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Abstract. The atmospheric CO2 growth rate (CGR) is characterised by large interannual variability, mainly due to variations

in the land carbon uptake, the most uncertain component in the global carbon budget. We explore the relationships between

CGR and global terrestrial water storage (TWS) from the GRACE satellites. A strong negative correlation (r = -0.70, p <

0.01, based on monthly data) between these quantities over 2002-2023 indicates that drier years correspond to a higher CGR,

suggesting reduced land uptake. We then show regional TWS-CGR correlations and use a metric to assess their contributions to5

the global correlation. The tropics can account for the entire global TWS-CGR correlation, with small cancelling contributions

from the Northern and Southern Hemisphere extratropics. Tropical America makes the dominant contribution (69%) to the

global TWS-CGR correlation, despite occupying < 12% of the land surface. Aggregating TWS by MODIS land cover type,

tropical forests exhibit the strongest CGR correlations and contribute most to the global TWS-CGR correlation (39%), despite

semi-arid and cropland/grassland regions both having more interannual TWS variability.
:::::::
Tropical

::::::
forests

::::::
exhibit

:::
the

::::::::
strongest10

::::
CGR

::::::::::
correlations

:::
due

::
to
:::::
their

::::
high

::::::::::
productivity

:::
and

:::::::::
sensitivity

::
to

:::::
water

:::::
stress,

:::::
which

:::::::
strongly

:::::::::
influences

:::::::::
interannual

:::::::::
variations

::
in

::::::
carbon

::::::
uptake.

:
An ensemble mean of four

::::
eight

:
atmospheric CO2 flux inversion products also indicate a 74

::
66% tropical

contribution to CGR variability, with tropical America/Africa contributing 30
::
27%/27

::
28% respectively. Regarding land cover

type, semi-arid/tropical forests contribute almost equally (37%/35%) to CGR variability, although tropical forests cover a
:::::
much

smaller surface area (25%/10%). time
:::::
Time series of global and regional TWS and CO2 flux inversions through 2002-202315

also show changing regional contributions between global CGR events, which are discussed in relation to regional drought and

ENSO events.
:::
Our

:::::
study

::::::::
advances

:::::::
previous

:::::
work

::
by

::::::::
providing

::
a
:::::
more

::::::
detailed

:::::::
analysis

:::
of

:::::::
regional

:::::::::::
contributions

:::
and

:::::
doing

::
a

:::::::
temporal

:::::::::
breakdown

:::
of

:::::::::::
contributions.

:

1 Introduction

The atmospheric CO2 growth rate (CGR) exhibits large amounts of year-to-year variability, which holds high significance in20

the context of climate change mitigation and projection. This variability is predominantly driven by fluctuations in the land

carbon uptake, which has a year-to-year variability of about 1 GtCyr−1, with smaller contributions from oceanic uptake and

anthropogenic emissions (Friedlingstein et al., 2023). The land carbon sink results from an imbalance between the uptake

of carbon through photosynthesis (GPP), the loss of carbon through ecosystem respiration (ER), and carbon losses through
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other disturbances (D), such as fire and land use change. The net carbon flux is termed the net biome production (NBP),25

where NBP = GPP - ER - D. This land carbon sink plays a crucial role in offsetting anthropogenic CO2 emissions, accounting

for approximately 30% of these emissions each year (Friedlingstein et al., 2020). However, NBP remains the most uncertain

component of the global carbon budget, with modelling studies indicating significant uncertainties in both the magnitude and

sign of future projections of the sink (Ahlström et al., 2012). Reducing these uncertainties will require a better understanding of

the processes underlying the CO2 fluxes and how they might change in the future, which will be essential for shaping effective30

mitigation policies.

It is well documented that the CGR interannual variability (IAV) is closely related to El Niño-Southern Oscillation
::::::::::
Oscillations

(ENSO) (Gurney et al., 2012). There are noticeable increases in CGR during El Niño events and decreases during La Niña

events (Keeling and Revelle, 1985). There is also a widespread consensus that variations in tropical ecosystems exert the

most significant influence on global CGR, with numerous studies concentrating their efforts on the Tropics (e.g., Wang et al.,35

2013, 2014; Liu et al., 2023; Luo and Keenan, 2022). In particular, tropical temperature is found to have a strong positive

correlation with CGR (Wang et al., 2013). The
::::
Other

:
physical factors governing the land carbon uptake remain elusive. Given

that tropical temperatures are typically considered optimal for photosynthesis (Huang et al., 2019), any elevation in these tem-

peratures are anticipated to have a dampening effect on GPP while simultaneously elevating ER. This combined impact may

amplify the role of temperature as a significant driver of CGR variability.40

While many studies have pointed to the influence of temperature on CGR (e.g., Cox et al., 2013; Wang et al., 2013), recent

research is increasingly highlighting the significance of water availability as a primary control. The launch of the Gravity

Recovery and Climate Experiment (GRACE) satellites in 2002 has largely helped to support this notion by providing accurate

terrestrial water storage (TWS) data based on gravitational measurements. Humphrey et al. (2018) used the GRACE data and

demonstrated that there is a strong negative correlation between CGR variability and observed changes in global TWS (monthly45

r = -0.65 and yearly r = -0.85) , revealing that drier years, especially in the tropics, coincide with higher CGR. The study also

highlighted that this water storage relationship is clearer than for precipitation, as previous studies find there is a weaker and

lagged response to precipitation. Most vegetation responds to soil moisture (Wang et al., 2016), which is a component of TWS.

Precipitation ,
:::::::
whereas

:::::::::::
precipitation anomalies only account for water input and do not consider losses from evapotranspiration

or runoff. Even when combined, observations of these fluxes have been shown to
::::
water

::::
flux

:::::::::::
observations inadequately capture50

the interannual variations observed by GRACE (Petch et al., 2023a).
:::::::::::::
He et al. (2022)

:::::::::::
demonstrated

::::
that

:::::::::
interannual

:::::::::
variability

::
in

::::::::::
atmospheric

::::
VPD

::::
was

::::
also

::::::::::
significantly

:::::::::
negatively

::::::::
correlated

::::
with

:::
net

:::::::::
ecosystem

:::::::::::
productivity

:::
and

:::::
hence

::
to

:::
the

::::::::::
interannual

::::::::
variability

:::
of

:::
the

:::::
CGR,

::::::::
although

:::
this

:::::::
analysis

::::::
relied

::::
upon

:::::
VPD

::::::::
estimates

:::::
from

:::::::::
FluxCOM

:::
and

:::::::::
TRENDY.

:::
In

:::
this

::::::
study,

:::
we

::::
focus

:::
on

:::
the

::::::::
influence

::
of

::::
TWS

:::
on

::::
CGR

::::
due

::
to

:::
the

:::::::::
availability

::
of

::::::::::
large-scale,

:::::::::::::::
observation-based

::::
data

::::
from

:::
the

:::::::
GRACE

:::::::
satellite

:::::::
mission.

::
In

::::::::
contrast,

::::
VPD

::
at
::::::
global

::
or

::::::::::
continental

:::::
scales

::
is
::::::::
typically

::::::
derived

:::::
from

:::::::::::
model-based

:::::::
products

:::
or

::::::::
reanalysis

:::::
data.55

:::::
While

:::::
TWS

:
is
::::

not
:::::::::
necessarily

:
a
:::::
better

::::::::::
explanatory

:::::::
variable

::
to
::::::::::
temperature

:::
or

:::::
VPD,

:
it
:::::
offers

::
a
:::::::::::::
complementary

:::::::::
perspective

::::
and

:::::
allows

::
us

:::
to

:::::::
leverage

::::::::::
independent

:::::::::::
observational

::::::::
datasets.

Separating the individual contributions of various climatic drivers to CGR fluctuations can be challenging due to their often

intertwined nature.
:::
For

::::::::
example,

::::
VPD

::::
and

:::
soil

::::::::
moisture

:::
are

:::::::
coupled,

::::::
where

::::
high

:::::
VPD

::::::
usually

::::::::::
corresponds

:::
to

:::
dry

::::
soils

::::
and
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:::
low

:::::
VPD

::
to

::::
wet

::::
soil.

:::
As

:
a
::::::
result,

:::::::::
vegetation

::::::::
responses

:::
to

:::::
water

:::::
stress

:::
are

:::::
likely

:::
to

:::::
reflect

:::
the

:::::::::
combined

::::::::
influence

::
of

:::::
both60

::::::::
variables,

::::::
making

:::::
their

:::::::::
individual

::::::
effects

:::::::
difficult

::
to

:::::::::::
disentangle.

:::::::::::
Temperature

:::
and

:::::
water

::::::::::
availability

:::
are

::::
also

:::::::::::
interrelated,

:::::
further

::::::::::::
complicating

:::::::::
attribution.

:
Nevertheless, Humphrey et al. (2018) showed that the relationship between CGR and TWS

stands independently of temperature influences,
::::::::::

suggesting
:::
that

:::::
TWS

:::::::
captures

::
a
::::::
distinct

::::
and

:::::::::
meaningful

::::::::::
component

::
of

:::::
CGR

::::::::
variability.

Wang et al. (2022) then showed that the relative influence of temperature and water on net ecosystem exchange (NEE) IAV65

shifts across different regions and seasons. They employed three different approaches: atmospheric inversions, process-based

vegetation models from TRENDY, and a data-driven model (FLUXCOM). Their findings reveal broad agreement that the

tropics are a key driver of global correlations; however, the dominant driver of global NEE IAV varied due to disagreements

regarding the seasonal temperature effects in the Northern Hemisphere. This underscores the critical importance of understand-

ing the relative magnitudes of water and temperature contributions in the Northern Hemisphere for determining the dominant70

drivers of NEE IAV. Another recent study by Liu et al. (2023) provides evidence that the coupling between interannual CGR

and TWS is becoming increasingly strong. They report an increase of around 35% in CGR sensitivity to tropical water vari-

ations from 1989-2018 compared to 1960-1989, however, existing
::::::
climate

:
models do not exhibit signs of this rising trend in

tropical water-CGR coupling (Liu et al., 2023). Models are also found to have a tendency to underestimate the strength of the

coupling (Humphrey et al., 2018). In general, interactions between TWS variations and the carbon cycle is
:::
are a key uncertainty75

in current climate models that could strongly influence CGR over the coming decades.

Despite the dominant role of terrestrial ecosystems in influencing CGR variability, the heterogeneity of these ecosystems

means pinpointing the specific land regions contributing to the IAV can be challenging . There
:::
and

:::::
there

:
are inconsistencies

among previous studies concerning the land cover types contributing to the IAV. Ahlström et al. (2015) used process based

models and found that semi-arid ecosystems could explain 39% of the global NBP variability over 1982-2011, thereby exerting80

dominant control over carbon sink interannual fluctuations, while the mean sink was primarily influenced by tropical forests.

Zhang et al. (2016) found that semi-arid regions contributed 57% of the detrended interannual variability in global GPP. These

results are supported by Humphrey et al. (2018), who used GRACE to demonstrate that TWS in semi-arid regions contribute

the most to the global storage variability, while
:::
also mentioning a possible role of TWS in tropical forests which is also well

correlated with the CGR.85

Marcolla et al. (2017) examined the IAV in the terrestrial carbon budget using three different datastreams: terrestrial ecosys-

tem level observations from FLUXNET (La Thuile and 2015 releases; Baldocchi et al., 2001), a bottom-up global product

resulting from upscaling site level fluxes (the MPI-MTE; le Maire et al., 2010), and a top-down inversion product (Jena Car-

bonscope; Rödenbeck et al., 2003). They found significant discrepancies among these datastreams regarding the main sources

of temporal variability, particularly in the tropics, where there is a lack of atmospheric and ecosystem observations. However,90

all products unanimously identified several crucial global features, in particular the high relative IAV in the terrestrial carbon

cycle in water-limited ecosystems. Similarly, Piao et al. (2020) used three different approaches, including land carbon cycle

models, a data-driven model (FLUXCOM; Jung et al., 2019), and atmospheric inversion models (taking the mean of CAMS

and Jena CarbonScope; Chevallier et al., 2010; Rödenbeck et al., 2003), to investigate regional contributions to global terrestrial
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carbon IAV. They found the share in contributions of tropical semi-arid regions versus tropical non-semiarid
:::::::::::
non-semi-arid

:
re-95

gions was similar between approaches. However, they found relatively larger contributions from the extratropics in atmospheric

inversions compared to other approaches, possibly due to limited surface CO2 observations over the tropics. These data are

used exclusively in the atmospheric inversions, affecting their ability to discern IAV between the tropics and the extratropics.

Our research first aims to assess the global relationship between TWS and CGR interannual variability, extending Humphrey

et al. (2018) analysis in time from 2016 up until 2023 and highlighting the global CGR variability we are seeking to explain.100

This period notably includes some of the largest values of CGR on record. We then look to regionalise the contributions

based on both land cover type and large spatial regions, and look at interannual variability events through the whole period.

Additionally, we use
::::
eight

:
atmospheric CO2 inversion products to infer regional contributions of CO2 fluxes. This approach

allows us to make similar assessments without relying on assumptions of the relationships between water and CGR. We assess

the agreement between the inversion products and GRACE, as well as the consistency among inversion products. We also105

look at major temporal events in the CGR record to examine which regions are contributing most at different times and assess

the consistency between these approaches. We also use the inversions to estimate regional-scale sensitivity of NBP to TWS

variability.

Section 2 discusses the data and analysis methods we use to attribute the regional contributions to global signals. In sec-

tion 3, we examine the relationships between GRACE TWS on global and regional scales, and the CGR signal on interannual110

timescales from 2002-2023. Section 4 looks at four
::::
eight atmospheric CO2 inversion models

::::
from

::::::::
GBC2023

:::::::::::::::::::::::
(Friedlingstein et al., 2023)

and their ability to regionalise the terrestrial sources of CO2 over the same time period. Section 5 discusses these results in

relation to meteorological conditions through the period, and section 6 provides a summary and conclusions.

2 Data and Methods

2.1 GRACE115

Terrestrial water storage data are obtained from the Gravity Recovery and Climate Experiment (GRACE) and its successor

mission, GRACE Follow-On (GRACE-FO). The version used here is the Jet Propulsion Laboratory (JPL) Mascon RL06v2

(Wiese et al., 2016). This dataset contains gridded monthly global water storage/height anomalies relative to a time-mean,

derived from GRACE and GRACE-FO and processed at JPL using the Mascon approach. The water storage/height anomalies

are given in equivalent water thickness units (cm). This version of the data employs a Coastal Resolution Improvement filter120

that reduces signal leakage errors across coastlines. Data can be obtained from http://grace.jpl.nasa.gov/data/get-data/jpl_

global_mascons/. There were a small number of months with missing data which were filled with monthly climatology plus

the temporal interpolation of monthly storage anomalies.

4

 http://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
 http://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
 http://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/


2.2 GML surface flasks

Measurements of atmospheric CO2 concentration are taken from the Global Monitoring Laboratory (GML) of the National125

Ocean and Atmospheric Administration (NOAA) (Lan et al., 2023). This dataset compiles measurements from the Cooperative

Global Air Sampling Network, where air samples are collected approximately weekly from a globally distributed network of

sites. Data can be found at https://gml.noaa.gov/ccgg/trends/global.html.

2.3 Atmospheric CO2 inversions

This study uses four
::::
eight

:
different atmospheric CO2 inversion products, summarised in Table 1, selected based on their tempo-130

ral coverage, all of which span at least from 2002 to 2020.
:::::
2022.

:::::
These

:::::::
products

:::
are

:::::
from

::::::::
GCB2023

::::::
where

:::
the

:::
land

:::::::::
biosphere

:::::
fluxes

::::
have

::::
been

::::::::
adjusted

::
to

:
a
::::::::
common

:::::
fossil

:::
fuel

:::::::::
emissions

::::::
dataset

::::::::::::::::::::::
(Friedlingstein et al., 2023)

:
. Other similar products were

discounted on the grounds they only cover shorter periods. Top-down inverse models provide spatially and temporally resolved

estimates of the net CO2 flux exchanged between the surface and the atmosphere. They are generated as source/sink solu-

tions using atmospheric transport models made to fit surface flask based atmospheric CO2 mole fraction measurements within135

their uncertainties, at various locations (Ciais et al., 2022). Typically, these inversion products employ a Bayesian statistical

approach, where an optimal surface CO2 flux is determined as the maximum likelihood estimate within a statistical distribu-

tion of possible fluxes. The products also use prior surface flux values and their associated uncertainty distributions. We also

examined the interannual variability in the prior fluxes, where available, and in all cases found very little relationship with the

posterior fluxes, and hence conclude that the prior choices were not directly influencing our results.140

The products used in this study include CarbonTracker CT2022, results provided by NOAA GML, Boulder, Colorado, USA

from the website at . The Copernicus Atmosphere Monitoring Service (CAMS) global inversion-optimised CO
:::::::::::
Atmospheric

:::
CO2 product version v22r1 generated with the inversion system PYVAR, available from . Long-term global CO2 fluxes

estimated by the NICAM-based Inverse Simulation for Monitoring CO2 (NISMON-CO2) v2023, available from , and the

University of Edinburgh (UoE) in situ product (Feng et al., 2016). The differences between products concern the selection of145

atmospheric
::::::::
inversion

:::::::
products

:::::
differ

::
in

::::
their

:::
use

::
of

:::::::
transport

:::::::
models,

::::::::::::
meteorological

::::::
inputs,

::::
and

::::
prior

:::
flux

:::::::::::::::
assumptions—all

::
of

:::::
which

:::
can

::::::::::
significantly

::::::::
influence

::::
flux

::::::::
estimates,

:::::::::
particularly

:::::
when

:::::::::
comparing

:::::::
tropical

:::
and

::::::::::
extratropical

:::::::
regions

::::::::::::::::::::::::::::::::::
(Peylin et al., 2013; Chevallier et al., 2010)

:
.
::
In

:::
the

::::::
tropics,

::::
flux

::::::::
estimates

:::
are

::::::::
especially

::::::::
sensitive

::
to

::::
how

:::::::
transport

:::::::
models

::::::::
represent

::::
deep

:::::::::
convection

::::
and

::::::
vertical

:::::::
mixing,

::::
while

:::::::::::
extratropical

::::::::
estimates

:::
are

::::
more

:::::::::
influenced

::
by

::::::::::::
synoptic-scale

::::::::
advection

:::
and

::::::::
boundary

:::::
layer

::::::::
dynamics.

:::::
Prior

:::
flux

:::::::::::
assumptions,

::::
such

::
as

:::::::::
prescribed

:::::::
seasonal

:::::
cycles

:::
or

::::::::
vegetation

:::::::::
responses,

:::
can

::::
also

::::::::
introduce

:::::::
regional

:::::::::::::::
biases—especially

::
in
:::
the

::::::
tropics

::::::
where150

::::
these

:::::::::::
assumptions

::::
often

::::
fail

::
to

::::::
capture

::::::::
complex

:::::::::::::::
climate–ecosystem

::::::::::
interactions

::::::::::::::::::::::::::::::::::::
(Munassar et al., 2022; Gaubert et al., 2019)

:
.

::::::::
Moreover,

:::
the

:::::::
relative

::::::
scarcity

::
of

:
CO2 data, the choice of prior fluxes, and the transport model used. They also differ in spatial

and temporal resolution, assumed correlation structures, and mathematical data assimilation approaches (Friedlingstein et al., 2020)

.
::::::::::
observations

::
in

:::::::
tropical

::::::
regions

::::::::
amplifies

:::
the

::::::
impact

:::
of

:::::
model

::::::::
structure

:::
and

:::::
prior

::::::::::
uncertainty,

:::::::
whereas

:::::
denser

::::::::::::
observational

:::::::
networks

::
in
:::
the

::::::::::
extratropics

:::::::
provide

:::::::
stronger

:::::::::
constraints

:::
on

:::::::
inversion

::::::
results

:::::::::::::::::::::::::::::::
(Patra et al., 2005; Schuh et al., 2019).

:
155
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The UoE and CT2022
:::
CT

::::::
NOAA products both adopt an ensemble Kalman filter (EnKF) approach, whereas NISMON-CO2

employ a BFGS-based quasi-Newton method. CAMS on the other hand uses a variational approach
:::
and

::::
Jena

:::::::::::
CarboScope

:::::::
employs

:
a
::::::::

Bayesian
::::::::

inversion
::::::::::

framework. For the prior terrestrial fluxes UoE and CT2022
:::
CT

::::::
NOAA

:
use the CASA bio-

geochemical model introduced by Potter et al. (1993), NISMON-CO2 use data from the Vegetation Integrative SImulator for

Trace gases (VISIT) (Ito, 2019), whereas the land priors are climatological in the CAMS product. For fire emission data,160

versions
:::::::
MIROC

::::
uses

:::::
both

::::::
CASA

:::
and

::::::
VISIT

::::::::::::::::::
Chandra et al. (2021)

:
,
:::
and

:::::
Jena

::::::::::
Carboscope

::::
uses

:::
the

::::
LPJ

:::::::::
biosphere

::::::
model

:::::::::::::::
(Sitch et al., 2000).

::::
The

::
8

:::::::
products

:::::
share

::::::::::
harmonized

:::::
fossil

::::
fuel

:::
and

::::
fire

:::::::::
emissions,

::
all

:::::
using

:::
the

:::::
same

::::::
version

:
of the Global

Fire Emissions Database (GFED) were used in each product (van der Werf et al., 2017).

2.4 MODIS

Land cover types are classified using the Terra and Aqua combined Moderate Resolution Imaging Spectro-radiometer (MODIS)165

Land Cover Climate Modelling Grid product MCD12Q1 Version 6.1, available from https://lpdaac.usgs.gov. We use the Inter-

national Geosphere-Biosphere Programme (IGBP) legacy classification schemes, and group into six surface classes, shown in

Figure ??b
::::::::::::
Supplementary

::::::
Figure

::
1.

:::::
These

:::
will

:::
be

::::
used

::
to

:::::::::
determine

:::::::::
aggregated

:::
flux

::::::::::
information.

(a) Map of spatial regions used in study. Percentage land area coverage: Northern Hemisphere extratropics (54%), Southern

Hemisphere extratropics (8%), Tropical America (12%), Tropical Africa (18%), Tropical Eurasia and Australia (8%). (b)170

Land cover vegetation types developed from MODIS data and used for regional flux analysis. Percentage land area coverage:

Grassland and croplands (32%), Semi-arid (25%), Tundra and Arctic shrubland (15%), Sparsely vegetated (12%), Tropical

forest (10%), and Extratropical forest (5%).

2.5 Data processing and analysis framework

The CGR is derived by taking the differential of monthly atmospheric CO2 concentration data. We calculate the interannual175

variability by first removing the mean seasonal cycle from the monthly data, then removing the linear trend. We assume that

by removing the linear trend this removes the main fossil fuel driving signal.
:::::::
However,

::::
this

:::::
could

::::
also

::::::
remove

::::
any

:::::
trend

::
in

:::::::
biogenic

:::
and

::::::
ocean

::::::
fluxes.

:
The CGR time series and CO2 inversion products are then smoothed with a 12 month moving

mean, while the GRACE TWS data is smoothed using a 6 month moving mean, following (Humphrey et al., 2018).
::::::::
Different

::::::::
smoothing

::::::::
windows

:::
are

::::
used

:::::::
because

::
the

:::::
CGR

::::
data

:
is
:::::::::
inherently

::::::
noisier

:::
than

:::
the

:::::
TWS

::::
data,

::::::::
therefore

:::::::
requiring

:::::::
slightly

:::::::
stronger180

::::::::
smoothing

:::
to

:::::
reveal

::::::::::
meaningful

:::::::::
interannual

::::::::::
variability. To convert the global CGR from ppm to GtC we use the conversion

factor 1 ppm by volume of atmosphere CO2 = 2.13 GtC. All gridded inverse model products are resampled to a 0.5 degree

grid in order to fit with the GRACE data. We generate an ensemble mean of inversion products spanning from January 2002 to

December 2022, with each product equally weighted. Due to CT2022 only being available until December 2020, the ensemble

incorporates only the remaining three products in 2021 and 2022.185

To assess the importance of different regions to a global total, we use the “contribution index” (fj), as defined by Ahlström

et al. (2015) also adopted by Zhang et al. (2019) and Humphrey et al. (2018). This index quantifies the spatial contributions to

6
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Table 1. Summary of atmospheric CO2 flux inversion products.

Product
Temporal coverage

Transport model

Meteorol. fields Fossils
Fires Reference

CAMS
1979-2023 LMDZ

ERA5-Interim GCP-GridFED
GFED Chevallier

(2023), Chevallier

et al. (2005)

UoE
2001-2022 GEOS-

Chem

MERRA2 Oda and Maksyu-

tov (2011) GFEDv3.0 Feng

et al. (2009), Feng

et al. (2016)

NISMON-CO2

1990-2022
:
1

NICAM-TM

JCDAS, JRA-55 GCP-GridFED
GFEDv4.1s (Niwa

et al., 2022), Niwa

et al. (2017)

NOAA Carbon-

Tracker CT2022 2000-2020 TM5
ERA5-Interim Millier, ODIAC

GFEDv4.1sJacobson et al. (2023)

::::::::::::::::
Jacobson et al. (2023)

:::::::::::
CarbonTracker

:::::
Europe

:::::
(CTE)

:

::::
TM5

:::::::::
ERA-Interim

: ::::::::
EDGAR4.2

: ::::::::::::::::::::::::
van der Laan-Luijkx et al. (2017)

:::
Jena

:::::::::
CarboScope

: ::::
TM3

:::::
NCEP

:::::::
reanalysis

: ::::::
EDGAR

: ::::::::::::::::::::::
Rödenbeck et al. (2003, 2018)

::::::
IAPCAS

: ::::::::::
GEOS-Chem

::::::
GEOS-5

: ::::::::::::::::::::
Oda and Maksyutov (2011)

:::::::::::::::::::::::::::
Feng et al. (2016); Yang et al. (2021)

::::::::::::
MIROC4-ACTM

: ::::::::::::
MIROC4-ACTM

: ::::::
JRA-55

:::::::
GridFED

::::::::::::::::
Chandra et al. (2021)
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the global monthly time series t, scoring regions based on how consistent their regional flux IAV is with the sign and magnitude

of the global IAV. It is given by:

fj =

∑
t
xjt|Xt|

Xt∑
t |Xt |

(1)190

where xjt represents the detrended regional data j at time t, and Xt =
∑

xjt denotes the detrended global value. Regions with

higher positive values of fj contribute more to the global variations. This is used on both the regional GRACE TWS variations,

and on regional CO2 fluxes from the atmospheric inversion products. Regions may represent continental areas or areas with

particular land cover classes depicted in Figure ??.
::::::::::::
Supplementary

::::::
Figure

::
1.

To connect the TWS and CGR time series we use the Pearson correlation coefficient (r). Additionally, we look to iden-195

tify the regional origin of the global TWS (GTWS) correlation with CGR. Let GTWS represent the global TWS signal and

TWSi represent the storage signal at grid point i. The relationship between the global correlation rGTWS,CGR:
, and grid point

correlations rTWSi,CGR,
:
can be expressed as;

rGTWS,CGR ×σGTWS ×A=
∑
i

rTWSi,CGR ×σTWSi × ai, (2)

where ai is the area of grid box i, A is the total land surface area such that A=
∑

i ai, and σGTWS and σTWSi
are the200

temporal standard deviations of the global and grid point storage signals, respectively. This equation holds due to the additivie

properties of covariance. Hence, the contribution of a particular region (R) to the global GTWS-CGR correlation, which we

will denote as g, can be expressed as a percentage as follows;

g(R) =

∑
i∈R ai ×σTWSi

× rTWSi,CGR

A×σGTWS × rGTWS,CGR
× 100. (3)

This helps identify regions which may have a smaller contribution to the GTWS variability but which are more strongly205

correlated to CGR variations. This is similar to the metric used by Wang et al. (2022) in their equation (4).

3 CO2 Growth Rate (CGR) and Terrestrial Water Storage (TWS)

Extending the results from Figure 1a of Humphrey et al. (2018), our Figure 1 shows the de-trended time series of global

terrestrial water storage from GRACE (note the reversed axis direction for TWS), and the CGR derived from surface flasks, for

the period January 2002 to December 2023.
:
It

::
is

::::::::
important

::
to

::::
note

::::
that,

::::::::
although

::::::::::
atmospheric

::::
CO2::::::::::::

concentrations
::::::::
continue

::
to210

:::::::
increase

::::
each

::::
year,

:::
the

:::::
CGR

:::
has

::::
been

:::::::::
detrended;

:::::::::
therefore,

:::::::
negative

::::
CGR

:::::::::
anomalies

::::::
reflect

::::::
periods

::
of

:::::::::::::
below-average

::::::
growth

::::::
relative

::
to

:::
the

:::::::::
long-term

:::::
mean

::::::
growth

::::
rate.

:
A negative correlation of r = -0.70 (p < 0.01) is found, implying that reduced

terrestrial water availability corresponds to lower net land uptake of carbon, consequently leading to a higher atmospheric

CGR. A correlation of r = -0.69 is observed for the period from 2002 to 2016 as analysed by Humphrey et al. (2018), and

8



r = -0.74 from 2016 to 2023. The strongest CGR peak in 2016 is clearly associated with the strong El Niño that occurred,215

with associated drying across many land areas (Santoso et al., 2017; Wigneron et al., 2020). We will investigate regional

relationships later in the paper, but this figure clearly underscores the persistence of the TWS-CGR relationship beyond 2016

shown by Humphrey et al. (2018).

Figure 1. Comparison of the interannual variability of global terrestrial water storage (GTWS) from GRACE (right inverted axes) and

atmospheric CO2 growth rate (CGR) (left axes) from 2002 to 2023.
:::
Time

:::::
series

::::
have

::::
been

:::::::::
de-seasoned

:::
and

::::::::
de-trended.

:
The grey dashed line

marks the end of the Humphrey et al. (2018) analysis.

To highlight smaller scale features of this relationship, Figure 2a shows the monthly correlation between GRACE TWS

IAV at each grid point and the global CGR time series. The map has been filtered to only show correlations significant at the220

level of p < 0.01, which corresponds to a minimum correlation coefficient of r = ± 0.16. We also calculated the map using

the Spearman’s correlation coefficient (results not shown) and the spatial patterns were the same as in Figure 2a. The most

prominent negative correlations appear over the eastern Amazon and extending
:::::
extend

:
across eastern parts of tropical South

America. Other areas of negative correlation in the tropics extend through India, Southeast Asia and northern Australia. There is

also a substantial region in northeastern Siberia showing strong negative correlation. However, not all of these areas contribute225

much
::::
areas

::::
with

::::
high

::::
local

::::::::::
correlations

:::::::::
contribute

:::::::::::
meaningfully to the total GTWS-CGR correlation simply because their TWS

variations may be small . Figure 2b shows
:::::::::::
GTWS–CGR

::::::::::
relationship.

:::::
This

::
is

::::
often

::::
due

::
to

:::::
either

::
a

:::::
small

:::::::::
magnitude

::
of

:::::
TWS

::::::::
variability

::
or

::
a

::::::
limited

:::::
spatial

::::::
extent,

:::::
which

:::::::
reduces

::::
their

::::::
overall

::::::::
influence

::
on

:::
the

::::::
global

:::::
signal.

:::
To

::::::
address

::::
this,

:::
we

:::::::
evaluate the

9



contribution of each 1ox1o grid box to the GTWS-CGR signal from Figure 1, based on equation 1, such that the sum of all grid

boxes equals 100%. This enables a visualisation of the relative importance of different regions in governing the GTWS-CGR230

IAV. Grid boxes with higher positive scores indicate a stronger influence, while those with smaller or negative scores are

indicative of regions with lesser or counteracting contributions. From this figure
::::

◦×1◦
::::
grid

::::
cell

::
to

:::
the

::::::
global

::::::
GTWS

::::::
signal

::::
using

::::::::
Equation

::
1,

::
as

::::::
shown

::
in

:::::
Figure

:::
2b.

::::
This

:::::::::::
contribution

:::::
metric

:::::::::
effectively

:::::::::::
downweights

::::::
regions

::::
with

::::::::
minimal

:::::::
influence

::::
due

::
to

:::
low

:::::
TWS

:::::::
variance

::::::::
allowing

:
a
::::::
clearer

::::::::::
assessment

::
of

:::
the

:::::::
regions

:::
that

::::::::
dominate

:::::::
GTWS

::::
IAV.

::
In

::::
this

::::::::::::
representation, tropical

areas stand out much more strongly
:
,
::
as

:::
the

::::::
metric

:::::::::::
incorporates

:::
the

:::::::::
magnitude

::
of

:::::
TWS

:::::::::
variability

::
in

:::::::
addition

::
to
::::::::::

correlation235

::::::
strength.

::::
From

::::::
Figure

::
2,
::
it
:::
can

:::
be

::::
seen

::::
that

::
in

::::::
certain

:::::::
regions,

:::::
TWS

:::::::::
variability

:::::::
exhibits

:::::::
positive

::::::::::
correlations

::::
with

:::
the

:::::
global

::::::
CGR,

::::
such

::
as

::
in

:::::
South

::::::
Brazil

:::
and

::::
East

::::::
China.

::::::
There

:::::
could

::
be

:::::::
possible

::::::::::
biophysical

:::::::::::
explanations

:::
for

:::
this

::::::
result,

:::
for

:::::::
instance,

::
it
::::
was

::::::::
suggested

:::
that

::::
the

:::::::
Brazilian

:::::::::
Southeast

::
is

:
a
::::::::
transition

::::::
region

:::::::::::
characterized

:::
by

::::::
rainfall

:::::::::
anomalies

::::
with

::::::::
opposite

::::::
signals

::::::
related

::
to

:::::
ENSO

:::::::::::::::::
(Coelho et al., 2002)

:
.
::
It

::
is

:::
also

:::::::
possible

::::
that

:::::
these

::::::
regions

::::::
simply

:::
do

:::
not

::::::::
contribute

:::::::::::
substantially

::
to

:::
the

::::::
global

:::::
CGR,240

:::
and

:::
the

::::::::
observed

::::::
positive

::::::::::
correlations

::::
may

::::::
reflect

::::
local

::
or

:::::::
regional

:::::::::
processes

:::
that

:::
are

::::::
largely

::::::::
cancelled

:::
out

::
at

:::
the

::::::
global

:::::
scale.

::::::::::
Determining

:::
the

:::::::::
underlying

::::::
causes

::
of
:::::

these
::::::::::
correlations

::::::
would

::::::
require

:::::::
reliable

::::::::
estimates

::
of

::::::::::::
regional-scale

::::::
carbon

::::::
fluxes,

:::
but

::
as

:::
will

:::
be

::::::::
discussed

::
in

:::::::
Section

::
4,

::::::::::
atmospheric

:::::
CO2 ::::::::

inversion
:::::::
products

::::::::
currently

::
do

::::
not

::
do

::
a

::::
good

:::
job

::
at
:::::::::
capturing

:::
fine

:::::
scale

:::::::::
interannual

:::::::::
variability,

:::::::
limiting

::::
their

:::::
utility

:::
for

::::
such

::::::::::
attribution.

Figure 2. (a) Correlation map of GRACE TWS and CGR for the period 2002-2023. Only areas with p < 0.01 are shown. (b) Contribution of

each 1ox1o grid point to total global TWS-CGR
::::
TWS signal, expressed as a percentage.

Figure 3 shows correlations between regional TWS and the global CGR in blue on the left axis, and the right axis shows the245

regional contribution to the GTWS signal (f , based on equation (1) in red, and the regional contributions to the GTWS-CGR

correlation (g) following equation (3) in orange.
::
To

:::
aid

::::::::::::
interpretation,

:::
the

:::::::
regional

:::::::
domains

:::::
cover

::::
the

::::::::
following

::::::::::
proportions

:::::
global

::::
land

::::
area:

::::::::
Northern

::::::::::
Hemisphere

::::::::::
extratropics

::::::
(54%),

::::::::
Southern

::::::::::
Hemisphere

::::::::::
extratropics

:::::
(8%),

:::::::
Tropical

::::::::
America

::::::
(12%),

:::::::
Tropical

::::::
Africa

::::::
(18%),

::::
and

:::::::
Tropical

:::::::
Eurasia

::::
and

::::::::
Australia

::::::
(8%).

:::::::::
Percentage

::::::::
coverage

:::
by

:::::::::
vegetation

:::::
type

::
is

::
as

::::::::
follows:
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::::::::
Croplands

::::
and

:::::::::
Grasslands

::::::
(32%),

:::::::::
Semi-arid

::::::
(25%),

::::::
Tundra

:::
and

::::::
Arctic

:::::::::
shrubland

::::::
(15%),

:::::::
Sparsely

::::::::
vegetated

::::::
(12%),

::::::::
Tropical250

:::::
forest

::::::
(10%),

:::
and

:::::::::::
Extratropical

:::::
forest

:::::
(5%).

:
The continental values in Figure 3a show that the tropics alone can explain all of

the GTWS-CGR correlation, with the Northern Hemisphere (NH) and Southern Hemisphere (SH) extratropics providing small

cancelling contributions.

:::
The

::::::
tropics

::::
play

:
a
::::::::::::::::

disproportionately
::::
large

::::
role

::
in

::::::
driving

:::
the

:::::::::
covariance

:::::::
between

:::::
CGR

::::
and

:::::::
regional

:::::
TWS.

::::
This

::
is

:::
due

::
to

::
a

::::::::::
combination

::
of

::::::
factors:

:::
(i)

:::
the

:::::
tropics

::::::
exhibit

:::::
some

::
of

:::
the

::::::
largest

:::::::::
magnitudes

::
of

:::::
TWS

::::
IAV

:::
(ii)

::::::
Climate

:::::::::
anomalies

::::
such

::
as

::::::
ENSO255

:::::
events

:::::
often

::::::::::
synchronise

:::::::
drought

:::
and

:::::::::::
temperature

::::::::
anomalies

::::::
across

::::
vast

:::::::
tropical

:::::::
regions,

:::::::
creating

:::::::
spatially

::::::::
coherent

::::::
signals

:::
that

:::
are

::::::::
amplified

::
at

:::
the

:::::
global

:::::
scale.

:::
In

:::::::
contrast,

::::::::
temperate

:::::::
regions

:::::::
typically

:::::::::
experience

:::::
more

::::::::
localized

:::
and

::::
less

:::::::::::
synchronised

::::::
climate

:::::::::
variability,

:::::::
resulting

::
in
:::::::
smaller

:::::::::::
contributions

::
to

:::::
global

:::::
CGR

::::::::
variance.

Notably, tropical America makes the largest contribution to the GTWS-CGR correlation (g = 69 %), despite only representing

around 12% of the land surface area. Table 2 shows the aggregated correlations and contributions for some additional regions.260

However, it is important to note when aggregating grid boxes into regional or global averages, compensatory effects can arise,

where TWS anomalies in different regions covary negatively (e.g., due to ENSO patterns), potentially cancelling each other

out. This can obscure the true influence of individual regions on the global signal, as spatial covariances are not fully accounted

for, leading to an oversimplification of their relative contributions. For example, Jung et al. (2017) demonstrates that the effects

of soil moisture on NEE operate at relatively small spatial scales (in comparison to temperature), however, this does not seem265

to prevent the strong impact of TWS on the CGR at the global scale, as seen by Humphrey et al. (2018) and in our results.

Figure 3b captures TWS variability by land cover type across the whole time period. The correlation between TWS and

CGR variations is strongest in tropical forests (r = -0.55, p < 0.01), followed by semi-arid regions (r = -0.46, p < 0.01), but

correlation alone does not consider the actual magnitude of TWS variations. The contribution index to GTWS signal (equation

1) and the contribution to the GTWS-CGR correlation (equation 3), also shown in Figure 3b, provide greater insight into the270

role of each land cover type. Croplands and grasslands, as the dominant land cover type covering 32% of the Earth’s land

surface area, largely contribute to GTWS signal (f = 22%). However, they have a relatively low correlation with CGR and

overall do not contribute much to the GTWS-CGR correlation (g = 15%). Tropical forests on the other hand, emerge as the

primary land cover type influencing the GTWS-CGR correlation (g = 37%), despite only covering 10% of the land surface.

Semi-arid regions also play an important part, contributing a substantial fraction to both the GTWS signal (f = 25%) and275

the GTWS-CGR correlation (g = 26%). However, semi-arid regions cover approximately 25% of the land surface area, a

much larger portion than tropical forests, highlighting the much stronger role of tropical forests in governing the GTWS-CGR

relationship per unit area.

(a) Correlation between TWS signal for different regions and global CGR is represented by the blue bar on left axis.

Contribution of continental/hemispheric regions to global TWS-CGR correlation is shown in orange, and contribution to global280

TWS signal is shown in red against the right axis. (b) This shows the contributions from each land cover type defined in Figure

??, using the same colour key.

Regional correlations between GRACE TWS and global Atmospheric CGR variability (first column), regional contributions

to the global TWS signal (second column), and contributions to the global TWS-CGR correlation (third column) from 2002
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Figure 3.
::
(a)

:::::::::
Correlation

::::::
between

:::::
TWS

::::
signal

:::
for

:::::::
different

:::::
regions

:::
and

:::::
global

:::::
CGR

:
is
:::::::::
represented

::
by

:::
the

:::
blue

:::
bar

::
on

:::
left

::::
axis.

::::::::::
Contribution

:
of
::::::::::::::::::

continental/hemispheric
::::::
regions

::
to

:::::
global

:::::::::
TWS-CGR

::::::::
correlation

::
is

:::::
shown

::
in

::::::
orange,

:::
and

:::::::::
contribution

::
to

:::::
global

::::
TWS

:::::
signal

::
is

:::::
shown

::
in

::
red

::::::
against

:::
the

:::
right

::::
axis.

:::
(b)

:::
This

:::::
shows

:::
the

::::::::::
contributions

::::
from

::::
each

:::
land

:::::
cover

::::
type,

::::
using

:::
the

::::
same

:::::
colour

:::
key.

:::
The

::::::
dashed

:::
line

::::::::
represents

::
the

:::::
global

:::::::::
TWS-CGR

::::::::
correlation.

:

to 2023. Percentage of total land surface area (fourth column). Region Correlation Contrib. to GTWS Signal Contrib. to285

GTWS-CGR Correlation Land Area % Global -0.70 1.0 1.0 100 Tropics -0.61 0.74 0.98 37 Extratropics 0.02 0.26 0.02

63Amazon -0.51 0.13 0.28 4All Africa -0.21 0.23 0.15 23 All India -0.33 0.09 0.10 2All Australia -0.11 -0.01 0.05 5
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Table 2.
::::::

Regional
:::::::::
correlations

::::::
between

:::::::
GRACE

::::
TWS

:::
and

:::::
global

::::::::::
Atmospheric

::::
CGR

::::::::
variability

::::
(first

:::::::
column),

::::::
regional

::::::::::
contributions

::
to

:::
the

:::::
global

:::::
TWS

::::
signal

::::::
(second

:::::::
column),

:::
and

::::::::::
contributions

::
to

:::
the

:::::
global

::::::::
TWS-CGR

::::::::
correlation

:::::
(third

::::::
column)

::::
from

::::
2002

::
to

::::
2023.

:::::::::
Percentage

::
of

:::
total

::::
land

:::::
surface

::::
area

:::::
(fourth

:::::::
column).

:

:::::
Region

: ::::::::
Correlation

: ::::::
Contrib.

::::
to

:::::::
GTWS

:::::
Signal

::::::
Contrib.

:::::::::::
to

:::::::::
GTWS-CGR

::::::::
Correlation

:

::::
Land

::::
Area

::
%

:::::
Global

::::
-0.70

::
1.0

: ::
1.0

: :::
100

:::::
Tropics

: ::::
-0.61

:::
0.74

: :::
0.98

: ::
37

:::::::::
Extratropics

:::
0.02

: :::
0.26

: :::
0.02

: ::
63

::::::
Amazon

: ::::
-0.51

:::
0.13

: :::
0.28

: :
4

::
All

:::::
Africa

: ::::
-0.21

:::
0.23

: :::
0.15

: ::
23

::
All

::::
India

: ::::
-0.33

:::
0.09

: :::
0.10

: :
2

::
All

:::::::
Australia

: ::::
-0.11

::::
-0.01

:::
0.05

: :
5

Figure 4 presents a time series of the regional TWS variations through the whole period 2002-2023. Figure 4a regionalises

across the five spatial regions shown in Figure 3a. Each region is accounted for such that the sum of positive and negative

contributions equals the GTWS, in black, while the CGR variations are also shown against a separate axis. While the NH290

extratropics show large TWS variations this often tends to be anti-correlated with TWS elsewhere, and there is little correlation

with the CGR. By contrast there is a particularly consistent alignment between the timing of many CGR events and the

variations in TWS across tropical America. After 2020 the CGR and TWS signals both become more variable without the

clear peaks or troughs seen earlier, although there is still reasonable alignment of the GTWS and CGR signals up to the end

of 2022. Overall, this figure demonstrates that tropical regions generally contribute significantly to the GTWS signal and are295

consistently coherent with CGR variations. Whereas, even substantial variations in the NH extratropics, where there is a lot of

anti-correlation with the GTWS, are thus unlikely to be significantly impacting the CGR. This pattern is also true for the SH

extratropics, although the magnitude of variations is smaller here than in the NH.

Now we consider regionalising the IAV in GRACE TWS and its correlations with the CGR, according to land cover types,

using the MODIS land cover map shown in Figure ??
:::::::::::::
(Supplementary

::::::
Figure

::
1). Figure 4b shows the contribution to the GTWS300

IAV for each land cover type plotted against the right (inverted) axis, with the CGR on the left axis. The largest CGR peak due

to the 2015/2016 El Niño event very closely corresponds to the water storage variations seen in tropical forests, where there is
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Figure 4.
::::::
GRACE

::::::::
terrestrial

::::
water

::::::
storage

:::::
(TWS)

:::::::::
interannual

::::::::
variability

:::
and

:::::
global

::::
CO2 :::::

growth
:::
rate

::::::
(CGR)

:::::::::
2002-2023.

::
(a)

::::::::
aggregated

:::
by

::::::::
continental

::::::
regions

::
(b)

:::
by

:::
land

::::
cover

::::
type.

:

a substantial TWS minimum over this period. The CGR returned to reference levels in 2017, and global TWS recovered shortly

afterwards. Note that we might also associate the increase in CGR around 2005 with the tropical forests, although this event

is not noticeable in the global storage signal. This increase coincides with the 2005 drought in the Amazon driven, not by El305

Niño, but by elevated tropical North Atlantic sea surface temperatures, affecting the southern two-thirds of Amazonia (Phillips

et al., 2009). Then in 2009, a notable drop in CGR aligns with a peak in tropical forest TWS, an occurrence associated with the

exceptional flood season observed in the lower Amazon basin during the first half of 2009, supposedly linked to the 2008–2009

La Niña event (Chen et al., 2010). This is followed by a sharp peak in CGR which coincides with the
::::::
another

:
drought of 2010

in Amazonia, more severe than the drought in 2005. This event started during El Niño and then was
:::
was

::::
then

:
intensified as a310

consequence of the warming of the tropical North Atlantic (Marengo et al., 2011).
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A decrease in CGR can also be observed in 2011, indicative of a strong land carbon sink. This sink anomaly has been cor-

roborated by independent observations from MODIS EVI and GOME-2 SIF showing much enhanced photosynthetic activity

over this period (Ma et al., 2016), as well as by GOSAT XCO2 (Detmers et al., 2015). This feature relates to an increase

in TWS in semi-arid regions, primarily resulting from a wet period in Australia during 2010-2011. Large parts of semi-arid315

Australia are covered by endorheic basins, where TWS variations are highly sensitive to precipitation (Petch et al., 2023b).

Our results align with Poulter et al. (2014), who found that nearly 60% of carbon uptake over this period could be attributed

to semi-arid Australian ecosystems, which experienced several consecutive seasons of increased precipitation due to prevalent

La Niña conditions. However, other features in the CGR variability are less clearly associated with TWS variations partitioned

in this way. In 2020, the CGR exhibited an opposite response compared to what we normally observe in relation to the tropical320

forest TWS anomaly. The global TWS anomaly remained positive, possibly due to conditions in other regions (notably wet in

NH extratropics and Tropical Africa from Figure 4a). This could also be an indication of a lack of TWS influence on the CGR

and may be caused by external factors, such as reduced human emissions due to the COVID-19 pandemic.

GRACE terrestrial water storage (TWS) interannual variability and global CO2 growth rate (CGR) 2002-2023. (a) aggregated

by continental regions (b) by land cover type.325

A clear difference between the Figures 4a,b TWS signals is that the vegetation cover contributions tend to be more aligned

with the global TWS signal without the strong cancellations seen in continental TWS. This is largely explained by croplands

and grasslands which often have large compensating TWS anomalies distributed between the NH extratropics and the tropical

zones on all continents. This can be demonstrated by the disappearance of the pronounced anomalies depicted in Figure 4a

when croplands and grasslands are excluded from the analysis
:::
(see

::::::::::::
supplementary

:::::::
Figures

::
2

:::
and

:::
3). This is an example of330

compensatory effects of water anomalies discussed in Jung et al. (2017), which could lead us to underestimate the
:::::
overall

:::::
CGR

role of croplands and grasslands.

4 Regional flux contributions to CGR estimated by atmospheric inverse methods

The previous section looked at regionalising TWS with respect to CGR correlations. In contrast this section will try to region-

alise CGR contributions by using atmospheric CO2 inversion model products. This approach offers the advantage of identifying335

the regions that
::::::
directly

:
contribute most to CGR variability without depending on the coupling between TWS and CGR. Ad-

ditionally, these products potentially allow us to gain direct insight into the relative magnitude of the CO2 flux contributions

from each region, which previously relied on
::::
were

:::::::::
previously

::::
only

:::::::
inferred

:::::
from regional TWS variations. The reliability of

this approach will however be limited by the quality of inversion products. Therefore, we employ multiple products to assess

their agreement with each other, as well as with the previous GRACE results, to provide further insightsinto their reliability.340

Figure 5 compares the global land surface CO2 flux created from the ensemble of four
::::
eight

:
different inversion products,

and the CGR interannual variability derived from surface flasks. The shaded region represents the maximum and minimum

across the products around the mean. The products, when integrated globally, show good agreement with each other and with

the surface flask based CGR in terms of correlation, although there are substantial variations in the amplitude of the resulting

15



Figure 5. Interannual variability of observed atmospheric CO2 growth rate (CGR) dervived from GML NOAA surface flasks (red dashed),

and global terrestrial carbon flux interannual variability from an ensemble of four
::::
eight atmospheric CO2 inversion products over 2002-2022.

Ensemble mean, black, with product range in grey.

terrestrial IAV. These results underscore that the majority of the IAV originates from the land, with minimal contributions345

coming from variations in ocean uptake and fossil fuel emissions. However
:
, there is reduced agreement between the CGR and

the inversion products between 2020 and 2021, e.g. CGR observations and inversion anomalies may be of opposite sign. The

low CGR may result from anthropogenic emissions being 8.8% lower in the first half of 2020 compared to the same period

in the previous year, as a result of the COVID-19 pandemic impacting human activities (Liu et al., 2020). In this case pure

detrending is unlikely to remove the anthropogenic signal in the CGR, which could explain this result.350

In order to compare the inversion products at finer spatial scales, Figure 6 shows the contribution of each land grid point to

the global land surface flux IAV, from equation (1), for each inversion product over the period January 2002 to December 2022

(or until December 2020 for CT2022). These maps exhibit varying levels of spatial detail due to the original resolutions of the

data products.
::::
2022.

:
While there are some similarities on larger scales (see below), the maps also highlight many differences

between the products. Such discrepancies will limit the value of these products for fine scale analysis.355

The aggregated regional CO2 contributions for each inversion product, expressed as a percentage of the global CGR, are

shown in Figure 7. The ensemble means show agreement with GRACE in attributing most of the terrestrial carbon variability

to the tropical regions (f = 74%), based on equation (1). NISMON-CO2 strongly favours tropical America, while CAMS and

UoE show tropical Africa as the dominant contributor, and CT2022 largely favours
:
.
::::::::
IAPCAS

:::
and

:::::::
MIROC

::::::
largely

::::::
favour the

NH extratropics. We will quantify this spread among products later.360

There is general consensus among the products regarding contributions from land cover types, Figure 7b, with all products

attributing nearly all CGR variability to three vegetation types: semi-arid areas, tropical forests, and grasslands/croplands. The

ensemble means highlight semi-arid regions (f = 38%) and tropical forests (f = 35%) as the primary contributors, aligning
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Figure 6. Maps of 1◦×1◦ grid point contributions to global land carbon flux IAV for four
:::
eight

:
atmospheric CO2 inversion products.Note,

the NISMON-CO2 map is depicted over a larger range due to higher contribution of tropical forests.
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with the GRACE data, which identified these two regions as the most dominant contributors to the GTWS-CGR correlation in

Figure 3b. The365

::::::::
However,

:::
the NISMON-CO2 tropical forests contribution is an outlier. Posterior

::::::
product

::::::
stands

::
as

:::
an

::::::
outlier,

::::::::
assigning

::
a

:::::::::
particularly

:::::
large

::::::::::
contribution

::
to
:::::::

tropical
:::::::
forests.

::
A

::::::::::
contributing

:::::
factor

::::
may

::::
also

:::
be

:::
the

:::
use

::
of

::::
the

:::::::
NICAM

::::::::
transport

::::::
model,

:::::
which

:::
has

:::::::::
previously

::::
been

:::::
shown

::
to

:::::
yield

::::::
distinct

:::
flux

:::::::
patterns

::::::::
compared

::
to
:::::
other

:::::::
models,

::::::::
especially

::
in

:::
the

::::::
tropics

::::::::::::::::
(Peylin et al., 2013)

:
.
:::
For

::::::::
instance,

:::::::
NICAM

:::
has

::::::::
produced

:::::::
stronger

:::::::
carbon

::::::
release

::::::
signals

::::
and

::::::
broader

::::
IAV

::::::
during

:::::
major

:::
El

::::
Niño

::::::
events

::::
such

:::
as

:::::::::
1997/1998.

:::::::::::
Additionally,

::::::
sparse

:::::::::::
observational

::::::::::
constraints

::
in

:::::::
tropical

::::::
regions

:::::
may

:::::::::
exacerbate

:::::::::
differences

::::::::
between

::::::::
inversion370

:::::::
systems,

:::::::
allowing

::::::
model

::::::::
structure

:::
and

::::::::
transport

:::::
errors

::
to

:::::
exert

:
a
::::::
strong

::::::::
influence.

::::::::::::
Nevertheless,

:::
this

:::::::::::
observational

:::::::::
limitation

:
is
::::::::
common

::::::
across

:::::::
systems

:::
and

::
is

::::::::
therefore

:::::::
unlikely

::
to
:::

be
:::
the

::::
sole

:::::
driver

:::
of

:::::::::
NISMON’s

::::::::::
divergence.

::
A
:::::
more

:::::::
targeted

::::::
model

:::::::::::::
intercomparison

:::::
would

:::
be

::::::::
necessary

::
to

::::::
isolate

:::
the

::::::
specific

::::::
causes

::
of

::::
this

::::::::::
discrepancy.

:

:::
We

::::
also

:::
find

::::
that

::::::::
posterior estimates for large regions are clearly driven by observations, as their IAVs show no obvious

similarities to
:::::
exhibit

::::
IAV

::::
that

::
is

:::
not

:::::::
present

::
in

:::
the a-priori biosphere flux estimates,

:
in the products for which these

:::::
priors375

were available. In addition some priors have only seasonal variability but no IAV
::::
many

:::::
cases

:::
the

:::::
priors

::::::
include

::::
only

::::::::
seasonal

:::::
cycles

:::
and

::::
lack

:::::::::
substantial

::::::::::
interannual

::::::::
variation,

:::::::::
indicating

:::
that

:::
the

::::
IAV

::
in

:::
the

::::::::
posterior

:::::
fluxes

::
is

:::
not

:::::::
inherited

:::::
from

:::
the

:::::
prior.

::::
This

:::::
means

::::
that

:::::::::::
observational

:::::::::
constraints

:::
and

::::::::
transport

::::::
model

::::::::
dynamics

::::
play

:
a
:::
key

::::
role

::
in

:::::::
shaping

:::
the

:::::::
posterior

:::::::::
variability.

:

::::::::::
Interestingly,

:::::
there

::
is
:::::
much

::::
less

:::::::::
consensus

::::::::
regarding

::::::
spatial

::::::
region

:::::::::::
contributions

:::::
from

:::::
Figure

::::
7a.

:::
For

::::::::
example,

::::::::
IAPCAS

:::::
shows

:::::::
minimal

::::::::::::
contributions

::::
from

:::::::
tropical

::::::::
America,

:::::
while

:::::::::::
contributions

:::::
from

:::
the

::::::::
northern

::::::::::
extratropics

::::
vary

::::::
widely

::::::
across380

:::::::
products.

::::::::
IAPCAS

::::
and

:::::
CTE

:::::::
attribute

:::::::
around

::::
40%

:::
of

::::
CGR

:::::::::
variability

:::
to

:::
the

::::
NH

:::::::::::
extratropics,

:::::::
whereas

::::::
CAMS

:::::::::
attributes

::::
only

::::
12%.

:::::
This

:::::
spread

:::::::
reflects

:
a
::::::
known

:::::::::
challenge

::
in

:::::::::
attributing

::::::
carbon

:::::::::
variability

::
to

:::
the

:::
NH

:::::::::::
extratropics,

::::::::::
particularly

:::::
when

::::::
relying

::
on

:::::::
surface

:::::::::
observation

::::::::::
inversions.

:::::::
Previous

::::::
studies

:::::
have

:::::::::
highlighted

::::
that

:::::::::
inversions

:::::
using

::::
only

::
in

:::
situ

:::::
CO2 ::::

data
::::
may

:::::::::::
underestimate

:::::::::
variability

:::
in

::::
these

::::::::
regions.

:::::::::::::::::
Guerlet et al. (2013)

::
for

::::::::
example,

:::::::
suggest

::::
that

:::::::
satellite

:::::::::::
observations

:::::
show

:::::
more

:::::::::
substantial

:::
flux

:::::::::
variability

:::
in

:::
the

::::
NH

::::::::::
extratropics

::::
than

::
is

::::::::
captured

:::
by

::::::::::
surface-only

:::::::::
inversions. However it is possible that385

varying uncertainties in prior estimates may still be selecting some regionsto permit more posterior IAV than others.

Figure 8 presents time series illustrating how different regions contribute to the total land CO2 :::
flux

:
variability, based on the

ensemble mean of the inversion products, with the CGR line shown in red. This allows us to see how different regions may

serve as dominant drivers of CGR variability at different times throughout the 20-year period, similar to Figure 4. The colour

bar inserts on Figure 8 represent the standard deviations of the four
::::
eight inversion products around the ensemble mean for the390

whole 20-year period. These bars are designed to share ,
:::::::
sharing the same scale as the main axis used in the figure. The standard

deviations for continental regions average 0.32 GtC yr−1, whereas for land cover types it average
:::
the

::::::
average

::
is
:::::::::::
significantly

:::::
lower, 0.21 GtC yr−1. We also examine how the contribution from each land cover type varies during different temporal CGR

events, in Figure 8b.

During the period of elevated CGR levels around 2002 (reduced uptake by the land), similar contributions are observed from395

semi-arid regions and croplands and grasslands, with some input from tropical forests. This peak is thought to possibly be

associated with Northern Hemisphere fires (Jones and Cox, 2005). The decrease in CGR observed in 2004 can primarily be

attributed to cropland and grasslands according to the inversion products, although the timing of this event does not exhibit a
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Figure 7. Regional contributions to total terrestrial CO2 flux IAV for four
::::
eight

:
different atmospheric CO2 inversion products and ensemble

mean over 2002-2022. (a) shows continental regions while (b) shows vegetation cover type regions.

strong correlation with the GRACE TWS variations in Figure 4b, suggesting that water availability may not be a key driver. In

2005 tropical forests and semi-arid regions emerge as the dominant contributors to the positive CGR anomaly, which agrees400

well with the GRACE data showing droughts across these regions, despite there being a positive global TWS anomaly during

this period. The inversion products also align with GRACE in attributing the 2008-2009 decrease in CGR mostly to tropical

forests and the 2011 decrease mostly to semi-arid regions. During the substantial increase in CGR coinciding with the 2015/16

El Niño the inversion products show comparable contributions from semi-arid regions, croplands and grasslands and tropical

forest, whereas the GRACE data most strongly highlight the role of tropical forests, illustrated in Figure 4b. Overall the405
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Figure 8.
:::::::::
Contribution

::
to
::::::::
terrestrial

:::
IAV

::::
from

:::::::::
atmospheric

::::
CO2:::::::

inversion
:::::::
products

::::::::
2002-2022.

:::
(a)

::::::::
aggregated

::
by

:::::::::
continental

::::::
regions,

::
(b)

:::
by

:::
land

::::
cover

::::
type.

inversion products show minimal CGR IAV contributions from sparsely vegetated regions, and little from tundra and Arctic

shrublands and extratropical forests, also in agreement with the GRACE GTWS-CGR correlation contributions, Figure 3b.

Contribution to terrestrial IAV from atmospheric CO2 inversion products 2002-2022. (a) aggregated by continental regions,

(b) by land cover type.

From Figure 8a it is notable that the NH extratropics exhibits considerably less CO2 flux variability compared to the TWS410

variability, which is consistent with the insignificant contribution to the GTWS-CGR correlation. The overall contribution to

the global land IAV appears more uniformly distributed across spatial regions compared to land cover types, suggesting that
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factors related to land cover type may play a more significant role in determining the terrestrial carbon flux variability than

spatial regions per se. Examining specific time periods reveals interesting regional patterns. For instance, during 2002-2003,

the inversion products indicate a period of low uptake from the land, leading to high CGR, primarily driven by variations in415

the tropics, particularly tropical Africa, despite GRACE observations showing positive tropical TWS variations at this time,

Figure 4. Atmospheric data for the inverse models in these regions were sparse until around 2010, which could be a possible

cause of this discrepancy.

The drop in CGR during 2004 appears to coincide with increased land uptake in tropical Eurasia and Australia, and tropical

Africa, again with limited evidence of TWS influence in these regions. The large CGR drops in 2009 and 2014 appear to be420

predominately driven by the NH extratropics, despite GRACE only indicating possible contributions from tropical America

with minimal input from the NH. In 2022, tropical America stands out as a significant influence for the decline in CGR in the

inversion products, which is also accompanied by a clear increase in TWS in the same region. From Figure 8a it is notable that

the NH extratropics exhibit considerably less CO2 flux variability compared to the TWS variability, which is consistent with

the insignificant contribution to the GTWS-CGR correlation. Since the larger continental spreads seen in Figure 4a are not425

reproduced Figure 8a, this suggests that the inverse models do not generally capture the same anti-correlated behaviour seen

in water anomalies. This could be because the CO2 flux IAV occurs only at larger spatial scales or because the atmospheric

inversion models lack the spatial resolution to detect smaller scale anti-correlated fluxes. We now perform a sensitivity analysis

to try further bring out regional relations.

We calculate local sensitivities of the terrestrial CO2 flux to GRACE TWS interannual variations using the inversion prod-430

ucts. This provides insight into how changes in TWS translate into carbon flux variations and can help us relate Figure 4 to

Figure 8. Sensitivities allow us to assess how water-limited or energy-limited conditions might modulate the influence of TWS

anomalies on NBP. For instance, a small TWS anomaly in a water-limited region may have a disproportionately large impact

on CGR, while large TWS changes in energy-limited regions may have a smaller effect. Figure 9 shows the sensitivities cal-

culated using the ensemble mean of the inversions for (a) spatial regions and (b) land cover type. The sensitivity is calculated435

using linear regression. These sensitivities
::
do

:
resemble the contributions seen in Figure 3. Figure 9a shows higher sensitivities

in the tropics and smaller (insignificant) opposite sensitivities in the NH extratropics and SH extratropics. Figure 9b indicates

strong CO2 sensitivity to TWS variations in semi-arid regions, as well as high sensitivity in tropical forests, and croplands and

grasslands. The high sensitivity in tropical forests indicates that TWS variations in these regions directly influence NBP, rather

than merely being correlated with CGR through external factors like ENSO. This reinforces our conclusion that tropical forests440

play a crucial role in regulating the CGR.

Overall, the total sensitivity is greater when aggregating by land cover type than by spatial regions. This suggests that

aggregation by land cover better captures the variation in ecosystem responses to water availability, as different land cover

types have distinct physiological and ecological responses to TWS anomalies. Aggregation by spatial regions , however, can

:::
can

::::
then

:
obscure these differences, as regions often contain a mix of land cover types with varying sensitivities to water445

availability. For example, areas of high sensitivity to water availability in parts of tropical America (e.g tropical forests) can be
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masked when grouped into larger spatial regions that include ecosystems that are more sensitive to energy and less sensitive to

water.

:::
The

::::::
strong

:::::::::
correlation

::::
and

::::::::
sensitivity

::
in
:::::::

tropical
::::::
forests

:::::
could

:::
be

::::::::
attributed

::
to

::::::
several

::::::::
possible

::::::
factors.

:::::::
Tropical

:::::::::
rainforest

::::
trees

::::
tend

::
to

:::::
have

::::::::
relatively

:::::::
shallow

:::::::
rooting

:::::::
systems

:::
and

::::
are

:::::
hence

:::::
more

:::::
likely

::
to
:::

be
:::::::
affected

:::
by

:::::::
changes

:::
in

:::::
TWS

:::::
when450

::::::::
prolonged

::
or
::::::

severe
::::::::
droughts

::::::
deplete

::::
soil

::::::::
moisture

:::::::::::::
(Kleidon, 2004)

:
.
:::::
While

:::::
some

:::::
trees

:::
can

:::::::
develop

:::::
deep

::::
roots

::::
that

:::::::
provide

::::::
drought

:::::::::
resilience,

:::
the

:::::::
majority

:::
of

:::::
water

:::::
uptake

:::
in

::::::
tropical

::::::
forests

::::::
occurs

::::
from

:::::::::
shallower

:::
soil

::::::
layers,

:::::::
making

::::
them

:::::::::
especially

:::::::
sensitive

::
to

:::::::::
reductions

::
in

:::::::
available

::::::
water.

:::::::::::
Additionally,

::::::
tropical

::::::
forests

::::::::
generally

::::
have

::::
high

:::::::::::::::::
water-use-efficiency

::::::
(WUE),

::::::
which

:::::
allows

:::::
them

::
to
:::::::::

maximize
::::::
carbon

::::::
uptake

::::::
under

::::::::
favorable

:::::::::
conditions

::::
but

::::
also

::::::
makes

::::
them

::::::::::
vulnerable

::
to

:::::
rapid

:::::::
declines

:::
in

::::::::::
productivity

:::::
when

::::
water

::::::::
becomes

:::::::
limiting

::::::::::::::::::::::::::::::::::
(Keenan et al., 2013; Saleska et al., 2016).

:::::::
Another

::::::
reason

:::
for

:::
this

:::::::::
sensitivity

:::::
could455

::
be

:::
due

::
to

:::
the

:::::::
ongoing

::::::
drying

::
of

::::
parts

::
of

:::
the

:::::::::::::::::
Amazon—especially

:::
the

:::::::::::
southeastern

:::::::
region—

::::::
which

:::
has

::::::
pushed

::::
these

::::::
forests

::::
into

:
a
::::
state

:::
of

:::::::::
heightened

:::::::::::
vulnerability

::
to

:::::::
drought

:::::::::::::::::::::::
(Barkhordarian et al., 2019),

::::::
further

::::::::::
amplifying

::::
their

:::::::::
sensitivity

::
to

::::::::::
interannual

::::::::
variability

::
in

:::::
water

::::::
storage

::::
and

:::
the

:::::::
observed

::::::::
coupling

:::::::
between

::::::::
terrestrial

::::
CO2::::

and
:::::
water

::::::
storage

:::::::::
variability.

:

Figure 9. Regional CO2 flux sensitivity to TWS variations (units: kgC yr−1m−3), calculated using the ensemble mean of inversions. (a)

Sensitivity by spatial regions, and (b) sensitivity by land cover type.

5 Discussion

The significant negative correlation observed between GTWS and CGR suggests a compelling link between water availability460

and terrestrial carbon uptake, where drier years coincide with elevated CGR levels, implying a weakening of the land carbon

sink. This observation supports the notion that water availability plays a pivotal role as a limiting factor influencing land carbon

uptake on interannual timescales. From Figure 4, it is also clear that even when the GTWS signal does not align with the CGR,

regional TWS component signals sometimes closely follow the CGR, suggesting that water may still be a key factor influencing

CO2 variations. The evidence for water scarcity restricting land uptake is clear during times of extreme drought. For instance,465
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the Amazon which typically acts as an important carbon sink, experienced major droughts in the years 2005 and 2010 marked

by notable peaks in the CGR. Additionally, the inversion products provide regional evidence supporting the impact of water

availability during these events. However, it is important to note that other factors, including light availability and temperature,

may also impact the interannual variability in land carbon uptake. This becomes apparent when regional variations in water

availability do not consistently align with regional carbon variations from inversion products, suggesting weaker water-carbon470

coupling. For instance, during

::::::
During the 2016 El Niño event, the high CGR was largely associated with reduced land uptake in tropical Africa, de-

spite this region showing less dominant TWS variations.
::
In

:::
this

:::::
case,

::::::::
enhanced

:::
fire

:::::::
activity,

:::::::
reduced

:::::
cloud

:::::
cover

:::::
(and

::::
thus

::::::::
increased

:::::::::
radiation),

:::
and

:::::
shifts

:::
in

:::::::::
vegetation

:::::::::
phenology

::::
have

:::
all

::::
been

:::::::::
suggested

:::
as

::::::::::
contributing

::::::
factors

::
to
::::::::

reduced
::::::
carbon

:::::
uptake

::::::::::::::::::::::::::::
(Liu et al., 2017; Zhu et al., 2018).

:
475

Our sensitivity analysis with the inverse model products indicated that the CO2 flux was not highly sensitive to water varia-

tions in this region, suggesting that the variations in carbon uptake in tropical Africa were more likely driven by other factors

beyond water availability during this event. Overall, our results demonstrate that water availability exerts a notable influence

on interannual land carbon uptake. However, this impact exhibits spatial variability and is subject to influence from other

environmental drivers which are not independent from water availability, adding complexity to the carbon-water relationship.480

:::::
Given

:::
that

:::::::
tropical

::::::
Africa

:::::
shows

:
a
::::::
strong

::::::
control

:::
on

:::
the

::::
CGR

:::
but

::::
low

:::::::::
correlation

::::
with

:::::
TWS,

:::
the

:::::
value

::
in

::::::::::::
understanding

:::
the

:::::::::
relationship

::::::::
between

::::
CGR

::::
and

:::::
TWS

:::
will

::::::::
primarily

:::
be

::
in

:::::::::
diagnosing

:::
the

:::::::
regional

::::::
carbon

:::::
cycle

:::
for

::::
areas

:::::
such

::
as

:::
the

::::::::
Amazon,

::
for

::::::
which

::::::::
numerous

::::::
studies

:::::
have

:::::
shown

::::::::
evidence

::
of

::
it

:::::
being

:::::::::
vulnerable

::
to

:::::::::::
water-related

::::::
tipping

::::::
points

::::::::::::::::::
(Cox et al., 2000, e.g)

:
.
:::
The

::::::::
Amazon

::::::::
generates

:::::
about

::::
half

:::
of

::
its

::::
own

:::::::
rainfall

:::::::::::::::::
(Salati et al., 1979)

::
and

:::
so

:::::::
drought

:::::::::
conditions

::::
have

::::
the

:::::::
potential

:::
to

::
be

:::::::::
amplified,

::::
thus

:::::::
creating

:
a
:::::::
stronger

::::::
carbon

::::::
signal

::::
than

::::::
would

::
be

::::::::
observed

:::::::::
otherwise.

::::::::
However,

::::
even

:::
in

::::::
regions

::::::
where

:::
the485

:::::::::
TWS-CGR

::::::::::
relationship

::
is

:::
not

::::::
strong,

:::::::
knowing

:::
this

:::::
helps

::::::
deepen

:::
our

::::::::::::
understanding

::
of

:::::
which

::::::::
processes

::::::
control

:::
the

::::::
carbon

:::::
cycle

::
in

:::
that

::::::
region

:::
and

:::::
where

:::::::::
modelling

::::::
efforts

:::
can

::::
then

::
be

::::::::
focused.

:::
An

:::::::::
application

::
of

::::
this

::::::::
technique

::::
will

::
be

::
to

:::::::
observe

:::::::
changes

::
to

::
the

:::::::
strength

:::
of

:::
the

:::::
water

::::::
control

::
of

:::
the

::::::::
terrestrial

::::::
carbon

:::::
cycle

::::
with

:::::
time,

::
to

:::::::::
understand

::::
how

:::
the

:::::::::
processes

:::
are

::::::::
changing

::::
with

::::
shifts

::
in
:::::::
climate.

:

We explored both land cover types and spatial regions because each offers a unique perspective. Examining different spatial490

regions allowed us to uncover regional patterns and variations, while considering land cover type can help highlight the role of

vegetation in shaping carbon-water dynamics. We found that tropical forests contribute the most to the GTWS-CGR correlation

while covering only a small fraction of the Earth’s land surface relative to other land cover types. Among tropical forests, the

Amazon basin stands out from Figure 2, contributing a disproportionately large amount to the GTWS-CGR correlation (g =

28%) relative to its spatial coverage (< 5%). However, these are not the regions dominating the GTWS signal, nor are they the495

only regions controlling the land carbon uptake IAV. We found that semi-arid regions and croplands and grasslands contribute

more to the GTWS signal, which is partially
::::::
mainly due to their larger spatial coverage. This is consistent with Humphrey

et al. (2018) who also looked at the TRENDY model (Sitch et al., 2015) results
:::::
results

::::::::::::::::
(Sitch et al., 2015),

:
and FluxCOM

datasets (Tramontana et al., 2016), as well as GRACE, to assess contributions. Ahlström et al. (2015) also found that semi-arid

regions dominate the land carbon sink variability by calculating the contribution index using a biogeochemical dynamic global500
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vegetation model (DGVM) LPJ-GUESS. They also compared results with an ensemble of TRENDY models and found similar

partitioning.

The contribution to the GTWS-CGR correlation metric (equation 3) provides further insights that examining the TWS

contribution index
::::::::
variability

:::::
alone

:
(equation 1) alone does notcapture

::::
does

:::
not. For instance, while the contribution index

indicates the strong TWS signal
::
the

:::::
strong

:::::
TWS

:::::::::
variability

::::::
signals

::::
seen in the NH extratropics and

::
or croplands and grasslands,505

these regions only have small contributions to the global
::::
TWS

:
correlation with CGR.

::::::::
However

:::::::
temporal

:::::::
filtering

::::
used

::
in
::::

our

:::::::::
TWS-CGR

:::::::
analysis

::::
may

:::
still

:::
be

:::::::::::::
underestimating

:::
the

::::
true

::::::
impact

::
of

:::::
water

:::::::::
availability

:::
on

::::
CO2 :::::

fluxes
::
in

:::
the

::::::::::
extratropics,

::::::
which

:::
will

::
be

::::::::
strongly

::::::::
seasonally

::::::::
sensitive

::::::::::::::::::::::
(Keppel-Aleks et al., 2014)

:
.

Similarly, focusing solely on the regional TWS-CGR correlations does not provide information about the magnitude of the

contributions to the global correlation. Therefore, integrating these three metrics provides a comprehensive analysis, which510

taken together more strongly indicate the role of tropical forests. This complements the work of Humphrey et al. (2018) who

suggested
::::::::
indicated a possible role for tropical forests due to the high correlation with CGR.

The correlation and contribution to correlation metrics help identify the regions showing coincident water storage variability

with the CGR in an integrated way over the entire study period, they do not provide insights into the CGR anomalies across

specific temporal events. However the
:::::::
However

:::
all

::::
three

:::::::
metrics

::::
only

:::::::
consider

:::::::::::::
time-integrated

::::::::::
information.

::::
The regional time515

series displays (Figure 4 for TWS, and Figure 8 for regional CO2 fluxes) allow a more detailed analysis of particular events. Our

results underscore the influence of tropical America along with tropical forests over
::::::
through

:
the 20+ year period considered

(Figure 3), however, it is also evident from both GRACE and the inversion products,
:
that the dominant region influencing

CGR IAV varies across different temporal events (Figure 4, 8). This is consistent with previous studies that have focused on

individual events (e.g., Chen et al., 2010; Ma et al., 2016).520

Our results show agreement with previous studies that have employed Earth System models (ESM) to assess CGR IAV. For

instance, the dominant role of tropical America is also recognised by ?
::::::::::::::::::::::
Martín-Gómez et al. (2023), who analysed various ESM

simulations from CMIP6 over 1986-2013. They find that tropical regions, particularly tropical South America, tropical southern

Africa, Southeast Asia, and parts of Oceania, contribute the most to interannual variations in CGR, with average land variance

explained percentages of 22%, 10%, 5%, and 4% respectively. Additionally, Kim et al. (2016) analysed how interannual CGR is525

associated with ENSO using ESM simulations from CMIP5. During El Niño, strong NBP anomalies appear over most tropical

land regions, particularly over Amazonia, Australia, and South Asia, and the Maritime Continent, where tropical rain forests

exist. This is consistent with the regions we found to show high TWS-CGR correlations in Figure 2.

The process of aggregating local data into regional or global scales introduces challenges due to the complex spatial

interactions at different scales
::::
scale

::::::::::
interactions. For example, Jung et al. (2017) demonstrated that local-to-global aggrega-530

tion can result in different conclusions regarding the dominant driver of NEE. This result was attributed to compensatory

effects, where soil moisture-controlled NEE anomalies in different regions
::::::::::::::::::::
soil-moisture-controlled

::::
NEE

:::::::::
anomalies

:
showed

strong spatial anti-correlation, leading to spatial compensation of positive and negative values. This meant
:::
that

:
when aggre-

gated globally, that temperature emerged at the dominant driver of NEE because its variability is is on larger
::
on

:::::
larger

::::::
spatial
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scales, so the effects do not average out. Therefore, when interpreting results such as in Figure 3, it is important to consider the535

:::::::
potential role of spatial covariance.

The covariance between climatic drivers
:::
We

::::
note

:::
also

::::
that

:::
the

:::::::
reported

::::::::::
correlations

:::::::
between

:::::
TWS

:::
and

:::::
CGR

::::
have

:::
not

:::::
been

:::::::
adjusted

:::
for

:::::::::
co-varying

::::::
climate

::::::
factors such as temperature

::
or

:::::
VPD.

::
As

::
a

:::::
result,

:::::
these

::::::::::
relationships

::::
may

::::::
partly

:::::
reflect

:::::::
indirect

:::::
effects

::::::::
mediated

:::
by

::::
such

:::::::::
variables.

:::::::::
Covariance

::::::
among

::::::::
climatic

:::::::::::::::::
drivers—particularly

:::::::
between

:::::::::::
temperature,

:::::
VPD,

:
and water

availabilitycan further complicate the interpretation of results. In particular, Humphrey et al. (2021) notes that disentangling the540

individual effects of vapour pressure deficit (VPD )
::::::::::
—introduces

::
a
::::::
degree

::
of

::::::::::::::
multicollinearity

:::
that

:::::::::::
complicates

::::::::
attribution

:::
of

::::::::
individual

::::::
effects.

::::
For

:::::::
example,

::::::::::::::::::::
Humphrey et al. (2021)

:::::::::
highlighted

:::
the

::::::::
difficulty

::
of

:::::::::::
disentangling

:::
the

:::::::::
respective

::::
roles

::
of

:::::
VPD

and temperature on NBP variability is challenging due to their interrelated effects. Their sensitivity analysis revealed that direct

:::::
nature

:::
and

:::::::
showed

::::
that soil moisture impacts on NBP are influenced

:::::
shaped

:
not only by local soil moisture conditions

:::::
direct

::::
water

:::::::::
limitation but also by indirect effects mediated through

::::::::
feedbacks

::::::::
involving temperature and VPDfeedback mechanisms.545

This underscores the complexity of attributing regional contributions.
:
.
::::::::
However,

:::::::::::::::::::
Humphrey et al. (2018)

::::
also

:::::
found

:::
that

:::::
most

::
of

:::
the

:::::::::
explanatory

::::::
power

::::::::
contained

::
in

:::::
TWS

:::::
could

:::
not

::
be

:::::::::
accounted

:::
for

::
by

::::::::::
temperature

:::::
alone.

:::::
Their

::::::
partial

:::::::::
correlation

:::::::
analysis

::::::
showed

::::
that

:::
the

::::::::::
CGR–TWS

::::::::::
relationship

::::::::
remained

::::::::::
significant

::::
even

::::
after

::::::::::
controlling

:::
for

:::::::::::
temperature,

:::::::::
suggesting

::::
that

:::::
TWS

:::::::
captures

:
a
::::::
distinct

::::
and

::::::::::
meaningful

:::::::::
component

::
of

::::::
carbon

:::::
cycle

:::::::::
variability.

:::::
Thus,

:::::
while

:::::
water

:::::::::
availability

::::::
cannot

:::
be

:::::::::
interpreted

::
in

:::::::
isolation

:::::
from

:::::
other

::::::::
variables,

::
it

:::
still

::::::::
provides

::::::::
uniquely

:::::::
valuable

::::::::::
information

:::::
about

::::::::::::::::
ecosystem–climate

:::::::::::
interactions.

::::
Our550

::::::
findings

::::::
should

::::::::
therefore

::
be

:::::::
viewed

::
as

:::::::::::::
complementary

::
to

::::
other

::::::
studies

::::
that

:::::::::
emphasise

:::
the

::::
roles

::
of

::::::::::
temperature

::
or
:::::
VPD.

:

Atmospheric inversion models are specifically designed to regionalise
:::
We

::::::::
therefore

:::::
turned

:::
to

:::::
direct

::::::::
estimates

:::
of

::::::
carbon

:::::
fluxes

::::
from

::::::::::
atmospheric

::::::::
inversion

::::::
models

::::::
which,

:::::
while

:::::::
designed

::
to

::::::::
constrain

:::
the

::::::::::
atmospheric

::::::
carbon

::::::
budget,

:::
are

::::
often

::::::::
employed

::
to

:::::::::
regionalise

:::::::
surface carbon fluxes and investigate temporal variations, based on available atmospheric observations. Our

analysis of four
::::
eight

:
such products demonstrate the consistency of their results when considering large scales, such as over555

continental regions or integrated over land cover types. However, limitations become apparent at smaller scales (Figure 6).

As highlighted by Marcolla et al. (2017), fine-scale estimates of inversions are subject to limitations because atmospheric

data may only effectively constrain larger-scale patterns comparable to the distances between monitoring stations. Globally,

products agree because observationally the CGR is well constrained, set broadly by the difference between the slowly varying

anthropogenic fossil fuel input and the well-measured accumulation rate of CO2 in the atmosphere (Baker et al., 2006). How-560

ever, the inversion models introduce factors contributing to discrepancies, such as the selection of the atmospheric CO2 data,

prior fluxes, and the choice of transport model. For example, Schuh et al. (2019) demonstrate that the transport models TM5

and GEOS-Chem, used by NOAA CT2022
::
CT

:
and UoE respectively, lead to systematic space-time differences in modeled

:::::::
modelled

:
distributions of CO2. Bastos et al. (2020) also found that at regional scales, differences between inversion products

contribute the most to uncertainty in regional carbon budgets, whereas differences in DGVMs dominate uncertainty at the565

global scale. They emphasised that reducing the uncertainty in atmospheric inversions, for example through more observations

in the tropics or the use of satellite-observations, is essential to reduce uncertainty in carbon budgets.

Here using the ensemble mean can
:::
does

:
offer a more representative picture by incorporating a range of estimates from

different models, although different atmospheric inversion products may still be related through the same transport models or
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meteorological fields, allowing biases to remainin the ensemble means. The four products we have used do all have different570

transport models but the ensemble could still be improved by adding a greater number of data products that have been carefully

compared against observational data.
:
. It is important that each individual ensemble member is well evaluated; otherwise,

outliers or individual members that do not reproduce the data can cause the ensemble mean to be misleading. Overall, our results

emphasise the need to improve consistency among inverse models at finer scales. This would be essential for achieving more

reliable evidence of regional contributions to carbon cycle dynamics. In future work it would be beneficial to conduct a more575

comprehensive comparison of atmospheric CO2 inversion products involving additional products beyond those considered in

our study.
:
,
:::
e.g

:::::::::
containing

:::::::
satellite

::::
CO2 :::::::::::

observations.

6 Conclusion

This study first assesses the relationship between TWS variations at global and regional scales with the interannual CGR over

2002-2023
::::::::
2002-2022. This builds on the work of (Humphrey et al., 2018) by extending the TWS-CGR relationship up until580

2023. The correlation between global TWS and CGR was r = -0.70 over the entire period, with a correlation of r = -0.69

observed for the period from 2002 to 2016, and r = -0.74 from 2016 to 2023. We expand on Humphrey et al.’s analysis

by separately mapping regional TWS-CGR correlations and their relative contributions to the GTWS-CGR correlation. This

allows for better identification of key regions where water limitation is likely to be influencing surface CO2 fluxes and thus

contributing to the GTWS-CGR correlation.585

Our analysis reveals that the tropics alone can explain the entire GTWS-CGR correlation. Specifically, tropical America

emerges as the largest contributing area, accounting for g = 69% of the GTWS-CGR correlation, despite only representing

f = 40% of the GTWS variance and covering less than 12% of the Earth’s land surface area. Moreover, we observe minor

cancelling contributions to the GTWS-CGR correlation from the Northern (g = +17%) and Southern (g = -15%) Hemisphere

extratropics, which represent f = 38% and f = -12% of GTWS variability signal respectively.590

Tropical forests emerge as the primary land cover type influencing the global correlation (g = 37 %), despite not being to

most
:::::
being

:::
less

:
important for the global TWS signal (f = 22%). Semi-arid regions also play an important role in contributing

to both the GTWS-CGR correlation and the GTWS signal (g = 26% , f = 23%). Notably, tropical forests cover only 10% of the

land surface area, hence they exert a disproportionately stronger impact relative to their spatial extent compared to semi-arid595

regions, which encompass 25% of the land surface. Croplands and grasslands contribute largely to GTWS variability (f =

22%) due to large spatial coverage but have a relatively low correlation with the CGR (r = -0.27) and consequently do not

significantly contribute
::::::::
contribute

::::
less

:::::::
strongly to the GTWS-CGR correlations (g = 15%).

We also employed four
::::
eight

:
different atmospheric CO2 transport inversion model products to directly assess the regional

contributions to CGR interannual variability. The ensemble mean of the four
::::
eight products shows good agreement with the600

CGR globally
:
, and these products also demonstrate considerable consistency among themselves on large scales, however their

agreement diminishes when examined at finer spatial scales. In alignment with GRACE TWS data, the ensemble mean of
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the inversion products also attribute the majority of terrestrial carbon interannual variability to the tropics (f = 74%), with

smaller contributions from the NH extratropics (f = 15%) as well as a small (f = 11%) positive contribution from the SH

extratropics, in contrast to GRACE. The inversion products all show broad agreement with GRACE in the dominant land605

cover types contributing to the CGR variability. While
::::::::
Although not strongly trusting the regional inverse products we also

calculated regional-scale sensitivities of inverse model NBP against TWS, and find consistency with the TWS-CGR correlation

contribution results.

Finally for both water storage variability and inverse model derived CO2 fluxes we look at the interannual variation time

series and note that the dominant anomaly regions do shift throughout
::::::
change

::::
over the 20-year period, and

::
we

:
discuss how610

this ties in with literature on patterns of drought over time. These time series also reveal cases where regional TWS signals

often closely follow the CGR even when the global TWS does not, thus providing further evidence of the importance of

water availability as a constraint on
::::::
regional

:
CO2 fluxes.

::::::
Overall,

::::
our

:::::
results

:::::::
suggest

:::
that

:::::::::
terrestrial

:::::::::
ecosystem

::::::
models

::::::
should

:::::::
prioritize

::::::::
improved

::::::::::::
representation

:::
of

:::::
water

:::::::::
constraints,

::::::::::
particularly

::
in

:::::::
tropical

::::::
forests

:::::
where

:::::
water

:::::::::
availability

:::::
plays

::
a

::::::
critical

:::
role

::
in

::::::::::
modulating

::::::
carbon

:::::
fluxes.

:
615
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