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Abstract. Global gridded crop models (GGCMs) are simulation tools designed for global, spatially explicit 

estimation of crop productivity and associated externalities. Key areas for their application are climate impact and 15 

adaptation studies. As GGCMs are typically computationally costly and require comprehensive data pre- and post-

processing, GGCM emulators are gaining increasing popularity. Earlier emulators have typically been published 

pre-trained on synthetic weather and management combinations. Here, we present a novel computational pipeline 

CROp Model Emulator Suite (CROMES) v1.0 that serves for flexibly training GGCM emulators on data 

commonly available from GGCM simulations. Essentially, CROMES consists of modules to (1) process climate 20 

data from daily resolution netCDF files to (sub-)growing season aggregates as climate features, (2) combine 

various feature types (climate, soil, crop management), (3) train emulators using machine-learning algorithms, 

and (4) produce predictions. Exemplary, we apply CROMES to train emulators on simulations for rainfed maize 

from the GGCM EPIC-IIASA and climate projections from a single GCM to subsequently test their skill in 

predicting crop yields for unseen climate projections from other GCMs. Depending on the training and target data, 25 

the regression statistics between GGCM simulations and predictions across all points in time and space are in the 

ranges R2=0.97 to 0.98, slope=0.99 to 1.01, and intercept=-0.06 to +0.06. The RMSE ranges between 0.49 and 

0.65 t ha-1. Spatially, patterns are evident with lowest performance in (semi-)arid regions where aggregation of 

weather data may result in higher information loss while permanent crop growth limitations may hamper 

evaluation statistics as well. The gain in computational speed for predictions is at more than an order of magnitude 30 

with time required to produce target features and subsequent predictions at about 30min on common hardware. 

We expect CROMES to be of utility in covering more comprehensively uncertainty in climate impact projections, 

evaluations of adaptation options, and spatio-temporal assessments of crop productivity. 
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1 Introduction 

Global gridded crop models (GGCMs) have become key tools in large-scale agricultural climate impact and 

adaptation assessments (Jägermeyr et al., 2021) and as a source of crop yield estimates for land use and integrated 

assessment models (Nelson et al., 2014). Yet, these combinations of large-scale spatial data frameworks and plant 

growth models have limitations in the volume of scenarios they can address due to computational demand or 40 

complex software and data structures. At the same time, ever larger volumes of bias-corrected climate projections 

become available as potential forcings for GGCMs allowing in principle for comprehensive uncertainty 

assessment (Gao et al., 2023; Gebrechorkos et al., 2023; Lange and Büchner, 2021; Thrasher et al., 2022). Also 

spatial resolutions of  climate data are constantly improving with first 1 km x 1 km resolution global daily 

meteorological data available (Karger et al., 2023) but requiring vastly higher computational capacities compared 45 

to the state-of-the-art 0.5° x 0.5° (approx. 50 km x 50 km near the equator). This high computational demand of 

GGCMs consequently limits the adoption of higher resolution climate forcings or wider sets climate projections 

that would allow to derive more robust and comprehensive climate impact estimates. 

 

To allow for more comprehensive scenario analyses without exacerbating computational costs, emulators 50 

mimicking GGCMs have emerged as tools to produce reasonably accurate predictions of GGCMs’ crop 

productivity estimates at much lower computational requirements and with sparser sets of aggregate input data. 

First developments in this field were common linear models trained on opportunistic samples from GGCM climate 

impact simulations (Blanc, 2017; Blanc and Sultan, 2015; Oyebamiji et al., 2015). Most recent emulators have 

been based on structured training data obtained from vast GGCM simulations for systematic perturbations of 55 

meteorologic reanalysis data combined with location-specific polynomials (Franke et al., 2020b). These have been 

employed extensively for comprehensive scenario analyses (Franke et al., 2022; Müller et al., 2021; Zabel et al., 

2021) and analytic purposes (Müller et al., 2024). 

 

However, emulators published thus far are subject to several limitations. E.g., inter-annual yield variability can 60 

hardly be reflected due to the use of annual or static seasonal climate features and common regression models, 

and predictive performance is typically still lacking robustness. Also, the frequent use of individual algorithms or 

parameters per pixel limits the flexibility of emulator applications across spatial scales. Structured training data 

furthermore require comprehensive crop model simulations and dedicated experiments (Franke et al., 2020a). This 

causes substantial overhead and hampers timely updates of training data with new model versions and setups that 65 

are regularly applied in climate impact studies. More complex machine-learning algorithms such as boosting, 

regression trees, and neural networks in turn have been shown to provide high flexibility in producing predictions 

similar to those of crop models if combined with covariates at moderate temporal resolutions, albeit these methods 

have thus far only been tested for spatial downscaling and evaluations of model training strategies (Folberth et al., 

2019; Sweet et al., 2023). Yet, their high predictive performance and flexibility renders such setups promising for 70 

the development of novel emulators. 

 

Building on these recent developments, we present herein a computational pipeline combining modules for fast 

climate feature engineering tailored towards the crop growing season and sub-seasons with machine-learning 

algorithms for the training and application of GGCM emulators. In contrast to providing pre-trained emulators, 75 
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this pipeline presents a flexible tool allowing for continuous updates based on specific requirements of 

applications and new training data as these become available. For the demonstration experiment herein, we train 

emulators on a set of simulation outputs for the most recent simulation round phase 3b of the Inter-Sectoral Impact 

Model Intercomparison Project (ISIMIP) and the Global Gridded Crop Model Intercomparison (GGCMI) 

initiative (Jägermeyr et al., 2021). Our approach is based on the hypothesis that by using a global set of simulations 80 

spanning diverse agro-climatic and –environmental conditions, we can train emulators with high enough 

flexibility to mimic GGCM simulations for unseen climate projections from the same domain (here CMIP6). For 

practical reasons, we focus on emulators for the crop model Environmental Policy Integrated Climate (EPIC; 

(Williams, 1990)) that is used by the authors in the global gridded implementation EPIC-IIASA (Balkovič et al., 

2013). 85 

2 Methods 

2.1 Study design and experiment setup 

 

 
Figure 1. Study design schematic. A: Global gridded crop model simulations for a specific set of forcing data to generate 90 
a training sample for emulators, B: training of crop model emulators based on machine learning algorithms and the 
global GGCM training sample, C: processing of features from target forcings and predictions using emulators from 
(C), D: storage and evaluation of predictions and/or optional further use of climate features. 

 

The design of CROMES and the setup for the present study is shown in Figure 1 with details provided in the 95 

subsequent sections. First, GGCM simulations - using here the EPIC-IIASA model and forcing data from 

ISIMIP3b - are performed to generate a training sample (Figure 1A). A climate feature processing module 

generates features from climate forcing datasets for various parts of the crop growing season. These are combined 

with the GGCM crop yield estimates as target variable and further features on soil, site characteristics, and crop 

management to train machine-learning algorithms as emulators (Figure 1B). The same module produces features 100 

for predictions (Figure 1C) that serve as covariates for the emulator, which eventually produces crop yield 

predictions (Figure 1D).  The rapid generation of climate features is a core element of CROMES as it is key for 
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the computational speed gain compared to GGCM simulations. These features may also be used directly, e.g., for 105 

analyses of growing season climate. 

 

The exemplary application of CROMES herein evaluates in how far emulators that are trained on GGCM 

simulations for a specific GCM covering the historical time period and three projections along different 

representative concentration pathways (RCPs; see sect. 2.9) are skilled to predict crop yields for climate scenarios 110 

from other GCMs. Essentially, we perform GGCM simulations using climate forcings from five GCMs, 

subsequently train emulators for each of these GCMs individually, and benchmark crop yield predictions for the 

other four GCMs against actual crop model simulations. 

 

While crop nutrient supply can in principle be added to the features, we opt herein to evaluate only predictions 115 

for simulations with sufficient nutrient supply to single out the skill of the emulators to capture climate signals. 

2.2 Technical design of the emulator pipeline 

The code implementation of CROMES is closely aligned with the study design (sect. 2.1) and detailed in the 

subsequent sections. CROMES handles the processing of data, feature engineering, training of emulators, and 

emulator evaluation in four steps: 120 

 

1) conversion of netCDF climate data to binary files for rapid read access 
2) processing of soil, site, crop management, and climate features 
3) emulator training 
4) emulator application 125 

 

Implemented features are mostly generic. These include among others growing season aggregates of key climate 

variables, soil texture, and crop growing season information. More complex approaches are required for the 

estimation of potential evapotranspiration (PET), which can be based on various methods in crop models 

(Wartenburger et al., 2018). Herein, we use the Penman-Monteith method that is widely used within GGCMs 130 

(Jägermeyr et al., 2021) and has been implemented in the EPIC model as described in (Stockle et al., 1992). We 

use the CatBoost algorithm for emulator training, a computationally highly efficient algorithm that has been top-

ranking in benchmarks (Prokhorenkova et al., 2018) and tested in a wide range of applications (Hancock and 

Khoshgoftaar, 2020). 

2.3 Climate data pre-processing 135 

Climate features are produced for an individual pixel as aggregates over specific time periods (e.g. annual growing 

season; see Sect. 2.4). In this calculation the whole set of values of each climatic variable needs to be made 

available to an aggregation function, essentially for the estimation of PET. Therefore, the original set of two-

dimensional maps in the netCDF files typically used to supply spatio-temporal climate data has to be converted 

to a set of vectors, i.e., time series, of individual map pixels for a defined land mask. This conversion of maps to 140 

vectors is carried out in a netCDF to binary file translation routine. 
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The conversion carried out once per climate data set substantially speeds up the subsequent climate feature 

engineering process. Selecting all climatic values sequentially for each individual map pixel is infeasible due to 

the large size of the pixel set (here, the ISIMIP 3b cropland mask with 65797 pixels) and the large number of days 145 

(about 36500 for a 100-year dataset). Together with the number of climatic variables (here six) this leads to about 

66000 * 36500 * 6 = 14 * 109 selection operations from individual files. As one selection (seek) operation on a 

state-of-the-art solid-state drive can take more than 0.01 to 0.2 ms, this would result in 14 * 109 * 0.01 / 1000 / 

3600 / 24 = 2 to 40 days of processing, assuming that data is not loaded into computer’s memory or cached. This 

bottleneck can be solved in a straightforward manner, if there is sufficient memory available on a user's computer, 150 

but the memory consumption would be close to 360 * 720 * 36500 * 6 * (4 bytes/value) = 210 GB for loading all 

uncompressed netCDF files into memory. To substantially speed up climate feature processing while avoiding 

large memory requirements, our implementation carries out a data format conversion through a dedicated routine 

that is extensively using a small portion of RAM (less than 1 GB) by handling netCDF files individually and 

producing intermediary binary files. These can subsequently be used for sequential data processing that avoids 155 

intensive seek operations or extensive memory use. This allows to (1) reduce running time down to few minutes, 

(2) avoid dependence on high-end hardware, and (3) supports parallel runs in a high-performance computing 

environment. 

 

While netCDF files may vary in their configuration, the routines presently implemented in CROMES expect 160 

netCDF files compliant with data format conventions used within ISIMIP phase 3b, which are based on NetCDF 

Climate and Forecast (CF) Metadata Conventions CF-1.6 and a spatial resolution of 0.5° x 0.5°.  

 

2.4 Feature engineering 

2.4.1 Summary of included features 165 

Table 1 provides an overview of implemented climate features. The first six rows (TMX to HUR) correspond to 

raw climate input variables for the EPIC crop growth model that are here used both directly and in the calculation 

of derived climate features. The latter include growing degree days (GDD; see sect. 2.4.2), the number of hot 

degree days (HDD), extreme degree days (EDD), numbers of wet and dry days, and the actual length of the 

growing season or selected key stages (see below). PET (see sect. 2.4.3 for details) is used directly and in the 170 

calculation of the climatic moisture deficit (CMD) and days with CMD below zero (CMDlt0) as drought 

indicators. Further outputs of the climate feature module are the individual growing season length (GSL) and the 

maturity status of the crop at harvest (HUIeopv). CO2trans has a globally uniform annual value. 
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Table 1. Overview of climate features by climate variable and temporal reference. Actual growing season (AGS) length 190 
is dynamically estimated each season (see section 2.4.2). {agg} in the bottom part refers to average (av) or sum (sum) 
over the respective period. An exemplary feature descriptor would accordingly be TMXavAGS. HUIeopv as an 
indicator for crop maturity is only output for the whole growing season. CO2trans has an annual value and is hence 
not aggregated.  

Abbreviation Description 
Agro-climatic features (VARs) 

TMX Maximum temperature [°C] 
TMN Minimum temperature [°C] 
PRCP Total precipitation [mm] 
RAD Solar radiation [MJ m-2] 
WSD Wind speed [m s-1] 
HUR Relative humidity [-] 
GDD Growing degree days [°C] 
HDD Hot degree days (Tav > 30 °C) [d] 
EDD Extreme degree days (Tav > 1.5 crop-specific optimum temperature) [d] 
PET  Potential evapotranspiration [mm] 
CMD Climatic moisture deficit (PET- PRCP) [mm] 
CMDlt0 Days with CMD below zero [d] 
WET  Wet days (PRCP ≥ 0.1 mm) [d] 
DRY Dry days (PRCP < 0.1 mm) [d] 
GSL Growing season length, i.e., days from planting to harvest [d] 
HUIeopv Heat unit index (HUI) at the end of the period (only produced for AGS) [-] 
CO2trans Transient atm. CO2 concentration [ppm] 

Temporal aggregates and derivatives of agro-climatic features 
VAR{agg}AGS Aggregate for the actual growing season (AGS) 
VAR{agg}AGSr Aggregate for the reproductive phase, i.e., second half of the AGS 
VAR{agg}AGSe Aggregate for the establishment phase, i.e., first quarter of the AGS 
VAR{agg}PGS Aggregate for the pre-growing season, i.e., the 30 days prior to sowing 

 195 

Aggregations are performed (a) for the whole actual growing season (AGS) starting with germination, (b) for the 

first quarter of the growing season during which the crop emerges (AGSe), (c) for the second half of the growing 

season – i.e., the reproductive phase during which flowers are prone to water stress (Williams et al., 1989) – 

(AGSr), and (d) for the 30 days prior to the growing season, during which soil water available for the crop may 

accumulate (PGS). This breakdown into key growth stages - while also considering growing season totals – serves 200 

for improving the information content not only with respect to growth stage-specific crop sensitivities to stresses 

but also with respect to synchronous or asynchronous manifestation of plant growth limitations such as drought 

and shading. We use the term actual growing season here to indicate that the climate feature module estimates the 

crop growth duration for each individual season based on growing degree day (GDD) accumulation as opposed 

to using a fixed calendar that would not account for earlier (later) maturing of crops in warmer (cooler) years. The 205 

estimation of the time periods is further elaborated in sect. 2.4.2. 

 

Table 2 shows the non-climatic, temporally static features, essentially soil attributes and slope that impact soil 

hydrology and root space (see section 2.8). Two crop management parameters are the crop’s pixel-specific length 

of vegetation period (LVP) based on the input planting and harvest dates and the potential heat unit (PHU) 210 

requirement. 
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Table 2. Static soil, site, and crop management features considered in the present setup. 

Feature Description Category 
DEPTH Total soil depth [m] Soil 
SAND Sand content [%] Soil 
CLAY Clay content [%] Soil 
PH pH [-] Soil 
SB Sum of bases [cmol kg-1] Soil 
CEC Cation exchange capacity [cmol kg-1] Soil 
EC Electric conductivity [mmho cm-1] Soil 
ROK Coarse fragment (rock) content [%] Soil 
BD Bulk density [g cm-3] Soil 
CARB Carbonate content [%] Soil 
OC Organic carbon content [%] Soil 
FC Soil water content at field capacity (at 33 kPa) [m m-1] Soil 
WP Soil water content at wilting point (at 1500 kPa) [m m-1] Soil 
PAW Total plant available water capacity [m3 m-3] Soil 
SLP Hill slope [%] Site 
PHU Potential heat units (syn. growing degree days) from planting to maturity [°C] Crop management 
LVP Length of vegetation period from reported planting to harvest date [d] Crop management 

2.4.2 Estimation of growing season length and sub-seasons 215 

The estimation of growing season length is based on GDD accumulation as implemented in the EPIC model and 

most other GGCMs (Jägermeyr et al., 2021; Müller et al., 2017). Any adjustments can be made in the code or 

input parameterization that includes parameters for crop-specific base and optimum temperatures. 

 

Earlier crop model emulators and various analytical studies combining crop model simulations and climatic 220 

indicators for climate impact estimation have utilized monthly or annual climate features (Blanc, 2017; Folberth 

et al., 2019; Franke et al., 2020b; Goulart et al., 2023; Sweet et al., 2023). While annual features cannot be 

expected to capture more than trends in climate, monthly features – typically ordered from planting - at least 

capture some dynamics within the growing season. Yet, neither of the two considers the effect of earlier (later) 

crop maturity due to warmer (cooler) than baseline average growing season temperatures. This is one of the main 225 

climate impact drivers in crop models (Minoli et al., 2019; Zabel et al., 2021). It determines for example the 

amount of solar radiation the crop receives for biomass accumulation and whether it is exposed to adverse weather 

occurring later in the reported growing season. As in the majority of crop models, the progression of crop 

development from planting to maturity is in CROMES estimated based on the heat unit (HU, syn. growing degree 

days (GDD)) accumulation approach. That is, on each day i of the growing season daily HU are calculated 230 

according to: 

   

𝐻𝐻𝐻𝐻𝑖𝑖 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖+𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖
2

− 𝑇𝑇𝑏𝑏 ,     𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐻𝐻𝐻𝐻𝑖𝑖 ≥ 0        (1) 

 

where Tmax [°C] is daily maximum temperature, Tmin [°C] is daily minimum temperature, and Tb [°C] is the crop-235 

specific base temperature for growth, here 8 °C for maize. The sum of HU for recent historic average temperatures 

between reported planting and harvest dates in a location is considered a static cultivar definition termed potential 

heat units (PHU). Based on input planting dates and PHU, the model estimates the progression of plant phenologic 

development, biomass accumulation, and maturation for each individual growing season. Harvest occurs 
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dynamically after the PHU value is reached (or at a defined cut-off, see below). To normalize plant maturation 

across locations, a heat unit index (HUI) is used, which is calculated as the cumulative fraction of required PHU 

reached on day i of the growing season as 

 

𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖 = ∑ 𝐻𝐻𝐻𝐻𝑘𝑘
𝑖𝑖
𝑘𝑘=1
𝑃𝑃𝑃𝑃𝑃𝑃

           (2) 245 

 

The HUI at harvest serves as a feature (HUIeopv) herein to inform whether the crop has reached maturity. Prior 

to emergence of the crop, an additional amount of germination HU (GMHU) is required for the seed to develop 

to a seedling, here a GDD sum of 100 °C for maize. 

 250 

Figure 2 provides an overview of growing season-based climate feature aggregation (incl. pre-growing season 

(PGS)). The climate feature module first estimates for each growing season based on the input planting date, 

GMHU, and PHU the germination and maturity dates. If the crop does not mature due to too low growing season 

temperatures, a cut-off is enforced 21d after the reported harvest date. Subsequently, climate features are 

calculated for the whole actual growing season (AGS) and the critical growing season phases for crop 255 

establishment (AGSe) and reproductive phase (AGSr). The first occurs from HUI=0 to HUI=0.25, the second 

from HUI=0.5 to HUI=1.0 or cut-off date. During the reproductive phase, the crop yield is most sensitive to 

drought. The PGS is defined as 30d prior to planting, a period that may inform on germination and early growth 

conditions such as soil humidity. 

 260 
Figure 2. Conceptual definition of the crop growing season and growing season-oriented climate feature subsets. 
Squared boxes indicate individual days for periods that are universally pre-defined (with numbers) or flexible based 
on individual input growing season dates and GDD accumulation (empty). PGS=pre-growing season, AGS=actual 
growing season, AGSe=actual growing season emergence phase (1st quarter), AGSr=actual growing season 
reproductive phase (2nd half), cut-off=forced growing season cut-off if PHU are not reached 21d after reported harvest 265 
date, GDD=growing degree days (syn. heat units), PHU=potential heat units (i.e., GDD estimated for the baseline period 
as part of cultivar definition). Colored bars in the lower part of the figure indicate the extent of the growing season 
subsets. The lighter colored extensions at the end of AGS and AGSr indicate that the end of the growing season is either 
determined by reaching GDD ≥ 1.0 PHU or at the cut-off. The latter serves to avoid overly long growing seasons in cool 
years where a crop may not reach maturity in autumn and the growing season would hence extend over winter. 270 
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2.4.3 Penman-Monteith PET estimation 

There are numerous methods for estimating PET employed in GGCMs (Jägermeyr et al., 2021; Liu et al., 2016; 

Wartenburger et al., 2018) with varying degrees of complexity and input data requirements. The most popular 275 

choice is Penman-Monteith (Jägermeyr et al., 2021), which is also implemented in the EPIC crop growth model 

based on (Stockle et al., 1992). The same approach was followed herein for PET estimation in CROMES. 

 

Penman-Monteith requires all raw climate variables (first six rows in Table 1) as well as information on daily crop 

height (CHT) and leaf area index (LAI), rendering its estimation considerably complex. The underlying 280 

calculations are therefore only provided in abbreviated form and the reader is referred to the above reference and 

the code for further details. In short, the climate feature module estimates daily progression of CHT and LAI based 

on HUI and crop-specific parameters, and passes these parameters, daily climate data, and further coefficients 

(atm. CO2 concentration, elevation, soil albedo, latitude) to the PET function. Whether or not a crop is growing 

on a day determines the use of the main equation which is 285 

 

𝐸𝐸𝑜𝑜 = 𝛿𝛿(ℎ𝑜𝑜−𝐺𝐺)+86.7 𝐴𝐴𝐴𝐴 (𝑒𝑒𝑎𝑎−𝑒𝑒𝑑𝑑)/ 𝐴𝐴𝐴𝐴
𝐻𝐻𝐻𝐻 (𝛿𝛿+𝛾𝛾)

         (3) 

 

if no crop is grown or if a crop grows 

 290 

𝐸𝐸𝑜𝑜 = 𝛿𝛿(ℎ𝑜𝑜−𝐺𝐺)+86.7 𝐴𝐴𝐴𝐴 (𝑒𝑒𝑎𝑎−𝑒𝑒𝑑𝑑)/ 𝐴𝐴𝐴𝐴
𝐻𝐻𝐻𝐻 �𝛿𝛿+𝛾𝛾(1+𝐶𝐶𝐶𝐶 / 𝐴𝐴𝐴𝐴)�

         (4) 

 

where AD is the air density [g m-3], AR is the aerodynamic resistance for heat and vapor transfer [s m-1], and CR 

is the canopy resistance for vapor transfer [s m-1], HV is the latent heat of vaporization [MJ kg-1], ea is saturation 

vapor pressure [kPa], ed is actual vapor pressure [kPa], δ is the slope of the saturation vapor pressure curve [kPa 295 

°C], G is soil heat flux assumed zero in the model, ho is net solar radiation [MJ m-2], and γ is the psychrometric 

constant [kPa °C]. 

2.5 Non-climatic features 

Soil features (Table 2) include soil physical and chemical attributes as commonly required by crop models and 

provided in state-of-the-art data sources such as the one used herein (see section 2.9). Here, we used soil features 300 

stored after a spin-up run of the crop model for full consistency with crop model simulations. The first 11 rows of 

soil features (DEPTH to OC) in Table 2 are raw values, the remainder has been estimated based on routines 

implemented in the EPIC model (FC, WP, PAW). PHU have been derived as described in the prior sections. 

2.6 Emulator training and feature importance 

All features, including the target variable crop yield for model training, are eventually merged based on simulation 305 

unit IDs or climate grid IDs (see sect. 2.8). 

 

For the demonstration herein, we chose CatBoost, a high-performing algorithm with GPU support that 

significantly speeds up the training phase (Prokhorenkova et al., 2018). Hyperparameter selection was done using 
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cross-validation (CV) and grid search as implemented in the Python catboost package. This step should be tailored 315 

to each specific training and prediction setup. However, this would imply a high resource demand with likely 

similar outcomes for the datasets used herein. Therefore, we performed the procedure on only one climate dataset, 

UKESM1-0-LL with ssp585 (see sect. 2.9). 

 

Provided the abundant data and high dimensionality (60 features), only two hyperparameters were selected for 320 

grid-search using 4-fold CV. These are depth of the trees (short depth) in steps of [8, 11, 14] and the maximum 

number of trees (short iterations) in steps of [400, 800, 1200, 1600]. The default grid-search procedure is 

implemented in CatBoost as follows: The dataset is split into 80% training and 20% test data. For all possible 

combinations of parameters (points of the grid), a model is fitted on the train dataset. Among the models, the one 

best performing on the test dataset is selected and sent to CV. Within the above defined grid, the first best model 325 

parameters were (14, 1600) achieving a test RMSE equal to 0.4446 t ha-1 (and test-RMSE-mean 0.4470 t ha-1 for 

4-fold CV). The second-best model parameters were (14, 1200), test RMSE = 0.4682 t ha-1, followed by (11, 

1600) with test RMSE = 0.4871 t ha-1. The experiments demonstrate that there is no overfitting, and results should 

be close to the lowest feasible generalization error for models fitted using this dataset. Even if a further small 

increase in accuracy is possible, it may deteriorate performance in emulator applications. 330 

 

With fixed depth = 14 and iterations = 1600, the remaining training parameters were left to default values. For 

further emulator training, climate scenarios (i.e., historical and three SSPs; Sect. 2.9) were pooled for each GCM 

separately and emulators trained on the whole sample as the other four GCMs not used in the training were 

subsequently used as novel data for benchmarking (see subsequent sections). This setup differs from the more 335 

common approach of training machine-learning models on historical data with extensive CV and applying them 

on future scenarios (Richetti et al., 2023; Sweet et al., 2023). Here, models generalize over scenarios rather than 

time, and similar data distributions and levels of correlation are expected. To support our assumptions, we provide 

bootstrapped RMSEs with confidence bounds that show the generalization ability of the model (see sect. 2.7.). 

 340 

CatBoost provides three approaches to estimate feature importance: Prediction Values Change (PVC), Loss 

Function Change, and Shapley Additive Explanations (SHAP). The computational complexity of these approaches 

increases substantially in the same order. For example, computing SHAP values with the Python package SHAP 

(Lundberg et al., 2020) becomes computationally impractical for our datasets and models without further 

subsampling at a rate of 0.0001 and lower. PVC in turn is readily available after the training procedure. We hence 345 

select herein PVC, which quantifies the average level to which altering a feature value influences the predicted 

value. PVC importance values are non-negative and normalized so that their sum for all features equals 100. 

2.7 Emulator evaluation metrics 

In line with earlier studies on crop model emulator development (Blanc, 2017; Franke et al., 2020b; Oyebamiji et 

al., 2015), we use the root mean square error (RMSE) and linear regression statistics (Pearson’s correlation 350 

coefficient R2, slope, and intercept) to evaluate emulator performance. The first also corresponds to the metric for 

the loss function in emulator training (see sect. 2.6). To evaluate the robustness of mean RMSE estimates across 
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the whole sample, we estimate 95% confidence intervals (CI) bootstrapping 500 subsets of 100k samples each. 355 

We provide all metrics for two sets of benchmark data: 

(1) We evaluate the performance on the training data itself to show how well the model can fit these training data 

(sect. 3.1), which also serves as a reference for evaluations on unseen target data.  

(2) The main objective of the performance evaluation, however, is the emulators’ skill in predicting crop yield 

simulation outputs for climate projections that have not been used in emulator training (sect. 3.2). Essentially, we 360 

train individual emulators for each of the five GCMs used in this experiment (see sect. 2.9) and then apply each 

of these emulators to the remaining four GCMs not used in each emulator’s training. This serves as a vast empirical 

test of how well the emulators perform on unseen climate features while staying within a comparable domain of 

climate projections. 

 365 

Evaluations are performed across all individual locations (simulation units) and years as well as for global and 

sub-continental area-weighted aggregates. For spatial aggregation, crop yields are area-weighted based on the 

extent of crop- and water management-specific harvested area in each 5-arcmin pixel. Harvested areas were 

sourced from the SPAM 2010 v2.0 dataset (International Food Policy Research Institute, 2020; Yu et al., 2020). 

Additional evaluations by climate domains were performed using a dataset of major Koeppen-Geiger climate 370 

regions (Beck et al., 2018). 

 

Besides prediction performance, we also approximate the computational time requirements for data pre-

processing, crop model simulations, feature processing, and emulator predictions to provide an estimate of speed 

gain when using emulators. This is done by performing all processing and simulations on a computational cluster 375 

with an Oracle ZS5 network storage system and computational nodes equipped with Intel Xeon Gold 2.1 GHz 

CPUs. All processes are performed on single cores to ensure comparability. An exception is the emulator training, 

which is done on a GPU (Nvidia RTX A6000) as it would require unreasonably more time on a common CPU. 

2.8 Global gridded crop model and simulation setup 

EPIC-IIASA (Balkovič et al., 2014) is a GGCM based on the field-scale process-based crop model Environmental 380 

Policy Integrated Climate (EPIC) v0810 (Izaurralde et al., 2012; Williams et al., 1989). EPIC-IIASA has been 

applied extensively in global climate impact studies and has shown good skill in reproducing both historic absolute 

yields under business-as-usual management and inter-annual yield variability (Balkovič et al., 2018, 2013; Müller 

et al., 2017). Key processes of the core model EPIC are available from the prior references and summarized in 

(Folberth et al., 2016).  385 

 

EPIC-IIASA is based on a 5 x 5’ spatial grid (equivalent to about 8.3 km x 8.3 km near the equator) for soil 

characteristics and topography that are aggregated to homogenous response units based on classification of key 

land surface characteristics (soil, slope, elevation). These are intersected with a 30 x 30’ climate grid (about 50 

km x 50 km near the equator) and national administrative boundaries to define simulation units for each of which 390 

the crop model is eventually run (Skalský et al., 2008). Accordingly, simulation units vary in size from 5’ x 5’ to 

30’ x 30’ depending on local heterogeneity. Globally, this results in nearly 162k simulation units within 66k 
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climate pixels. Out of these, around 151k simulation units are included here based on general suitability for crop 395 

cultivation (i.e., soil present and sufficient temperature). 

 

The setup and parameterization of the EPIC-IIASA GGCM was kept the same as in ISIMIP3b (Jägermeyr et al., 

2021) except that we used here sufficient nitrogen (N) fertilizer inputs to focus on climate signals. Following this 

approach, N is applied automatically by the model as required by the crop to meet its demand for biomass 400 

accumulation. The model’s application threshold parameter BFT0 was set to 0.99, corresponding to N application 

if N stress limits crop growth by more than 1% compared to the potential, the maximum annual input FMX was 

set to 999 kg N ha-1 yr-1 to ensure that no N stress occurs. We selected maize as a model crop due to its nearly 

ubiquitous cultivation globally. All simulations assumed rainfed water supply only. The time period for 

simulations and evaluation is 1980-2099, spanning the historical climate baseline 1980-2014 and projections from 405 

2015-2099. We skip the last year 2100 as outputs are reported by the year of planting (Müller et al., 2017) and no 

harvest takes place in the last simulation year if the crop is planted in autumn and harvested the following spring. 

2.9 Input data 

The same raw data were used for both GGCM simulations and emulator training and predictions. Several key 

input data (soil attributes, growing season dates, climate data), have been provided by the most recent phase 3b 410 

of ISIMIP and GGCMI initiative as documented in Jägermeyr et al. (2021). Soil data were originally derived from 

the Harmonized World Soil Database (FAO et al., 2012) and have been processed for crop land by ISIMIP and 

GGCMI (Volkholz and Müller, 2020). For the experiment herein, we used soil attributes stored after a spin-up 

run of EPIC-IIASA, which had been used in the crop model climate impact simulations as well. Slope and 

elevation had earlier been derived from GTOPO30 (US Geological Survey, 2002).  415 

 

Climate data were sourced from five global climate models GFDL-ESM4 (Dunne et al., 2020), IPSL-CM6A-LR 

(Boucher et al., 2020), MPI-ESM1-2-HR (Gutjahr et al., 2019), MRI-ESM2-0 (Yukimoto et al., 2019), and 

UKESM1-0-LL (Sellar et al., 2019) that span a representative range of equilibrium climate sensitivities (ECS) 

and transient climate response (TCS). Thereby, MPI-ESM1-2-HR and GFDL-ESM4 are at the low end, MRI-420 

ESM2-0 is in the lower mid-range, and IPSL-CM6A-LR and UKESM1-0-LL present the high end of warming 

levels at the end of century. For each GCM, we use outputs for the historical time period, as well as the three 

RCPs 2.6, 7.0, and 8.5. In line with the source climate data combining identifiers for shared socio-economic 

pathways (SSPs) and RCPs without separators, we refer to the climate scenarios as ssp126 (SSP1 with RCP2.6), 

ssp370 (SSP3 with RCP7.0), and ssp585 (SSP5 with RCP8.5). Simulations were performed with transient annual 425 

atm. CO2 concentrations corresponding to those of the respective RCPs. 

3 Results 

3.1 Training metrics 

Individual emulators are trained on the pooled climate scenarios of each GCM and subsequently applied to each 

climate scenario of the same GCM individually. Regression statistics for the training show a near perfect fit with 430 

slope and intercept uniformly at 1.00 and -0.01 (except for UKESM1-0-LL with ssp585 at intercept=0.00) and R2 

Deleted: (

Deleted: ,

Deleted: a



13 

 

ranging between 0.982 and 0.986 (Table 3). The RMSE varies between 0.41 and 0.49 t ha-1, apparently scaling 435 

with absolute yields. These are highest on average during the historical period and lowest under ssp585 (see also 

Figure 4). This is more so the case for the two GCMs with high ECS and consequently higher levels of global 

warming, namely IPSL-CM6A-LR and UKESM1-0-LL (see sect. 2.9). The 95% confidence interval width for 

RMSE on the training data is for all GCMs ≤ 0.01 t ha-1 or ≤ 2% of the mean RMSE (Table A1) indicating highly 

robust results. 440 

 
Table 3. Regression statistics and RMSE for each emulator trained on all climate scenarios of a specific GCM and 
applied to each of the source GCM’s climate scenarios. Units for intercept and RMSE are t ha-1. 

GCM Climate scenario R2 Slope Intercept RMSE 
GFDL-ESM4 historical 0.985 1.00 -0.01 0.48 
IPSL-CM6A-LR historical 0.986 1.00 -0.01 0.47 
MPI-ESM1-2-HR historical 0.985 1.00 -0.01 0.49 
MRI-ESM2-0 historical 0.985 1.00 -0.01 0.48 
UKESM1-0-LL historical 0.986 1.00 -0.01 0.48 
GFDL-ESM4 ssp126 0.984 1.00 -0.01 0.47 
IPSL-CM6A-LR ssp126 0.985 1.00 -0.01 0.45 
MPI-ESM1-2-HR ssp126 0.984 1.00 -0.01 0.48 
MRI-ESM2-0 ssp126 0.985 1.00 -0.01 0.46 
UKESM1-0-LL ssp126 0.984 1.00 -0.01 0.45 
GFDL-ESM4 ssp370 0.983 1.00 -0.01 0.44 
IPSL-CM6A-LR ssp370 0.984 1.00 -0.01 0.43 
MPI-ESM1-2-HR ssp370 0.983 1.00 -0.01 0.46 
MRI-ESM2-0 ssp370 0.984 1.00 -0.01 0.44 
UKESM1-0-LL ssp370 0.983 1.00 -0.01 0.42 
GFDL-ESM4 ssp585 0.983 1.00 -0.01 0.44 
IPSL-CM6A-LR ssp585 0.984 1.00 -0.01 0.42 
MPI-ESM1-2-HR ssp585 0.983 1.00 -0.01 0.45 
MRI-ESM2-0 ssp585 0.984 1.00 -0.01 0.44 
UKESM1-0-LL ssp585 0.982 1.00 0.00 0.41 

 

 445 

 

 

 

 

 450 

 

 

 

 

 455 
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3.2 Prediction performance 

3.2.1 Global prediction performance 

 

 460 
Figure 3. Comparison of exemplary global gridded crop yields for rainfed maize from EPIC-IIASA crop model 
simulations vs predictions by an emulator that was trained on the GCM IPSL-CM6A-LR and applied to the GCM 
GFDL-ESM4 for RCP8.5 in both cases with (a) all simulation units and (b) simulation units with >100 ha maize 
harvested area. 

 465 

Applying the emulators to climate scenarios from GCMs not seen during training results in only slightly worse 

regression and RMSE statistics (see Table 4 for overview and Figure 3 for exemplary visualization). The R2 now 

ranges between 0.974 and 0.980, the slope between 0.99 and 1.01, and the intercept between -0.05 and -0.01. The 

RMSE is between 0.49 and 0.62 t ha-1. For both latter metrics, larger deviations from the training results occur for 

the historical time period and in GCMs and scenarios with lower levels of global warming. While the absolute 470 

difference is small, the change in RMSE presents an increase by 20 to 27% and indicates a slight overfitting of 

the emulators. The widths of the 95% confidence intervals are with uniformly ≤ 0.3 t ha-1 (Table A1), 

corresponding to ≤ 5% of the mean, as well marginally higher than for the training data but still very low in both 

absolute and relative terms. 

 475 

Considering only simulation units with rainfed maize harvested area > 100 ha slightly deteriorates the regression 

statistics (Figure 3b). Yet, this is at a lower number of samples (n=36 x 106 compared to n=127 x 106 in Figure 

3a) and the point density indicates a more pronounced concentration of samples in the yield range 3 to 10 t ha-1 

which may affect the regression compared to the wider distribution towards the origin if all pixels are included 

(Figure 3a). 480 

 

Finally, both panels show that predicted yields may include negative values, which occurs in this example for 

0.8% of samples in the whole dataset (minimum -1.4 t ha-1; mean -0.04 t ha-1) and 0.007% when masking by 

harvested area (minimum -0.7 t ha-1; mean -0.07 t ha-1). Emulator applications hence need to ensure that 
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predictions are zeroed if valid prediction ranges cannot be defined a priori as is the case for the algorithm 

employed here. 

 
Table 4. Ranges of regression statistics and RMSEs for each emulator trained on a specific GCM and applied to all 
other GCMs and climate scenario combinations in the demonstration example. Emulators based on the target GCM 490 
are excluded. E.g., the first row shows results of predictions for GFDL-ESM4 x historical from the emulators trained 
on the GCMs IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL and all climate scenarios (see 
Methods sect. 2.9). Units for intercept and RMSE are t ha-1. 

GCM Climate scenario R2 Slope Intercept RMSE 
GFDL-ESM4 historical 0.977 - 0.978 0.99 - 1.01 -0.05 0.59 - 0.60 

IPSL-CM6A-LR historical 0.977 - 0.979 1.00 - 1.01 -0.04 0.58 - 0.61 

MPI-ESM1-2-HR historical 0.976 - 0.978 1.00 - 1.01 -0.03 0.60 - 0.62 

MRI-ESM2-0 historical 0.976 - 0.977 0.99 - 0.99 -0.03 0.59 - 0.61 

UKESM1-0-LL historical 0.977 - 0.978 0.99 - 1.01 -0.05 0.58 - 0.61 

GFDL-ESM4 ssp126 0.978 - 0.979 1.00 - 1.01 -0.05 0.54 - 0.55 

IPSL-CM6A-LR ssp126 0.979 - 0.980 1.00 - 1.01 -0.03 0.52 - 0.54 

MPI-ESM1-2-HR ssp126 0.977 - 0.979 1.00 - 1.01 -0.03 0.55 - 0.57 

MRI-ESM2-0 ssp126 0.977 - 0.978 0.99 - 1.00 -0.04 0.55 - 0.56 

UKESM1-0-LL ssp126 0.977 - 0.978 0.99 - 1.00 -0.03 0.52 - 0.53 

GFDL-ESM4 ssp370 0.976 - 0.977 0.99 - 1.00 -0.03 0.52 - 0.53 

IPSL-CM6A-LR ssp370 0.975 - 0.977 1.00 - 1.01 -0.03 0.51 - 0.53 

MPI-ESM1-2-HR ssp370 0.977 - 0.978 1.00 - 1.01 -0.03 0.53 - 0.54 

MRI-ESM2-0 ssp370 0.977 - 0.977 0.99 - 1.00 -0.03 0.52 - 0.53 

UKESM1-0-LL ssp370 0.974 - 0.976 0.99 - 1.00 -0.04 0.49 - 0.50 

GFDL-ESM4 ssp585 0.976 - 0.977 1.00 - 1.00 -0.02 0.52 - 0.52 

IPSL-CM6A-LR ssp585 0.974 - 0.977 1.00 - 1.00 -0.03 0.50 - 0.53 

MPI-ESM1-2-HR ssp585 0.976 - 0.977 1.00 - 1.01 -0.02 0.53 - 0.54 

MRI-ESM2-0 ssp585 0.976 - 0.977 0.99 - 1.00 -0.01 0.52 - 0.53 

UKESM1-0-LL ssp585 0.972 - 0.975 0.99 - 1.00 -0.05 0.49 - 0.52 

 

Global area-weighted mean crop yields show equally a high agreement both between emulator predictions and 495 

outputs from the crop model and among the different emulators (Figure 4). Mean correlation coefficients range 

between 0.879 and 0.994 with higher values in scenarios with higher levels of warming, i.e. for ‘hotter’ GCMs 

such as UKESM1-0-LL or IPSL-CM6A-LR and the high concentration pathway ssp585. The lowest values occur 

at the opposite end of the spectrum (MPI-ESM1-2-HR and MRI-ESM2-0 with ssp126). Notably, the yield trends 

may also have an impact here as larger variance facilitates higher R2. The ranges of R2 values among the emulators 500 

applied to the same scenarios are marginal, indicating that the choice of the emulator has little impact on this 

global metric. Values for RMSE do not show this pattern, while there appears to be a trend towards similar values 

for the same target GCM (c.f. IPSL-CM6A-LR vs MRI-ESM2-0). 

 

Noticeable deviations occur for specific periods and climate projections, such as the 2050s in ssp370 for IPSL-505 

CM6A-LR and MPI-ESM1-2-HR. In these two instances, there is a high agreement among emulators but not with 

EPIC simulations. From the 2080s towards the end of century, there is a deviation in yield predictions from the 

emulator based on MPI-ESM1-2-HR compared to the EPIC simulations for UKESM1-0-LL x ssp585. In the first 
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case, this may indicate particular climate patterns in the target dataset. In the latter, the high-end warming 

occurring for this scenario may not be reflected in any of the other scenarios used for emulator training. 

 
Figure 4. Global annual area-weighted yields of rainfed maize from the GGCM EPIC or predicted by the emulators 
between the years 2015-2099 for the five priority GCMs used in ISIMIP3b and three SSP-RCP combinations. Each 515 
panel shows predictions from four emulators trained on each of the five GCMs except the one providing the target 
features. 

3.2.2 Spatial patterns 

Aggregating area-weighted crop yields and predictions to geographic macro-regions - exemplary for UKESM1-

0-LL x ssp585 - shows a similar pattern as the global performance but with a poorer turnout for both R2 and RMSE 520 

in regions that have predominantly dry climate, i.e., Northern Africa and to lesser extents Australia and Central 

Asia with R2=0.713, 0.889, and 0.900, respectively (Figure 5). Further deviations may at least in part be due to 

the selection of this high warming scenario.  
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Figure 5. Same as Figure 4 but for 15 macro regions and target climate dataset UKESM1-0-LL x SSP585 only. 

 

Within individual simulation units mapped to 5’ x 5’ pixels, high R2 values dominate as well (Figure 6). These 

are mixed with very poor outcomes if the whole land mask is considered (Figure 6a) compared to masking by 530 

relevant cultivation regions (Figure 6b). In the first case, the median R2 is 0.794, in the latter case 0.847. Hotspots 

for poor outcomes are arid regions - especially of the Sahel zone and West Asia - where permanently dry 

conditions cause constantly low yields with little variability. This also affects the outcomes of regression metrics.  
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 535 
Figure 6. R2 of regressions between simulated and predicted rainfed maize yields over 85 years per pixel (i.e., 
simulation unit) exemplary shown for an emulator based on IPSL-CM6A-LR and applied to GFDL-ESM4 x SSP3-70 
for (a) all land mask pixels and (b) pixels with >100 ha harvested area. 

 

These visual interpretations are supported by density plots of R2 per Koeppen-Geiger region – major global 540 

climate domains – for the whole land (Figure A1) or pixels with maize harvested area > 100 ha (Figure A2). The 

first shows that a comparably high tail occurs in (semi-)arid climates and a flat distribution is found for polar 

climates. Both present challenging environments for agriculture and in the latter case have hardly harvested areas. 

Accordingly, when removing pixels with marginal harvested areas, the distributions across all climates shift 

towards higher R2 values. The higher performance in pixels with larger harvested areas is reinforced by Figure 545 

A3 displaying R2 densities within harvested area bins. The highest tail towards low values is again found for 

pixels with areas < 10ha, whereas pixels with very large harvested areas (> 1000ha) have hardly R2 values of less 

than 0.5. 

3.3 Feature importance 

The importance of individual features shows overall good agreement among the emulators trained on different 550 

GCMs with slight variations (Table 5). While the top 10 features ranked by median importance are quite 

consistent, the agreement tends to decrease with decreasing importance of the features. The uniformly most 

important feature is the sum of shortwave solar radiation over the growing season (RADsumAGS), a direct 

aggregate of the photosynthetically active energy received by the crop. This is followed by the growing season 

precipitation sum (PRCPsumAGS). CMDlt0sumAGS, the number of days with a climatic moisture deficit, 555 

presents a drought indicator with similar ranking. Already beyond these three top ranking features, the numeric 

difference among prediction value change (PVC) outcomes is less discernible and shows a transient decline. 

 

Notably, most of the climate features present in the top 20 refer to growing season aggregates, followed by 

drought-related features for the reproductive phase (PETsumAGSr, CMDsumAGSr, PRCPsumAGSr, 560 

CMDlt0sumAGSr), during which flowering and consequently yield formation is most sensitive to water deficit. 

Only one feature refers to the pre-growing season period (PGS), the average minimum daily temperature 

(TMNavPGS), which is not straightforward to interpret.  

 

Non-climatic features include most importantly the crop’s heat unit requirement (PHU), a spatially explicit 565 

cultivar constant, the closely related length of vegetation period (LVP), and the soil features PAW, PH, and 
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DEPTH. While the first and the last of these relate to soil water storage and therefore modulate water deficit in 

interaction with weather, pH has typically little impact in the crop model and may hence be correlated with other 

features. 

 570 
Table 5. Feature importance for the 20 overall top-ranking features out of 60 features measured as prediction value 
change (PVC; see sect. 2.6). Median importance is the median of feature importance estimated for each of five 
individual emulators based on each of the GCMs. 

Feature Median importance Range of importance Rank of median 
importance 

Range of rank 

RADsumAGS 14.14 11.82 - 15.40 1 1 - 1 
PRCPsumAGS 10.44 8.20 - 12.58 2 2 - 3 
CMDlt0sumAGS 8.39 6.55 - 10.26 3 2 - 4 
PHU 5.00 3.20 - 6.27 4 4 - 11 
CMDsumAGS 4.91 3.26 - 5.24 5 4 - 10 
TMXavAGS 4.38 3.82 - 7.05 6 3 - 8 
PETsumAGSr 4.11 2.62 - 4.39 7 5 - 14 
PAW 3.94 2.97 - 4.21 8 7 - 11 
LVP 3.59 2.83 - 3.67 9 8 - 12 
CMDsumAGSr 3.27 2.78 - 3.71 10 9 - 11 
HURavAGS 3.10 2.48 - 3.91 11 8 - 13 
GDDsumAGS 2.75 1.87 - 5.15 12 5 - 16 
TMNavAGS 2.74 2.65 - 4.10 13 7 - 13 
PRCPsumAGSr 2.31 1.32 - 3.33 14 10 - 19 
CMDlt0sumAGSr 1.77 0.64 - 2.33 15 15 - 34 
HDDsumAGS 1.64 1.49 - 2.84 16 13 - 18 
PH 1.61 0.64 - 2.24 17 14 - 33 
DEPTH 1.60 0.24 - 1.93 18 14 - 49 
GSLsumAGSr 1.52 0.66 - 4.69 19 5 - 31 
TMNavPGS 1.51 1.27 - 2.17 20 15 - 22 

 

3.4 Computational performance 575 

As time gain is a key advantage of emulators, we provide a rough estimate of time required for key tasks within 

the modelling and data processing chains of both approaches - EPIC simulations and emulator training and 

predictions - to allow for basic contextualization (Figure 7), while actual performance in individual applications 

will depend on the computational infrastructure in place and its load. In the setup used herein, both approaches 

require first a conversion of netCDF files to binary files that provide substantially faster read access. This takes 580 

about 0.5h. Further production of daily weather files for the EPIC model – individual text files for each pixel - 

takes approx. 2h. The largest time requirement occurs for the EPIC simulation itself, which here takes 12h but can 

vary on the shared cluster between 6h and 18h on a single core. The crop model produces single output files for 

each simulation unit from which the extraction of outputs to a compilation file requires 1h. Once a climate dataset 

has been processed, only the last two steps crop model run and post-processing are required for each simulation. 585 
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Within the CROMES pipeline, generation of climate features for one climate scenario for emulator training or 600 

predictions requires about 0.25h. Model training on a GPU using the CatBoost algorithm requires 0.5h and 

predictions, i.e., the combination of climate and other features with subsequent evaluation of the trained algorithm 

on the feature set, about 0.15h. Once an emulator has been trained, again only the last two steps are required, i.e., 

processing of climate features for a target dataset and evaluation of the emulator over the combined feature set. 

 605 

In total, the emulator provides a speed improvement of at least an order of magnitude, regardless of whether the 

whole computational chain is considered or only the last two steps producing the actual outputs. 

 

 
Figure 7. Time requirement for key tasks required to produce global crop model simulations with EPIC or crop yield 610 
predictions with CROMES. Some tasks only have to be performed once, essentially the bottom three of the legend or 
those relating to CROMES emulator training, depending on the specific purpose. The numbers shown here are 
therefore primarily for illustrative purposes. 
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4 Discussion 615 

In principle, model emulators or meta-models present a trade in higher speed for less accuracy. Our evaluation of 

the CROMES pipeline for an exemplary application highlights that a substantial speed gain is in fact feasible at a 

comparably low cost in accuracy with most benchmark indicators pointing to a near perfect fit. The lowest 

agreement between predictions and crop yield simulations occurs in regions with predominantly arid climate 

where the aggregation of daily weather to climate features potentially fails to capture the effects of timing and 620 

volume of precipitation events. These can markedly affect crop yields as do interactions between temperature, 

atmospheric moisture deficit, and water availability (Schauberger et al., 2017). Yet, rainfed agriculture is typically 

of limited importance in such regions and the constantly low crop yields pose a challenge to achieving a good 

regression fit for the global emulator while the absolute error can be considered minor. Overall, the performance 

of an emulator will need to be evaluated on an application case basis and training routines may need to be adjusted 625 

for specific target regions or applications to obtain best results for a specific context. For example, where farming 

in semi-arid environments or other low-yielding regions is in the focus, the selection of training samples should 

be tailored to such regions to ensure that the algorithm is not geared towards a mean response that covers a variety 

of climates where semi-arid conditions present a particular niche. Vice versa, when focusing on breadbasket 

failures, users may sample such typically high-yielding agro-climatic regions specifically. In the demonstration 630 

case herein, that is tailored towards evaluation for broader coverage of global climate projections, we selected 

accordingly all pixels globally. 

 

To the authors’ best knowledge, complex machine-learning algorithms have not been applied prior to train 

emulators for a GGCM using opportunistic training samples, i.e. data that are readily available from earlier 635 

experiments. The performance achieved herein is hence not straightforward to compare to that found in earlier 

studies. Most recently, Sweet et al. (2023) evaluated CV strategies for training machine-learning algorithms to 

predict crop yields from GGCMs. They reported a maximum R2 of 0.82 on the training set and far lower values 

around 0.4 on holdout data. However, their application case covered only the historic period and focused on 

holdout years and regions, which may be more challenging to capture than multi-year and –location climate 640 

change projections as herein. Yet, they also assumed static growing season lengths, which does not reflect the 

conceptualization of plant maturation typical in crop models and loses information on the weather the crop is 

actually exposed to (see also next paragraph). Rather than a CV, we performed here a bootstrapping of emulator 

predictions to quantify 95% CIs for RMSE and found robust results for both our training and application of 

emulators. Oyebamiji et al. (2015) developed a similar emulator approach as the one herein but using various 645 

regression methods and with the objective of predicting changes in decadal mean crop yields based on changes in 

climate features over the four meteorological seasons. Applied to an older version of the GGCM LPJmL (Bondeau 

et al., 2007), they found an agreement with R2=0.72 to 0.86 for unseen climate projections combining RCPs 4.5 

and 8.5. Similarly, Blanc (2017) trained statistical emulators for crop yield changes under climate change based 

on various regression models for several GGCMs and samples from climate impact projections using monthly 650 

and meteorological seasonal climate features. This resulted in an R2 of 0.43 to 0.78 for multi-year average yield 

changes depending on the GGCM with R2 0.48 to 0.56 for an EPIC-based GGCM GEPIC. Finally, Franke et al. 

(2020b) trained GGCM emulators using pixel-specific polynomials for a range GGCMs that had simulated a 

structured training sample with systematic changes in temperature, precipitation, CO2, and fertilizer application. 
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Applied to an exemplary climate change projection (HadGEM2-ES with RCP8.5) using annual shifters in climate 

features this resulted in RMSE of 0.9 to 2.7 t ha-1 and 1.8 to 2.4 t ha-1 for two EPIC-based GGCMs compared to 665 

herein R2=0.97 to 0.98 and RMSE=0.50 to 0.66 on holdout data. 

 

We expect that feature engineering is the key determinant for the high accuracy of crop yield predictions achieved 

herein, also compared to past research. As outlined above, earlier studies developing emulators or similar hybrid 

crop modelling tools employed fixed seasonal, monthly, or annual aggregates of climate variables (Blanc, 2017; 670 

Folberth et al., 2019; Franke et al., 2020b; Goulart et al., 2023; Oyebamiji et al., 2015; Sweet et al., 2023). These 

provide basic information on the weather a crop is exposed to in a specific year but neglect that crop maturity is 

driven by temperatures, represented as GDD accumulation in the vast majority of (global) crop models (Jägermeyr 

et al., 2021). In fact, keeping the growing season length constant over time under global warming is a common 

scenario for cultivar adaptation in crop modelling studies (Franke et al., 2020a; Minoli et al., 2019; Zabel et al., 675 

2021). Following the concept of GDD accumulation, CROMES dynamically estimates the actual length of each 

growing season and its sub-phases after planting. This has earlier been found to be a key determinant of crop 

yields in GGCMs, especially under high levels of global warming. Essentially, crops mature earlier and have less 

time for biomass accumulation but may simultaneously not be affected by adverse weather events later in the year 

(Zabel et al., 2021). A systematic comparison of different feature engineering approaches, however, is beyond the 680 

scope of this study and should be subject of a dedicated intercomparison exercise as is common within the crop 

modelling community for process-based types of models. 

 

Computational speed is challenging to compare between emulators and GGCMs (see sect. 3.4) and even more so 

among different studies. These may cover varying GGCMs with highly diverse computational demands or use 685 

publicly available training data that do not provide this information. Herein, we estimate a speed gain of 

conservatively an order of magnitude. Oyebamiji et al. (2015) estimate a speed gain by a factor of 60 for their 

LPJmL emulator, yet without further specifications of considered steps in the modelling chain. Essentially, in both 

cases the time requirement decreases from hours to minutes. Based on our results, the largest gain in computational 

speed is achieved if an emulator is applied for comprehensive scenario analyses, e.g., across large sets of climate 690 

projections, which requires a large number of repeated runs of the same emulator. 

5 Conclusions and outlook 

We expect the crop model emulator pipeline presented herein to bear great potential in various applications 

including complex climate impact modelling clusters or comprehensive scenario analyses across large climate 

ensembles and at high spatial resolutions. For such applications computational efficiency is a key advantage and 695 

the loss of information compared to the gain in speed achieved herein indicate that outcomes can be considered 

robust as long as predictors are part of the training domain. Quantifying this validity domain remains a prevailing 

issue in machine learning and will have to be characterized on a case-by-case basis until robust methods are 

developed. This will be an important subject for future research. Meanwhile, compared to static emulators 

CROMES allows for continuous updating of training data such as for the next generation of CMIP7 climate 700 

projections, with new GGCM versions, or for applications with very specific feature domains such as global 

cooling scenarios from geoengineering or nuclear winter. Thereby, no tailored crop model simulations are required 
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for training as long as data from existing experiments are within the application domain and users of the emulator 715 

pipeline do not require specific expertise in crop model setups and applications. 

 

Beyond the crop model emulation, we expect CROMES to be useful in two ways: (a) as the input data are quite 

generic, CROMES can also be used to efficiently train machine learning models on observations to develop 

observation-based machine-learning crop models; and (b) the climate features as an intermediary product of the 720 

pipeline allow for comprehensive analyses of growing season climate itself. 
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Appendix A 
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Figure A1. Density of R2 per pixel over 85 years for three SSPs (rows) and across five major Koeppen Geiger climate 
regions (columns). A=tropical, B=(semi-)arid, C=temperate, D=cold, E=polar. Each panel shows 20 plots, applying each 
emulator trained on one of the five GCMs to the four GCMs not used in its training. 
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Figure A2. Same as Figure A1 but showing only pixels with rainfed maize harvested area > 100ha. 
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Figure A3. Density of R2 per pixel over 85 years for four bins of rainfed maize harvested areas (panels). Data are pooled 
from applying each emulator trained on one of the five GCMs to the four GCMs not used in its training across all three 
SSPs. 
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Table A1. Confidence intervals (CI) for RMSE [t ha-1] estimated through bootstrapping (500 x 100k samples) for each 
emulator based on an individual GCM (columns with short GCM name) and applied to each target GCM (rows). 
Where training and target GCM are identical, the CI corresponds to values shown in Table 3. Where GCMs differ, 
CIs refer to results shown in Table 4. 960 

Target GCM Scenario GFDL IPSL MPI MRI UKESM1 

GFDL-ESM4 historical 0.476 - 0.483 0.588 - 0.610 0.583 - 0.604 0.593 - 0.616 0.582 - 0.591 

IPSL-CM6A-LR historical 0.588 - 0.616 0.466 - 0.473 0.577 - 0.587 0.588 - 0.599 0.593 - 0.623 

MPI-ESM1-2-HR historical 0.597 - 0.624 0.593 - 0.603 0.486 - 0.493 0.602 - 0.613 0.606 - 0.636 

MRI-ESM2-0 historical 0.593 - 0.621 0.592 - 0.603 0.590 - 0.600 0.471 - 0.478 0.599 - 0.626 

UKESM1-0-LL historical 0.581 - 0.590 0.593 - 0.616 0.591 - 0.616 0.596 - 0.618 0.471 - 0.478 

GFDL-ESM4 ssp126 0.465 - 0.474 0.538 - 0.548 0.534 - 0.544 0.544 - 0.559 0.537 - 0.546 

IPSL-CM6A-LR ssp126 0.521 - 0.531 0.444 - 0.452 0.521 - 0.530 0.529 - 0.544 0.519 - 0.528 

MPI-ESM1-2-HR ssp126 0.547 - 0.558 0.552 - 0.563 0.473 - 0.481 0.566 - 0.581 0.558 - 0.569 

MRI-ESM2-0 ssp126 0.540 - 0.556 0.548 - 0.568 0.553 - 0.574 0.458 - 0.466 0.543 - 0.563 

UKESM1-0-LL ssp126 0.515 - 0.525 0.512 - 0.522 0.521 - 0.531 0.521 - 0.533 0.443 - 0.450 

GFDL-ESM4 ssp370 0.438 - 0.447 0.521 - 0.542 0.515 - 0.536 0.516 - 0.533 0.518 - 0.539 

IPSL-CM6A-LR ssp370 0.517 - 0.527 0.427 - 0.434 0.511 - 0.520 0.527 - 0.538 0.505 - 0.514 

MPI-ESM1-2-HR ssp370 0.526 - 0.537 0.529 - 0.538 0.454 - 0.462 0.536 - 0.548 0.529 - 0.538 

MRI-ESM2-0 ssp370 0.516 - 0.527 0.523 - 0.533 0.524 - 0.533 0.439 - 0.446 0.517 - 0.527 

UKESM1-0-LL ssp370 0.494 - 0.504 0.482 - 0.491 0.498 - 0.507 0.501 - 0.510 0.412 - 0.420 

GFDL-ESM4 ssp585 0.439 - 0.446 0.517 - 0.528 0.512 - 0.522 0.520 - 0.529 0.515 - 0.526 

IPSL-CM6A-LR ssp585 0.511 - 0.520 0.416 - 0.423 0.508 - 0.516 0.525 - 0.536 0.494 - 0.502 

MPI-ESM1-2-HR ssp585 0.525 - 0.536 0.529 - 0.539 0.450 - 0.458 0.539 - 0.550 0.532 - 0.542 

MRI-ESM2-0 ssp585 0.516 - 0.526 0.524 - 0.537 0.526 - 0.538 0.430 - 0.439 0.517 - 0.529 

UKESM1-0-LL ssp585 0.504 - 0.513 0.484 - 0.493 0.512 - 0.521 0.508 - 0.518 0.408 - 0.415 
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