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Abstract. Ocean biogeochemical models are essential for advancing our understanding of oceanographic processes. Here we 

present the Offline Fennel model, a biogeochemical model that relies on previously computed physical fields within the 15 

Regional Ocean Modeling System (ROMS). We evaluated the model performance against a fully coupled physical-

biogeochemical online application in the Northern Gulf of Mexico, a region with an intense biogeochemical activity 

including rather frequent hypoxia events. By leveraging physical hydrodynamic outputs, we ran the Offline Fennel model 

using various time-step multiples from the coupled configuration, significantly enhancing computational efficiency. This 

approach reduced simulation time from 6 hours to approximately 30 minutes. The accuracy of the offline model was 20 

assessed using three different mixing schemes: the Generic Length Scale (GLS), Large–McWilliams–Doney (LMD, and 

Mellor and Yamada 2.5 (MY25). The offline model achieved an average skill score of 93%, with minimal impact on 

performance from the time-step choice. While the GLS configuration yielded the highest accuracy, all three mixing schemes 

performed well. Although some discrepancies appeared between offline and coupled simulation outputs, these were smaller 

than those observed when using different mixing schemes within the same model configuration. The promising results 25 

achieved so far validate the Offline Fennel model’s capability and efficiency, thus offering a powerful tool for researchers 

aiming to conduct extensive biogeochemical simulations without rerunning the hydrodynamic component, thus significantly 

reducing computational demands. 

1 Introduction 

Ocean biogeochemical models are essential tools for advancing our understanding of oceanographic processes, their impacts 30 

on marine ecosystems, and their contributions to climate change projections affecting ecosystem functionality (Aumont et 
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al., 2014; Ramirez-Romero et al., 2020; Fennel et al., 2022). Over recent decades, these models have proven effective in 

tracking changes in phytoplankton dynamics and nutrient distributions, offering mechanistic insights into ecosystem 

variability and resilience (Rocha et al., 2019). Additionally, their outputs have had significant applications in fisheries and 

marine policy, therefore aiding in the development of sustainable management practices (Tedesco et al., 2016; Piroddi et al., 35 

2017). 

 

Despite their proven utility, long-term or high-resolution simulations are often limited by the need of substantial 

computational resources for coupled configurations, where hydrodynamic and biogeochemical processes are run 

simultaneously. Offline modeling decouples biogeochemical tracers from the hydrodynamic simulation, thus offering a 40 

rather practical alternative (Kim and Khangaonkar, 2012; Larsen et al., 2017). In this approach, outputs from the 

hydrodynamic model are used as forcing inputs for subsequent biogeochemical simulations, enabling larger computational 

time-steps (DT) and, therefore, improving efficiency (Thyng et al., 2021). This methodology leverages the slower temporal 

scales of biogeochemical processes relative to physical dynamics while maintaining simulation quality (Larsen et al., 2017). 

 45 

An additional challenge in biogeochemical modeling lies in the time-intensive task of fine-tuning biological parameters 

(Mattern et al., 2017; Pasquier et al., 2023). The offline methodology facilitates more simulations and tests than would 

typically be possible with fully coupled simulations, as the hydrodynamic component does not need to be rerun each time. 

This capability is particularly valuable for addressing challenges posed by climate change, allowing for more extensive and 

exploratory simulations for changing environmental conditions. 50 

 

Previous studies have explored offline modeling in the Regional Ocean Modelling System (ROMS) framework (Große et al., 

2019; 2020), demonstrating its potential for regional and ecosystem-specific applications. In this study, we present the 

development, implementation, and evaluation of an offline biogeochemical model — hereinafter referred to as "Offline 

Fennel" (Fennel et al., 2006; Fennel et al., 2008) — within ROMS (Shchepetkin and McWilliams, 2005; Warner et al., 55 

2010).  

 

Building upon the ROMS passive tracer offline code from Thyng et al. (2021), we adapted the model to support 

biogeochemical processes, incorporating new tracers and parameters critical to ecosystem modeling based on the original 

Fennel model (Fennel et al. 2006, 2008, 2013; Laurent et al., 2012; Yu et al., 2015a-b) (see Appendix A). 60 

 

The Offline Fennel model was implemented in the Northern Gulf of Mexico (NGoM), a region known for intense 

biogeochemical activity and frequent hypoxia events (Rabalais et al., 2002). The NGoM area has been extensively studied 

using coupled hydrodynamic-biogeochemical implementations (Fennel et al., 2011, 2013; Laurent et al., 2012, 2014, 2017, 

2018; Yu et al., 2015a-b; Fennel and Laurent, 2018; Große et al., 2019). Model performance was evaluated by comparing 65 
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Offline Fennel outputs against fully coupled simulations, with a focus on assessing the impact of different mixing schemes 

and time-step (DT) configurations on accuracy and computational efficiency. 

 

This work presents an efficient and accurate tool for biogeochemical modeling, offering enhanced computational efficiency 

while maintaining simulation fidelity. It provides a valuable resource for conducting extensive simulations and advancing 70 

our understanding of complex marine processes. 

2 Experimental setup 

2.1 Model overview 

ROMS is a hydrostatic, free-surface, terrain-following ocean model that utilizes well-established physical and numerical 

algorithms (Shchepetkin, 2003). It has been widely applied to simulate various regions of the world ocean (e.g., 75 

www.myroms.org/papers). In particular, ROMS coupled configurations have been extensively implemented in the NGoM 

(Fennel et al., 2011, 2013; Laurent et al., 2012, 2014, 2017, 2018; Yu et al., 2015a-b; Fennel and Laurent, 2018; Große et al., 

2019). 

 

In our study we employed a coupled physical-biogeochemical configuration of ROMS (version 904) integrated into the 80 

Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) framework (Shchepetkin and McWilliams, 2005; 

Warner et al., 2010), alongside an offline model implemented within the same version (Thyng et al, 2021). Initially designed 

for passive tracer applications, the offline model was integrated into ROMS version 904 by Thyng et al. (2021). However, 

modifications were necessary to adapt it for compatibility with the Fennel biogeochemical model, subsequently enabling 

accurate representations of biogeochemical processes (Appendix A). 85 

 

A key modification qualified the model to automatically read and process active tracers, namely temperature and salinity, 

which constitute a crucial feature for biogeochemical simulations. Additionally, improvements were made to fix the handling 

of climatology files for the bottom-depth layer to ensure more accurate simulations. In the previous model version by Thyng 

et al. (2021), a shift occurred when processing climatology fields, leading to a bias that propagated from the bottom toward 90 

the surface, affecting tracer concentrations. The offline model was modified to prevent the simulation from accessing 

subsequent time step values for sea surface height and 3D momentum climatologies, thereby eliminating this unintended 

artifact. Further changes included the incorporation of biological tracers such as phosphate (PO4), river carbon detritus, and 

river nitrogen detritus. The dissolved oxygen (O2) computation method based on Wanninkhof (2014) was also integrated (cf. 

Appendix A).. 95 
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The version of the biogeochemical model used in this study builds on the ROMS biogeochemical component developed by 

Fennel et al. (2006, 2008) and later expanded to account for phosphate (Laurent et al., 2012), oxygen (Fennel et al., 2013), 

and non-sinking river detritus (Yu et al., 2015b). The current biogeochemical model Fennel includes 15 state variables: 

chlorophyll (CHL), phytoplankton, zooplankton, nitrate (NO3), ammonium (NH4), PO4, O2, dissolved inorganic carbon 100 

(DIC), total alkalinity (TA), and three pools of detrital organic matter (small, large, and river-derived, each split into nitrogen 

and carbon pools). For further details on the biogeochemical model and parameter values, see Laurent et al. (2017). 

2.2 Online model setup 

The online (or coupled) hydrodynamic-biogeochemical model was configured for the NGoM (28–30.5ºN, 94.5–88ºW) and 

included 20 terrain-following vertical layers (Fig. 1). The horizontal resolution varied from approximately 20 km in the 105 

southwestern corner to 1 km close to the Mississippi River delta. The simulation was run for one year (2017-Nov to 2018-

Nov) with a baroclinic timestep of 60 s and a barotropic timestep of 15 s.  

 

  
Figure 1: Model domain in the Northern Gulf of Mexico. The color scale represents the model’s bathymetry (in meters) using a blue 110 
color gradient. Red dots indicate the locations selected for vertical profile analyses (from left to right: Point 1, Point 2, and Point 3). The 

selection criteria for these three points are presented in Section 2.4 of the main text. The Mississippi and Atchafalaya rivers, which are also 

incorporated into the model, are shown in blue. 

 

Atmospheric forcing included surface heat and freshwater flux climatologies (da Silva et al., 1994a, b), together with 3-hour 115 

winds from the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis data collection 

(Mesinger et al., 2006). The U.S. Army Corps of Engineers at Tarbert Landing and Simmesport estimates for freshwater 
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transports were used to prescribe daily freshwater fluxes from the Mississippi and Atchafalaya rivers, respectively. 

Additional information about the hydrodynamic model's setup and validation can be found in Hetland and DiMarco (2008, 

2012), Marta-Almeida et al. (2013), and Fennel et al. (2016). 120 

 

To evaluate the offline model performance, online simulations were conducted using three different mixing schemes from 

ROMS: (i) the Large–McWilliams–Doney (LMD) mixing scheme, also known as the K-Profile Parameterization, which is a 

subgrid-scale turbulent mixing closure scheme (Large et al., 1994); (ii) the Mellor and Yamada 2.5 (MY25) scheme (Mellor 

and Yamada, 1982), which features the "Level 2.5" closure with modifications by Galperin et al. (1988), as detailed in Allen 125 

et al. (1995); and (iii) the Generic Length Scale (GLS) mixing scheme, developed by Umlauf and Burchard (2003), which is 

a versatile two-equation turbulence closure scheme that can be adjusted to replicate several traditional schemes, including 

MY25. The GLS scheme was integrated into ROMS by Warner et al. (2005). 

2.3 Biogeochemical configuration 

For the biogeochemical implementation, we used the same configuration for both online and offline simulations to ensure 130 

comparability. The state variables incorporated from the biogeochemical model include NO3, NH4, PO4, CHL, 

phytoplankton, zooplankton, nitrogen detritus divided into large, small, and river-derived, and O2. 

 

The initial and boundary conditions for NO3, PO4, and O2 were derived from the National Oceanographic Data Center 

(NODC) World Ocean Atlas, while all other variables were assigned initial low positive values. 135 

 

Nutrient sources for rivers were activated using monthly estimates of nutrient fluxes from the U.S. Geological Survey, which 

provided the basis for river nutrient and organic matter loads (Aulenbach et al., 2007). 

2.4 Offline experiments 

The offline simulations employed the same domain, vertical layers, and horizontal resolutions as the online simulations, 140 

ensuring consistency between all configurations. The key difference lies in the physical forcing: while online simulations 

compute hydrodynamics and biogeochemical processes simultaneously, the offline model derives all physical forcing 

conditions from the online outputs. 

 

The physical surface forcing conditions for the offline biogeochemical model included solar shortwave radiation flux, 145 

surface net heat flux, surface u-momentum stress, and surface v-momentum stress, which were derived from the 

corresponding online simulation outputs. The climatology forcing incorporated variables such as zeta, ubar velocity, vbar 

velocity, u-velocity, v-velocity, omega, temperature, and salinity, all retrieved from the historical files of the online 

simulation outputs. Appendix B provides detailed guidance on configuring Offline Fennel simulations. 
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Following the recommendation of Thyng et al. (2021), a 3-hourly hydrodynamic input frequency was selected to run the 

offline simulation. In their Gulf of Mexico simulations, these authors estimated an advection timescale of approximately 5.6 

hours, based on a characteristic velocity of 0.5 m/s and length scale of ~10 km. Our choice of a 3-hour interval thus falls well 

below this threshold, providing at least one output every ~0.5 advection timescales (Thyng et al., 2021). This frequency is 

therefore adequate to resolve key physical changes and ensure accurate offline interpolation of biogeochemical tracers. 155 

 

A series of online (coupled) and offline (uncoupled) simulations were conducted using three different mixing schemes: 

LMD, MY25, and GLS (cf. Section 2.2). All simulations were stored as instantaneous snapshots (saved in “.his” files from 

ROMS) and as time-averaged data (“.avg” files from ROMS). The output frequency for both instantaneous and averaged 

files was 3 h. 160 

 

For the GLS and MY25 simulations, the offline model was also forced by additional vertical mixing parameters: vertical 

salinity diffusion (AKs), temperature vertical diffusion coefficient (AKt), and vertical viscosity coefficient (AKv), all 

obtained from the online runs through the 'AKXCLIMATOLOGY' CPP definition. Furthermore, the simulations employed 

'MIXCLIMATOLOGY' to incorporate the generic length scale parameter and turbulent kinetic energy (TKE). In contrast, 165 

the LMD simulations excluded these additional forcing fields, which allowed us to evaluate the effects of their absence and 

compare the model outputs under different forcing scenarios. This treatment also ensured a consistent comparison with the 

setup used by Thyng et al. (2021) for the GLS and MY25 simulations. 

 

Offline simulations were run with varying multiples of the online DT (x1, x3, x5, x10, and x15) to improve computational 170 

efficiency, until the results became unstable. Given that the baroclinic DT of the online simulation was 60 seconds, these 

corresponded to offline baroclinic DTs of 60 s, 180 s, 300 s, 600 s and 900 s. A DT 15 times longer than the online time-step 

led to unstable writing of solutions. As such, while this case was initially tested, it was excluded from analysis figures and 

tables to avoid misleading interpretations. Thus, the offline DT could be 1, 3, 5, or 10 times the online DT. Our offline 

simulation experiments extended up to 600 s for the baroclinic DT and 75 s for the barotropic DT (‘NDTFAST’). 175 

 

All skill assessments in this study compare the outputs of the offline simulation to those of the online (coupled) simulation 

that provided the physical forcing for the offline run. As such, the study reflects the uncoupled simulation's accuracy with 

respect to the coupled simulation. Therefore, this is an assessment on the offline model’s ability to reproduce the coupled 

simulation results, instead of an assessment on how well the NGoM biogeochemistry is simulated by the models. 180 

 

To assess the vertical accuracy in the offline simulation results, we selected three representative points in the NGoM based 

on their distinct environmental and geographic characteristics. The first point, located in the western part of the study area 
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and far from the coast (28.50ºN, 93.00ºW, Point 1), was chosen to represent offshore conditions with minimal direct riverine 

influence. The second point near the mouth of the Atchafalaya River (28.96ºN, 90.10ºW, Point 2) captures the influence of a 185 

significant freshwater and nutrient source, providing insights into river-plume dynamics. The third point is located further 

east, off the Mississippi River mouth (28.86ºN, 89.10ºW, Point 3), and was selected to represent a highly dynamic coastal 

environment influenced by one of the world's largest river systems (Fig. 1). These three points collectively offer a 

comprehensive view of physical and biogeochemical gradients in the region, capturing offshore, plume-affected, and coastal 

conditions. 190 

 

All the time series presented in the Results section have been upscaled to daily data to enhance the visibility of changes and 

variability. This adjustment allows for a clearer observation of trends and fluctuations over time. 

 

Considering that we are comparing 3-D time-varying model results for multiple variables, the potential number of plots 195 

grows rapidly, thus exceeding what could be reasonably presented in a single paper. Therefore, we focus here on three 

principal nutrients (NO3, NH4, PO4), CHL, and O2 to assess the model performance, even though all variables described in 

Section 2.3 were used in the model implementation. 

2.5 Skill metrics 

Skill scores (SSs) are a widely used metric for evaluating model performances (Bogden et al., 1996; Hetland, 2006). To 200 

assess the performance of our Offline Fennel model, the equation (Eq. 1) below after Thyng et al. (2021) was applied: 

 

𝑆𝑆 = #1 −
!〈#$!"%$!##&

$〉

!〈$!"$〉
&  (Eq. 1) 

 

where Coff and Con are the concentrations of a tracer in the 3D grid for each time for the offline (uncoupled) and online 205 

(coupled) simulations, respectively. The brackets (〈.〉) indicate averaging across both the spatial and vertical dimensions 

of the 3D simulation grid, producing a SS time series. This time series captures how the offline model's performance varies 

over time. For comparative purposes, the mean SS can be calculated by taking the average of the time series, providing a 

single representative metric of model accuracy across the entire simulation period. Thus, time-series plots highlight temporal 

dynamics, while the mean SS summarizes the overall model performance. 210 

 

To complement the SS analysis, the root mean square error (RMSE) was equally employed as a metric to assess the accuracy 

of offline simulations compared to online results (Eq. 2). RMSE provides insight into the magnitude of errors by measuring 

the square root of the average squared differences between offline and online simulation results. In this study, RMSE was 
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computed across the vertical coordinate dimension (‘s_rho’), representing depth levels. Equal weights were used across all 215 

vertical layers, meaning that each depth level contributed equally to the overall error. This approach avoids bias toward any 

specific layer and provides a balanced assessment of model performance across the entire water column. 

 

𝑅𝑀𝑆𝐸 = *(
)
∑ (𝐶*) − 𝐶*++),)
-.(   (Eq. 2) 

 220 

where Coff and Con are the time-averaged concentrations of a tracer on the 3D grid for the offline and online simulations, 

respectively, and n is the total number of vertical levels. 

3 Results 

This section presents the evaluation of the Offline Fennel model against fully coupled online configurations. The first 

subsection provides an assessment of the model’s accuracy using SS and RMSE, highlighting the agreement between 225 

simulation outputs. Then, key biogeochemical outputs are examined, including nutrients, CHL, and O2 levels, to explore 

spatial and temporal variations between the simulation methods. Finally, the computational efficiency of the offline approach 

is analysed, demonstrating its potential for reducing simulation runtime without compromising the quality of the results. 

 

In this study, we define the 'surface layer' as the uppermost of the model’s 20 vertical layers (cf. Section 2.2), crucial for 230 

atmosphere-ocean interactions, primary production, and gas exchange. The 'bottom layer,' in direct contact with the sea floor, 

is key for assessing the model’s response to bathymetry. Since these layers are most susceptible to error propagation, their 

evaluation is essential for validating model performance. 

3.1 Model performance evaluation 

Here we evaluate the accuracy of offline simulations using the three mixing schemes (GLS, LMD, and MY25) outlined in 235 

Section 2.2, together with variable offline DTs, which are multiples of the online DTs (x1, x3, x5, and x10). It should be 

noted that the model configuration is identical in all cases, with the mixing scheme varying in both the online and offline 

simulations, and the DT varying only in the offline simulations. 

 

Table 1 summarizes the mean SSs computed using Eq. 1 for key biogeochemical tracers. Across all mixing schemes, the 240 

simulations demonstrate high accuracy, with minimal differences between configurations. GLS slightly outperforms other 

mixing schemes for some tracers, with scores above 94% for NO₃, PO₄, and O₂, and a mean SS of 93.16% across all tracers. 

CHL scores hover around 92%, highlighting the scheme's ability to capture primary production dynamics effectively. 

However, NH4 exhibits lower SSs, ranging from 84.25% to 85.51%. 
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The LMD scheme similarly produces robust results, particularly for NO₃ and PO₄, with SSs of 95.33% and 96.49%, 

respectively. Its mean SS is slightly lower (92.50%), reflecting solid tracer performance overall, although NH₄ again shows 

the weakest accuracy, with SSs between 81.48% and 82.90%. 

 

Results for the MY25 scheme align closely with those of GLS and LMD, yielding SSs of 96.12% for NO₃ and 96.86% for 250 

PO₄. The mean SS for MY25 is 93.13%, underscoring its comparable performance. While NH₄ again exhibits lower SSs, the 

values still represent good model performance, as they remain above 80%. This suggests that although NH₄ is more 

challenging compared to other tracers, the model still provides a reliable approximation of its concentrations. 

 

Overall, the analysis reveals that all three mixing schemes (GLS, MY25, and LMD) yield comparable and robust results for 255 

key biogeochemical tracers, with GLS performing slightly better in some metrics, followed closely by MY25 and then LMD. 

 

Finally, variations in the offline DTs had minimal impact on the model's accuracy. This suggests that the choice of DT, at 

least within the tested range, does not significantly influence simulation results, underscoring the robustness of the Offline 

Fennel model. 260 

 
Table 1: Time-averaged skill scores (SSs) for key biogeochemical (BGC) tracers across different mixing schemes: Generic Length 

Scale (GLS), Large–McWilliams–Doney (LMD), and Mellor and Yamada 2.5 (MY25). The SSs are expressed as percentages [%] and 

reflect the model's performance in simulating the following biogeochemical (BGC) tracers: nitrate (NO3), ammonium (NH4), phosphate 

(PO4), chlorophyll (CHL), and oxygen (O2). The last row for each mixing scheme displays the mean SSs for that scheme, providing an 265 
overall assessment of model performance across all tracers. The columns labeled x1, x3, x5, and x10 correspond to the time-steps (DT) 

used in the offline simulations compared to the online simulations. 

 

Mixing 
scheme BGC tracer x1 [%] x3 [%] x5 [%] x10 [%] 

GLS 

O2 98.12 98.18 98.16 97.90 

PO4 96.20 96.29 96.18 95.50 

NO3 94.96 95.23 95.32 94.76 

CHL 92.27 92.49 92.49 91.95 

NH4 84.25 84.59 84.89 85.51 

Mean 93.16 93.35 93.41 93.12 

MY25 O2 97.94 97.96 97.90 97.51 
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PO4 96.86 96.97 96.88 96.15 

NO3 96.12 96.14 96.04 95.50 

CHL 92.55 92.74 92.64 91.69 

NH4 82.18 82.70 83.12 83.87 

Mean 93.13 93.30 93.32 92.94 

LMD 

O2 97.54 97.59 97.55 97.21 

PO4 96.49 96.55 96.42 95.64 

NO3 95.33 95.33 95.13 94.31 

CHL 91.67 91.92 91.92 91.17 

NH4 81.48 81.93 82.29 82.90 

Mean 92.50 92.66 92.66 92.25 

 

 270 

The x5 DT configuration consistently yields the highest accuracy across all mixing schemes, as illustrated in Figure 2, 

which shows the SS evolution over time for key biogeochemical tracers. As expected, NO₃, PO₄, and O₂ maintain the highest 

accuracy throughout the entire simulation period, with SSs ranging from 90% to 99%. 

 

In contrast, NH₄ and CHL exhibit lower accuracy compared to other tracers. Notably, NH₄ accuracy declines from 90% in 275 

early spring to 70% during the warmer months between April and October, with the LMD scheme showing the sharpest 

drop, reaching as low as 61% in September. Similarly, CHL accuracy dips from 95% to approximately 85% during April and 

May. 

 

For NH₄, the GLS scheme tends to perform slightly better, with higher SS values across most DT configurations (Figs. S1, 280 

S2, S3). For other tracers, differences among the schemes are minimal, and no consistent ranking is evident. 

 

To better illustrate spatial differences, we calculated the RMSE across depth for key biogeochemical variables (Eq. 2) in the 

NGoM, considering all three mixing schemes for the offline x5 DT simulation to ensure consistency with other figures (Fig. 

3). 285 

 

O₂ systematically shows the lowest errors across the domain, with only small and localized increases near the coast. 

Similarly, CHL errors are generally low but increase near coastal regions, particularly close to the Atchafalaya and 
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Mississippi river mouths (cf. Fig. 1). NO₃ and PO₄ display slightly higher errors near the coast and offshore, with some 

current-related discrepancies to the south of the domain. 290 

 

Finally, NH₄ presents the highest error levels, relative to typical concentrations in the study area, which range from 0 to 5 

mmol·m⁻³ at the surface and can reach up to 20 mmol·m⁻³ at depth. Among the mixing schemes, GLS shows somewhat 

lower errors for NH₄, specially near the coast (Fig. 3A), but overall all three schemes display similar behaviour, particularly 

in offshore regions where errors approach zero. 295 
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Figure 2: Time series of skill scores (SSs) [%] for key biogeochemical tracers during the x5 time-step simulation. The score is 

computed between offline and online runs using three mixing schemes: Generic Length Scale (GLS), Mellor–Yamada 2.5 (MY25), and 

Large–McWilliams–Doney (LMD). Panels display (A) dissolved oxygen (O₂), (B) phosphate (PO₄), (C) nitrate (NO₃), (D) chlorophyll 300 
(CHL), and (E) ammonium (NH₄). The green, blue, and coral lines represent GLS, LMD, and MY25 simulations, respectively. 
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Figure 3: Time-averaged root mean square error (RMSE) across depth for key biogeochemical variables: dissolved oxygen (O₂), 

phosphate (PO₄), nitrate (NO₃), chlorophyll (CHL), and ammonium (NH₄). The error is calculated between offline (x5 time-step) and 

online simulations using different mixing schemes: (A) Generic Length Scale (GLS), (B) Large–McWilliams–Doney (LMD), and (C) 305 
Mellor–Yamada 2.5 (MY25). The color scales on the right indicate the magnitude of the error. 

 

Crossing all the time series from each of the simulations and applying the SS calculation for each pair, allows generating the 

heatmap shown in Figure 4. The figure illustrates that simulations using the same mixing scheme (GLS, LMD, or MY25) 

exhibit the highest similarity, with SSs ranging between 95% and 100%. In contrast, comparisons across different mixing 310 

schemes show decreased SSs, dropping to as low as 86% in some cases between GLS and LMD simulations. Notably, 

comparisons between GLS and MY25, and LMD and MY25 show only minor differences. 

 

These results indicate that the choice of mixing scheme has a more substantial impact on simulation accuracy than the offline 

biogeochemical model configuration itself and its chosen DT. 315 
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Figure 4: Heatmap illustrating skill scores (SSs) [%] for all simulation pairs across different mixing schemes and time steps (DT). 

The color scale ranges from blue (indicating lower SSs) to red (indicating higher SSs), with warmer colors representing SSs closer to 

100%, reflecting greater similarity between simulations. Each label in the heatmap indicates the simulation type, mixing scheme, and DT. 320 
For example, "ON GLS" refers to online simulations using the Generic Length Scale (GLS) mixing scheme, while "OFF GLS x5" 

corresponds to offline simulations using the GLS mixing scheme with a x5 DT. This labeling convention is consistently applied across all 

mixing schemes: GLS, Large–McWilliams–Doney (LMD), and Mellor–Yamada 2.5 (MY25), and DTs (x1, x3, x5, and x10), facilitating 

easy comparison of model performance across different configurations. The heatmap highlights consistently higher SSs within simulations 

that utilize the same mixing scheme, regardless of whether they are online or offline. 325 
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3.2 Comparison of biogeochemical outputs from offline and online simulations 

Here we present the performance of selected offline simulations vs. online simulations. Given that multiple simulations were 

conducted, we highlight key results that effectively demonstrate the offline model performance across different mixing 

schemes. For consistency, all plots were generated using the ‘avg’ output files from ROMS. When showcasing a single 330 

offline configuration, we selected the GLS mixing scheme with a x5 DT, which was arbitrarily chosen mainly to ensure 

uniformity across the analysis. The focus is, therefore, on assessing the ability of the offline model to reproduce the online 

model simulation results. 

 

The main plots presented here are from the surface layer, which is the most dynamically variable region due to exposure to 335 

the physical model forcing (e.g., shortwave solar radiation, net heat flux, u- and v- momentum). This variability increases the 

likelihood of discrepancies between the online and offline simulations. Secondarily, the complementary figures analyze the 

bottom layer, which can also exhibit bias due to its interaction with the bathymetry. Additionally, we examine vertical 

profiles to ensure that the entire water column is accurately represented. 

 340 

Figure 5A-D illustrates the time series of key biogeochemical variables (O2, PO4, NO3, CHL, and NH4) for both the online 

simulations and the offline simulations at the surface layer with a DT x5. The results show near-perfect alignment between 

both simulations, with equal or nearly equal time evolution and trends in most cases. Differences appear only for NH4, which 

is overestimated during the April-October period, especially with the LMD scheme (Fig. 5B). Minor differences are also 

observed in CHL concentrations during the same period (Fig. 5D).  345 

 

A similar behavior is observed when analyzing the time series for the bottom layer (Fig. S4), with a very well reproduced 

temporal evolution of key variables and practically negligible differences. However, NH4 discrepancies become more 

pronounced (Fig. S4B). 

 350 

Figure 6 presents the averaged spatial differences in surface layer concentrations. Discrepancies are generally small across 

all three schemes, with GLS showing slightly smaller differences in some regions (Fig. 6A). Near-coastal areas show an 

underestimation of O2, PO4, and NO3, whereas CHL and NH4 are overestimated in the coastal regions, with accurate 

representation in the southern region. PO4 shows negligible overestimation (maximum difference of +0.04 mmol·m-3) in the 

southernmost region of the domain. Despite these spatial differences, the error magnitudes remain within acceptable limits 355 

and align with typical concentrations of the key biogeochemical tracers in the NGoM (Fennel et al., 2011; Fennel and 

Laurent, 2018). 
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Figure 5: Area-averaged time series of biogeochemical variables at the surface layer for x5 time-step online and offline simulations 360 
using different mixing schemes. Panels show (A) dissolved oxygen (O₂), (B) phosphate (PO₄), (C) nitrate (NO₃), (D) chlorophyll (CHL), 

and (E) ammonium (NH₄). Light and dark green, light and dark blue, and light and dark red represent online and offline simulations that 

used Generic Length Scale (GLS), Mellor–Yamada 2.5 (MY25), and Large–McWilliams–Doney (LMD) mixing schemes, respectively. 
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Figure 6: Time-averaged spatial differences in concentrations of dissolved oxygen (O₂), PO₄ (phosphate), NO₃ (nitrate), CHL 365 
(chlorophyll), and NH₄ (ammonium), at the surface layer between offline (x5 time-step) and online simulations using different 

mixing schemes. Rows show biogeochemical tracers for (A) Generic Length Scale (GLS) mixing, (B) Large–McWilliams–Doney (LMD) 

mixing, and (C) Mellor–Yamada 2.5 (MY25) mixing. The ‘coolwarm’ color scales on the right illustrate the differences. 

 

When examining time-averaged vertical profiles of key biogeochemical variables at various points within the domain (Fig. 370 

1), differences between offline simulations with varying DTs are either minimal or negligible (Fig. 7A-C).  

 

For O₂, the offline model demonstrates consistent accuracy across all three profiles in points 1, 2, and 3, indicating reliable 

performance throughout the full domain (Fig. 7A-C). Regarding PO₄ and NO₃, the offline model also shows a very good 

match with online outputs, with only a slight underestimation in Point 1 (offshore) (Fig. 7A).  375 

 

In terms of CHL, the offline model perfectly matches the online model output at points 2 and 3 (near the mouth of the 

Atchafalaya and the Mississippi rivers, respectively) (Fig. 7B and C). However, a slight overestimation is found within the 

first 15 m at point 1 (offshore), where CHL concentrations are low, so a small bias is expected. This becomes more 

pronounced as the DT increases (Fig. 7A). 380 

 

For NH₄, it reproduces its vertical behavior almost perfectly at point 3 (Fig. 7C), while overestimations are observed at 

points 1 and 2 (Fig. 7A-B), located offshore and near the mouth of the Atchafalaya River, respectively (Fig. 1). This 

overestimation is more pronounced near the Atchafalaya River, which is expected due to rivers exhibiting greater variability. 

However, despite these overestimations, the overall vertical patterns remain accurate. 385 
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Figure 7: Time-averaged profiles of key biogeochemical tracers’ concentrations for Generic Length Scale (GLS) mixing 

simulations. Panels show (A) Point 1, offshore in the western part of the study area; (B) Point 2, near the mouth of the Atchafalaya River; 

and (C) Point 3, near the mouth of the Mississippi River. Refer to Figure 1 for point locations. The black dashed line represents online 

(ON) simulations, while the colored lines indicate offline simulations for time steps x1 (blue), x3 (orange), x5 (green), and x10 (red). 390 
 

Following the examination of biogeochemical tracers, we now turn our attention to surface spatial differences in CHL 

concentrations. This focus is particularly relevant, as it serves as a critical indicator of primary productivity, which depends 

on nutrient concentrations such as NO3, NH4, and PO4. 

 395 

Seasonal CHL concentration maps derived from the GLS mixing simulations illustrate the differences across seasons. Both 

the online GLS simulation and the corresponding offline GLS simulation with a x5 DT exhibit virtually no discernible 

differences, displaying identical seasonal spatial patterns (Figs. 8A, B and C). The maximum overestimation is of 4 mg·m⁻³ 

during the summer (June-July-August; JJA) and spring (March-April-May; MAM) seasons (Fig. 8A). These are primarily 
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concentrated near the mouths of rivers that flow into the NGoM, indicating the influence of riverine inputs on CHL 400 

concentrations. 

 
Figure 8: Seasonal maps of chlorophyll concentrations (CHL) for Generic Length Scale (GLS) mixing simulations using x5 time-

step (DT). (A) Displays the difference in concentrations between offline (x5 DT) and online simulations, as indicated by the coolwarm 

color scale on the right. (B) Shows chlorophyll concentrations for the online simulation, while (C) presents concentrations for the offline 405 
simulation (x5 DT). Panels (B) and (C) share the same rainbow color scale. Seasonal designations are as follows: DJF (December-January-

February, winter), MAM (March-April-May, spring), JJA (June-July-August, summer), and SON (September-October-November, fall). 

 

Looking at the other mixing schemes in terms seasonal variations, the winter (December-January-February; DJF) and fall 

(September-October-November; SON) seasons exhibit minimal variation, but the three mixing schemes produce largely 410 

similar patterns (Fig. S5). While LMD appears to show slightly more variability in fall, these differences are modest (Fig. 

S5). 

 

In spring, all three schemes show overestimated CHL concentrations, with values reaching up to 2 mg·m⁻³ near the coast. 

This overestimation peaks during summer, with differences approaching 5 mg·m⁻³. Among the three schemes,  415 

GLS tends to yield slightly lower deviations in some locations, although all remain within a comparable range. 

 

Differences in CHL concentrations in the bottom layer are also observed, which correspond both to rather small over and 

underestimations (Fig. S6). A consistent overestimation appears in the Atchafalaya Bay region and in the northeastern part 
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of the domain across all four seasons, with biases reaching up to 1 mg·m⁻³. The northwestern region of the domain displays a 420 

combination of underestimations, particularly during spring and fall, with differences of up to 0.5 mg·m⁻³, and slight 

overestimations in summer. 

 

The offline model also shows strong overall performance across all schemes when examining seasonal CHL differences in 

vertical profiles (Fig. 9). No scheme in particular outperforms the others. For instance, the GLS scheme exhibits a slight 425 

overestimation during the fall at Point 1 (Fig. 9A) and in winter at Point 2 (Fig. 9B). Meanwhile, MY25 and LMD 

demonstrate comparable deviations throughout the year (Fig. 9). Overall, the results indicate that all schemes effectively 

reproduce vertical CHL patterns, with only minor and spatially variable differences. 

 
Figure 9: Seasonal-averaged chlorophyll concentration (CHL) profiles for offline (x5 time step, solid line, Off.) and online 430 
simulations (dashed line, On.) across different mixing schemes. Panels display data for: (A) Point 1, located offshore in the western 

part of the study area; (B) Point 2, situated near the mouth of the Atchafalaya River; and (C) Point 3, located near the mouth of the 

Mississippi River. Refer to Figure 1 for specific point locations. The green, blue, and red lines represent the Generic Length Scale (GLS), 

Large–McWilliams–Doney (LMD), and Mellor-Yamada 2.5 (MY25) mixing schemes, respectively. Seasonal designations are as follows: 
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DJF (December-January-February, winter), MAM (March-April-May, spring), JJA (June-July-August, summer), and SON (September-435 
October-November, fall). 

 

3.3 Computational efficiency analysis 

Assessing the computational efficiency of the offline model and the impact of DT increases on the results of the simulation 

for each mixing scheme is of the utmost importance. Variations in computational time across simulations using the same 440 

cluster and node configuration are illustrated in Figure 10. The coupled online simulations, which integrate hydrodynamic 

and biogeochemical components, ranged from 4 hours 36 minutes for the LMD scheme to 5 hours 52 minutes for the MY25 

scheme (Table S1). Once the offline model was implemented using the same DT than the online configuration, simulation 

time decreased by 39% for MY25, 33% for GLS, and 25% for LMD. Further time reductions were achieved by increasing 

the DT: x3 reduced the simulation time by 65% on average, x5 by 75%, and x10 by 87%. When attempting to increase to 445 

x15, the model still generated results, but the time allocated for file writing was insufficient. 

 
Figure 10: Computing time (hh:mm) for online and offline simulations across each configuration, considering the three mixing 

schemes. The color coding corresponds to the mixing schemes: green for Generic Length Scale (GLS), blue for Large–McWilliams–

Doney (LMD), and red for Mellor-Yamada 2.5 (MY25). The label ONLINE refers to the coupled simulation, while the labels "OFF (x1)", 450 
"OFF (x3)", "OFF (x5)", and "OFF (x10)" indicate the respective offline simulations with the time steps multiples used. 
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Figure 11 presents time series of the biogeochemical tracers in the surface layer, comparing results from simulations using 

different DTs in the GLS mixing scheme configuration. During the first five months of the simulations, the offline-online 

differences exhibit higher variability, likely due to the model's spin-up period (shaded in blue). In this period, all DT 455 

simulations (x1, x3, x5, and x10) produce nearly identical results across variables, particularly for O₂ and CHL. 

 

Then, two distinct transitions can be identified: the first, in pink shade, occurs around the middle of the 5th month (April), 

and the second, occurs about the 9th month (August). At the first transition, the bias variability stabilizes and becomes more 

consistent over time, marking the apparent end of the spin-up period. The second transition, in green shade, is characterized 460 

by reduced differences for NO₃, NH₄, PO₄, and O₂, alongside a noticeable increase in the difference for CHL (Fig. 11).  

 

A peculiar artifact appears within the shaded yellow region of the plot, where errors in PO₄ unexpectedly diverge at DT x10 

before converging with O₂ values. This divergence may represent a computational issue or the model's response to external 

forcing. 465 

 

Regarding the effect of varying DT values, there is no consistent correlation between increasing DT and higher error 

magnitude. Instead, the extent of the differences appears variable-dependent and influenced by the simulation phase. After 

the spin-up period, differences between simulations propagate differently across tracers, especially for nutrients such as PO₄ 

and NO₃. 470 

 

In the bottom layer (Fig. S7), a similar pattern emerges. However, in this case, the offline-online differences consistently 

increase with larger DT values. Despite these variations, the magnitude of differences in both surface and bottom layers 

remains within acceptable error margins for all variables. 

 475 

We note that the four periods highlighted in Fig. 11 and Fig. S7 represent one possible interpretation of the observed 

temporal variability, based on apparent shifts in similarity across cases. These divisions may reflect transient behaviours 

such as spin-up dynamics or offline initialization effects. However, they could also be shaped by seasonal variability in the 

external forcings. Further investigation would be required to disentangle these factors. 

 480 

Evaluating the effect of different DT values on vertical profiles of key biogeochemical tracers reveals that discrepancies 

between the results are minimal across all variables, with varying patterns across different profiles (Fig. 12). At Point 3, 

discrepancies between the results are almost negligible across all variables, indicating that there are basically no differences 

between the DTs. This suggests a high level of consistency in the model outputs at this location. This is of particular 

relevance since it is located near the Mississippi River mouth (Fig. 1). 485 
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At Point 1, differences are slight and primarily localized in the upper meters of the water column. For all tracers the 

variations are minor, indicating that the choice of DT has a negligible impact on the results at this point. In contrast, Point 2 

exhibits more dynamic behavior, with noticeable discrepancies both near the surface and at the bottom layers. Here, the 

impacts of the DT vary depending on the variable being examined. 490 
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Figure 11: Differences in simulation results at the surface layer across time steps (DTs) used in simulations with the Generic 

Length Scale (GLS) mixing scheme. Panels show the following variables: (A) dissolved oxygen (O₂), (B) phosphate (PO₄), (C) nitrate 

(NO₃), (D) chlorophyll (CHL), and (E) ammonium (NH₄). The blue, orange, green, and red lines represent offline simulations with DT 495 
multiples of x1, x3, x5, and x10, respectively. The blue shaded area indicates the spin-up period where all simulations show high 

variability but converge to similar values. The pink shaded region marks the stabilization phase, with variables showing reduced variability 

and the emergence of differences between DT simulations. The yellow shaded region highlights a potential computational artifact or 

response to forcing, characterized by divergence in PO₄ and convergence in O₂. The green shaded region suggests seasonal dynamics, with 

a distinct change in behavior for the simulated variables. 500 
 

Overall, despite localized variations, the findings from Section 3.2 highlight that the computational efficiency gains from 

using larger DTs come at practically no cost to model accuracy. The differences between results for different DTs are 

minimal, reinforcing the robustness and reliability of the simulations across all examined variables. 

 505 

 



25 
 

Figure 12: Time-averaged vertical differences between offline and online simulations for the Generic Length Scale (GLS) 

configuration, based on the time steps (DTs) used. Panels display data for: (A) Point 1, located offshore in the western part of the study 

area; (B) Point 2, near the mouth of the Atchafalaya River; and (C) Point 3, near the mouth of the Mississippi River. Refer to Figure 1 for 

specific point locations. The blue, orange, green, and red lines represent offline simulations with DTs multiples of x1, x3, x5, and x10, 510 
respectively, as shown in the legend in the upper right plot. 

4 Discussion and conclusions 

In this study, we introduce and evaluate the Offline Fennel model, developed as an alternative to fully coupled physical-

biogeochemical models. This model was tested in the NGoM against online (coupled) simulations using multiple mixing 

schemes —GLS, LMD, and MY25— to assess its performance in simulating key biogeochemical tracers such as NO3, NH4, 515 

PO4, CHL, and O2. The goal of this comparison is to determine whether the offline biogeochemical model can accurately 

replicate the results of coupled simulations within ROMS while offering substantial computational efficiency gains. 

 

Our comparison reveals that the Offline Fennel model delivers high accuracy in reproducing the key biogeochemical tracers, 

with an average SS of 93% across all simulations. This demonstrates the model's strong ability to match the online coupled 520 

configuration, particularly in terms of time-series, spatial patterns, and vertical profiles. While the Offline Fennel model 

closely replicates the performance of the coupled system for most variables, some slight discrepancies were observed, 

particularly for NH4. These discrepancies, while small, were located near coastal and river mouth regions (Atchafalaya and 

Mississippi rivers), areas that are inherently more challenging to model due to complex river-induced nutrient dynamics and 

mixing in shallow waters (Laurent et al., 2017). In addition, NH₄ is a short-lived tracer (Klawonn et al., 2019) that undergoes 525 

rapid transformations such as nitrification (oxidation of NH₄ to NO₃), and organic matter reaching the sediment is 

instantaneously remineralized, accounting for the loss of fixed nitrogen through denitrification (Fennel et al., 2013). This fast 

turnover makes NH₄ particularly sensitive to the temporal resolution of offline forcing fields, especially in coastal and 

riverine regions characterized by strong biogeochemical gradients (Yu et al., 2016; Laurent et al., 2017).. However, this is 

not necessarily a limitation of the offline model but rather reflects the inherent difficulty in simulating highly dynamic 530 

environments and rapidly cycling tracers. In contrast, other tracers such as NO₃ and CHL, while also involved in dynamic 

processes (Fennel and Laurent, 2018), generally exhibit smoother spatiotemporal variability and are less sensitive to short-

term fluctuations. 

 

The inclusion of near-coastal points closer to river mouths, such as points 2 and 3 (Fig. 1), was intentional, as these locations 535 

represent areas with significant challenges for model validation. The fact that the Offline Fennel model performs well even 

in these difficult regions further emphasizes the robustness of the model for more general applications. 
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Despite these minor discrepancies, the model demonstrates strong performance, with O2 showing particularly robust results, 

which is particularly notable given its importance in the NGoM ecosystem (Rabalais et al., 2002) and globally. This suggests 540 

that the Offline Fennel model is highly capable of reproducing both the spatial distribution and temporal evolution of 

biogeochemical tracers with minimal error. 

 

The computational efficiency of the Offline Fennel model is one of its most significant advantages. By increasing the time-

step by a factor of 10, we were able to reduce computational time from an average of 5 hours and 15 minutes to just 30 545 

minutes, which represents an 87% reduction in computational time. This drastic improvement is crucial for long-term 

simulations and large-scale applications, where running fully coupled models would be computationally limiting. The 

reduced computational time also opens the door for scenarios where multiple model runs are needed, such as sensitivity 

analyses, parameter tuning, or data assimilation approaches (Fennel et al., 2022), without the necessity of rerunning the 

hydrodynamic component each time. This feature greatly accelerates the simulation process and allows for broader 550 

exploration of different biogeochemical conditions at a fraction of the computational cost. 

 

Furthermore, we observed that increasing the DT had practically no impact on the model results, which is highly relevant. 

While increasing the DT significantly reduces computational time, the discrepancies between simulations using different 

DTs were minimal. This finding further highlights the efficiency of the Offline Fennel model, as it allows for a substantial 555 

reduction in computational time without compromising model accuracy. This demonstrates that increasing the DT can be a 

viable strategy for accelerating simulations, particularly in large-scale or long-term studies, without introducing significant 

errors. 

 

When comparing the three mixing schemes (GLS, LMD, and MY25), the GLS scheme consistently provided the best 560 

performance in terms of accuracy. The MY25 scheme showed similar results but was slightly less accurate compared to 

GLS. The LMD scheme showed the lowest performance overall. These differences are likely due to the fact that the GLS 

scheme, by design, is better at capturing small-scale turbulence and mixing processes, which are critical for accurate 

biogeochemical simulation in the NGoM. Although both MY25 and GLS simulations incorporated additional coefficients 

(‘AK’, ‘gls’, ‘tke’), the performance for MY25 was not as robust as GLS. These results suggest that while incorporating 565 

additional coefficients can improve model accuracy, they are not necessarily a critical factor for this study. The relatively 

small differences between the three mixing schemes further highlight the robustness of the Offline Fennel model, which was 

able to handle a variety of mixing configurations without a significant loss of accuracy. 

 

Although the Offline Fennel model demonstrated strong overall performance, some limitations remain. Testing additional 570 

tracer schemes or refining the model configuration for the NGoM could potentially address these small discrepancies. 

Furthermore, extending the model's application to other regions could offer further validation and highlight any region-
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specific limitations, though this is something to explore in future work. However, overall, the model has proven to be an 

effective tool for biogeochemical simulations in the NGoM. 

 575 

In addition, a potential avenue for future research would be to repeat the one-year simulation in back-to-back cycles to better 

determine whether early-period variability reflects model spin-up effects or is fully driven by external forcing. Such an 

approach would help isolating transient initialization behaviours from recurring seasonal signals. 

 

A particularly intriguing aspect of the results is the lack of growing error over time in the Offline Fennel model simulations, 580 

as typically observed in other studies, like data assimilation schemes (Berry and Harlim, 2017). This may partly reflect the 

relatively short simulation period (one year), the model domain, and the stabilizing influence of boundary conditions such as 

prescribed riverine fluxes. However, it also suggests that biological variability is well constrained by the physical state and 

that the simplification of feedback mechanisms in the offline framework does not result in significant error accumulation 

(Béal et al., 2010). Further investigation is needed to explore this phenomenon more thoroughly and assess whether such a 585 

stability persists across different configurations and longer timeframes. 

 

Finally, discrepancies between the offline and online simulations were smaller than those typically observed between 

different mixing schemes within the same application. This suggests that the choice of mixing scheme has a more significant 

impact on model accuracy than the distinction between offline and coupled configurations. Therefore, the offline model 590 

offers substantial benefits in terms of computational efficiency without compromising its ability to represent biogeochemical 

processes accurately. 

 

Whereas the focus of this work is on the performance of the offline biogeochemical configuration, it is worth noting that 

different mixing (GLS, MY25, LMD) lead to notable differences in the predicted distributions of biogeochemical variables 595 

(e.g., Fig. 5). These differences highlight the sensitivity of biogeochemical tracer simulations to physical mixing processes, 

especially in coastal and shelf regions. A systematic evaluation of the biogeochemical impacts of turbulence 

parameterizations would be an important direction for future research. 

 

A relevant consideration when using offline biogeochemical models is the temporal resolution of the hydrodynamic archive 600 

used to force tracer transport (Thyng et al., 2021). In our study, all offline simulations were forced with 3-hourly velocity, 

temperature, salinity, and other physical fields extracted from the online model. This relatively fine sampling helps retaining 

much of the variability related to tracer advection and diffusion. Since all simulations use the same archived fields, the 

differences observed between the DTs cases are not due to changes in the input currents themselves, which are identical, but 

rather to the internal numerical treatment of tracer advection within the offline model. 605 
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Nevertheless, it should be noted that the hydrodynamic sampling rate used to force the offline model may limit the ability of 

Offline Fennel to accurately reproduce biogeochemical tracer fields. While this was not a dominant source of error in our 

study area, the effect could become more pronounced in highly physically variable regions, such as strongly tidal or wind-

driven coastal environments. In such cases, the loss of high-frequency momentum variability between archive snapshots 610 

could degrade the fidelity of biogeochemical tracer simulations. This highlights the importance of choosing an appropriate 

archive sampling rate when configuring offline models, particularly for regions with energetic sub-daily dynamics. 

 

In conclusion, the Offline Fennel model offers a promising alternative to coupled simulations, particularly in settings where 

computational resources are limited or when large-scale, long-term simulations are needed. The model accurately represents 615 

key biogeochemical processes, such as nutrient cycling, primary production, and oxygen dynamics in the NGoM, and its 

ability to drastically reduce computational time while maintaining high accuracy offers significant advantages for future 

applications. Furthermore, the model's autonomy from hydrodynamic processes also minimizes dependencies, providing 

flexibility in conducting extensive parameter tuning and sensitivity testing. While there are minor areas for improvement, the 

Offline Fennel model stands as a valuable tool for researchers working with ROMS hydrodynamic outputs or new ROMS 620 

configurations. While the results are specific to our model setup and the dynamics of the NGoM, they provide valuable 

insights for researchers with similar configurations and offer general guidelines for further applications. 

 

Appendix A. Explanation of code changes 

 625 

This section describes the modifications made to Thyng et al. (2021) offline main code 

(https://github.com/kthyng/COAWST-ROMS-OIL/tree/master/ROMS) to make the offline biogeochemical model, namely 

Offline Fennel, working properly by acquiring the required forced variables, and to add new tracers and parameters. The 

most significant change, compared to the previous version, is the addition and operability of the following biological tracers: 

phosphate (PO4), river carbon detritus (RDeC) and river nitrogen detritus (RDeN). The following repository contains the 630 

modifications made to Thyng et al. (2021) original code: https://github.com/jcrespinesteve/OfflineFennel. 

 

The new tracers and their respective equations have been incorporated to the "fennel.h" file. The offline model now includes 

phosphate (enabled via the PO4 C-processing option), and river detritus computations for both nitrogen and carbon (enabled 

via the RIVER_DON C-processing option). It is important to note that river inputs, such as freshwater discharge and 635 

associated biogeochemical tracers, are prescribed in the model, rather than dynamically simulated. However, when 

RIVER_DON is activated, the model performs additional internal computations to represent the transformation of non-

sinking dissolved organic matter from river sources (Yu et al., 2015). A similar approach is applied when PO4 is activated: 

phosphate is not simply added as a biogeochemical tracer, but instead integrated into the model’s biogeochemical cycles 

through additional terms and modified equations following Laurent et al., (2017) Fennel model version, and ensuring 640 
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consistency with the rest of the nutrient dynamics. In addition, another oxygen computation, RW1_OXYGEN_SC, has been 

added to the file. When this C-processing option is activated, the biogeochemical model uses Wanninkhof (2014) air-sea flux 

parameterization to calculate oxygen values. 

 

Metadata indices for the new variables are now included in the "fennel_var.h" file. The "fennel_def.h" file incorporates new 645 

input parameters to calculate the following tracers: phyto-phosphate:nitrogen ratio (’R_P2N’), inverse half saturation for 

phytoplankton phosphate uptake (’K_PO4’), remineralization rate for nitrogen and carbon river detritus (’RDeRRN’ and 

’RDeRRC’). Such new input parameters are likewise defined in the "fennel_inp.h", "fennel_mod.h", and "fennel_wrt.h" 

files, so the new parameters are read, allocated and written out in the offline simulations. 

 650 

To facilitate the configuration process for offline simulations, some changes have been also made in the "globaldefs.F" 

module. Now, when OFFLINE and OFFLINE_BIOLOGY are defined in the header file, ATCLIMATOLOGY is 

automatically activated for processing and allocating the active tracers of the simulation, which are temperature and salinity. 

Moreover, the "checkvars.F" file was also revised to activate the acquisition of the active tracers during offline simulations. 

Specifically, this file now ensures that when the OFFLINE and ATCLIMATOLOGY options are defined, the model 655 

correctly identifies and retrieves the active tracers. This is indispensable for the Offline Fennel model, as temperature is used 

for light limitation to compute phytoplankton growth, and salinity is needed to calculate oxygen saturation.  

 

In the "checkdefs.F" file, new settings for verifying C-processing options have been incorporated. These settings include the 

addition of PO4 dynamics (PO4), the river detritus equation (RIVER_DON), and the inclusion of river biology point sources 660 

(RIVER_BIOLOGY). 

 

Finally, the "set_data.F" file was modified to prevent the model from accessing subsequent time step values of sea surface 

height and 3D momentum climatologies. This adjustment was necessary to eliminate a shift that occurred when processing 

climatology fields in the bottom layers, which had previously propagated a bias toward the surface when calculating 665 

biogeochemical tracer concentrations. 

 

Appendix B. Offline Fennel guide 

 

To conduct offline biogeochemical simulations using Offline Fennel, users have to run a specific version of 670 

COAWST/ROMS available in https://github.com/kthyng/COAWST-ROMS-OIL. Requirements and considerations for 

setting up biogeochemical offline simulations in ROMS using Offline Fennel are provided below. 

 

Climatology and forcing files 



30 
 

 675 

Input the hydrodynamic model outputs as the climatology forcing (’CLMNAME’) of the model. The variables needed for the 

climatology files, with ROMS required dimensions between brackets, are: 

 

- Free-surface (’zeta’) (time, eta_rho, xi_rho) 

- Vertically integrated u-momentum component (’ubar’) (time, eta_u, xi_u) 680 

- Vertically integrated v-momentum component (’vbar’) (time, eta_v, xi_v) 

- u-momentum component (’u’) (time, s_rho, eta_u, xi_u) 

- v-momentum component (’v’) (time, s_rho, eta_v, xi_v) 

- S-coordinate vertical momentum component (’omega’) (time, s_w, eta_rho, xi_rho) 

- Temperature (time, s_rho, eta_rho, xi_rho) 685 

- Salinity (time, s_rho, eta_rho, xi_rho) 

- Solar shortwave radiation (’swrad’) (time, eta_rho, xi_rho) 

- Surface net heat flux (’shflux’) (time, eta_rho, xi_rho) 

- AKv, AKt, Aks optional (depending on mixing scheme) (time, s_w, eta_rho, xi_rho) 

- Tke optional (depending on mixing scheme) (time, s_w, eta_rho, xi_rho) 690 

- GLS optional (depending on mixing scheme) (time, s_w, eta_rho, xi_rho) 

 

For the offline forcing file (FRCNAME), with ROMS required dimensions between brackets, the variables needed for the 

climatology files are: 

 695 

- Solar shortwave radiation (’swrad’) (time, eta_rho, xi_rho). [WARNING: Offline Fennel is very sensitive to this 

variable.] 

- Surface net heat flux (’shflux’) (time, eta_rho, xi_rho) 

- Surface u-momentum stress (’sustr’) (time, eta_u, xi_u) 

- Surface v-momentum stress (’svstr’) (time, eta_v, xi_v) 700 

 

Header file 

 

- Define OFFLINE and OFFLINE_BIOLOGY flags to conduct offline biogeochemical simulations. 

- Do not define BULK_FLUXES, SOLAR_SOURCE nor DIURNAL_SRFLUX flags, since all forcing comes from 705 

the hydrodynamic model outputs to be introduced in the climatology and forcing files. 

- Define ATCLIMATOLOGY to process and allocate active tracers (T and S). This is fundamental for phytoplankton 

growth and oxygen computation in the biogeochemical model. 
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- Define OCLIMATOLOGY for processing the variable ’omega’ provided in the climatology forcing file. 

- For best accuracy, use the same tracer advection scheme as the physical run. Use TS_MPDATA for best tracer 710 

advection results (Thyng et al., 2021). 

- Use OUT_DOUBLE and PERFECT_RESTART for best results. 

- Define MIX_CLIMATOLOGY to use Tke and GLS, and AKXCLIMATOLOGY for akt, aks, and akv use. 

 

Configuration file 715 

 

- A multiplier of the hydrodynamic time step is a good option for the offline simulation time step DT. The present 

study found that a DT equal to 1, 3, 5, and 10 times the physical DT provided good results. However, some testing 

for the implementation setup is recommended. WARNING: Note also that the offline time step must be 

proportional to the hydrodynamic output frequency, and that it cannot be larger than the latter. 720 

- Close all boundaries for the physics, since all data comes from the hydrodynamic model outputs and an open 

boundary would modify the hydrodynamics. 

- Turn on "LsshCLM", "Lm2CLM", "Lm3CLM" and "LtracerCLM" to process the climatology forcing file. 

- Do not activate climatology nudging ("LnudgeM2CLM", "LnudgeM3CLM", "LnudgeTCLM"), since the physical 

output must be entirely forced. 725 

- Do not activate tracers for sources ("LtracerSrc"), since this has already been computed in the physical simulation. 

- Turn on the momentum for Sources/Sinks if river nutrients (RIVER_BIOLOGY) are to be added. This will not 

modify the hydrodynamics of the model, as it will only impact the biology and nutrients of the model. If "LuvSrc" 

or "LwSrc" are not activated, no nutrients will come out from the river points. 

- A specific varinfo.dat file available here (https://github.com/kthyng/COAWST-ROMS-730 

OIL/blob/master/ROMS/External/varinfo-offline.dat - last access: 14 Apr 2023) must be used for offline 

simulations, as it has been modified to include the additional variables for the offline model. The latter adjustment 

enables the offline input of the physical result to be input as climatology without undergoing file processing to 

rename variable attributes. 
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