (g = 26%). However, semi-arid regions cover approximately 25% of the land surface area, a
much larger portion than tropical forests, highlighting the much stronger role of tropical forests in governing the GTWS-CGR
relationship per unit area.

Figure 4 presents a time series of the regional TWS variations through the whole period 2002-2023. Figure 4a regionalises
across the five spatial regions shown in Figure 3a. Each region is accounted for such that the sum of positive and negative
contributions equals the GTWS, in black, while the CGR variations are also shown against a separate axis. While the NH
extratropics show large TWS variations this often tends to be anti-correlated with TWS elsewhere, and there is little correlation
with the CGR. By contrast there is a particularly consistent alignment between the timing of many CGR events and the
variations in TWS across tropical America. After 2020 the CGR and TWS signals both become more variable without the
clear peaks or troughs seen earlier, although there is still reasonable alignment of the GTWS and CGR signals up to the end
of 2022. Overall, this figure demonstrates that tropical regions generally contribute significantly to the GTWS signal and are
consistently coherent with CGR variations. Whereas, even substantial variations in the NH extratropics, where there is a lot of
anti-correlation with the GTWS, are thus unlikely to be significantly impacting the CGR. This pattern is also true for the SH
extratropics, although the magnitude of variations is smaller here than in the NH.

Now we consider regionalising the IAV in GRACE TWS and its correlations with the CGR, according to land cover types,
using the MODIS land cover map (Supplementary Figure 1). Figure 4b shows the contribution to the GTWS IAV for each land
cover type plotted against the right (inverted) axis, with the CGR on the left axis. The largest CGR peak due to the 2015/2016
El Nifio event very closely corresponds to the water storage variations seen in tropical forests, where there is a substantial TWS
minimum over this period. The CGR returned to reference levels in 2017, and global TWS recovered shortly afterwards. Note
that we might also associate the increase in CGR around 2005 with the tropical forests, although this event is not noticeable in
the global storage signal. This increase coincides with the 2005 drought in the Amazon driven, not by El Nifio, but by elevated
tropical North Atlantic sea surface temperatures, affecting the southern two-thirds of Amazonia (Phillips et al., 2009). Then in
2009, a notable drop in CGR aligns with a peak in tropical forest TWS, an occurrence associated with the exceptional flood
season observed in the lower Amazon basin during the first half of 2009, supposedly linked to the 2008—2009 La Nifia event
(Chen et al., 2010). This is followed by a sharp peak in CGR which coincides with another drought of 2010 in Amazonia, more
severe than in 2005. This event started during El Nifio and was then intensified as a consequence of the warming of the tropical
North Atlantic (Marengo et al., 2011).

A decrease in CGR can also be observed in 2011, indicative of a strong land carbon sink. This sink anomaly has been cor-
roborated by independent observations from MODIS EVI and GOME-2 SIF showing much enhanced photosynthetic activity
over this period (Ma et al., 2016), as well as by GOSAT XCO, (Detmers et al., 2015). This feature relates to an increase
in TWS in semi-arid regions, primarily resulting from a wet period in Australia during 2010-2011. Large parts of semi-arid
Australia are covered by endorheic basins, where TWS variations are highly sensitive to precipitation (Petch et al., 2023b).
Our results align with Poulter et al. (2014), who found that nearly 60% of carbon uptake over this period could be attributed
to semi-arid Australian ecosystems, which experienced several consecutive seasons of increased precipitation due to prevalent

La Nifia conditions. However, other features in the CGR variability are less clearly associated with TWS variations partitioned
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Figure 4. GRACE terrestrial water storage (TWS) interannual variability and global CO» growth rate (CGR) 2002-2023. (a) aggregated by

in this way. In 2020, the CGR exhibited an opposite response compared to what we normally observe in relation to the tropical
forest TWS anomaly. The global TWS anomaly remained positive, possibly due to conditions in other regions (notably wet in
NH extratropics and Tropical Africa from Figure 4a). This could also be an indication of a lack of TWS influence on the CGR

and may be caused by external factors, such as reduced human emissions due to the COVID-19 pandemic.

with the global TWS signal without the strong cancellations seen in continental TWS. This is largely explained by croplands
and grasslands which often have large compensating TWS anomalies distributed between the NH extratropics and the tropical

zones on all continents. This can be demonstrated by the disappearance of the pronounced anomalies depicted in Figure 4a
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compensatory effects of water anomalies discussed in Jung et al. (2017), which could lead us to underestimate the overall CGR

role of croplands and grasslands.

4 Regional flux contributions to CGR estimated by atmospheric inverse methods

The previous section looked at regionalising TWS with respect to CGR correlations. In contrast this section will try to region-
alise CGR contributions by using atmospheric COs inversion model products. This approach offers the advantage of identifying
the regions that directly contribute most to CGR variability without depending on the coupling between TWS and CGR. Addi-
tionally, these products potentially allow us to gain direct insight into the relative magnitude of the CO4 flux contributions from
each region, which were previously only inferred from regional TWS variations. The reliability of this approach will however
be limited by the quality of inversion products. Therefore, we employ multiple products to assess their agreement with each

other, as well as with the previous GRACE results, to provide further insights.

Total Land IAV from Ensemble of Inversion Products and Global CGR

31 n. ---- CGR
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Figure 5. Interannual variability of observed atmospheric CO2 growth rate (CGR) dervived from GML NOAA surface flasks (red dashed),
and global terrestrial carbon flux interannual variability from an ensemble of eight atmospheric CO2 inversion products over 2002-2022.

Ensemble mean, black, with product range in grey.

Figure 5 compares the global land surface CO4 flux created from the ensemble of eight different inversion products, and the
CGR interannual variability derived from surface flasks. The shaded region represents the maximum and minimum across the
products around the mean. The products, when integrated globally, show good agreement with each other and with the surface
flask based CGR in terms of correlation, although there are substantial variations in the amplitude of the resulting terrestrial
TAV. These results underscore that the majority of the IAV originates from the land, with minimal contributions coming from
variations in ocean uptake and fossil fuel emissions. However, there is reduced agreement between the CGR and the inversion
products between 2020 and 2021, e.g. CGR observations and inversion anomalies may be of opposite sign. The low CGR may

result from anthropogenic emissions being 8.8% lower in the first half of 2020 compared to the same period in the previous
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year, as a result of the COVID-19 pandemic impacting human activities (Liu et al., 2020). In this case pure detrending is
unlikely to remove the anthropogenic signal in the CGR, which could explain this result.

In order to compare the inversion products at finer spatial scales, Figure 6 shows the contribution of each land grid point to
the global land surface flux IAV, from equation (1), for each inversion product over the period January 2002 to December 2022.
While there are some similarities on larger scales (see below), the maps also highlight many differences between the products.
Such discrepancies will limit the value of these products for fine scale analysis.

The aggregated regional CO; contributions for each inversion product, expressed as a percentage of the global CGR, are
shown in Figure 7. The ensemble means show agreement with GRACE in attributing most of the terrestrial carbon variability
to the tropical regions (f = 74%), based on equation (1). NISMON-CO,, strongly favours tropical America, while CAMS
and UoE show tropical Africa as the dominant contributor. IAPCAS and MIROC largely favour the NH extratropics. We will
quantify this spread among products later.

There is general consensus among the products regarding contributions from land cover types, Figure 7b, with all products
attributing nearly all CGR variability to three vegetation types: semi-arid areas, tropical forests, and grasslands/croplands. The
ensemble means highlight semi-arid regions (f = 38%) and tropical forests (f = 35%) as the primary contributors, aligning
with the GRACE data, which identified these two regions as the most dominant contributors to the GTWS-CGR correlation in
Figure 3b.

However, the NISMON-CO,, product stands as an outlier, assigning a particularly large contribution to tropical forests. A
contributing factor may also be the use of the NICAM transport model, which has previously been shown to yield distinct flux
patterns compared to other models, especially in the tropics (Peylin et al., 2013). For instance, NICAM has produced stronger
carbon release signals and broader IAV during major El Nifio events such as 1997/1998. Additionally, sparse observational
constraints in tropical regions may exacerbate differences between inversion systems, allowing model structure and transport
errors to exert a strong influence. Nevertheless, this observational limitation is common across systems and is therefore unlikely
to be the sole driver of NISMON’s divergence. A more targeted model intercomparison would be necessary to isolate the
specific causes of this discrepancy.

We also find that posterior estimates for large regions exhibit IAV that is not present in the a-priori biosphere flux estimates,
in the products for which priors were available. In many cases the priors include only seasonal cycles and lack substantial
interannual variation, indicating that the IAV in the posterior fluxes is not inherited from the prior. This means that observational
constraints and transport model dynamics play a key role in shaping the posterior variability.

Interestingly, there is much less consensus regarding spatial region contributions from Figure 7a. For example, IAPCAS
shows minimal contributions from tropical America, while contributions from the northern extratropics vary widely across
products. IAPCAS and CTE attribute around 40% of CGR variability to the NH extratropics, whereas CAMS attributes only
12%. This spread reflects a known challenge in attributing carbon variability to the NH extratropics, particularly when relying
on surface observation inversions. Previous studies have highlighted that inversions using only in situ CO, data may underes-
timate variability in these regions. Guerlet et al. (2013) for example, suggest that satellite observations show more substantial

flux variability in the NH extratropics than is captured by surface-only inversions.
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Figure 6. Maps of 1° x 1° grid point contributions to global land carbon flux IAV for eight atmospheric CO2 inversion products.

Figure 8 presents time series illustrating how different regions contribute to the total land CO5 flux variability, based on

355 the ensemble mean of the inversion products, with the CGR line shown in red. This allows us to see how different regions
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Figure 7. Regional contributions to total terrestrial CO2 flux IAV for eight different atmospheric CO2 inversion products and ensemble mean

over 2002-2022. (a) shows continental regions while (b) shows vegetation cover type regions.

may serve as dominant drivers of CGR variability at different times throughout the 20-year period, similar to Figure 4. The
colour bar inserts on Figure 8 represent the standard deviations of the eight inversion products around the ensemble mean for
the whole 20-year period, sharing the same scale as the main axis used in the figure. The standard deviations for continental
regions average 0.32 GtC yr~—!, whereas for land cover types the average is significantly lower, 0.21 GtC yr—!. We also examine
how the contribution from each land cover type varies during different temporal CGR events, in Figure 8b.

During the period of elevated CGR levels around 2002 (reduced uptake by the land), similar contributions are observed from

semi-arid regions and croplands and grasslands, with some input from tropical forests. This peak is thought to possibly be
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Figure 8. Contribution to terrestrial IAV from atmospheric CO> inversion products 2002-2022. (a) aggregated by continental regions, (b) by

associated with Northern Hemisphere fires (Jones and Cox, 2005). The decrease in CGR observed in 2004 can primarily be
attributed to cropland and grasslands according to the inversion products, although the timing of this event does not exhibit a
strong correlation with the GRACE TWS variations in Figure 4b, suggesting that water availability may not be a key driver. In
2005 tropical forests and semi-arid regions emerge as the dominant contributors to the positive CGR anomaly, which agrees
well with the GRACE data showing droughts across these regions, despite there being a positive global TWS anomaly during
this period. The inversion products also align with GRACE in attributing the 2008-2009 decrease in CGR mostly to tropical

forests and the 2011 decrease mostly to semi-arid regions. During the substantial increase in CGR coinciding with the 2015/16
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El Nifio the inversion products show comparable contributions from semi-arid regions, croplands and grasslands and tropical
forest, whereas the GRACE data most strongly highlight the role of tropical forests, illustrated in Figure 4b. Overall the
inversion products show minimal CGR TAV contributions from sparsely vegetated regions, and little from tundra and Arctic
shrublands and extratropical forests, also in agreement with the GRACE GTWS-CGR correlation contributions, Figure 3b.

From Figure 8a it is notable that the NH extratropics exhibits considerably less CO, flux variability compared to the TWS
variability, which is consistent with the insignificant contribution to the GTWS-CGR correlation. The overall contribution to
the global land IAV appears more uniformly distributed across spatial regions compared to land cover types, suggesting that
factors related to land cover type may play a more significant role in determining the terrestrial carbon flux variability than
spatial regions per se. Examining specific time periods reveals interesting regional patterns. For instance, during 2002-2003,
the inversion products indicate a period of low uptake from the land, leading to high CGR, primarily driven by variations in
the tropics, particularly tropical Africa, despite GRACE observations showing positive tropical TWS variations at this time,
Figure 4. Atmospheric data for the inverse models in these regions were sparse until around 2010, which could be a possible
cause of this discrepancy.

The drop in CGR during 2004 appears to coincide with increased land uptake in tropical Eurasia and Australia, and tropical
Africa, again with limited evidence of TWS influence in these regions. The large CGR drops in 2009 and 2014 appear to be
predominately driven by the NH extratropics, despite GRACE only indicating possible contributions from tropical America
with minimal input from the NH. In 2022, tropical America stands out as a significant influence for the decline in CGR in the
inversion products, which is also accompanied by a clear increase in TWS in the same region. From Figure 8a it is notable that
the NH extratropics exhibit considerably less COy flux variability compared to the TWS variability, which is consistent with
the insignificant contribution to the GTWS-CGR correlation. Since the larger continental spreads seen in Figure 4a are not
reproduced Figure 8a, this suggests that the inverse models do not generally capture the same anti-correlated behaviour seen
in water anomalies. This could be because the CO4 flux IAV occurs only at larger spatial scales or because the atmospheric
inversion models lack the spatial resolution to detect smaller scale anti-correlated fluxes. We now perform a sensitivity analysis
to try further bring out regional relations.

We calculate local sensitivities of the terrestrial CO5 flux to GRACE TWS interannual variations using the inversion prod-
ucts. This provides insight into how changes in TWS translate into carbon flux variations and can help us relate Figure 4 to
Figure 8. Sensitivities allow us to assess how water-limited or energy-limited conditions might modulate the influence of TWS
anomalies on NBP. For instance, a small TWS anomaly in a water-limited region may have a disproportionately large impact
on CGR, while large TWS changes in energy-limited regions may have a smaller effect. Figure 9 shows the sensitivities cal-
culated using the ensemble mean of the inversions for (a) spatial regions and (b) land cover type. The sensitivity is calculated
using linear regression. These sensitivities do resemble the contributions seen in Figure 3. Figure 9a shows higher sensitivities
in the tropics and smaller (insignificant) opposite sensitivities in the NH extratropics and SH extratropics. Figure 9b indicates
strong COs sensitivity to TWS variations in semi-arid regions, as well as high sensitivity in tropical forests, and croplands and

grasslands. The high sensitivity in tropical forests indicates that TWS variations in these regions directly influence NBP, rather
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than merely being correlated with CGR through external factors like ENSO. This reinforces our conclusion that tropical forests
play a crucial role in regulating the CGR.

Overall, the total sensitivity is greater when aggregating by land cover type than by spatial regions. This suggests that
aggregation by land cover better captures the variation in ecosystem responses to water availability, as different land cover
types have distinct physiological and ecological responses to TWS anomalies. Aggregation by spatial regions can then obscure
these differences, as regions often contain a mix of land cover types with varying sensitivities to water availability. For example,
areas of high sensitivity to water availability in parts of tropical America (e.g tropical forests) can be masked when grouped
into larger spatial regions that include ecosystems that are more sensitive to energy and less sensitive to water.

The strong correlation and sensitivity in tropical forests could be attributed to several possible factors. Tropical rainforest
trees tend to have relatively shallow rooting systems and are hence more likely to be affected by changes in TWS when pro-
longed or severe droughts deplete soil moisture (Kleidon, 2004). While some trees can develop deep roots that provide drought
resilience, the majority of water uptake in tropical forests occurs from shallower soil layers, making them especially sensitive
to reductions in available water. Additionally, tropical forests generally have high water-use-efficiency (WUE), which allows
them to maximize carbon uptake under favorable conditions but also makes them vulnerable to rapid declines in productivity
when water becomes limiting (Keenan et al., 2013; Saleska et al., 2016). Another reason for this sensitivity could be due to the
ongoing drying of parts of the Amazon—especially the southeastern region— which has pushed these forests into a state of
heightened vulnerability to drought (Barkhordarian et al., 2019), further amplifying their sensitivity to interannual variability

in water storage and the observed coupling between terrestrial CO5 and water storage variability.

CO: Flux Sensitivity by Land Cover CO: Flux Sensitivity by Spatial Region
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Figure 9. Regional CO- flux sensitivity to TWS variations (units: kgC yr~*m™?), calculated using the ensemble mean of inversions. (a)

Sensitivity by spatial regions, and (b) sensitivity by land cover type.
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5 Discussion

The significant negative correlation observed between GTWS and CGR suggests a compelling link between water availability
and terrestrial carbon uptake, where drier years coincide with elevated CGR levels, implying a weakening of the land carbon
sink. This observation supports the notion that water availability plays a pivotal role as a limiting factor influencing land carbon
uptake on interannual timescales. From Figure 4, it is also clear that even when the GTWS signal does not align with the CGR,
regional TWS component signals sometimes closely follow the CGR, suggesting that water may be a key factor influencing
CO., variations. The evidence for water scarcity restricting land uptake is clear during times of extreme drought. For instance,
the Amazon which typically acts as an important carbon sink, experienced major droughts in the years 2005 and 2010 marked
by notable peaks in the CGR. Additionally, the inversion products provide regional evidence supporting the impact of water
availability during these events. However, it is important to note that other factors, including light availability and temperature,
may also impact the interannual variability in land carbon uptake. This becomes apparent when regional variations in water
availability do not consistently align with regional carbon variations from inversion products, suggesting weaker water-carbon
coupling.

During the 2016 EI Nifio event, the high CGR was largely associated with reduced land uptake in tropical Africa, despite
this region showing less dominant TWS variations. In this case, enhanced fire activity, reduced cloud cover (and thus increased
radiation), and shifts in vegetation phenology have all been suggested as contributing factors to reduced carbon uptake (Liu
etal., 2017; Zhu et al., 2018).

Our sensitivity analysis with the inverse model products indicated that the CO5 flux was not highly sensitive to water varia-
tions in this region, suggesting that the variations in carbon uptake in tropical Africa were more likely driven by other factors
beyond water availability during this event. Overall, our results demonstrate that water availability exerts a notable influence
on interannual land carbon uptake. However, this impact exhibits spatial variability and is subject to influence from other
environmental drivers which are not independent from water availability, adding complexity to the carbon-water relationship.

Given that tropical Africa shows a strong control on the CGR but low correlation with TWS, the value in understanding the
relationship between CGR and TWS will primarily be in diagnosing the regional carbon cycle for areas such as the Amazon,
for which numerous studies have shown evidence of it being vulnerable to water-related tipping points (Cox et al., 2000, e.g).
The Amazon generates about half of its own rainfall (Salati et al., 1979) and so drought conditions have the potential to be
amplified, thus creating a stronger carbon signal than would be observed otherwise. However, even in regions where the TWS-
CGR relationship is not strong, knowing this helps deepen our understanding of which processes control the carbon cycle in
that region and where modelling efforts can then be focused. An application of this technique will be to observe changes to the
strength of the water control of the terrestrial carbon cycle with time, to understand how the processes are changing with shifts
in climate.

We explored both land cover types and spatial regions because each offers a unique perspective. Examining different spatial
regions allowed us to uncover regional patterns and variations, while considering land cover type can help highlight the role of

vegetation in shaping carbon-water dynamics. We found that tropical forests contribute the most to the GTWS-CGR correlation
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while covering only a small fraction of the Earth’s land surface relative to other land cover types. Among tropical forests, the
Amazon basin stands out from Figure 2, contributing a disproportionately large amount to the GTWS-CGR correlation (g
= 28%) relative to its spatial coverage (< 5%). However, these are not the regions dominating the GTWS signal, nor are
they the only regions controlling the land carbon uptake IAV. We found that semi-arid regions and croplands and grasslands
contribute more to the GTWS signal, which is mainly due to their larger spatial coverage. This is consistent with Humphrey
et al. (2018) who also looked at the TRENDY model results (Sitch et al., 2015), and FluxCOM datasets (Tramontana et al.,
2016), as well as GRACE, to assess contributions. Ahlstrom et al. (2015) also found that semi-arid regions dominate the
land carbon sink variability by calculating the contribution index using a biogeochemical dynamic global vegetation model
(DGVM) LPJ-GUESS. They also compared results with an ensemble of TRENDY models and found similar partitioning.

The contribution to the GTWS-CGR correlation metric (equation 3) provides further insights that examining the TWS
variability alone (equation 1) does not. For instance, the strong TWS variability signals seen in the NH extratropics or croplands
and grasslands, only have small contributions to the global TWS correlation with CGR. However temporal filtering used in our
TWS-CGR analysis may still be underestimating the true impact of water availability on CO, fluxes in the extratropics, which
will be strongly seasonally sensitive (Keppel-Aleks et al., 2014).

Similarly, focusing solely on the regional TWS-CGR correlations does not provide information about the magnitude of the
contributions to the global correlation. Therefore, integrating these three metrics provides a comprehensive analysis, which
taken together more strongly indicate the role of tropical forests. This complements the work of Humphrey et al. (2018) who
indicated a possible role for tropical forests due to the high correlation with CGR. However all three metrics only consider time-
integrated information. The regional time series displays (Figure 4 for TWS, and Figure 8 for regional CO; fluxes) allow a
more detailed analysis of particular events. Our results underscore the influence of tropical America along with tropical forests
through the 20+ year period considered (Figure 3), however, it is also evident from both GRACE and the inversion products,
that the dominant region influencing CGR IAV varies across different temporal events (Figure 4, 8). This is consistent with
previous studies that have focused on individual events (e.g., Chen et al., 2010; Ma et al., 2016).

Our results show agreement with previous studies that have employed Earth System models (ESM) to assess CGR IAV. For
instance, the dominant role of tropical America is also recognised by Martin-Gémez et al. (2023), who analysed various ESM
simulations from CMIP6 over 1986-2013. They find that tropical regions, particularly tropical South America, tropical southern
Africa, Southeast Asia, and parts of Oceania, contribute the most to interannual variations in CGR, with average land variance
explained percentages of 22%, 10%, 5%, and 4% respectively. Additionally, Kim et al. (2016) analysed how interannual CGR is
associated with ENSO using ESM simulations from CMIP5. During El Nifio, strong NBP anomalies appear over most tropical
land regions, particularly over Amazonia, Australia, and South Asia, and the Maritime Continent, where tropical rain forests
exist. This is consistent with the regions we found to show high TWS-CGR correlations in Figure 2.

The process of aggregating local data into regional or global scales introduces challenges due to the complex spatial scale
interactions. For example, Jung et al. (2017) demonstrated that local-to-global aggregation can result in different conclu-
sions regarding the dominant driver of NEE. This was attributed to compensatory effects, where soil-moisture-controlled NEE

anomalies showed strong spatial anti-correlation, leading to spatial compensation of positive and negative values. This meant
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that when aggregated globally, temperature emerged at the dominant driver of NEE because its variability is on larger spatial
scales, so the effects do not average out. Therefore, when interpreting results such as Figure 3, it is important to consider the
potential role of spatial covariance.

We note also that the reported correlations between TWS and CGR have not been adjusted for co-varying climate factors
such as temperature or VPD. As a result, these relationships may partly reflect indirect effects mediated by such variables.
Covariance among climatic drivers—particularly between temperature, VPD, and water availability—introduces a degree of
multicollinearity that complicates attribution of individual effects. For example, Humphrey et al. (2021) highlighted the dif-
ficulty of disentangling the respective roles of VPD and temperature on NBP variability due to their interrelated nature and
showed that soil moisture impacts on NBP are shaped not only by direct water limitation but also by indirect feedbacks in-
volving temperature and VPD. However, Humphrey et al. (2018) also found that most of the explanatory power contained in
TWS could not be accounted for by temperature alone. Their partial correlation analysis showed that the CGR-TWS rela-
tionship remained significant even after controlling for temperature, suggesting that TWS captures a distinct and meaningful
component of carbon cycle variability. Thus, while water availability cannot be interpreted in isolation from other variables, it
still provides uniquely valuable information about ecosystem—climate interactions. Our findings should therefore be viewed as
complementary to other studies that emphasise the roles of temperature or VPD.

We therefore turned to direct estimates of carbon fluxes from atmospheric inversion models which, while designed to con-
strain the atmospheric carbon budget, are often employed to regionalise surface carbon fluxes and investigate temporal varia-
tions, based on available atmospheric observations. Our analysis of eight such products demonstrate the consistency of their
results when considering large scales, such as over continental regions or integrated over land cover types. However, limitations
become apparent at smaller scales (Figure 6). As highlighted by Marcolla et al. (2017), fine-scale estimates of inversions are
subject to limitations because atmospheric data may only effectively constrain larger-scale patterns comparable to the distances
between monitoring stations. Globally, products agree because observationally the CGR is well constrained, set broadly by the
difference between the slowly varying anthropogenic fossil fuel input and the well-measured accumulation rate of CO; in
the atmosphere (Baker et al., 2006). However, the inversion models introduce factors contributing to discrepancies, such as
the selection of the atmospheric CO- data, prior fluxes, and the choice of transport model. For example, Schuh et al. (2019)
demonstrate that the transport models TMS and GEOS-Chem, used by NOAA CT and UoE respectively, lead to systematic
space-time differences in modelled distributions of CO5. Bastos et al. (2020) also found that at regional scales, differences
between inversion products contribute the most to uncertainty in regional carbon budgets, whereas differences in DGVMs
dominate uncertainty at the global scale. They emphasised that reducing the uncertainty in atmospheric inversions, for exam-
ple through more observations in the tropics or the use of satellite-observations, is essential to reduce uncertainty in carbon
budgets.

Here using the ensemble mean does offer a more representative picture by incorporating a range of estimates from different
models, although different atmospheric inversion products may still be related through the same transport models or meteoro-
logical fields, allowing biases to remain. It is important that each individual ensemble member is well evaluated; otherwise,

outliers or individual members that do not reproduce data can cause the ensemble mean to be misleading. Overall, our results

23



530

535

540

545

550

5565

emphasise the need to improve consistency among inverse models at finer scales. This would be essential for achieving more
reliable evidence of regional contributions to carbon cycle dynamics. In future work it would be beneficial to conduct a more
comprehensive comparison of atmospheric COs inversion products involving additional products beyond those considered in

our study, e.g. containing satellite CO5 observations.

6 Conclusion

This study first assesses the relationship between TWS variations at global and regional scales with the interannual CGR over
2002-2022. This builds on the work of (Humphrey et al., 2018) by extending the TWS-CGR relationship up until 2023. The
correlation between global TWS and CGR was r = -0.70 over the entire period, with a correlation of r» = -0.69 observed
for the period from 2002 to 2016, and r = -0.74 from 2016 to 2023. We expand on Humphrey et al.’s analysis by separately
mapping regional TWS-CGR correlations and their relative contributions to the GTWS-CGR correlation. This allows for better
identification of key regions where water limitation is likely to be influencing surface CO; fluxes and thus contributing to the
GTWS-CGR correlation.

Our analysis reveals that the tropics alone can explain the entire GTWS-CGR correlation. Specifically, tropical America
emerges as the largest contributing area, accounting for g = 69% of the GTWS-CGR correlation, despite only representing
f =40% of the GTWS variance and covering less than 12% of the Earth’s land surface area. Moreover, we observe minor
cancelling contributions to the GTWS-CGR correlation from the Northern (g = +17%) and Southern (g = -15%) Hemisphere
extratropics, which represent f = 38% and f =-12% of GTWS variability signal respectively.

Tropical forests emerge as the primary land cover type influencing the global correlation (g = 37%), despite being less
important for the global TWS signal (f = 22%). Semi-arid regions also play an important role in contributing to both the
GTWS-CGR correlation and the GTWS signal (g = 26% , f = 23%). Notably, tropical forests cover only 10% of the land
surface area, hence they exert a disproportionately stronger impact relative to their spatial extent compared to semi-arid regions,
which encompass 25% of the land surface. Croplands and grasslands contribute largely to GTWS variability (f = 22%) due to
large spatial coverage but have a relatively low correlation with the CGR (r = -0.27) and consequently contribute less strongly
to the GTWS-CGR correlations (g = 15%).

We also employed eight different atmospheric COs transport inversion model products to directly assess the regional contri-
butions to CGR interannual variability. The ensemble mean of the eight products shows good agreement with the CGR globally,
and these products also demonstrate considerable consistency among themselves on large scales, however their agreement di-
minishes when examined at finer spatial scales. In alignment with GRACE TWS data, the ensemble mean of the inversion
products also attribute the majority of terrestrial carbon interannual variability to the tropics (f = 74%), with smaller contri-
butions from the NH extratropics (f = 15%) as well as a small (f = 11%) positive contribution from the SH extratropics, in

contrast to GRACE. The inversion products all show broad agreement with GRACE in the dominant land cover types con-
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tributing to the CGR variability. Although not strongly trusting the regional inverse products we also calculated regional-scale
sensitivities of inverse model NBP against TWS, and find consistency with the TWS-CGR correlation contribution results.
Finally for both water storage variability and inverse model derived CO fluxes we look at the interannual variation time
series and note that the dominant anomaly regions do change over the 20-year period, and we discuss how this ties in with
literature on patterns of drought over time. These time series also reveal cases where regional TWS signals often closely follow
the CGR even when the global TWS does not, thus providing further evidence of the importance of water availability as a
constraint on regional CO4 fluxes. Overall, our results suggest that terrestrial ecosystem models should prioritize improved
representation of water constraints, particularly in tropical forests where water availability plays a critical role in modulating

carbon fluxes.
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