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Skew. – empirical skewness 

Var – Variance  

VIF – Variance Inflation Factor 

Abstract.  Climate change has already affected global water resources and is expected to have even more severe consequences 45 

in the future. Advancing climate change will necessitate the use of new distributions that are more flexible in adapting to trends 

and other non-stationarities. In this paper we compare three-parameter distributions such as the log-normal, the Generalized 

Extreme Value (GEV) and the Pearson type III with the Dual Gamma Generalized Extreme Value Distribution (GGEV). The 

GGEV is a four-parameter extension of the GEV. The comparison is done under different trend conditions and takes into 

account the differences in the catchment area and peak flow magnitude. The research pertains to basins in the temperate climate 50 

zone of Poland and includes data from 678 water gauges located on 340 rivers. Based on the trend criterion, the GGEV 

distribution compared to the analyzed three-parameter distributions, and the GEV distribution compared to the other three-

parameter distributions, were the best fit for most samples. Based on the trend criterion and the catchment size, GEV is best 

suited for micro- and meso-catchments, while GGEV is ideal for macro- to large-catchments when the series exhibits a trend, 

either positive or negative. The major benefit of GGEV is its flexibility when the data are influenced by temporal non-55 

stationarities. The additional shape parameter of GGEV compensates for the limitations of the other shape parameter in 

distributions with lighter tails. Analysis of the dependence relationships between the environmental indicators such as the 

geographic, physiographic and hydrological indicators as well as the distribution parameters is less conclusive. In order to test 

the risk of overparameterization and overfitting for the distributions with more parameters, the Kolmogorov-Smirnov test and 

the K-Fold cross validation were used. They show that the GEV and GGEV distributions perform better compared to the 60 

exponential and the two-parameter lognormal distributions. As an overall conclusion, the study shows that for the analyzed 

samples from the temperate climate zone in the era of climate change, distributions that better capture trends – such as GGEV 

perform more effectively. 

1 Introduction 

Climate change has already affected global water resources and is expected to have even more severe consequences in the 65 

future (Dakhlaoui et al., 2019; Pokhrel et al., 2021; Połomski and Wiatkowski, 2023; Tomczyk et al., 2023; Willems, 2013). 

The significance of climate change lies in the substantial impacts it brings, including the increased frequency of floods (Gruss 

et al., 2023; Tabari et al., 2021b). In modeling of extreme hydrological events, such as floods, stochastic modeling is commonly 

used. This approach relies on historical data and employs probability distributions (Gruss et al., 2022; Młyński et al., 2020) to 

account for the uncertainty and variability of these phenomena (Szulczewski and Jakubowski, 2018). Such methods include 70 

the at-site flood frequency analysis (FFA) (Cassalho et al., 2018). The choice of probability distribution should be verified 

against the assumptions of stationarity and independence, as any deviation may result in biased outcomes and potentially 

catastrophic consequences, such as inappropriate designs, that could endanger property and human life (Ologhadien, 2021). 

However, the assumption of stationarity has faced increasing challenges due to the intensification of climate change and human 

activities (Gruss et al., 2022; Jiang and Kang, 2019; Milly et al., 2008). Many studies present series consisting of annual 75 

maximums where, for some water gauges, the assumption of stationarity, randomness, or non-monotonic trend (NMT) is not 

met (Cassalho et al., 2018; Szulczewski and Jakubowski, 2018). Advancing climate change will require the use of new 

distributions that are more flexible in adapting to changes in stationarity or the presence of trends in the sample. 

In many countries, two- and three-parameter distributions are used to estimate the magnitude and frequency of annual 

maximum streamflow (e.g. Valentini et al., 2024 ; Gruss et al., 2022; Młyński et al., 2018; Pitlick, 1994; Rutkowska et al., 80 

2015; Rutkowska et al., 2015;  Bezak et al., 2014; Morlot et al., 2019; Šraj et al., 2016; Ul Hassan et al., 2019; Berton and 

Rahmani, 2024). There are also many studies among them on the Pearson type III (P3) (Cassalho et al., 2018), the log Pearson 
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Type III (LP3) (Berton and Rahmani, 2024; Morlot et al., 2019) and the two- and three-parameter log-normal distributions 

(LN2 and LN3) in the at-site FFA (Cassalho et al., 2018). According to Vogel and Wilson  (1996), the LP3 provides the best 

fit to both annual minimum and the annual average streamflows, assuming the series is stationary. In recent decades, a 85 

significant amount of research has been dedicated to the Generalized Extreme Value distribution (GEV). Extreme events are 

often better modeled using heavy tailed distributions (Karczewski et al., 2022; Karczewski and Michalski, 2022), a 

characteristic of the GEV distribution (Cassalho et al., 2018; Morlot et al., 2019; Otiniano et al., 2019; Rutkowska et al., 2015). 

However, some extreme event data do not follow the GEV distribution because they require a more asymmetric distribution 

or one with a heavier tail. As a result, new classes of probability distributions have been developed that extend beyond the 90 

GEV, such as the Dual Gamma GEV distribution (GGEV) (Otiniano et al., 2019). The GGEV distribution is regarded as highly 

flexible for several reasons: 1. It introduces an additional parameter that adjusts tail weight and skewness, making it more 

adaptable to diverse datasets. 2. This added flexibility allows the GGEV to capture the nuances of empirical data more 

effectively than the standard GEV. 3. Consequently, the GGEV distribution is often preferred in practical applications where 

accurate modeling of complex data is essential (Nascimento et al., 2015). The additional shape parameter (δ) enables the 95 

GGEV distribution to adapt to various data characteristics, especially in terms of tail behavior. Notably, when this parameter 

is less than 1, the GGEV exhibits a heavier tail than the GEV, making it more effective at modeling extreme events that may 

occur more frequently than lighter-tailed distributions would predict (Silva and Do Nascimento, 2022). 

Next to the influence of non-stationarities, it is well-known that various environmental factors, including land use, may 

significantly influence the tail of flood frequency distributions, although this depends on the region. Pitlick (1994) has found 100 

that the mean annual flood is most closely correlated with the watershed area, but did not find an influence of other measures 

of basin physiography on the differences in flood frequency distributions. In contrast, research by Ahilan et al. (2012) confirms 

that the type of landscape influences the GEV. Other research by Sampaio and Costa (2021) and Tyralis et al. (2019) has 

shown that morphological catchment characteristics correlate with these distributions. Also Kusumastuti (2007) highlights the 

role of environmental factors in influencing flood frequency and the occurrence of flood events. Although single factors may 105 

not always correlate well with the distribution parameters, it may be the combined influence of multiple factors that explain 

the differences in flood quantiles (Allamano et al., 2009). Understanding this influence may provide valuable insights for 

regionalization (He et al., 2015) and reduce uncertainties in inferences made using regional FFA frameworks (Hu et al., 2020; 

Tyralis et al., 2019). In this study, the assumption is made that if environmental factors have an influence on the distribution 

parameters, one can expect dependence relationships between the parameters when different distributions are calibrated to the 110 

flood data. 

The aim of the study is to analyze the fit of the GGEV distribution versus the three-parameter distributions (GEV, LN3, P3) 

to empirical data for river basins in Poland. The study also aims to analyze the consistency of patterns exhibited by 

environmental factors with regard to the parameters of the examined distributions and to conduct tests for overparameterization 

and overfitting of the analyzed distributions. 115 

2 Study area 

The research area spans 678 water gauges situated within the drainage basins of the Dniester, Dunajec, Neman, Oder, Pregoła, 

Vistula, and other rivers flowing into the Baltic Sea and covering the territory of Poland in Central Europe (Figure 1). Poland 

is located within the temperate climate zone. 
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 120 

Figure 1. Location of the analyzed 678 water gauges (Source: hydrographic map of Poland). 

Depending on the size of the catchment area in the study area, micro-catchments (A < 10 km2), meso-catchments (10 ≤ A < 

100 km2), macro-catchments (100 ≤ A < 1,000 km2), large catchments (1,000 ≤ A < 10,000 km2), and very large catchments 

(A > 10,000 km2) were distinguished. This division criterion is adopted based on Bertola et al. (2020). The fewest catchments 

identified were micro-catchments, represented by only 2 stream gauge profiles, while the most numerous were macro-125 

catchments, represented by 388 profiles. In between were the very large catchments, meso-catchments, and large catchments, 

with 50, 68, and 170 stream gauge profiles, respectively (Fig. 1). 
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Figure 2. Terrain characteristics of the analyzed 678 stream gauge profiles consist of lowlands, highlands, and mountains (Source: 

hydrographic map of Poland). 130 

The terrain of the study area is uneven. Most stream gauge profiles (as many as 582 profiles) are located in lowland areas (Fig. 

2). These are catchments situated within the provinces of the Central Polish Lowland, Eastern Baltic-Belarusian Lowland, and 

the Czech Massif, on the Polish Uplands. A smaller quantity, specifically 86 stream gauge profiles, were located in highland 

areas. They are located within the provinces of the Polish Uplands, Czech Massif, and the Western Carpathians with the 

Western and Northern Subcarpathia, as well as the Eastern Carpathians with the Eastern Subcarpathia. A total of ten stream 135 

gauge profiles located in mountainous regions are situated within the provinces of the Czech Massif and the Western 

Carpathians with the Western and Northern Subcarpathia, as well as the Eastern Carpathians with the Eastern Subcarpathia. 

3 Methods 

3.1 Data collection and extraction of flow extremes 

For 1070 gauge stations located in the basins of the Vistula, Oder, coastal rivers, Pregoła, and Neman, Dniester, Dunajec, the 140 

maximum annual flows were collected. The source of the data (flows) is the Institute of Meteorology and Water Management 

- National Research Institute (IMGW-PIB). These data have been processed. Only the gauge stations with data series equal to 

or longer than 30 years were retained (Gruss et al., 2022; Tabari et al., 2021a). The data periods used for analysis varied across 

stations, from 30 to 70. In this way, the maximum annual flows were collected for 678 stations. These data were compiled in 

the hydrological year, which for Poland begins in November and ends in October. For each hydrological year, the annual 145 

maximum flow was extracted. These values hereafter referred to as peak flows (Qp), often associated with floods or extreme 

hydrological events (Gruss et al., 2022; Langridge et al., 2020; Northrop, 2004). Qp help in understanding the maximum 

capacity of rivers or streams to handle water, which is essential for infrastructure planning, floodplain management, and 

disaster mitigation efforts (Langridge et al., 2020). The Qp were utilized in this study for calibrating and evaluating the 

probability distributions. 150 
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For each station, the mean annual flood or mean annual maximum flow (MAF) represents the average of the Qp over the period 

of record (Nyeko-Ogiramoi et al., 2012; Pastor et al., 2014). In order to understand the long-term characteristics of river 

systems, including flood frequency, river behavior, and water resource management, the hydrologists often analyze mean 

annual maximum flows (Merz and Blöschl, 2009; Nyeko-Ogiramoi et al., 2012; Pastor et al., 2014). In this study, the MAF 

was utilized for the redundancy analysis. 155 

3.2 Trend detection 

For all the analyzed time series, a test was conducted to ascertain the presence of a trend. The Mann-Kendall test was utilized 

for this purpose. This allowed us to group the obtained distributions into three categories: without a trend, with a positive trend, 

and with a negative trend. 

The Mann-Kendall test (MK) is frequently used to detect a monotonic trend in long time series of hydrological data (Cassalho 160 

et al., 2018; Gruss et al., 2022, 2023; Rutkowska, 2015; Svensson et al., 2005).  

The null hypothesis is that the data are identically distributed, the alternative hypothesis is that the data follow a monotonic 

trend. A two-sided test was performed and the significance level was set at 5%.  

3.3 Extreme value distributions and parameter calibration methods 

This study considered the following type of extreme value distributions: the four-parameter GGEV distribution and the three-165 

parameter distributions GEV, LN3, and P3.  

 

The GGEV probability density function (PDF) proposed by (Nascimento et al., 2015), is given by:  

𝑓(𝑥;  𝜇;  𝜎;  𝜉;  𝛿) = {

𝜎−1

𝛤(𝛿)
[1 +

𝜉(𝑥−𝜇)

𝜎
]

−(
𝛿

𝜉
)−1

exp {−[1 +
𝜉(𝑥−𝜇)

𝜎
]

−
1

𝜉} , 𝜉 ≠ 0 

𝜎−1

𝛤(𝛿)
𝑒𝑥𝑝{−𝛿[(𝑥 − 𝜇)/𝜎]}𝑒𝑥𝑝 {−𝑒𝑥𝑝 {[−

𝑥−𝜇

𝜎
]}, 𝜉 → 0

,     (1) 

where: 170 

μ – location parameter 

σ – scale parameter  

ξ – shape parameter 

δ – shape parameter of the GGEV extension. 

This GGEV is a four-parameter extension of the GEV distribution with an additional shape parameter (δ). The three parameters 175 

of this distribution: μ, σ, ξ were estimated a posteriori by the ggevp function from the MCMC4Extremes R package (in this 

study: block = 1, int = 100; computer: AMD Ryzen 7 4800H with Radeon Graphics 2.90 GHz, RAM: 16 GB; SSD: 500 GB 

and 1 TB) (Do Nascimento and Moura E Silva, 2015; R Core Team, 2022). The initial 33,333.3 iterations – corresponding to 

the first portion of the chain (first thin*int/3 iterations) – were designated as the burn-in period. The Metropolis-Hastings 

algorithm technique of sampling was used to estimate the marginal posterior distribution for each parameter except for δ, 180 

because identifiability problems were detected in the estimation of this fourth parameter, as reported by (Nascimento et al., 

2015). For the estimation of the δ parameter, the method proposed by Nascimento et al. (2015) and (Silva and Do Nascimento, 

2022) was adopted. We created a grid of possible δ values from 0.01 to 10, with an increment of 0.01, to estimate the other 

parameters (μ, σ, ξ) using the Bayesian approach for each point of the grid and selected the δ value with the lowest -2ln(L). 

The calibration of the fourth parameter δ is thus not based on a purely Bayesian approach, but limited to the capabilities of the 185 

ggevp function (Silva and Do Nascimento, 2022).  

The posteriori parameter values were selected by the lowest AIC, BIC and DIC values (Belzile et al., 2023). 

The diagnosis was for each chain based on trace plots using the plot.mcmc function from the coda R package (Plummer et al., 

1999). We made trace plots separately for each of the three parameters (μ, σ, and ξ). For the μ parameter, in each profile (in 
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678 profiles), the chain reached stationarity (the values of μ oscillate around the mean for most of the iterations). For the ξ 190 

parameter in 8 profiles, and for σ in 58 profiles, the chain did not reach stationarity. When analyzing the plot with three chains, 

it can be seen that their courses are quite consistent for all of the three analyzed parameters (they overlap and do not separate 

clearly from each other, which suggests their convergence). 

Moreover, to assess the convergence of the model, the scale reduction factor R̂ (Gelman and Rubin's convergence diagnostic) 

was run for three parallel chains (Hamra et al., 2013; Ossandón et al., 2022). For this purpose, the gelman.diag function from 195 

the coda R package was used. The R̂ values below the critical threshold of 1.1 indicate adequate model convergence. In all our 

runs, the R̂ values were below 1.1 in 678 samples, confirming convergence. The R̂ factor is commonly seen as a convergence 

diagnostic, useful for finding sufficient burn-in (Jones and Qin, 2022; Vats and Knudson, 2021). 

 

The GEV was used in many studies (Abida and Ellouze, 2008; Bezak et al., 2014; Cassalho et al., 2018; Kidson and Richards, 200 

2005; Szulczewski and Jakubowski, 2018). The GEV PDF function is given in equation (2): 

𝑓(𝑥) = exp [−{1 +
𝜉(𝑥−𝜇)

𝜎
}−1/𝜉],          (2) 

for 1+ ξ (x- μ)/ σ >0, and σ >0, where:  

μ, σ, ξ are location, scale and shape parameters, respectively. 

 205 

The parameters of this distribution were estimated by the maximum likelihood method (MLE), as described by Smith (1985). 

The estimation of the parameters and fitting of the GEV distribution was done using the ‘evd’ and ‘fExtremes’ R packages 

(Stephenson, 2024; Wuertz et al., 2023). 

 

The LN3 distribution function is given by the formula (3): 210 

𝑓(𝑥) =
1

(𝑥−𝜇)𝜎𝑦√2𝜋

exp {−
1

2𝜎𝑦
2 [log(𝑥 − 𝜇) − 𝜉𝑦]2},        (3) 

where: 

ξ y, 𝜎𝑦
2 , μ are shape, scale and location, parameters, respectively.  

The LN3 is similar to the two-parameter LN2 distribution, except that x is subtracted by a value α in the former, which 

represents the lower bound (Cassalho et al., 2018). The parameters of this distribution were estimated by MLE as shown by 215 

Meeker and Escobar (1998). The estimation of the parameters and fitting of probability distribution was carried out using the: 

‘EnvStats’ and 'weibulltools' R packages (Hensel and Barkemeyer, 2018; Millard, 2013). For the MLE method used to estimate 

the distribution parameters a confidence level of 0.95 was assumed. 

 

The PDF of the P3 distribution is given by (4): 220 

𝑓(𝑥) =
1

|𝜎|𝜉𝛤(𝜉)
|𝑥 − 𝜇|𝜉−1𝑒−

𝑥−𝜇

𝜎 ,           (4) 

for s≠0, a>0 and 
𝑥−𝜆

𝑠
 ≥0. 

Where: 

ξ, σ, μ are shape, scale and location parameters, respectively. 

The MLE was used to estimate the parameters for the P3 distribution. In the gamma distribution developed by Becker and 225 

Klößner (2025), this function allows for negative scale parameters to accommodate negative skewness. The estimation of the 

parameters and fitting of probability distribution was done using the ‘PearsonDS’ R package (Becker and Klößner, 2025). 
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3.4 Accuracy measures and scoring rules 

The goodness of fit of the four probability distributions to the empirical data was evaluated based on the accuracy measures 

Mean Absolute Error (MAE) and Root mean square error (RMSE). The MAE is recommended for leptokurtic distributions 230 

(MAE) and RMSE is preferred for platykurtic distributions (Karunasingha, 2022). Among the 678 samples, the kurtosis value 

exceeded 3 for 560 samples (leptokurtic distributions), while kurtosis less than 3 was observed in 118 samples (platykurtic 

distributions). Moreover, the Continuous Ranked Probability Score (CRPS) was used to compare the entire CDF distribution 

(Hersbach, 2000; Pic et al., 2025). For this purpose, the crps_sample function from the scoringRules R package was used 

(Jordan et al., 2016). 235 

3.5 Redundancy analysis 

Redundancy analysis (RDA) was applied as a canonical technique, to investigate the influence of environmental variables and 

sample characteristics on the parameters of the extreme value distributions. The aim was to identify common patterns and key 

factors affecting the distribution parameters. 

The environmental factors examined included the watershed area, categorized by the catchment type, and the nature of the 240 

watercourse (Lowlands, Highlands, Mountains) (Bertola et al., 2020; Han et al., 2023; Tyralis et al., 2019). Sample 

characteristics considered included the highest Qp, MAF, sample size (N), empirical moments of standard deviation (SD), 

variance (Var), skewness (Skew.), kurtosis (Kurt.), third-moment center (3thMoment), fourth-moment center (4thMoment; 

which measures the intensity of the distribution tails) of the Qp, and trend measures.  

RDA was performed separately for each distribution. The final RDA model was selected by evaluating independent variables 245 

using the Variance Inflation Factor (VIF). The independent variables of the RDA are catchment area ranges: a – micro-

catchments, b – meso-catchments, c – macro-catchments, d – large catchments, e – very large catchments; Qp; trend (NMT is 

no trend, PT is positive trend and NT is negative trend); the nature of the watercourse (L – lowlands, H – highlands, M – 

mountains); Skew., 4thMoment; Kurt., and N. The response variables of the RDA are δ, μ, σ and ξ. 

Since the mean, SD, Var, 3thMoment, and 4thMoment are interrelated, it is essential to carefully select the set of explanatory 250 

variables. It was also confirmed that multicollinearity exists between Skew. and Kurt. as explanatory variables (VIF > 10). 

Collinearity between Skew. and Kurt. may result from the fact that both of these measures are defined using the SD. Therefore, 

RDA was conducted separately for Kurt. (Fig. 9a, 10a, 11a, 12a) and Skew. (Fig. 9b, 10b, 11b, 12b). Additionally, RDA was 

performed with the inclusion of the catchment area ranges and Kurt. was replaced with 4thMoment and Skew. (see Figures 9c, 

10c, 11c, and 12c).  255 

The decision to replace Kurt. with 4thMoment was made because both Skew. and Kurt. are functions of SD, making them 

potentially collinear. The use of Skew. and 4thMoment allows for capturing more detailed aspects of the data distribution. 

4thMoment measures the overall Kurt., which is the tail heaviness of the distribution, while Kurt. is the normalized version of 

this moment. Following the initial RDA, subsequent analyses considered only the changes that were not identified in the first 

analysis.  260 

The use of topography in modeling Qp helps to uncover the runoff mechanism prevailing in the catchment (Valeo and 

Rasmussen, 2000). 

RDA, standardized by response variables (center and standardize) and environmental variables (center), was performed using 

the Canoco software ver. 5.12 (ter Braak and Šmilauer, 2019). 

3.6. Assessment of overparameterization and overfitting 265 

Increasing the number of parameters in a distribution does not automatically improve its accuracy. Clearly, it will lead to a 

better goodness-of-fit, because of the higher flexibility during calibration, but there being more parameters will also lead to a 

higher uncertainty in their calibration. Consequently, a three- or more parameter distribution may result in 
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"overparameterization" and "overfitting". Including more parameters also increases the risk of greater errors in distribution 

extrapolations (Alsadat et al., 2023). 270 

In order to evaluate whether the increased complexity of multi-parameter distributions offers a substantial improvement in fit 

or merely results in overfitting, the procedure shown in Figure 3 was applied. 

The one- and two-parameter distributions of the exponential (Exp) and 2-lognormal (LN2) distributions were designated to 

serve as a reference for evaluating the overparameterization and overfitting in the three- and four-parameter distributions GEV 

and GGEV.  275 

 

Figure 3. Workflow for evaluating overparameterization and overfitting in multi-parameter probability distributions. 

The first analysis focused on examining whether the theoretical GEV and GGEV distributions significantly alter the shape 

parameter compared to the LN2 distribution (Fig. 3: Step 2) (Raynal-Villasenor and Raynal-Gutierrez, 2014). This 

investigation aimed to determine whether the GEV and GGEV distributions are unnecessarily complex (overparameterized), 280 

and whether fitting these distributions enhances the accuracy of predictions for extreme values, especially at very long return 

periods. 

In the second analysis, the Kolmogorov-Smirnov test (KS test) was used (Kim et al., 2017) in two testing variants: 1. theoretical 

quantiles with empirical data and 2. empirical data with random quantiles (Fig.3: Step 3). This was done for the GEV, GGEV, 

Exp, and LN2 distributions. The hypothesis was that a p-value of less than 0.05 would suggest rejecting the hypothesis that 285 

the samples come from the same distribution. The KS test was used to determine whether the multi-parameter distributions 

(such as GEV and GGEV) might provide slightly better fits in some cases (variant 1) and whether they could be more prone 

to overfitting (variant 2) (Ozonur et al., 2021). Moreover, sensitivity analysis was also performed by randomly sampling from 

a two-, three- and four-parameter distribution separately and then testing whether these distributions would not "overturn" and 

lead to more erroneous extrapolations beyond the range of the empirical data used for calibration. This evaluation was based 290 

on quantile-quantile (QQ) plots, in which the quantiles obtained from the calibrated distributions were compared with the 

empirical ones. 

In the third analysis, the K-fold cross-validation (split sample test) was used to validate the distribution's performance (Fig. 3: 

Step 4) (Kim et al., 2017; Xu and Goodacre, 2018). In this study, we employed the k-fold cross-validation technique, 

specifically dividing the data series into 5 equal folds (also called 5-folds) (Rohani et al., 2018; Yadav and Shukla, 2016). The 295 

distribution is trained on k−1 subsets and tested on the remaining subset. This process is repeated k times until each subset has 
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been used as the test set (Prusty et al., 2022). K-fold cross-validation is often used for comparing and selecting the best 

distribution for a given predictive problem. This method allows for evaluating which distribution generalizes best to a new 

data set (Brunner et al., 2018; Jaiswal et al., 2022). Cross-validation was performed for the GEV and GGEV distributions. To 

check the results, two measures were used: MAE (for leptokurtic distributions), and RMSE (for platykurtic distributions) 300 

(Karunasingha, 2022). As regards the question of how these analyses would be conducted for distributions with fewer than 

three parameters, two additional distributions – Exp and LN2 – were selected for testing. Finally, a comparison of the cross-

validation results between GEV, GGEV and Exp, LN2 was conducted. For the GEV and GGEV, only the distribution with the 

best fit following the MAE and RMSE, was considered in that analysis. That means that the total number of tested samples 

was 678 for each of the Exp and LN2 distributions. In contrast, there were 172 samples for the GEV and 281 for the GGEV 305 

distribution.  

The methods for determining the Exp and LN2 distributions and their goodness-of-fit assessment are presented in the 

Supplementary Material S1 and S2. The generation of random samples for the Exp, LN2, GEV and GGEV distributions is 

described in the Supplementary Material S3. 

4 Results and discussion 310 

4.1 Goodness of fit results in relation to the trend category 

Among the 678 samples, no trend (NMT) was observed in the highest number of cases (446). Conversely, a negative trend 

(NT) was identified in 200 samples, while the least number of samples exhibited a positive trend (PT) (32 samples) (Figure 4, 

Table S1). 
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Figure. 4. Count of the four fitting distributions (GEV, GGEV, LN3, P3) with marked trend categories. 

In the case of NMT, the accuracy measures show: for LN3 – a good fit to 61 samples, for P3 – a good fit to 96 samples, for 

GEV – a good fit to 111 samples; and for GGEV – a good fit to 178 samples (Figure 4). In the case of NT, the accuracy 

measures led to fitting the LN3 distribution to 27 samples, the P3 to 32 samples, GEV to 53 samples, and GGEV to 88 samples 

(Figure 4). In turn, for a PT, the accuracy measures resulted in fitting the P3 distribution to 4 samples, the LN3 – to 5 samples, 320 

GEV – to 8 samples, and GGEV – to 15 samples (Figure 4). In NMT samples, the GGEV distribution was the most frequently 

identified and the LN3 distribution was the least common. Similarly, for the NT and PT samples, the GGEV distribution was 

most frequently observed. In contrast, the LN3 distribution was the least common in NT samples, while the P3 distribution 

was the least frequently observed in PT samples (Figure 4). Among the four examined distributions, the GGEV distribution 

predominates in terms of count for all trend categories (Figure 4, Table S1). This is consistent with the findings by (Nascimento 325 

et al., 2015), who established, for the maximum monthly flow data, that the best model was the GGEV rather than the GEV. 

Focusing solely on the three-parameter distributions (P3, LN3, and GEV), it is evident that the GEV distribution is most 

frequently fitted best, followed by P3 and LN3. This applies to both NMT and NT samples. In contrast, for the PT samples, the 

GEV distribution has the highest number of best-fit samples among the three-parameter distributions, followed by LN3 and, 

finally, P3 (Figure 4, Table S1). This is consistent with Kumar et al. (2003), who argue that, in terms of the L-moments, GEV 330 

provided a better fit than P3. Bezak et al. (2014) obtained a completely different result, namely that, in terms of MLE, the best 

results were obtained with the P3 distribution. 
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4.2. Goodness of fit results in relation to the trend and catchment size categories 

Next, it was checked whether a similar pattern of results is obtained when considering the catchment area size ranges (Figure 

5).335 

 

Figure 5. Count of the four fitting distributions (P3, LN3, GEV and GGEV) with marked trend and catchment size categories. 

For the NMT samples, the best-fitted distribution is the GEV – for samples where the catchment area is less than 10 km2 or is 

in the range 10-100 km2, or P3  – for those above 10,000 km2. Meanwhile, the GGEV distribution is the best fit for samples 

with catchment areas in the range of 100-1000 km2 and 1000-10,000 km2 (Figure 5, table S2). Comparing these results for 340 

three-parameter distributions utilizing the MLE estimation method, Gruss et al. (2022) obtained findings for six data series 

with no trend. Among these, the Weibull, GEV, LN3, and P3 distributions were best fitted to the empirical data from sub-

catchments with areas ranging from 100 to 1000 km2. Moreover, as reported by Gruss et al. (2022), the GEV distribution was 

fitted best for two catchment areas ranging from 1000 to 10000 km2. In this study, in the context of NMT samples, the least 

fitted distributions to the empirical data were: LN3 (samples with catchment areas in the range of 10-100 km2, 100-1000 km2, 345 

and 1000-10,000 km2) and additionally LN3 and GGEV for areas larger than 10,000 km2. 

There are no NT samples for catchments smaller than 10 km2. The GEV distribution best fits to empirical data from catchments 

with areas in the range of 10-100 km2. Conversely, the GGEV distribution has the best fit for catchments in the range of 100-

1000 km2, 1000-10,000 km2, and above 10,000 km2 (Figure 5, table S2). This is consistent with Silva and Nascimento (2022) 

for catchments with areas greater than 10,000 km2 like the Gurguéia River catchment in Brazil. As reported by the authors, the 350 

GGEV distribution has a better fit than the GEV. Gruss et al. (2022) concluded, for Czech Republic and Poland, that the 

Weibull distribution fits best for catchment areas ranging from 100 to 1000 km2, the Weibull and P3 distributions for catchment 

areas from 1000 to 10,000 km2, and the GEV distribution for catchment areas above 10,000 km2. In this study, in the context 

of NT samples, the least fitted distributions to the empirical data are P3 (samples with catchment areas in the range of 10-100 

km2), P3 and LN3 (samples with catchment areas in the range of 100-1000 km2), LN3 (samples with catchment areas in the 355 

range of 1000-10,000 km2), and additionally GEV for >10,000 km2  (Figure 5, table S2). 

The PT samples are the scarcest, occurring only in catchments within the range of 10-100 km2, 100-1000 km2, and 1000-

10,000 km2. The GGEV distribution fits best for these samples (Figure 5, table S2). In the context of PT samples, the least 

fitted distributions to the empirical data are P3 (samples with catchment areas in the range of 10-100 km2), and P3 (samples 
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with catchment areas in the range of 100-1000 km2) and additionally GEV (samples with catchment areas in the range of 1000-360 

10,000 km2) (Figure 5, table S2). 

4.3. Goodness of fit results in relation to the catchment size and peak flow 

Next, it was checked whether the relationship between the catchment area (A) and the registered maximum peak flow (Qp) 

could influence the choice of distribution. 

 365 

Figure 6. Relationship between the catchment area (A) and the peak flow magnitude (Qp) for observational series with no trend and 

for the four fitting probability distributions (P3, LN3, GEV and GGEV). 

The probability distributions determined for the NMT samples show a relationship between A and Qp, represented by a simple 

regression line (Figure 6, Table S3). The widest range of A is characterized by the samples for which the P3 distribution (30-

20,000 km²) and the GEV distribution (3.5-170,000 km²) provide the best fits, while LN3 (35-110,000 km²) and GGEV (50-370 

70,000 km²) fit more limited ranges. Moreover, the widest range of Qp is characterized by the samples for which the P3 (1.9-

7,000 m³/s) and GEV (1.6-7,000 m³/s) distributions fit best, suggesting that these distributions are the most flexible in modeling 

extreme flows for different basin sizes. In contrast, the LN3 (8.5 to 6.500 m3/s) and GGEV (2 to 6,000 m3/s) distributions show 

a more limited applicability (Figure 6, Table S3). Since this may appear to contradict the results presented in the previous 

sections, a similar analysis is carried out below, but separately for each trend category. 375 
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Figure 7. Relationship between the catchment area (A) and the peak flow magnitude (Qp) for observational series with a negative 

trend and for the four fitting probability distributions (P3, LN3, GEV and GGEV). 

When we focus on the observational series with a NT (Figure 7, Table S4), the widest range of A is characterized by samples 

fitted to the GGEV distribution (80-180,000 km²), whereas other distributions (P3, LN3, GEV) have more limited ranges. The 380 

widest range of Qp is characterized by samples fitted to the GGEV distribution (5-7,000 m³/s), indicating its versatility in 

modeling extreme flows for samples with a detected NT. The P3 and LN3 distributions have narrower ranges, making them 

less flexible for samples with a detected NT. This suggests that the GGEV distribution is particularly well-suited for extreme 

flow events with NT. Moreover, for the NT samples, the GEV distribution fits much better than any of the other three-parameter 

distributions. 385 

 

Figure 8. Relationship between the catchment area (A) and the peak flow magnitude (Qp) for observational series with a positive 

trend and for the four fitting probability distributions (P3, LN3, GEV and GGEV). 

For the PT samples (Figure 8, Table S5), the widest range of area A is characterized by samples fitted to the GEV distribution 

(48-2,470 km²), while other distributions (GGEV, LN3, P3) have more limited ranges. The widest range of Qp is characterized 390 
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by samples fitted to the GGEV distribution (8-750 m³/s), indicating its flexibility in modeling extreme flows. The P3 and LN3 

distributions have narrower ranges, making them less flexible for samples with a detected PT. In another study on the 

evaluation of the GEV and LN3 distributions, carried out for the Sewden River, Kousar et al. (2020), using the L-moments 

estimation, concluded that two locations, one with A in the range of 1000-10,000 km2, and one with A above 10,000 km2, 

exhibit a platykurtic distribution and fit best to the GEV. In turn, the LN3 distribution was the best fit for three other locations 395 

that exhibit a leptokurtic distribution for areas ranging 100-1000 km2, 1000-10,000 km2, and above 10,000 km2. 

4.4 Influence of the environmental factors and sample characteristics on the probability distribution parameters 

4.4.1 The GEV distribution 

 

Fig. 9. RDA results of the relationship between environmental factors, sample characteristics and the parameters of 400 

GEV (σ, ξ, μ) , distinguishing between: (a) Kurtosis instead of skewness, (b) Skewness instead of kurtosis, (c) Catchment 

area ranges instead of variable A and the fourth moment. Descriptions of symbols: μ – location parameter; σ – scale 

parameter; ξ – shape parameter; catchment area ranges (in km²): a – A < 10; b – 10 ≤ A < 100; c – 100 ≤ A < 1,000; d – 

1,000 ≤ A < 10,000; e – A > 10,000; flow peak (Qp); trend (NMT is no trend; PT is positive trend and NT is negative 

trend); nature of the watercourse (L – lowlands, H – highlands, M – mountains), parameters of the empirical sample 405 

(Skew. is empirical skewness, Kurt. is empirical kurtosis and 4thMoment is the 4th center moment); N – sample size. 

In the first RDA the first two axes (RDA 1 and RDA 2) explain 80.50% of the variance (63.51% and 16.99%, respectively) 

(Fig. 9a). In the second RDA, they explain 86.46% (63.60% and 22.86%, Fig. 9b), and in the third – 85.09% (61.75% and 

23.34%; Fig. 9c). In the first and second RDA (Fig. 9a-b), the Qp and A are strongly correlated with RDA 1 and Kurt. or Skew. 

with RDA 2. According to the response variables, σ and μ are related to RDA 1, and ξ is related to RDA 2 (Fig. 9a-b). This is 410 

consistent with the findings of Tabari et al. (2021b) and Villarini and Smith (2010). The second and third RDA show that σ 

and μ are inversely proportional to PT (Fig. 9b) and to c (Fig. 9c), respectively. The second RDA shows that σ and μ are 

correlated with N (Fig. 9b). In the third RDA, σ is strongly positively correlated with Qp , which is in line with the findings of 

Villarini and Smith (2010). This relationship is further supported by the use of scale-invariant statistics, which show good 

correlations with historical flood-frequency records (Turcotte 1993). This is consistent with Tabari et al. (2021b), who report 415 

that the σ parameter of the GEV distribution represents the deviation around the mean and serves as an indicator of variance. 

However, it is important to note that σ can vary over time, as demonstrated by the application of a non-stationary GEV model 

to account for changing streamflow series (Jiang and Kang, 2019). Moreover, in the third RDA, μ is strongly positively 

correlated with e and 4thMoment (Fig. 9c). The μ parameter indicates the center of the distribution, acting as an indicator of 

the mean. What is particularly noteworthy is that hydrological signatures related to flow magnitude, such as μ and σ, are 420 

primarily dependent on A (Fig. 9a-b), which significantly influences their values, while other attributes have a lesser impact 

on the response variable. This is consistent with previous findings by He et al. (2015), Northrop (2004), and Tyralis et al. 

(2019). Another study using the MLE method confirms the above, indicating a linear relationship between μ and σ, which 

means that as the catchment area increases, so do these parameters (Northrop, 2004). Current research confirms this trend (Fig. 
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9a-b). In sample e, which is a very large catchment, 4thMoment affects the μ parameter. Sample c with PT is weakly negatively 425 

correlated with both μ and 4thMoment. Other catchment types (a, b, and d) have a weak influence on the parameters of this 

distribution. ξ is positively related to Kurt., H, M, and NMT, Skew. (Fig. 9a-b) and a (Fig. 9c). The ξ parameter determines the 

tail behavior of the distribution (He et al., 2015). Specifically, higher values of ξ lead to heavier tails (Tabari et al., 2021b; 

Tyralis et al., 2019; Villarini and Smith, 2010). The RDA reveals that ξ is inversely proportional to L and NT (Fig. 9a-b) and 

additionally to d (Fig. 9c). This is consistent with other research (Ahilan et al., 2012; He et al., 2015; Sampaio and Costa, 2021; 430 

Tabari et al., 2021b; Tyralis et al., 2019; Villarini and Smith, 2010). However, other researchers did not indicate that the ξ 

parameter could be related to the type of landscape. Morrison and Smith (2002) found that ξ is not dependent on the basin 

morphological parameters or land cover properties, suggesting that other factors may be at play. Kumar et. al (2003) highlight 

the importance of the GEV distribution in regional FFA, but do not specifically address the relationship between ξ and the 

highlands area. Nonetheless, ξ is more likely linked to hydrological processes and meteorological conditions than to A (He et 435 

al., 2015). However, other studies have indicated some correlations between ξ and either terrain elevation or the type of 

landscape. The ξ parameter of the GEV distribution is correlated with nature (terrain elevation) (Sampaio and Costa, 2021; 

Tyralis et al., 2019). Moreover, research confirms that the type of landscape affects the distribution of GEV (Ahilan et al., 

2012). The magnitude of ξ in the GEV distribution depends on μ of the gauge, irrespective of it being in lowlands, highlands, 

or mountains (Villarini and Smith, 2010). According to Tyralis et al. (2019), ξ exhibits a negative linear correlation with the 440 

catchment mean elevation. Which means that as the elevation increases, the value of ξ slightly decreases. Our study actually 

indicates an opposite trend (Fig. 9a-c). However, the impact of the morphologic characteristics of the catchments in the 

regression model for the GEV ξ parameter is small (Sampaio and Costa, 2021). This is also confirmed by the current study - 

landscape forms have a weak influence on the parameters of this distribution. The ξ parameter dependency is mainly influenced 

by climatic indices, while other catchment characteristics are less significant (Tyralis et al., 2019). This is consistent with He 445 

et al. (2015) who found no relationship between ξ and A, suggesting that the hydrological heterogeneity is implicitly captured 

by ξ. In the first RDA N is correlated with RDA 3, in the third RDA N and b are related to RDA 3 (Fig. 10c). 

4.4.2 The GGEV distribution 

In the first RDA the first two axes (RDA 1 and RDA 2) explain 54.00% of the variance (45.76% and 8.24%, respectively) 

(Fig. 10a). In the second RDA, they explain 54.36% (45.78% and 8.58%; Fig. 10b), and in the third – 56.19% (47.19% and 450 

9.00%; Fig. 10c). Similar to the GEV distribution, in both Fig. 10a and 10b, σ and μ (which are related to the RDA1 axis) are 

strongly positively correlated with Qp and A. In contrast, in the third RDA (Fig. 10c), σ remains strongly positively correlated 

with Qp, while μ is strongly positively correlated with e and 4thMoment. This means that higher Qp values correspond to a 

larger σ parameter in the GGEV distribution. Larger catchment areas e lead to an increase in μ, which shifts the central point 

of the distribution. Across all redundancy analyses (Fig. 10a–c), ξ and δ show a positive relationship with Kurt. or Skew., 455 

which may support the additional parameter mechanism described by Nascimento et al. (2015) for this distribution. Moreover, 

ξ and δ show a positive relationship with NMT (Fig. 10a-c). Observing the biplots (Fig. 10a, 10c), it is noted that the Kurt. 

parameter affects ξ and δ, while 4thMoment influences μ. An increase in 4thMoment, which measures the concentration of 

values around the mean and is also related to Kurt., indicates an increase in μ. The μ parameter determines where the center of 

the distribution is located on the number line. The greater 4thMoment, the higher μ in a heavy-tailed distribution. This means 460 

that, where more extreme values occur, the central tendency of the distribution (measured by the μ parameter) shifts towards 

these higher values to better reflect the influence of extremes on the distribution (Tabari et al., 2021b). Since 4thMoment is not 

associated with RDA2, it will not directly influence ξ and δ, or its impact will be limited for the samples examined (Fig. 10a). 

However, 4thMoment used to determine Kurt. will cause Kurt. to strongly correlate with ξ (Fig. 10c). ξ is correlated with Skew. 

and Kurt. of the empirical data. This means that ξ influences the asymmetry and tail distribution of empirical flow data, which 465 

is consistent with the description by (Nascimento et al., 2015). In this study ξ and δ are inversely related to N. In practice, this 
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might suggest that with larger N, the distribution becomes less extreme or lighter. The shape parameters likely adjust to reflect 

a more stable and less variable distribution as the amount of data increases. The third RDA additionally revealed that ξ and δ 

are negatively correlated with NT (Fig. 10c). This may indicate that in situations where there is a downward trend in the data, 

the distribution becomes less varied or more flattened. A weak correlation could suggest that with a NT, the values of δ and ξ 470 

may slightly decrease. We observe that δ is not as strongly correlated with Skew. as ξ. δ serves as a supplementary parameter, 

and the canonical analysis shown in Fig. 10a-b indicated that δ has similar properties to ξ. Meanwhile, 3thMoment strongly 

correlates with σ (not shown on the graph) because σ affects the magnitude of deviations from the mean, and the 3rd central 

moment measures precisely these deviations. σ and μ are negatively correlated with c (Fig. 10c). The other independent 

variables (H, L, M, PT, b, d) are associated with RDA3 and do not affect the distribution parameters. This suggests that terrain 475 

topography does not have a direct impact on the parameters of GGEV. Additionally, it can be suggested that not all the types 

of catchments influence the shaping of distribution parameters. Very large catchments (e) have a strong positive impact, while 

c have only a weak influence, and there is no effect on the parameters of b and d. This may be because distribution parameters 

(in this case μ) affecting larger areas may not have as strong an impact on smaller catchments, where local effects dominate 

over the effects associated with distribution parameters (Arnaud et al., 2011; Roodsari and Chandler, 2017).  480 

 

Fig. 10. RDA results of the relationship between environmental factors, sample characteristics and the parameters of GGEV (σ, ξ, 

δ, μ), distinguishing between: (a) Kurtosis instead of skewness, (b) Skewness instead of kurtosis, (c) Catchment area ranges instead 

of variable A and the fourth moment. Descriptions of symbols: μ – location parameter, σ – scale parameter, ξ – shape parameter, δ 

– shape parameter of GGEV extension, catchment area ranges (in km²): a – A < 10; b – 10 ≤ A < 100; c – 100 ≤ A < 1,000; d – 1,000 485 
≤ A < 10,000; e – A > 10,000; flow peak (Qp); trend (NMT is no trend; PT is positive trend and NT is negative trend); nature of the 

watercourse (L – lowlands, H – highlands, M – mountains), parameters of the empirical sample (Skew. is empirical skewness, Kurt. 

is empirical kurtosis and 4thMoment is the 4th center moment); N – sample size. 

4.4.3 The P3 distribution 

 490 
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Fig.11. RDA results of the relationship between environmental factors, sample characteristics and the parameters of P3 (σ, ξ, μ), 

distinguishing between: (a) Kurtosis instead of skewness, (b) Skewness instead of kurtosis, (c) Catchment area ranges instead of 

variable A and the fourth moment. Descriptions of symbols: μ – location parameter, σ – scale parameter, ξ – shape parameter, 

catchment area ranges (in km²): a – A < 10; b – 10 ≤ A < 100; c – 100 ≤ A < 1,000; d – 1,000 ≤ A < 10,000; e – A > 10,000; flow peak 

(Qp); trend (NMT is no trend; PT is positive trend and NT is negative trend); nature of the watercourse (L – lowlands, H – highlands, 495 
M – mountains), parameters of the empirical sample (Skew. is empirical skewness, Kurt. is empirical kurtosis and 4thMoment is the 

4th center moment); N – sample size. 

The first two axes (RDA 1 and RDA 2) explain 66.72% of variance (62.38% and 4.34%, respectively) (Fig. 11a). In the second 

RDA, they explain 66.72% (62.35% and 10.40%, respectively) (Fig. 11b) , and in the third – 73.30% (61.78% and 11.52%, 

respectively) (Fig. 11c). A comparison of the RDA results for the 3P distribution parameters with those of GEV and GGEV 500 

has revealed the following dependencies: ξ is strongly negatively correlated with N and weakly with Kurt. and Skew. (Fig. 11a-

c). This means that with smaller sample sizes and higher Skew., the ξ parameter is larger. This is confirmed by the study of Hu 

et al. (2020). As reported by Hu et al. (2020), Skew. in the log-P3 distribution is very sensitive to N. In turn, ξ is weakly 

positively correlated with L and negatively correlated with H (Fig. 11a-b). The M, NT, PT, and NMT are correlated with RDA 

3 (Fig. 11a). In the second RDA, ξ is weakly negatively correlated with M and PT. (Fig. 11b). μ is weakly correlated with NMT 505 

and NT (Fig. 11b). In the third RDA, ξ is inversely proportional to PT (Fig. 11c). The b parameter has a weak positive relation 

to the ξ parameter (Fig. 11c). In catchments b, ξ increases. In contrast, H, L, M, NT, and NMT, c, d do not influence the 

distribution parameters (Fig. 11c).  

4.4.4 The LN3 distribution 

 510 

Fig. 12. RDA results of the relationship between environmental factors, sample characteristics and the parameters of LN3 (σ, ξ, μ), 

distinguishing between: (a) Kurtosis instead of skewness, (b) Skewness instead of kurtosis, (c) Catchment area ranges instead of 

variable A and the fourth moment. Descriptions of symbols: μ – location parameter, σ – scale parameter, ξ – shape parameter, 

catchment area ranges (in km²): a – A < 10; b – 10 ≤ A < 100; c – 100 ≤ A < 1,000; d – 1,000 ≤ A < 10,000; e – A > 10,000; flow peak 

(Qp); trend (NMT is no trend; PT is positive trend and NT is negative trend); nature of the watercourse (L – lowlands, H – highlands, 515 
M – mountains), parameters of the empirical sample (Skew. is empirical skewness, Kurt. is empirical kurtosis and 4thMoment is the 

4th center moment); N – sample size. 

The first two axes (RDA 1 and RDA 2) explain 46.61% of the variance (38.71% and 7.90%, respectively) (Fig. 12a). In the 

second RDA, they explain 54.09% (38.98% and 15.11%, respectively) (Fig. 12b), and in the third – 57.72% (42.60% and 

15.12%, respectively) (Fig. 12c). A comparison of the RDA results for the LN3 distribution parameters with those of GEV, 520 

P3, and GGEV has revealed the following dependencies: μ is weakly correlated with NMT (Fig. 12a-b). PT, NT, M, and L are 

correlated with RDA 3 (Fig. 12a-b). In the first RDA, ξ is negatively related to Kurt. and H is weakly correlated with N. (Fig. 

12a). In the second RDA, ξ is negatively related to Skew. and H (Fig. 12b-c). μ is weakly inversely proportional to N (Fig. 

12b). In the third RDA, in contrast to GEV, GGEV, and P3, σ is strongly positively correlated with e and μ is strongly positively 

correlated with Qp and 4thMoment (Fig. 12c). ξ is positively correlated with NMT. Moreover, ξ is negatively correlated with 525 

N and NT (Fig. 12c). σ is negatively correlated with c (Fig. 12c). As reported (Kamal et al., 2017), the larger the N, the better 

the result for LN3. Lastly, b, d, H, M, L, and PT are correlated with RDA 3 (Fig. 12c). 
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4.4.5 Key points on the influence of environmental factors and sample characteristics 

The following points summarize key findings regarding the relationships between environmental factors and sample 

characteristics and the parameters of the studied probability distributions: 530 

• GGEV tends to have the H, M, L located outside the RDA1 and RDA2.  

• GGEV and P3 share a common feature of a negative correlation between N and ξ, while GEV and LN3 exhibit more 

complex correlation patterns.  

• GGEV, GEV, and P3 show similar correlations between the 4thMoment and Qp, as well as e in the context of RDA1, 

whereas LN3 differs in this respect.  535 

• Both GGEV and GEV exhibit a pattern characterized by a negative correlation between NT and ξ, and a positive correlation 

between ξ and NMT.  

• Only for the P3 distribution is the ξ parameter more strongly negatively correlated with N than with Kurt. and Skew. This 

confirms that the ξ parameter is highly dependent on N. 

• Only the patterns for GGEV and LN3 show a PT along the RDA3. 540 

• Catchment size types influence the distribution parameters, with the most types affecting the parameters of GEV and the 

least types affecting the parameters of GGEV, LN3 and P3. 

Based on the above comparison, the GGEV distribution shows some similarities with other distributions regarding the 

occurrence and correlation of the distribution parameters. However, there are differences in certain aspects, such as the 

distribution of parameters in the principal components and parameter correlations, which indicates unique characteristics of 545 

GGEV compared to GEV, LN3, and P3. GGEV often differs from other distributions in how its parameters spread within the 

principal component space, which may be significant when modeling and interpreting the results of extreme flow data analysis. 

4.5. Overparameterization check 

In order to evaluate the overparameterization or overfitting problem, the results are summarized below according to the 4 steps 

of the methodology outlined in Figure 3. 550 

Step 1 

Out of the two distributions (Exp and LN2), only LN2 demonstrates the best fit across all the 678 profiles based on accuracy 

measures and scoring rules. Nevertheless, we performed the tests for both distributions. Additionally, these distributions were 

evaluated against three- and four-parameter distributions (GEV and GGEV) using the same criteria.  

Step 2 555 

For the GEV distribution, analyzed for 172 profiles, the ξ parameter values are consistently near zero, well below one. In turn, 

the fitted LN2 distribution has a scale parameter (σ) greater than 1 for only seven stations, which indirectly affects the 

distribution's shape. In contrast, the GGEV distribution has ξ parameter value greater than 1 for a smaller number of four 

stations. It is worth noting that the δ parameter reached a value greater than 1 for 45 profiles out of the 281 analyzed. However, 

as shown by the RDA analysis, the contribution of the δ parameter relative to the ξ parameter is smaller. This may suggest that 560 

the δ parameter primarily compensates for the limitations of the ξ parameter in distributions with lighter tails. More details can 

be found in the Supplementary Materials, in Tables S6-S8. This is confirmed by the research of Nascimento et al. (2015), who 

state that when the δ parameter is less than 1, the GGEV exhibits a heavier tail than the GEV, making it more effective for 

modeling extreme events, which may occur more frequently than lighter-tailed distributions would predict. 
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 565 
Fig. 13. Empirical (black dots) and theoretical probability density functions of GEV and GGEV for Qp, shown for three profiles: (a) 

149180130, (b) 149180230, (c) 149190010. 

In order to investigate how the δ parameter in the GGEV distribution affects the form of the extreme value distribution, a visual 

inspection was conducted (Fig. 13). Figure 13 shows the ability of both GEV and GGEV distributions to model hydrological 

extremes. At profile 149220070, the GGEV captures the peak of the distribution more accurately than GEV. For station 570 

150190080, the GGEV captures the peak of the distribution more accurately and GGEV provides a slightly better fit in the 

upper tail. At station 150200090, both models follow the empirical curve well, although GGEV shows a marginal advantage 

in modeling the higher extremes. 

Step 3 

The KS test, which compares the theoretical quantiles (Exp distribution) with the empirical data, found no significant 575 

differences (p-value > 0.05) for 372 out of 678 profiles, indicating agreement between the distributions. Similarly, when 

comparing empirical quantiles to random samples (Exp distribution), 279 profiles showed no significant differences, 

suggesting a comparable nature of the empirical and random distributions in these cases. This corresponds to a fit rate of 74.9% 

(279/372). 

A better fit was obtained for the LN2 distribution. The KS test comparing the theoretical quantiles (LN2 distribution) with the 580 

empirical data found no significant differences (p-value > 0.05) for 678 out of 678 profiles, indicating agreement between the 

distributions. Similarly, when comparing empirical quantiles to random samples (LN2 distribution), 661 profiles showed no 

significant differences, suggesting a comparable nature of the empirical and random distributions in these cases. This 

corresponds to a fit rate of 97.5% (678/661). 

A much better fit was obtained for the GEV and GGEV distributions. The KS test comparing the theoretical quantiles (GEV 585 

distribution) with the empirical data found no significant differences (p-value > 0.05) for 172 out of 172 profiles, indicating 

agreement between the distributions. Similarly, when comparing empirical quantiles to random samples (GEV distribution), 

171 profiles showed no significant differences, suggesting a comparable nature of the empirical and random distributions in 

these cases. This corresponds to a fit rate of 99.4% (171/172). The KS test comparing theoretical quantiles (GGEV distribution) 

with empirical data found no significant differences (p-value > 0.05) for 281 out of 281 profiles, indicating agreement between 590 

the distributions. Similarly, when comparing empirical quantiles to random samples (GGEV distribution), 281 profiles showed 

no significant differences, suggesting a comparable nature of the empirical and random distributions in these cases. This 

corresponds to a fit rate of 100% (281/281). 

The results showed that distributions with more parameters (three or more, such as GEV and GGEV) not only provided a 

slightly better fit in some cases (in the empirical data vs. theoretical quantiles scenario) but were also less prone to overfitting 595 

(in the empirical data vs. random quantiles scenario) This is confirmed in the QQ plots; see the Supplementary Material. 

Step4 

The GEV and GGEV distributions were subjected to the K-Fold cross-validation alongside the LN2 and Exp distributions. 

The K-Fold cross-validation results are presented as the percentage distribution of outcomes across individual intervals relative 

to the total number of results (Table 1). 600 
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Table 1. Percentage distribution of the K-Fold cross-validation results across individual intervals relative to the total number of 

outcomes. 

Distribution 

MAE  

(0-100) 

MAE 

(101-1000) 

RMSE  

(0-100) RMSE (101-1000) 

RMSE (1001-10 

000) 

2LN 94.8% 5.22% 92.37% 7.63% 0% 

Exp 94.8% 5.22% 92.37% 4.24% 3.39% 

GEV 95.09% 4.91% 100% 0% 
0% 

GGEV 94.9% 5.12% 98.48% 1.51% 
0% 

Explanation: MAE – mean absolute error, RMSE - root mean square error, 0-100 – best-fitting model, 101-1000 – well-fitting model, 1001-

10,000 – poorest-fitting model. 

 605 

MAE and RMSE values vary significantly, ranging from very low (close to 0) to much higher values (e.g., 1000). High values 

suggest that the model predicts river flows less accurately for certain rivers. The intervals represent the quality of model fit, 

with 0-100 indicating the best fit, 101-1000 well fitting model, and 1001-10,000 the poorest fit. The GEV distribution achieved 

the highest percentage of best-fitting models (95.09% for MAE and 100% for RMSE), indicating superior performance 

compared to the other distributions. The GGEV distribution also showed strong results, with 94.9% of models falling in the 610 

best-fit category for MAE and 98.48% for RMSE. The LN2 and Exp distributions performed similarly, with over 94% of 

results in the best-fit category for both MAE and RMSE. However, the Exp distribution showed a small proportion (3.39%) 

of poorest-fitting models in the RMSE category, which was not observed for the other distributions. To summarize, Step 4 has 

shown that the GGEV and GEV distributions have excellent predictive efficiency (better than that of the distributions with 

fewer parameters), which demonstrates that in most cases analyzed, they are quite robust to overparameterization and 615 

overfitting. 

Although the study used observational series of 30 years or more, the number of profiles analyzed in highland and mountainous 

areas was considerably lower than that in lowland areas. Furthermore, the number of observational series exhibiting a positive 

trend in the analyzed region was limited; moreover, the study did not account for the non-stationarity in the parameters of the 

analyzed distributions. 620 

5 Conclusions 

The main findings of this research can be summarized as follows: 

1. Based only on the trend criterion, the GGEV distribution, compared to the analyzed three-parameter distributions, 

and the GEV distribution compared to the other three-parameter distributions were the best fit for most samples. 

2. Based on the trend criterion and the catchment size, it was found that the GEV distribution is best suited for micro- 625 

and meso-catchments, while the GGEV distribution is ideal for macro- to large-catchments, where the series exhibits 

a trend (either negative trend or no trend). The P3 distribution is preferred for very large catchments, but only when 

the sample has no trend. In contrast, for samples with a positive trend, the GGEV distribution performs best across 

the meso- to very large catchments. 

3. Compared to the analyzed P3, LN3, and GEV distributions, the GGEV distribution was not flexible regarding both 630 

the catchment area and the peak flow for samples with no trend and positive trend, but it was flexible for samples, in 

which a negative trend was detected. 

4. Our findings revealed certain patterns in the shape parameter between the P3 and GGEV distributions, as well as 

between the GEV and GGEV distributions. Additionally, patterns were noted in the μ parameter among the P3, GEV, 

and GGEV distributions. Our study also showed that GGEV was the only distribution for which the parameters were 635 

not correlated with the forms of landscape (lowlands, highlands, mountains). 
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5. It has been confirmed that adding the shape parameter of the GGEV distribution primarily compensates for the 

limitations of the shape parameter in distributions with lighter tails. 

6. Using the Kolmogorov-Smirnov test, it was found that GEV and GGEV not only provided a slightly better fit in some 

cases (in the empirical data vs. theoretical quantiles scenario) but were also less prone to overfitting (in the empirical 640 

data vs. random quantiles scenario and in the theoretical quantiles vs. random quantiles scenario) in comparison to 

Exp and LN2. Furthermore, the robustness of GEV and GGEV distributions to overparameterization and overfitting 

was confirmed by the K-Fold cross validation. 

7. Based on the above, in the era of climate change, distributions such as GGEV are expected to be better suited when 

trends are present, offering a clear performance advantage. 645 

The results of this study highlight several promising avenues for future research. One potential direction is the further 

exploration of the GGEV distribution in the context of various hydrological and meteorological phenomena. Given its superior 

performance in fitting most samples and its sensitivity to trends, especially under non-stationary conditions such as climate 

change, future studies could examine its applicability across different geographical regions and climatic conditions. 

The findings on the influence of catchment types on distribution parameters indicate that more research is needed to refine our 650 

understanding of how landscape characteristics interact with hydrological distributions. A deeper exploration into the 

relationship between the catchment area characteristics, especially in varied topographies and land-use patterns, could yield 

more universal insights. Expanding the range of predictor variables used in modeling, beyond trend detection, nature of 

catchment, catchment area, and the hydrological characteristics, might also improve the accuracy and flexibility of distribution 

selection. 655 

As part of future research directions, the team plans to focus on modeling the GGEV distribution in a full Bayesian approach, 

involving the estimation of the four parameters of this distribution using MCMC sampling, instead of the ggevp function. In 

particular, it is planned to determine prior distributions for each of the parameters and to implement the MCMC algorithms, 

taking into account the need to adjust the proposal distributions, the length of the burn-in phase, thinning, and the number of 

samples –  depending on the specifics of the model under study. 660 
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