
Comments to RC1 

The reviewer's comments are in black and our answers in blue. 

General Information 

The study investigates spatial and temporal dynamics of river intermittency in the Umbuzeiro 

River (Brazilian semiarid region) using a combination of UAV surveys, remote sensing, and 

Random Forest (RF) modeling. The authors assess water presence classes: “Wet”, “Transition”, 

“Dry”, and “Not Determined”, across different times and river segments. They evaluate three 

RF model variants based on different dynamic predictors: Sentinel MNDWI, Planetscope NDVI, 

and 30-day accumulated precipitation. 

This is a well-structured and technically rigorous study that addresses a critical gap in 

intermittent river monitoring in semi-arid environments. It provides an important proof of 

concept for combining UAV-based mapping and machine learning for ecohydrological research. 

The results are promising and provide a methodological blueprint for future upscaling efforts, 

though there is room for refinement in automation, validation, and generalization.  

Despite the interest in the topic, I believe some changes in the paper are needed before it can 

be considered ready for publication, listed in the specific comments.  

We thank the reviewer for their thoughtful and constructive feedback. We are pleased that 

the reviewer recognized the relevance of our study and the potential contribution of our 

methodology to ecohydrological research in semi-arid intermittent rivers. We appreciate the 

positive assessment of our approach, particularly the integration of UAV-based mapping and 

machine learning, as well as the acknowledgment of its promise for future upscaling efforts.  

We have carefully considered the reviewer’s comments and have made the suggested 

revisions to improve the manuscript, particularly in relation to automation, validation, and 

generalization, as detailed in our responses to the specific comments below.  

 

Specific Comments 

1. LL121-123:"The "Not Determined" class included those reaches where it was not 

possible to discern”. It may be useful to evaluate the integration of soil moisture 

indices or evapotranspiration estimates as additional dynamic predictors.  

We appreciate the reviewer’s suggestion to explore additional predictors such as soil 

moisture and evapotranspiration, which are indeed relevant variables for 

understanding flow intermittency and ecohydrological dynamics in dryland river 

systems. We agree that these parameters have the potential to enhance predictive 

models and contribute to a more comprehensive understanding of the hydrological 

processes at play. 

However, in the context of our study, such data are not available at the spatial and 

temporal resolution required for integration into our current framework. In semi-arid 

and data-scarce regions like our study area, in situ measurements of soil moisture 

and evapotranspiration are typically unavailable, and reliance on remotely sensed or 

modeled estimates—while valuable at broader scales—can introduce additional 

uncertainty, particularly when applied at fine spatial scales.  



We emphasize the value of fine-scale hydrological monitoring in data-scarce semi-

arid environments, such as the AEB (Aiuaba Experimental Basin), where long-term 

field-based studies have provided critical insights into local runoff generation 

processes (Figueiredo et al., 2016) and soil moisture dynamics (Costa et al., 2013). 

These efforts demonstrate that small-scale, in situ monitoring can reveal 

ecohydrological processes and spatial patterns that are not captured by coarse-

resolution remote sensing products. 

Given these limitations, our methodological choice was to prioritize field-based and 

directly observable predictors, such as vegetation cover and geomorphological 

attributes, which could be reliably mapped and validated at high resolution. We 

believe that this approach reduces uncertainty and strengthens the applicability of 

the model in small-scale, heterogeneous environments. We agree that future studies 

could benefit from incorporating additional hydrological variables as data availability 

improves, we added a brief discussion of this point in section 4.6 Work limitations of 

the revised manuscript. 

 

2. L143: “These indices are are summarized in Table 1”. The two verbs reported need to 

be corrected. 

Thank you for pointing this out. The duplicated verb has been corrected in the 

revised manuscript. The sentence now reads: “These indices are summarized in Table 

1.” 

3. L189-192: “Damming structures are mapped all along the Umbuzeiro River by using 

Planetscope images so as to visually locate each dam.” The river path and dam 

structures are mapped manually using high-resolution imagery and field data. In 

particular, the geolocation of the dams was also performed manually, which limits 

scalability and reproducibility for larger or other basins. Could automated surveying 

using satellite data be considered? 

We appreciate the reviewer’s observation regarding the scalability and 

reproducibility of manually mapped features. In our study, the mapping of small 

dams was performed manually based on high-resolution UAV imagery and the 

authors' prior field knowledge. While a full validation campaign was beyond the 

scope of this work, a subset of the mapped structures—approximately 10%—was 

verified through field visits and drone imagery, providing some level of confirmation 

of their existence and location. 

We acknowledge, however, that manual mapping can be a limiting factor for broader 

applications. To address this concern, we note that our method is flexible and can be 

applied using publicly available global datasets. In particular, the Global Surface 

Water Explorer (Pekel et al., 2016) offers valuable information on water occurrence 

and seasonality and can serve as a proxy for identifying surface water bodies and 

small reservoirs in other regions. Variables derived from this dataset were already 

incorporated into our model as predictors, which supports the potential for scaling 

the approach beyond our study area. 

A brief discussion was added to section 4.6 Work limitations of the revised 

manuscript highlighting this methodological flexibility and the use of global datasets.  



 

4. L257: “4.1 Observed water intermittency: UAV imagery”. From the text, it appears 

that the UAV-based classification is visual and not verified with in-situ hydrological 

measurements or ground truth sampling. The lack of objective thresholds could 

introduce bias in the classification of “Transition” and “Wet” classes. Probably longer 

UAV survey campaigns, covering more years, could better capture interannual 

variability. 

We thank the reviewer for this insightful comment. The UAV-based classification was 

indeed based on visual interpretation, supported by field observations and local 

knowledge of the study area. Although no streamflow measurements or water level 

sensors were available, presence/absence of ponded water in specific river reaches 

was verified during field visits conducted during the UAV survey.  

We acknowledge that the lack of objective thresholds—such as fixed depth criteria—

introduces some degree of subjectivity, especially in distinguishing between “Wet” 

and “Transition” conditions. Additionally, we agree that longer-term UAV monitoring 

campaigns, capturing multiple hydrological years, would enhance the ability to 

detect interannual variability and improve the robustness of the classification.  

These aspects will be acknowledged as limitations in section 4.6 Work limitations of 

the revised manuscript, along with a brief reflection on the trade-offs involved in 

using visual interpretation in data-scarce environments. 

5. LL326-328: “Temporal variations along the year can also be observed in comparison 

to monthly precipitation.” What is the period used to calibrate the model to identify 

the seasonality of events? The model using 30-day precipitation (Model c) 

underperforms in capturing seasonal transitions. This approach limits the model’s 

ability to generalize across varying wet/dry years. 

We thank the reviewer for this important observation. Model c was trained using 

data from five UAV campaigns conducted over a single hydrological year, 

encompassing a range of seasonal conditions—from wetter months with ponded 

water to dry season and the rewetting period in November. The model used 

precipitation accumulated over the 30 days prior to each UAV campaign as a proxy 

for short-term hydrological conditions. 

While this variable helped capture intra-annual variability and presented good 

accuracy for testing datasets, we agree that the use of a single-year time series and 

an accumulation window limit the model’s ability to fully represent seasonal 

transitions and interannual variability. This is particularly relevant in semi-arid 

environments, where the timing and intensity of rainfall events vary significantly 

from year to year. The limited performance of Model c in capturing transitional 

classes may reflect these constraints. 

We acknowledge this as a limitation of our current dataset, and a brief note was 

added to section 4.6 Work limitations of the revised manuscript suggesting that 

future work incorporating multi-year datasets and other precipitation accumulation 

periods may improve the model’s generalization to other hydrological years.  



6. LL351-353: “Model (a) is even more specific in this respect and indicates mainly areas 

in the lowest part of the basin. The identification of areas prone to wetter conditions 

is very important even in the smallest of scales because they can be key areas for 

river ecology, for instance”. Although model (a) achieved the best results, the use of 

Sentinel MNDWI data may not be generalizable to narrower or canopy-covered 

watercourses, especially in forested catchments. 

We thank the reviewer for raising this important point. We agree that the use of 

MNDWI derived from Sentinel-2 imagery has known limitations when applied to 

narrow channels or watercourses under dense canopy cover, where spectral signals 

from water may be obstructed or diluted by surrounding vegetation.  

Additionally, we note that areas with dense canopy cover, where the riverbed is 

obscured and water detection is not possible, were classified as “Not Determined” in 

our approach. This category itself may indicate zones of persistent canopy cover, 

which can be related to local hydrological conditions, such as groundwater influence 

or permanent pools beneath vegetation. Thus, even in forested stretches, the 

vegetation structure can provide indirect information about wetness patterns.  

Nonetheless, we recognize that in more heavily forested or topographically complex 

catchments, alternative data sources or higher-resolution sensors may be needed to 

accurately identify surface water. We included a brief note in section 4.6 Work 

limitations of the revised manuscript acknowledging this limitation and suggesting 

caution when applying this approach to other regions with different land cover 

characteristics. 

 

7. L378: “for spectral indexes based on UAV data”. It's better to use indeces. "Indexes" is 

commonly used to refer to alphabetical lists in books, for example. In contrast, 

"indeces" is used in more technical, scientific, and mathematical contexts.  

Thank you for this observation. We agree with the reviewer’s suggestion and have 

replaced “indexes” with “indices” in the revised manuscript to better align with 

scientific terminology. 

 

In response to the reviewer’s suggestions, we added the following text 

to the section 4.6 Work Limitations to the revised version of the 

manuscript: 

 

“Although high-resolution UAV imagery enabled detailed visual 

classification of flow permanence classes, the method relied on expert 

interpretation without direct hydrological measurements such as 

streamflow or water level data. This introduces potential subjectivity, 

particularly in distinguishing between “Wet” and “Transition” conditions. 

Field observations were conducted during the UAV campaigns and helped 

inform classification, but were limited to qualitative assessments of 

ponded water, as no surface flow was observed during the study year.”  

 



“We based our analysis on data from a single hydrological year. While this 

approach allowed for the capture of short-term hydroclimatic variability, 

it limits the model’s capacity to generalize across years with different 

rainfall patterns. Future studies including multi-year data and alternative 

temporal windows could help address this limitation.” 

“Additionally, we acknowledge the potential value of integrating other 

dynamic hydrological variables, such as soil moisture and 

evapotranspiration, into predictive models of flow intermittency. These 

variables are relevant for ecohydrological modeling, particularly in 

dryland environments. However, in the context of this study, such data 

were unavailable at the spatial and temporal resolutions required to 

support fine-scale modeling.” 

 

“As for our choice of predictors, we recognize that spatial resolution and 

ease of access vary greatly among them. The selected predictors are 

consistent among models; but great importance is given to dam 

identification. Both “distance from” and “distance to” dams ranked as 

highly important in model performance, and they already represent half 

the number of static predictors. In our study area, we identify many 

different types of damming structures —ranging from small rural weirs to 

larger reservoirs— future studies could benefit from classifying them into 

distinct functional or structural categories.” (This paragraph was already 

present, but it was rewritten) 

 

“The manual mapping of small dams enabled a more realistic 

representation of water retention in the basin. However, dam mapping 

may also limit applicability of our model to other regions as it requires 

considerable manual effort and, potentially, familiarity with the study 

area. That said, the methodology is adaptable: similar analyses can be 

replicated using global datasets such as the Global Surface Water Explorer 

(Pekel et al., 2016), which provides historical water occurrence based on 

Landsat imagery.” 

 

Finally, although Sentinel-2 data used in Model a yielded strong results in 

our study area, the performance of its spectral indices—particularly 

MNDWI—may decline in more heavily forested or topographically 

complex catchments. In these cases, alternative data sources or higher-

resolution sensors may be needed to accurately identify surface water. 

However, it may be that dense vegetation can also serve as an indirect 

indicator of groundwater presence or surface wetness, and these 

segments were conservatively labeled as “Not Determined” in our 

classification.” 

8. L394: “Conclusion”. Probably the conclusion could be more detailed and not a simple 

summary of the study done; they could report some details shown in the graphs and 

tables. 



We thank the reviewer for this suggestion. We agree that the conclusion section can 

benefit from a more detailed discussion that goes beyond summarizing the study. In 

the revised manuscript, we will expand the conclusion to include references to key 

findings illustrated in figures and tables, as well as highlight the broader implications 

of the results for ecohydrological monitoring and the scalability of the proposed 

method. The revised Conclusion section incorporates the following insights: 

“The "Wet" and "Dry" classes follow the rainy season dynamics, and the 

longer wet patches are present in the most downstream section. The 

"Transition" class is very heterogeneous because it represents areas with 

mixed information: such as wet/dry patches with algae and sparce 

vegetation. During the rainy season, the vegetation has full and dense 

canopies, that is why the "Not Determined" class, i.e. the river reaches 

where we cannot see the riverbed from the UAV-imagery, can be found 

more frequently during the rainy season and in narrower river stretches. 

This feature represents a major source of uncertainty, limiting the 

available data acquired through optical remote sensing.” 

“The modelling framework developed in this study contributes to a 

broader understanding of flow intermittency as a spatially complex and 

highly dynamic process over time. The integration of high-resolution 

predictors, especially related to dam presence, landscape attributes and 

satellite indices, offers a scalable and adaptable approach for mapping 

wetness conditions in other dryland river systems. These insights are 

particularly relevant in the context of increasing climate variability and 

water stress, as they point to key landscape features that can be targeted 

for monitoring or management. Our results demonstrate that even in the 

absence of extensive hydrometric data, meaningful patterns can be 

derived from the careful integration of remote sensing and field-based 

observations.” 
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