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Abstract. We perform a global inverse modelling analysis to quantify biomass burning emissions of carbon monoxide (CO) 

from the extreme wildfires in Canada between May and September 2023. Using the GEOS-Chem model, we assimilated 45 
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observations at 3-day temporal and 2  2.5 horizontal resolution from the Tropospheric Monitoring Instrument (TROPOMI) 

separately and then jointly with Total Carbon Column Observing Network (TCCON) measurements. We also evaluated prior 

emissions from the Quick Fire Emissions Dataset (QFED), Blended Global Biomass Burning Emissions Product eXtended 

(GBBEPx), Global Fire Assimilation System (GFAS), and Canadian Forest Fire Emissions Prediction System (CFFEPS). The 

assimilation of TROPOMI-only measurements estimated posterior North America emissions for QFED, GBBEPx, GFAS, and 50 

CFFEPS of 110.4±20, 112.8±20, 127.2±17, and 125.6±18 Tg CO compared to prior estimates of 37.1, 42.7, 91.0, and 90.2 Tg 

CO, respectively. The joint assimilation of TROPOMI+TCCON reduced the posterior 1𝜎 uncertainty on the North American 

emission estimates by up to about 30%, while showing only a modest impact (< 5%) on the mean estimate of the inferred 

emissions. An evaluation against independent measurements reveals that adding TCCON data increases the correlations and 

slightly lowers the biases and standard deviations. Additionally, including an experimental TCCON product at East Trout Lake 55 

with higher surface sensitivity, we find better agreement of the assimilation results with nearby in situ tall tower and aircraft 

measurements. This highlights the potential importance of vertical sensitivity in these experimental data for constraining local 

surface emissions. Our results demonstrate the complementarity of the greater temporal coverage provided by TCCON with 

the spatial coverage of TROPOMI when these data are jointly assimilated. 

1 Introduction 60 

Biomass burning (BB) from wildfires is a major source of carbon emissions released into the atmosphere with large 

climate and air quality impacts, exerting a significant influence on human health, ecosystems, and the environment (Cascio, 

2018; Chen et al., 2017; O’Neill et al., 2021; Wu et al., 2022). Over the past few years, wildfires have become more frequent 

and destructive in different regions of the world (Jegasothy et al., 2023; Mataveli et al., 2024; You and Xu, 2023). More 

specifically, in Canada in 2023, the total area burned by wildfires surpassed the previous record in 1989 (75,596 km2) by nearly 65 

a factor of 2.5 while the amount of emitted carbon also dramatically increased by more than 11 times compared to the 1998–

2022 average (Jain et al., 2024; Jones et al., 2024; Kolden et al., 2024). Therefore, reactive trace gases (e.g., CO) and 

greenhouse gases (GHGs) (e.g., CH4 and CO2) had an unprecedent increase during the 2023 wildfire emissions (Byrne et al., 

2024). In addition to perturbing the carbon budget, these emissions also have implications for air quality. However, obtaining 

reliable estimates of wildfire emissions is a challenging task due to several factors, such as the episodic and localized nature 70 

of these emissions (Sokolik et al., 2019; Zhao et al., 2025). Here, we focus on estimating emissions from carbon monoxide 

(CO) from wildfires during the summer 2023. With a lifetime of up to several months (Holloway et al., 2000), which is 

sufficiently long to track long-range transport on intercontinental scales, CO is an ideal tracer of combustion. CO plays an 

important role in both air quality and climate as it is a precursor of ozone (O3) and the dominant sink of the hydroxyl radical 

(OH), which is the main atmospheric oxidant (Aschi and Largo, 2003; Fowler et al., 2008). Observations of CO have provided 75 

information on combustion sources on a range of scales, from urban to regional and global scales (Borsdorff et al., 2020; 

Cristofanelli et al., 2024; Pommier et al., 2013; Schneising et al., 2020; Tang et al., 2019). 
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CO emissions from wildfires can be estimated either from bottom-up or top-down approaches. In the bottom-up 

approach, emissions are represented as the product of an emission factor, which is the amount of trace gas emitted per unit of 

fuel consumed, and the amount of dry matter burned. Bottom-up inventories use either observations of burned area to determine 80 

the mass of dry matter burned (Liu et al., 2024; van der Werf et al., 2017; Wiedinmyer et al., 2023) or estimates of fire radiative 

power (FRP) to quantify the rate of fuel consumption (Filizzola et al., 2023; Kaiser et al., 2012). There are typically large 

uncertainties in these inventories (Andreae, 2019; Hundal et al., 2024) arising from discrepancies in the emission factors and 

the estimated mass of dry matter burned, resulting in significant differences in emission estimates (Chen et al., 2022; Nguyen 

et al., 2023; Saikawa et al., 2017; Zhang et al., 2023). The top-down approach makes use of CO observations to optimize 85 

emissions through an inverse modelling method, but this approach depends on the use of an atmospheric chemistry-transport 

model and a priori emission estimates, which are typically obtained from a bottom-up inventory.  

Over the past two decades, global CO observations have been provided by several satellite sensors, including the 

Measurements of Pollution in the Troposphere (MOPITT) instrument (Deeter et al., 2003; Edwards et al., 2006), the Infrared 

Atmospheric Sounding Interferometer (IASI) (Pope et al., 2021; Turquety et al., 2004), and the Tropospheric Emission 90 

Spectrometer (TES) (Lopez et al., 2008), and these data have been used in numerous inverse modelling studies to quantify CO 

emissions (e.g., Kasibhatla et al., 2002; Arellano Jr. et al., 2006; Warner et al., 2007; Jones et al., 2009; Kopacz et al., 2010; 

Miyazaki et al., 2012; Miyazaki, Eskes, and Sudo 2015; Jiang et al., 2017; Zheng et al., 2019). However, large discrepancies 

between the inversion results have been reported, which may arise from differences between spatiotemporal coverage of the 

observations, the vertical sensitivity of the measurements, and observation biases (Deeter et al., 2015; Jiang et al., 2017; Jones 95 

et al., 2009; Miyazaki et al., 2015; Warner et al., 2010). Nonetheless, a few recent studies attempted to address some of the 

challenges by reducing potential biases in the model (Gaubert et al., 2023; Miyazaki et al., 2020) or by improving the quality 

of the assimilated data (Tang et al., 2024). The Tropospheric Monitoring Instrument (TROPOMI) (Borsdorff et al., 2018), 

launched in 2017, has provided CO retrievals with improved accuracy, higher spatial resolution, and significantly greater 

observational coverage (Landgraf et al., 2016; Schneising et al., 2020). In particular, it offers higher sensitivity to near-surface 100 

CO compared to earlier thermal infrared measurements from instruments such as IASI and TES. These factors make it well-

suited for inverse modelling of CO emissions, as demonstrated in many recent studies (Borsdorff et al., 2023; Byrne et al., 

2024; Goudar et al., 2023; Griffin et al., 2024; Inness et al., 2022; Shahrokhi et al., 2023; Stockwell et al., 2022; Wan et al., 

2023). 

Measurements from surface in situ networks and aircraft campaigns have been used for CO trend determination (Patel 105 

et al., 2024) and CO inversion studies in the past (Palmer et al., 2003; Yumimoto & Uno, 2006; Koohkan & Bocquet, 2012; 

Tang et al., 2013; Feng et al., 2020). However, mainly due to limited spatiotemporal coverage and/or vertical distribution, they 

are typically incapable of sufficiently constraining emission estimates on fine spatial scales; therefore, model errors such as 

those from vertical transport, the OH field, and the a priori emissions, can significantly impact the inferred emission estimates 

(Hooghiemstra et al., 2011). Only a few studies have attempted to use both satellite and surface observations together to exploit 110 

the complementarity of these observations to reduce the influence of errors, such as those that arise from the sensitivity to the 
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vertical distribution of CO (Tang et al., 2022) and long-range transport (Kim et al., 2024). However, most of these studies 

focused on inversions over a limited area, where sufficient surface CO observations are available. There are also ground-based 

total column measurements from networks such as the Total Carbon Column Observing Network (TCCON, Wunch et al. 

2011), which was designed in part to validate satellite observations (Borsdorff et al., 2019; Bukosa et al., 2023; Hedelius et 115 

al., 2021; Sha et al., 2021; Tang et al., 2024). TCCON provides time-resolved and accurate column-averaged dry-air mole 

fractions of CO (XCO) under sunny skies. Although TCCON observations are spatially sparse, they are of high temporal 

density and therefore could provide valuable information in constraining episodic CO emissions from wildfires. However, a 

standard method of integrating TCCON measurements with satellite data in a data assimilation or inversion system is still 

lacking, as most current studies assimilate satellite data, while reserving the TCCON data to evaluate the performance of the 120 

assimilation. 

In this study, we quantify biomass burning CO emissions between May and September 2023 using the CHemistry and 

Emissions REanalysis Interface with Observations (CHEEREIO) assimilation toolkit (Pendergrass et al., 2023), which 

employs the GEOS-Chem model and an ensemble Kalman filter (EnKF) scheme. We conduct a global analysis, but our focus 

is on quantifying boreal emissions associated with the 2023 fires in Canada. We jointly assimilate TCCON and TROPOMI 125 

data and conduct a comparison with a TROPOMI-only assimilation to assess the added value of TCCON observations in the 

assimilation and to determine the additional constraints that TCCON data provide for optimizing CO emissions from localized 

and episodic wildfires. We include two distinct types of TCCON data with different vertical sensitivities in our inversion, 

while using independent total column and in situ surface and aircraft vertical profile observations to characterize the success 

of our analysis. Additionally, we evaluate the following three global and one regional biomass burning inventories in the 130 

context of the assimilation: the Quick Fire Emissions Dataset (QFED) (Koster et al., 2015), the Blended Global Biomass 

Burning Emissions Product eXtended (GBBEPx) (Zhang et al. 2012; 2019), the Global Fire Assimilation System (GFAS) 

product (Kaiser et al. 2012; Di Giuseppe et al. 2021), and the Canadian Forest Fire Emissions Prediction System (CFFEPS) 

(Chen et al., 2019). 

We begin in Section 2 with a description of the observations and model configurations, including the a priori emissions 135 

used in the inversion. Section 3 presents the inversion methods, the main assumptions, and sensitivity experiments using 

simulated observations to tune the inversion performance. Section 4 provides the main results and discussion, and finally, the 

study concludes with a few summary points and a suggestion for future works. 

2 Observations and model 

This section describes the observational datasets and modelling framework and inputs used in this study. We first 140 

describe in Sections 2.1-2.2 the two types of observations that are assimilated in the inversion framework: (i) TROPOMI 

satellite CO products and (ii) TCCON ground-based CO measurements. Then, in Section 2.3, we present several independent 

datasets (not assimilated) used for evaluation, including the Network for the Detection of Atmospheric Composition (NDACC, 
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De Mazière et al., 2018) ground-based total column observations, in situ surface CO measurements from the World Data 

Centre for Greenhouse Gases (WDCGG) network and from Environment and Climate Change Canada’s (ECCC) tall tower at 145 

East Trout Lake (ETL), and vertical profiles from in situ aircraft measurements. The assimilated TCCON data are also used 

for comparisons between different experiments, although they are no longer independent information for the joint inversion. 

Finally, Section 2.4 provides a description of the GEOS-Chem model and emissions inventories that are used as the a priori 

estimate in our inversion setup. The priors include three global inventories, including QFED, GBBEPx, and GFAS, and one 

regional inventory, CFFEPS, for North America. 150 

2.1 TROPOMI 

The TROPOMI instrument is on board the Copernicus Sentinel 5 Precursor (S5P) satellite, which was launched in 

October 2017. Total column abundances of carbon monoxide (XCO) are retrieved from spectra measured in the shortwave 

infrared (SWIR) band at 2305–2385 nm, with daily global coverage, a local overpass solar time of 13:30 UTC, and high spatial 

resolution of 5.5  7 km2 (Veefkind et al., 2012). We use the operational XCO product publicly available from the European 155 

Space Agency (ESA) Sentinel-5P data hub at https://scihub.copernicus.eu/ (last access: 4 June 2024) (Landgraf, 2019), with a 

reported bias of better than 15 ppb in comparison with TCCON GGG2014 data product (Sha et al., 2021). The XCO data are 

published together with the total column averaging kernels to account for the sensitivity of the retrieved total column to the 

true atmosphere, thus, they can be used along with a priori vertical profiles to obtain model-equivalent total CO columns 

representing the observed data (Apituley et al., 2018). The TROPOMI retrieval algorithm provides clear-sky and cloudy 160 

observations over land and ocean (Borsdorff et al., 2019), however, we only use measurements with a quality flag equal to and 

greater than 0.7 to ensure high-quality data obtained under cloud-free or low cloud conditions. As shown in the Fig. 1a, we 

exclude TROPOMI observations poleward of 60, primarily to avoid biases due to low surface albedo in the SWIR from snow 

cover (Hasekamp et al., 2022; Lorente et al., 2021) and biases due to the stratosphere in the chemical transport model (CTM) 

affecting the inversion performance (Turner et al., 2015). Since the horizontal resolution of the TROPOMI data is substantially 165 

higher than the GEOS-Chem model resolution used in this study (2  2.5), the observations are not spatially representative 

for the model grid cells, resulting in a large representativeness error in the assimilation process. To overcome this, we aggregate 

the observations into so-called super-observations before using them in the assimilation. In fact, for the duration of the study 

between May and September 2023, we compute the error-weighted median average of measurements within each grid cell, 

where each measurement is weighted by the inverse of its reported error standard deviation (Eskes et al., 2003; Miyazaki et 170 

al., 2012). To account for error reduction because of averaging, we follow a similar method as Pendergrass et al. (2023) to 

compute the associated super-observation errors. This includes average of individual measurement errors and assumptions on 

error correlations and transport errors. The relative weight of the super-observation error to the prior error is then estimated 

through parameter tuning in the inversion system to ensure robustness to possible error misspecification (see Section 3 and 

Appendices A and B). Finally, a total of 1,744,682 number of observations are processed. 175 
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Several previous studies evaluated TROPOMI XCO observations and found reasonable agreement with satellite and 

ground-based measurements. For example, Sha et al. (2021) reported a bias of 2.45  3.38% against the unscaled TCCON and 

a bias of 6.50  3.45% against NDACC, which remains within the range of TROPOMI’s precision and accuracy. In addition, 

the TROPOMI validation report (https://mpc-vdaf.tropomi.eu/, last access: 28 June 2024; Lambert et al., 2024) shows that 

operational TROPOMI XCO data are in good agreement with collocated measurements from NDACC, TCCON, and the 180 

Collaborative Carbon Column Observing Network (COCCON; Alberti et al., 2022; Frey et al., 2019) monitoring networks. 

2.2 TCCON 

TCCON (https://www.tccon.caltech.edu/) is a ground-based network of solar-viewing Fourier transform spectrometers 

(FTS) that collect atmospheric transmission spectra every 2–3 minutes. The spectra range covers the near and short-wave 

infrared region, and measurements collected under clear-sky conditions are used to retrieve column-averaged dry-air mole 185 

fractions of trace gases, including carbon monoxide (i.e., XCO) (Wunch et al., 2011). We use data from 15 sites around the 

world, shown in Fig. 1 and listed in Table 1, derived from the standard GGG2020 retrieval software (Laughner et al., 2024). 

The difference between the GGG2020 and GGG2014 XCO retrieval data is 6.3 ppb, with GGG2020 larger than GGG2014. 

This is because TCCON XCO data are no longer scaled to the WMO trace gas scale (Wunch et al., 2025). The accuracy and 

precision of the standard TCCON XCO product is reported to be around 8 ppb. These data are publicly available and can be 190 

accessed via https://tccondata.org/ (last access: 1 June 2024). In addition to the standard XCO retrievals, which use spectra 

measured using an InGaAs detector and a CO window centred at 4290 cm-1, we use retrievals of XCO available from spectra 

collected at the East Trout Lake TCCON station from an additional InSb detector. The spectral range of the InSb detector 

includes two mid-infrared windows (centred at 2111 cm-1 and 2160 cm-1) that contain strong CO absorption features that result 

in an XCO retrieval with markedly different averaging kernels (orange) from the standard XCO retrieval (blue), as shown in 195 

Fig. 1c-d. These mid-infrared spectral windows were used in a previous study together with the standard TCCON CO window 

to extract vertical information from the TCCON measurements (Parker et al., 2023). The XCO retrievals from the InSb spectra 

have higher sensitivity to the surface and lower sensitivity to the higher altitudes than the standard XCO retrievals. The impact 

of including these mid-infrared XCO retrievals on the inversion performance to constrain CO emissions is discussed in Section 

4.2.2. 200 

We filter all TCCON datasets to include only data with a quality flag = 0 (i.e., the highest quality data). To prepare for 

the assimilation, first, all the measurements are aggregated in time, based on the model output hourly timestep, weighted by 

the measurement reported errors. This produced 213,784 quality-controlled data points that were then mapped on the GEOS-

Chem grid resolution, providing 19,733 median hourly averaged observations for the period of May–September 2023 in this 

study. 205 
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Figure 1: (a) Number of quality-controlled and aggregated TROPOMI and TCCON observations (XCO) used in the global inversion as 
described in Sections 2.1 and 2.2. (b) Variability of the number of non-aggregated TROPOMI (blue) and TCCON (red) observations at the 
East Trout Lake (ETL) TCCON station from April-September 2023. (c) Time series (MM-DD) of XCO column retrievals from standard 
TCCON GGG2020 data (blue) and XCO measurements from the InSb detector (orange) at ETL between May-September 2023. (d) Column 210 
averaging kernels for standard TCCON GGG2020 XCO (blue) and for XCO measurements derived from an alternative CO absorption 
window on the ETL InSb detector (orange) between May-September 2023. 

2.3 NDACC and in situ surface and aircraft data 

This study employs two independent ground-based data sources for validation purpose. We utilize measurements from 

NDACC, a global network of ground-based stations equipped with Fourier transform infrared (FTIR) spectrometers that 215 

provide long-term total column measurements of XCO (De Mazière et al., 2018). NDACC XCO measurements, similar to 

those from TCCON (i.e., same spectral domain as the InSb TCCON data), are of high-quality and well-suited for validating 

models, satellite observations, and assimilation system performance (Kerzenmacher et al., 2012; Lutsch et al., 2020; Sha et al., 

2021). In this study, we include mid-infrared NDACC total column data from seven stations covering the study period (see 

Table 1). The data are publicly available at http://www.ndacc.org (last access: 30 July 2024). 220 

Additionally, continuous and discrete surface in situ CO measurements obtained from WDCGG serve as a second 

independent dataset to evaluate surface CO concentrations obtained from our experiments. In situ measurements compiled by 

the WDCGG have been widely used in previous inverse modelling studies for validating results and testing model performance 
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(Chevallier et al., 2011; Jiang et al., 2017; Miyazaki et al., 2020; Tanimoto et al., 2008). We use the archived data from nine 

sites over the study period, which are publicly available and accessed from https://gaw.kishou.go.jp/ (last access: 1 July 2024). 225 

We also use in situ tall tower measurements from the ETL site provided by ECCC (Chen et al., 2014) to assess the impact of 

using the XCO retrievals from the InSb spectra on the inversion results. The evaluation results are presented in Section 4.2.2. 

We use in situ aircraft CO measurements from the National Oceanic and Atmospheric Administration (NOAA) air 

sampling network (McKain et al., 2024) taken as another independent source to evaluate our inversion results. The data product 

is freely available to public via https://gml.noaa.gov/ccgg/aircraft/. The aircraft program aims to capture temporal variability 230 

(i.e., seasonal and interannual changes) of the greenhouse gases in the lower atmosphere. Dry air mole fractions of CO are 

measured using flask air samples at different fixed altitude levels. It provides measurements at different sites across the United 

States and Canada and at different altitudes, descending from a maximum of 8000 m to the lowest sampling level at ~750 m 

(a.s.l). These data have been commonly used in previous studies to explore the large-scale changes in horizontal and vertical 

distribution of CO and greenhouse gases (Sweeney et al., 2015), to serve as benchmark for validating forward and inverse 235 

modelling analysis (Stephens et al., 2007; Yang et al., 2007), and to calibrate remote sensing retrievals (Wunch et al., 2010). 

Focusing on the impact of the experimental TCCON InSb data used in the inversion to constrain surface CO emissions, we 

use aircraft profiles at ETL during multiple time events (details are discussed in Section 4.2.2). Table 1 shows the list and 

geographical information of all observations used for evaluation. 
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Table 1: List of ground network, surface in situ, aircraft, and tall tower measurements used in this study between May and September 2023. 240 

Measurement Site (ID) Latitude Longitude Altitude 
(km a.s.l) 

Reference 

TCCON Sodankylä, Finland 67.4 N 26.6 E 0.188 (Kivi et al., 2022) 

TCCON Karlsruhe, Germany 49.1 N 8.4 E 0.116 (Hase et al., 2023) 

TCCON Garmisch, Germany 47.4 N 11.1 E 0.740 (Sussmann and Rettinger, 2023) 

TCCON Paris, France 48.8 N 2.4 E 0.060 (Té et al., 2022) 

TCCON Harwell, UK 51.6 N 1.3 W 0.142 (Weidmann et al., 2023) 

TCCON Izana, Tenerife, Spain 28.3 N 16.5 W 2.370 (García et al., 2022) 

TCCON East Trout Lake, Canada 54.3 N 104.9 W 0.502 (Wunch et al., 2022) 

TCCON Lamont, USA 36.6 N 97.5 W 0.320 (Wennberg et al., 2022b) 

TCCON Park Falls, USA  45.9 N 90.3 W 0.440 (Wennberg et al., 2022c) 

TCCON Caltech, USA 34.1 N 118.1 W 0.230 (Wennberg et al., 2022a) 

TCCON Edwards, USA 34.0 N 117.8 W 0.700 (Iraci et al., 2022) 

TCCON Rikubetsu, Japan 43.5 N 143.8 E 0.380 (Morino et al., 2022a) 

TCCON Tsukuba, Japan 36.1 N 140.1 E 0.030 (Morino et al., 2022b) 

TCCON Wollongong, Australia 34.4 S 150.9 E 0.300 (Deutscher et al., 2023) 

TCCON Lauder, New Zealand 45.0 S 169.7 E 0.370 (Pollard et al., 2022)  

NDACC Tsukuba, Japan 36.1 N 140.1 E 0.030 (Morino et al., 2022b) 

NDACC Wollongong, Australia 34.4 S 150.9 E 0.300 (Jones et al., 2009) 

NDACC Lauder, New Zealand 45.0 S 169.7 E 0.370 (Bègue et al., 2024) 

NDACC Arrival Heights, Antarctica 77.8° S 66.67° E 0.184 (Smale et al., 2021) 

NDACC St. Petersburg, Russia 59.9° N 29.8° E 0.020 (Makarova et al., 2024) 

NDACC Jungfraujoch, Switzerland 46.5° N 7.9° E 3.580 (Zander et al., 2008) 

NDACC Altzomoni, Mexico 19.1° N 98.6° W 3.985 (Grutter et al., 2008) 

In Situ  Bukit Kototabang (BKT), Indonesia 0.2° S 100.3° E 0.864 (Eko Cahyono et al., 2022), Reza Mahdi, BMKG 

In Situ Minamitorishima (MNM), Japan 24° N 153.9° E 0.007 (Takatsuji, S., 2024a)  

In Situ Ryori (RYO), Japan 39.3° N 141.8° E 0.260 (Takatsuji, S., 2024b) 

In Situ Yonagunijima (YON), Japan 24.4° N 123° E 0.030 (Takatsuji, S., 2024c) 

In Situ Capo Granitola (CGR), Italy  37.6° N 126° E 0.005 (Cristofanelli et al., 2017) 

In Situ Cape Point (CPT), South Africa 34.3° S 18.5° E 0.230 (Labuschagne et al., 2018) 

In Situ Cape Verde Atmospheric Observatory 
(CVO), Cabo Verde 

16.9° N  24.9° W 0.010 (Kozlova, E. et al., 2021) 

In Situ Jungfraujoch (JFJ), Switzerland 46.5° N 7.9° E 3.580 (Hueglin et al., 2024), Martin Steinbacher, Empa 

In Situ Mt. Kenya (MKN), Kenya 0.06° S 37.3° E 3.678 (Kirago et al., 2023), Martin Steinbacher, Empa 

Tall tower East Trout Lake, Canada 54.3 N 104.9 W 0.502a (Chen et al., 2014), Douglas Worthy, ECCC 

Aircraft East Trout Lake, Canada 54.3 N 104.9 W - (McKain et al., 2024) 
a This is the surface altitude, and the measurement intake are at four levels (95, 55, 33, 22 m) installed on a 105 m SaskTel communication tower. 

2.4 GEOS-Chem and prior estimates 

The GEOS-Chem model (http://www.geos-chem.org, last access: 1 July 2024) is a global 3D CTM that uses assimilated 

meteorological observations as input from the NASA Global Modelling and Assimilation Office (GMAO). We use version 

14.1.1 of the GEOS-Chem CTM driven by meteorological input from the Modern-Era Retrospective analysis for Research and 245 
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Applications, Version 2 (MERRA-2; Gelaro et al., 2017). The meteorological fields have a native resolution of 0.25  0.3125 

with 72 vertical levels from the surface to 0.01 hPa, which is degraded to 2  2.5 horizontal grid and 47 vertical levels (Bey 

et al., 2001). For the purpose of global CO assimilation in this study, the linear CO-only simulation of GEOS-Chem, also 

known as “tagged CO”, is used with prescribed monthly mean OH fields from a 10-year archived full chemistry simulation 

based on version 14 of the model. The tagged CO simulation reduces the computation cost relative to the full-chemistry and 250 

has been widely applied in different studies in the past (Heald et al., 2004; Jiang et al., 2017; Jones et al., 2009; Kopacz et al., 

2010; Lutsch et al., 2020; Tang et al., 2023; Wunch et al., 2019). Version 14.1.1 of the tagged CO simulation incorporated the 

improved secondary CO production scheme for the tagged CO simulation, which reduces the differences between full 

chemistry and tagged CO simulations, especially in regions strongly influenced by biogenic emissions and chemistry (Fisher 

et al., 2017). The biogenic source of CO in the full chemistry simulation is based on the oxidation of volatile organic 255 

compounds (VOCs) produced by the Model of Emissions of Gases and Aerosols from Nature (MEGAN version 2.1) inventory 

(Guenther et al., 2012). 

For the results presented here, we specify fossil fuel emissions of CO from the Community Emissions Data System 

(CEDS) inventory (Hoesly et al., 2018). Biomass burning (BB) emissions are based on the four different BB inventories 

described below. These BB emissions have been used in various studies (Griffin et al., 2020; Jin et al., 2024; Li et al., 2020; 260 

Zhang et al., 2022), and are used as our prior emissions in the inversion analyses conducted here. 

2.4.1 QFED 

The Quick Fire Emissions Dataset version 2.5r1 (QFED v2.5r1) (Koster et al., 2015), is a global product of biomass 

burning emissions which was developed for the NASA GEOS model. It applies the fire radiative power (FRP) method with a 

cloud correction technique (Koster et al., 2015), where the location of fires and FRP are derived from the polar orbiting 265 

Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the NASA’s Terra and Aqua satellites. QFED 

provides daily emissions with a horizontal spatial resolution of 0.1° x 0.1°, and GEOS-Chem applies a climatological profile 

based on WRAP (Western Regional Air Partnership) method  (WRAP, 2005) to distribute the emissions over the diurnal cycle. 

In the QFED implementation in GEOS-Chem, the setup of the plume injection height follows Fischer et al. (2014) and Travis 

et al. (2016), where the 65% of the biomass burning emissions are allocated to the planetary boundary layer (PBL) and the 270 

remaining 35% belongs to the free troposphere. The QFED data can be accessed from 

http://geoschemdata.wustl.edu/ExtData/HEMCO/QFED/v2023-05/ (last access: 1 July 2024).  

2.4.2 GBBEPx 

The Blended Global Biomass Burning Emissions Product eXtended (GBBEPx v4, Zhang et al., 2012; 2019), developed 

by NOAA National Environmental Satellite, Data, and Information Service (NESDIS), produces daily global biomass burning 275 

emissions. GBBEPx blends information from QFED and fire emissions estimated from the Visible Infrared Imaging 

Radiometer Suite (VIIRS) instrument onboard Suomi National Polar-orbiting Partnership (SNPP) and Joint Polar Satellite 
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System (JPSS). VIIRS fire emissions are obtained using FRP derived from VIIRS data in an approach that is similar to the use 

of MODIS FRP data in QFED (Csiszar et al., 2016), but with a different fire detection scheme (Zhang et al., 2019). The blended 

GBBEPx emissions are produced daily at a resolution of 0.25  0.3125, and the same profile is applied to distribute the 280 

emissions over the diurnal cycle as is used for QFED. The implementation of GBBEPx in GEOS-Chem assumes the same 

plume injection height scheme as for QFED. The GBBEPx v4 data can be accessed from 

https://www.ospo.noaa.gov/pub/Blended/GBBEPx/ (last access: 1 July 2024).  

2.4.3 GFAS 

The Global Fire Assimilation System (GFAS v1.2, Kaiser et al. 2012; Di Giuseppe et al., 2021), utilized by the 285 

Copernicus Atmosphere Monitoring Service (CAMS), provides daily estimate of biomass burning emissions by assimilating 

FRP observations from MODIS instruments on the Terra and Aqua satellites. GFAS estimates emissions by conversion of 

FRP to the dry matter burned and the use of biome-specific emission factors. GFAS utilizes the vegetation type prescribed by 

the Global Fire Emissions Database (GFED). The daily data are globally available at a resolution of 0.1  0.1 from 2003 to 

the present time, which can be accessed from https://ads.atmosphere.copernicus.eu/datasets/cams-global-fire-emissions-290 

gfas?tab=overview, (last access: 11 June 2024). In the GEOS-Chem simulations, we use the same diurnal cycle as used in 

QFED and GBBEPx. Additionally, GFAS provides information about the daily injection height (i.e., mean altitude of 

maximum injection (MAMI)) of the emissions. In GEOS-Chem, it is assumed that the emissions are injected uniformly from 

the surface to the MAMI. 

2.4.4 CFFEPS 295 

The Canadian Forest Fire Emissions Prediction System (CFFEPS v4.0, Chen et al., 2019) produces biomass burning 

emissions for North America using information from the Canadian Forest Service (CFS), Canadian Wildland Fire Information 

System (CWFIS), and meteorological inputs from ECCC’s Global Environmental Multiscale (GEM) model. The product 

provides hourly fire emissions and smoke plume injection height at individual hotspot locations. In implementing the CFFEPS 

emissions in GEOS-Chem, the emissions were aggregated to the GEOS-Chem grid resolution with a weighted average plume 300 

height based on the CO2 emission level. The CO2 emission level was used in determining the injection height for all species in 

CFFEPS, even though here we focus only on the CO emissions. The plume injection height estimates from the FireWork 

plume rise model (Anderson et al., 2011; Chen et al., 2019) on which CFFEPS is based, have been validated against satellite- 

driven (e.g., TROPOMI) aerosol plume heights (Griffin et al., 2020). 

3 Inversion methodology 305 

The inversion framework utilizes the CHEEREIO assimilation toolkit (Pendergrass et al., 2023), which employs a 

localized ensemble transform Kalman filter (LETKF). A detailed description of the LETKF algorithm used is provided in Hunt 
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et al. (2007). We use CHEEREIO to derive optimized estimates of globally gridded emissions of CO between May and 

September 2023 at a spatial resolution of 2  2.5 and a temporal resolution of three days by assimilation of TROPOMI 

satellite and TCCON observations. The solution state vector of emissions, 𝒙𝒂, is given by 310 

 𝒙𝒂തതത = 𝒙𝒃തതത + 𝛾𝑿𝒃𝑷𝒂෪ ൫𝒀𝒃൯
்

𝑹ିଵ൫𝒚௢ − 𝐻(𝒙௕)തതതതതതതത൯, (1) 

where the overbar represents the ensemble mean, 𝒙𝒃 is the background state vector, 𝒚௢ is the observation vector, 𝐻(𝒙௕) is the 

model simulation of the observations with observation operator H, R is the observation error covariance matrix, 𝑷𝒂෪  is the 

analysis error covariance matrix where tilde represents the ensemble space, 𝑿௕  is the background perturbation matrix, 𝒀௕ is 

the observation perturbation matrix (see the detailed description of LETKF variables in Hunt et al., 2007). 𝛾 is a regularization 315 

factor used to prevent overfitting or underfitting to observations by balancing the relative influence of the a priori estimate and 

the measurements in the inversion. It serves as a pragmatic correction for uncertainties that are hard to quantify, such as 

unaccounted observation error correlations (Hakami et al., 2005; Lu et al., 2022; Voshtani et al., 2023). 

To simulate the observations, we have developed an observation operator for each measurement type. The observation 

operator maps the model emission fields (i.e., state space) into the observation space as follow:  320 

 𝐻(𝒙௕) = ℎ௩[𝒄௔ ௣௥௜௢௥௜ + 𝑨(𝑴(𝒙௕) − 𝒄௔ ௣௥௜௢௥௜)], (2) 

where 𝑨 denotes the averaging kernel of the retrieval, capturing the vertical sensitivity of the retrieval profiles relative to the 

real atmosphere, 𝒄௔ ௣௥௜௢௥௜  is the a priori profile provided by measurement data, 𝑴(𝒙௕) represents a forward operator that 

operates on the emissions state vector and produces CO profiles that are spatially and temporally interpolated at the locations 

and times of the measurements, and ℎ௩ describes the vertical summation operator based on pressure weighting for computing 325 

model-equivalent column retrievals. To obtain a posteriori estimate of CO emissions, we begin by initializing the ensemble 

scaling factors using a multiplicative random perturbation to the prior estimates from all emission sources at the grid scale 

(i.e., spatially varying perturbations), sampled from a multivariate lognormal distribution (see the detailed description of 

ensemble generation in Pendergrass et al. (2023), Section 3.2). We assume lognormal errors on the prior emissions to ensure 

the positivity of the solution (i.e., prevent unrealistic negative scaling factors) and to better capture the skewed tails of the 330 

emissions distribution (Maasakkers et al., 2019; Plant et al., 2022). In the next step, CHEEREIO first runs GEOS-Chem for 

each ensemble member over the assimilation window and then applies Eq. 2 to those ensembles in the LETKF process. This 

process further scales the emissions based on the observation increments (i.e., 𝒚௢ − 𝐻(𝒙௕)), and the observation and the prior 

error covariances (Eq.1). Note that during the construction of error covariances, a logarithmic transform of the scaling factor 

distributions to a normal distribution is required to satisfy the assumptions of LETKF (Hunt et al., 2007), which can be 335 

transformed back to the lognormal distribution after the LETKF process. Finally, gridded total CO emissions from all sources, 

including biomass burning (BB), fossil fuel, and biogenic emissions, are updated through the inversion process. Note that the 

analysis here will focus on regions where BB plays a dominant role in the attribution of CO emissions between May and 

September 2023, and where BB emissions are spatially distinct from fossil fuel emissions. As a result, misattribution of CO 

emissions to BB from other sources will be minor and likely falls within the uncertainty bounds of the a posteriori estimates.  340 
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To obtain an efficient performance of the inversion using TCCON data, it is important to tune the assimilation 

parameters with the available configuration in CHEEREIO. This was accomplished through a series of observing system 

simulation experiments (OSSEs), which are described in Appendices A and B. We use 24 ensemble members following 

previous inversion studies with the same approach (Liu et al., 2019; Pendergrass et al., 2023). Our sensitivity test with a larger 

ensemble size of 36 produced nearly identical posterior error estimates, with negligible improvements; thus, for saving on the 345 

computational cost of the analysis, we used the smaller ensemble size.  

Before starting the inversion, we first conducted a 1-year model spin-up in 2022 (January-December) for all experiments 

to minimize the impact of the initial conditions on the analysis. Then, an ensemble spin-up without assimilating observations 

is performed, where emissions are randomly perturbed at each grid point based on a lognormal distribution to create an 

ensemble spread. We assume a lognormal standard deviation of σ = 0.2, centered around 1, that provides ensemble member 350 

scaling factors between 0.55 and 1.82 with 99% confidence. This perturbation level is sufficient to generate meaningful 

ensemble spread while avoiding unrealistically high or low values for constructing the prior error covariance. The scaling 

factors are assumed to be spatially correlated using an exponential decay function with a correlation distance of 500 km, while 

no explicit temporal correlations are imposed. We use a spin-up of about three months, comparable to the CO lifetime during 

summer, not only to provide a reasonable spread in the ensemble members but also to ensure the concentrations will reflect 355 

the perturbations in emissions. At the start of the assimilation, we adjusted the ensemble members by a global multiplicative 

factor, making the ensemble mean equivalent to the TROPOMI and TCCON observations. This maintains a globally unbiased 

field of concentrations relative to the observations. Because the LETKF is sequential, it takes some time for the observations 

to provide sufficient information to update the emissions. To account for this lag, we use a one-month burn-in period in 

CHEEREIO (Pendergrass et al., 2023), for which the inversion output is discarded in postprocessing.  360 

The performance of the inversion can be also enhanced using different LETKF parameters, such as localization and 

inflation parameters (Bisht et al., 2023; Miyazaki et al., 2012, 2020). For the TROPOMI and TCCON data, we use 

regularization factors, 𝛾்ோை௉ைெூ = 0.2 and 𝛾்஼஼ைே = 5, respectively, estimated separately for each observation type through 

the OSSE experiments (see Appendix B). These factors scale the observation error covariances to balance the weight given to 

the measurements relative to the prior weight in the inversion. For the high spatial density of satellite observations, a factor of 365 

𝛾 < 1 is required to prevent overfitting, while for sparse measurements like TCCON, a factor of 𝛾 > 1 is typically suitable to 

prevent underfitting of the observations. We also use an inflation factor (Δ = 0.08) to compensate for a rapid reduction of the 

ensemble spread, which may otherwise prevent the inversion from being updated by subsequent observations. We set a 

localization radius of 500 km following previous CO inversion studies (Gaubert et al., 2023; Miyazaki et al., 2015) to avoid 

the impact of distant observations, which may be affected by sampling errors and spurious correlations (see Fig. S1). We 370 

generate super-observations for both TROPOMI and TCCON by aggregating measurements to the model time and grid. This 

aggregation helps mitigate spatiotemporal representativity errors and facilitates LETKF computations. The associated super-

observation errors are calculated as described in Section 2.1. We further apply an inflation factor to the observation errors, 

while initially assuming an observation error correlation of 0.28, following previous studies (Chen et al., 2023; Pendergrass et 
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al., 2023). We do not explicitly account for model transport errors in calculating the super-observations, but the influence of 375 

these errors will be captured by the error inflation in the inversion. 

We conducted a series of assimilation experiments, which are listed in Table 2, to assess the impact of the use of TCCON 

and TROPOMI data and the choice of a priori emission inventories on the inferred CO emissions. Each experiment pairs a 

specific emission inventory—QFED, GBBEPx, GFAS, or CFFEPS—with either only TROPOMI observations or both 

TROPOMI and TCCON data in the assimilation process. Although the emissions are optimized at the grid box scale, we 380 

aggregate emissions for the following five regions (shown in Fig. 2), where there are typically significant fire emissions 

between May and September: North America (NA), Siberia (SI), South America (SA), Africa (AF), and South Asia and 

Australia (SA&A). Any emission from outside of these five regions are captured in the Rest of the World (ROW) category. 

The emissions from the five regions account for 90%–95% of biomass burning emissions globally. 

 385 

Figure 2: Major source regions of the biomass burning CO emissions used in the inversion analysis between May-September 2023, with an 
example of the a priori emission estimate using the GFAS bottom-up inventory. The a priori estimates for these regions from other inventories 
are listed in Table 3. 
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Table 2: Assimilation experiments with the choice of emission inventories and assimilated observations used in the global inversion between 
May-September 2023.   390 

Experiment Biomass burning emission inventory Assimilated observationsb 

1 QFED - 

2 QFED TROPOMI 

3 QFED TROPOMI+TCCON 

4 GBBEPx -  

5 GBBEPx TROPOMI 

6 GBBEPx TROPOMI+TCCON 

7 GFAS -  

8 GFAS TROPOMI 

9 GFAS TROPOMI+TCCON 

10 CFFEPSa -  

11 CFFEPS TROPOMI 

12 CFFEPS TROPOMI+TCCON 

a The inversions based on CFFEPS emission inventory in North America uses GFAS global emissions for the regions outside of North America. 
b No observations are assimilated (-), corresponding to the model a priori or control run with a particular biomass burning emission inventory.  

4 Results and discussions 

This section presents our main results by first assessing the CO emissions on a global scale (Section 4.1) and then 

focusing on North American emissions (Section 4.2), where the most extreme fire events took place during the study period 395 

in summer 2023. A series of experiments are conducted as listed in Table 2 for both global and regional analysis. For the global 

analysis (Sections 4.1.1-4.1.3), we use three biomass burning emission inventories (QFED, GBBEPx, GFAS) as priors, and 

compare how assimilating TROPOMI satellite observations alone or jointly with TCCON ground-based measurements affects 

our emissions estimates. A method to measure and compare error variance and information content is presented. For evaluation, 

two types of independent data, including NDACC total column and surface WDCGG measurements, in addition to the same 400 

TCCON observations (non-independent) are used. Focusing on North America analysis (Sections 4.2.1-4.2.2), we include an 

additional regional prior emissions inventory from CFFEPS (Chen et al., 2019) provided by ECCC and additional experimental 

InSb XCO data from TCCON at ETL in our analysis. First, our analysis explores the spatiotemporal variability of a posteriori 

and a priori CO fields during extreme fire episodes. Then, as a case study at ETL, we assess the impact of assimilating 

additional information from experimental TCCON data at ETL, with unique retrieval characteristics, on local emissions 405 

constraints. The evaluations are performed using independent aircraft and tall tower measurements. The discussion presented 
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in these two sections allows us to highlight both the broad and local impacts of our approach and the specific improvements 

achieved in areas most affected by fires. 

4.1 Global analysis 

4.1.1 Comparison between prior and posterior emissions 410 

Table 3 shows the total regional BB CO emissions from the a priori bottom-up inventories and the a posteriori emission 

estimates (i.e., ensemble mean) obtained from the TROPOMI-only assimilation and the joint TROPOMI and TCCON (i.e., 

TROPOMI+TCCON) assimilation. The standard deviations shown in this table are posterior ensemble spread based on the 

LETKF assimilation, which is referred to as posterior uncertainty throughout the discussion in this study. The vector of 

posterior uncertainties has the same size as the state vector, computed for each grid cell after each assimilation window. 415 

Accordingly, the posterior uncertainty in an inversion region (i.e., regional or global scale) is the ensemble standard deviation 

of the total emissions. The total emissions per ensemble is obtained by summing the emissions across all grid cells in that 

region. For the inversion period between May and September 2023, there is a large discrepancy in the a priori emissions 

between the three global inventories, with GFAS producing the highest global emissions of 230.3 Tg CO, which is a factor of 

1.3 times GBBEPx (182.6 Tg CO) and 1.4 times QFED (164.5 Tg CO) emissions. These differences are more substantial in 420 

the regions of North America (NA) and Siberia (SI), where the boreal wildfires play an important role. In NA, the GFAS 

emissions are greater than the emissions from GBBEPx and QFED by a factor of 2.1 and 2.5, respectively. In SI, GFAS is a 

factor of 3.1 and 2.1 greater than GBBEPx and QFED, respectively. Although all GFAS, GBBEPx, and  QFED are based on 

estimates of FRP derived from satellite products (i.e., MODIS and/or VIIRS), there are many driving factors that cause the 

differences in the total emissions (Li et al., 2020; Liu et al., 2024), which can reach up to an order of magnitude in a finer 425 

spatiotemporal scale (Stockwell et al., 2022). In contrast, the CFFEPS emissions in NA are comparable to GFAS despite using 

a different approach for estimating the emissions.  
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Table 3: Biomass burning CO emissions estimates of a priori and a posteriori in the major source regions based on Fig. 2 for the period 
between May and September 2023. The a posteriori estimates are denoted by the ensemble mean and standard deviation. 

Region 
A prioria (Tg CO) A posteriori TROPOMI-only (Tg CO) A posteriori TROPOMI+TCCON (Tg CO) 

QFED GBBEPx GFAS CFFEPSb QFED GBBEPx GFAS CFFEPS QFED GBBEPx GFAS CFFEPS 

North 

America 

(NA) 

37.1 42.7 91.0 90.2 
110.4  

19.8 

112.8  

19.9 

127.2  

17.2 

125.6  

17.7 

111.2  

15.5 

115.3  

15.1 

130.1  

12.9 

129.3  

12.5 

Africa (AF) 65.1 87.4 53.5  
104.6  

17.3 

117.2  

18.8 

100.3  

17.4 
 

103.4  

16.2 

117.8  

17.7 

100.8  

16.4 

 

Siberia (SI) 16.5 11.1 34.5  29.4  9.8 24.1  8.5 
44.5  

12.6 
 29.1  8.2 22.8  6.9 46.4  9.2 

 

South 

America 

(SA) 

22.1 22.1 19.1  
27.2  

10.3 

27.4  

10.3 

24.9  

10.0 
 28.1  9.7 27.0  9.4 25.0  9.1 

 

South Asia 

& Australia 

(SA&A) 

13.8 12.1 16.3  17.2  6.4 15.6  6.3 19.5  6.8  17.2  5.7 16.1  5.9 20.2  6.1 

 

Rest of the 

World 

(ROW)c 

9.8 7.2 5.8  14.1  3.0 12.5  3.0 12.2  3.2  18.9  2.7 12.6  2.2 16.2  2.7 

 

Global 164.5 182.6 230.3  
302.9  

66.6 

309.6  

66.8 

328.6  

67.1 
 

307.9  

58.0 

311.6  

57.1 

338.7  

56.4 

 

a A priori Fossil fuel and biofuel emissions are provided by CEDS inventory and biogenic emissions are obtained from MEGAN version 2.1 in all the cases. 430 
b The global inversions with CFFEPS BB emissions uses GFAS global BB emissions for the regions outside of North America. 
c The source of CO in the rest of the world also includes the oxidation of methane and non-methane hydrocarbons. 
 

After assimilating the TROPOMI data, the a posteriori emissions suggest a large increase in global emissions from the 

a priori, with global a posteriori emissions of all inventories in close agreement with each other. We estimate global fire 435 

emissions of 303±67 Tg CO, 310±67 Tg CO, and 329±67 Tg CO for QFED, GBBEPx, and GFAS, respectively. In North 

America, the a posteriori emission estimates are also consistent, with estimates of 126±18 Tg CO, 127±17 Tg CO, 113±20 Tg 

CO, and 110±20 Tg CO for CFFEPS, GFAS, GBBEPx, and QFED, respectively. For most other regions, the inferred emissions 

all agree with within the a posteriori uncertainty except for Siberia, where the a posteriori emission estimates are 45±13 Tg 

CO, 24±9 Tg CO, and 29±10 Tg CO for GFAS, GBBEPx, and QFED, respectively. The discrepancy between the a posteriori 440 

Siberian emissions could be because the assimilation did not ingest TROPOMI observations poleward of 60°N, and there are 

large emission sources poleward of 60°N, as can be seen in Fig. 4. Note that although the emissions beyond 60° may not be 

directly corrected from local observations at the current assimilation step, they can still be updated using observations between 

60°S-60°N and through model transport and cycling of the assimilation that propagate information globally. The overall 
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agreement between the a posteriori emission estimates obtained with the different a priori emissions suggest that TROPOMI 445 

provides sufficient information to constrain the regional emission estimates. 

The joint TCCON and TROPOMI inversion produces a posteriori emission estimates that agree to within 5% of the a 

posteriori emissions from the TROPOMI-only inversion, but these differences vary among the source regions. At the global 

scale, the a posteriori estimates remain within 1𝜎 uncertainty, implying that the increment from the joint inversion closely 

matches that from the TROPOMI-only inversion. Previous inversion studies with CO, and CO2 measurements showed that 450 

combining satellite total column observations with surface in situ measurements (Byrne et al., 2020; Kim et al., 2024; Wang 

et al., 2018) could benefit from the complementarity between the two types of measurements and provide posterior fluxes that 

are better informed by measurements. We will discuss later in this section the spatiotemporal distributions of the a posteriori 

emissions in comparison with the a priori across all inventories. Table 3 shows that the joint inversion reduces the uncertainties 

in the posterior relative to the inversion using only the TROPOMI data. We find a global uncertainty reduction of nearly 15% 455 

in all the a posteriori emission estimates when including the standard TCCON XCO in the inversion. This reduction is likely 

due to the additional temporal information and higher accuracy provided by TCCON, compared to TROPOMI. The reduction 

of uncertainty varies between the source regions. In the Northern Hemisphere extratropics, where most TCCON stations are 

located, the uncertainty reduction reaches 29% in NA with CFFEPS emissions, followed by Siberia with GFAS emissions 

(26% reduction). On the other hand, for the tropics and subtropics in the Southern Hemisphere, where there are fewer TCCON 460 

stations, we find smaller reductions in uncertainties (between 5% and 10%). Goudar et al. (2023) investigated the uncertainties 

in estimating CO emissions from isolated fires using TROPOMI assimilation. They reported that these estimated uncertainties 

primarily arise from errors due to spatial under-sampling of the CO field by TROPOMI observations and errors due to 

assumptions about the temporal variability of the emissions. Although we did not examine individual fire events, the lower 

overall uncertainty from the joint TCCON and TROPOMI assimilation suggests an improved handling of the spatial under-465 

sampling error in TROPOMI-only assimilation, which is reflected in the uncertainty estimates. This improvement could be 

particularly important, as it shows the isolated effect of adding TCCON data to the inversions, when other factors such as a 

priori emissions and their errors were kept fixed between the joint and TROPOMI-only assimilations.  
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Figure 3: Comparison of the temporal variability of the CO emissions estimate for the priors (blue), posteriors using TROPOMI-only 470 
assimilations (green), and posteriors using joint TROPOMI and TCCON assimilations (red), among the three global biomass burning 
inventories, including (a-e) QFED, (f-j) GBBEPx, and (k-o) GFAS used as the priors, and for the major inversion source regions as shown 
in Fig. 2. 
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Figure 4: Comparison of the spatial distribution of the time-averaged biomass burning CO emissions in the (a-c) a priori, (d-f) a posteriori 475 
– a priori using TROPOMI-only assimilation, and (g-i) a posteriori – a priori using joint TROPOMI and TCCON assimilation, and among 
three global biomass burning inventories.  

To better understand the influence of assimilating TCCON XCO together with the TROPOMI XCO, we examine the 

temporal and spatial variability of the estimated emissions. Fig. 3 shows a priori emissions in blue, a posteriori emissions from 

the TROPOMI-only assimilation in green, and the a posteriori emissions from the joint inversion in red between May and 480 

September. In North America, QFED shows only slight variations in the a priori emissions (Fig. 3a). GBBEPx (Fig. 3f) shows 

some degree of improvement over QFED relative to TROPOMI posterior during a few fire episodes. For GFAS, however, this 

improvement over QFED (Fig. 3k) is significant, so that the GFAS prior exhibits reasonable agreement in both magnitude and 

temporal variability with the a posteriori emissions from the TROPOMI-only assimilation. The posteriors from different priors, 

but with the same set of assimilated observations, show overall stronger temporal variability compared to their respective 485 

priors. For instance, in North America, while the QFED and GBBEPx priors are relatively flat compared to the GFAS prior, 

all their posteriors exhibit enhanced and more consistent variability (Fig. 3a,f,k). Still, differences to some extent remain 
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noticeable between these posterior time series, likely driven by differences in the spatial and temporal distribution of the priors, 

and their interaction with observational constraints through model transport and mixing. Comparison of the spatial distribution 

of the a priori emissions (Fig. 4a-c) indicates that two main regions of boreal wildfires in (eastern) Quebec and (western) 490 

Alberta and British Columbia, Canada, correspond to the large differences in regional emissions among the inventories, 

although their overall global spatial distributions are similar. The a posteriori – a priori emissions from the TROPOMI-only 

inversions confirm the underestimate of CO emissions in QFED and GBBEPx, in those regions in Canada (Fig. 4d-f). GFAS, 

unlike the other two inventories, has significantly larger emissions from wildfires across Canada, so that they are comparable 

with the magnitude of the a posteriori emissions in that region (see Table 3 for a comparison of total emissions and Fig. S2 in 495 

the supplements for the separate a posteriori emission maps associated with Fig. 4).  

In Siberia, the a posteriori emissions provide an enhancement on the a priori in a few episodes in July and August (Fig. 

3c,h,m), indicating an overall low level of emissions from all inventories. GFAS, followed by QFED, has not only higher 

emissions in the same locations as GBBEPx, but also has a greater area of BB emissions. However, the a posteriori emissions 

suggest that the GFAS inventory required larger adjustments in the central and western part of SI, suggesting errors in the 500 

spatial allocation of the a posteriori fire emissions in Siberia. In Africa and South America, the emissions enhancement occurs 

in late July through the end of the inversion period in September, which are shown in Fig. 3b,g,l,d,i,n. For these regions, 

GBBEPx, followed by QFED, provide a closer estimate to the a posteriori than GFAS, while the posterior emissions from the 

TROPOMI-only and joint inversions remain nearly identical (Fig. 4d-f versus 4g-i). This could be because there are very few 

TCCON measurements in the Southern Hemisphere near that region. In South Asia and Australia, the emissions enhancement 505 

occurs only in two episodes in early May and early September, which remain nearly consistent among the inventories. Finally, 

comparing the regional a posteriori emissions from the TROPOMI-only and joint inversions (Fig. 3k,l,m,n,o), we find different 

temporal variability of the updated emissions, which are distinctive for several wildfire episodes. Additionally, we observed 

improvements in the correlation between analogous posterior timeseries across different BB inventories. For example, the 

temporal correlation between the QFED and GFAS posterior emissions in North America increased from 𝑟 = 0.85 in the 510 

TROPOMI-only assimilation to 𝑟 = 0.90 in the joint TROPOMI and TCCON assimilation. These findings suggest that the 

higher temporal resolution of the TCCON measurements provide additional constraints on temporal variability of the emissions 

in the inversion, which is consistent with findings from previous studies on CO2 inverse modelling (Byrne et al., 2020, 2024; 

Chevallier et al., 2011).  

Overall, according to the discussion above and the results from the Observing System Simulation Experiments (OSSEs) 515 

demonstrated in Appendices A and B, we find that although TCCON alone may not significantly constrain spatiotemporal 

variability in the major inversion regions—likely due to the limited number of measurement sites—it is still clear that adding 

TCCON to TROPOMI in the joint inversion reduces the posterior uncertainty estimates everywhere compared to the 

TROPOMI-only inversion. We found that the reduction of the uncertainty by adding TCCON measurements becomes more 

significant during high BB emission episodes or wildfire events. Later, in Section 4.1.3, we evaluate the a priori together with 520 

the a posteriori from both TROPOMI-only and joint inversions using independent measurements.  
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4.1.2 Error variance reduction and the information content 

We evaluate the performance of the inversion for constraining BB CO emissions by quantifying the information content 

provided by the TROPOMI and TCCON data. To achieve this, we use two approaches: (i) computing the reduction of 

uncertainty in the model space and (ii) computing the degree of freedom for signal (DOFS) in the ensemble subspace. Using 525 

these methods will quantify the information provided by the two observing systems individually. In the first approach, we 

compute the a priori and a posteriori error variance for each grid point, which is obtained as part of the solution for LETKF 

processing in CHEEREIO. The reduction of error variance can be used as a metric for evaluating the inversion performance 

(Feng et al., 2009); as such, a greater error variance reduction at a grid point indicates that more reliable information from 

observing system is available to constrain emissions for that grid. Accordingly, we define a normalized error reduction (𝜀) for 530 

each grid point as follows:  

𝜀௜ = 1 −
(ఙ೔

ೌ)మ

(ఙ೔
್)మ

 , (3) 

where (𝜎௜
௔)ଶ and (𝜎௜

௕)ଶ denote the error variance of the a posteriori and the a priori, respectively, for the ith emissions in the 

state vector. 𝜀௜ varies between 0 to 1, with greater values indicating a higher reduction of a priori uncertainties. Although the 

LETKF method approximates the a posteriori uncertainty due to the reduced rank representation associated with the limited 

number of ensembles used to construct the error covariances (Livings et al., 2008), it still provides useful information with 535 

which to evaluate the analyses. 
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Figure 5: Comparison of the time-averaged (May-September 2023) a posteriori error variance reduction, 𝜀 , of (a-c) TROPOMI-only 
assimilation and (d-f) joint TROPOMI and TCCON assimilation for three global biomass burning inventories used as a prior. 

Fig. 5 shows the error variance reduction, 𝜀௜ , for the a posteriori emissions based on the three different global BB 540 

inventories (i.e., QFED, GBBEPx, and GFAS) using TROPOMI-only measurements (Fig. 5a-c) and using joint TROPOMI 

and TCCON measurements (Fig. 5d-f). The greater reduction in error variances implies higher confidence in the posterior 

estimate at those locations. We find greater reduction of error variance in the joint inversion compared to the inversion with 

TROPOMI-only data, primarily in NA and in the vicinity of TCCON stations. In fact, the reductions correlate with the weight 

of observations compared to the model a priori, so that increasing the weight of observations with respect to the model a priori 545 

could result in higher reductions of the error variances. For example, with QFED as the a priori emissions, the rate of reduction 

is greater in boreal Canada, central and southern part of the United States, western Europe, eastern Asia, Siberia, and Australia. 

This indicates where TCCON provides additional information to further constrain the emissions based on the QFED BB 

inventory. In addition, comparing the cases with different inventories suggests that there could be differences in error variance 

reduction due to the model a priori. Accordingly, the slightly greater reduction with GFAS, compared to QFED or GBBEPx, 550 
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is likely due to its higher spatiotemporal variability, which enables the inversion to better exploit the information from 

observations. 

 

Figure 6: Computed degree of freedom for signal in ensemble subspace (DOFS௞) associated to the TROPOMI-only (blue) and joint 
TROPOMI and TCCON (red) inversions for three global biomass burning inventories (QFED, GBBEPx, GFAS) used as a priori. 555 

In the second approach, following Zupanski et al. (2007), we compute the degree of freedom for signal (DOFS) 

approximated for the ensemble-based assimilation method. The DOFS, as defined by Rodgers (2000), quantifies the number 

of pieces of independent information in an observing system toward constraining the state vector of dimension n (also 

equivalent to the total number of grids in the model). It is defined as  

DOFS௡ = 𝑡𝑟(𝑰௡×௡ − 𝑷௡×௡
௔  (𝑷௡×௡

௕ )ିଵ) = 𝑡𝑟(𝑨௡×௡), (4) 

where 𝑷௡×௡
௔  and 𝑷௡×௡

௕  are analysis and background error covariances, 𝑰௡×௡ denotes the identity matrix, and 𝑨௡×௡ represents 560 

the averaging kernel matrix. To compute 𝑨௡×௡ and then DOFS௡, a Jacobian matrix must be constructed in full rank, requiring 

extensive computational cost (e.g., Varon et al., 2022). In an ensemble-based approach, computing the Jacobian matrix in the 

state space is impractical since the limited number of ensembles are not sufficient to describe full rank error covariances. 

However, those quantities can be approximated for the ensemble subspace with reduced rank error covariance matrices, so 

that the information provided by the observation system is measured relative to the maximum independent pieces of 565 

information determined by the ensembles size, k. Therefore, the DOFS௞ is defined as, 

DOFS௞ = 𝑡𝑟((𝑰௞×௞ + 𝑪௞×௞)ିଵ𝑪௞×௞) =  𝑡𝑟(𝑨௞×௞), (5) 

where 𝑪௞×௞  denotes the symmetric information matrix, 𝑰௞×௞  is the identity matrix, and 𝑨௞×௞  represents an equivalent 

averaging kernel or influence matrix, all obtained in the ensemble subspace. The derivation of Eq. (5) started from Eq. (4) is 

described in Zupanski et al. (2007) and Zupanski (2005). Subsequently, we can compute the information matrix, 𝑪௞×௞, either 

within the LETKF calculation of CHEEREIO or as a postprocessing step if all the outputs from the ensemble members and 570 

the control run are already stored. Accordingly, every element of matrix 𝑪, are computed as 

𝑪௜௝ = 𝒛௜
்𝒛௝, (6) 

where 𝒛 is a vector of dimension m (the number of observations) and is defined as 
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𝒛௜(𝑚) = 𝑹௠×௠

ି
భ

మ  (𝐻௠(𝒙௜) − 𝐻௠(𝒙) ), (7) 

where the observation operator 𝐻௠ is applied to the perturbed, 𝒙௜, and unperturbed state vector 𝒙, and weighted by the inverse 

of square root of observation error covariance 𝑹௠×௠. Migliorini (2013) used the same method in the square root filter, where 

the forecast error covariance matrix is approximated by the sample covariance matrix, which is produced by the forecast of 575 

each ensemble member. Once matrix 𝑪 is constructed, one can use Eq. (5) to obtain 𝑨௞×௞ and the DOFS௞ for the ensemble 

subspace. Note that using this approach, there are at most k – 1 independent pieces of information for the entire assimilation 

period. Thus, with k = 24 in this work, the computed DOFS may vary between 0 and 23, mainly depending on the 

characteristics of the assimilated observations, such as their density and error statistics. Although this method does not produce 

DOFS in the state space of the emissions (Žagar et al., 2016), it enables a straightforward comparison of the information 580 

content across different experiments.  

The computed DOFS for different inversions are shown in Fig. 6. Adding TCCON data to the inversion increases the 

DOFS from the TROPOMI-only inversion for all the cases. These values increase from 11.1, 11.4, and 12.7 for the TROPOMI-

only inversions to 15.5, 15.6, and 16.9 for the inversions with TROPOMI and TCCON data using QFED, GBBEPx, and GFAS 

emissions, respectively. The higher DOFS from GFAS compared to the other BB inventories is also in agreement with its 585 

higher reduction of uncertainty in Fig. 5. This likely implies that the difference between the perturbed and unperturbed forecast 

of the state vector, which defines the elements of matrix 𝑪, correlates with the spatiotemporal variability of the prior emissions. 

Thus, GFAS prior, with greater variability than the other priors (e.g., Fig. 3a,f,k and Fig. 4a-c), may result in higher DOFS. 

4.1.3 Evaluation using ground-based observations 

We evaluate the inversion against TCCON, NDACC total column retrievals, and in situ WDCGG measurements to 590 

better understand the constraint from each measurement type used in the inversion. NDACC and WDCGG are independent 

data while TCCON are the same data as those used in the assimilation, so they are not independent for evaluating the joint 

inversions. Table 1 shows the measurement sites with their geographical information (latitude, longitude, and altitude above 

sea level). First, we evaluate the results against all the TCCON measurements from May to September 2023. In Fig. 7, the 

model is evaluated against hourly averaged TCCON data, with the a priori shown in blue and the a posteriori in red from either 595 

the TROPOMI-only inversions (in the left) or the joint TROPOMI and TCCON inversions (in the right). The statistics indicate 

that the inversions significantly improve on the prior for all the cases. Examination of the a priori models shows that the 

GBBEPx simulation slightly improves on the QFED simulation, with a coefficient of determination of 𝑅ଶ = 0.31 compared to 

𝑅ଶ = 0.27 with QFED. The GFAS simulation has the highest a priori correlation (𝑅ଶ = 0.54), resulting in the best a posteriori 

agreement with TCCON, with 𝑅ଶ  = 0.82 and 𝑅ଶ  = 0.87 for the TROPOMI-only and TROPOMI+TCCON assimilations, 600 

respectively. The time series plots in Fig. 7 show the improvement of GBBEPx on QFED, with better agreement between the 

simulation and the TCCON measurements when there are wildfire enhancements of XCO. The GFAS simulation shows a 

significant improvement during those peaks, indicating that the GFAS simulation better captures the time variability in the 
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measurements. The evaluation of the joint inversion using TROPOMI and TCCON XCO data against the TCCON 

measurements shows a further improvement of the inversions; both the slope and the 𝑅ଶ are closer to 1.0 than the results from 605 

the TROPOMI-only assimilation. This is expected because the same TCCON data are used in the inversion and the evaluation 

(Fig. 7d,h,l). 

 

Figure 7: Evaluation of the model a priori (blue) and a posteriori from TROPOMI-only assimilation (red) against TCCON measurements 
(green) for all sites together using time series and scatter plots based on (a, b) QFED, (e, f) GBBEPx, and (i, j) GFAS biomass burning 610 
emissions (left side). A similar evaluation of the model a priori against TCCON, but with a posteriori from joint TROPOMI and TCCON 
assimilation (red) using (c, d) QFED, (g, h) GBBEPx, and (k, l) GFAS as the prior biomass burning emissions estimates (right side). 
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Figure 8: Evaluation of the time-averaged model a priori (blue), a posteriori using TROPOMI-only assimilation (orange), and a posteriori 
using joint TROPOMI and TCCON observations (red) against independent NDACC and in situ measurements between May-September 615 
2023. Each panel is associated with a particular prior biomass burning emissions inventory, including (a, b) QFED, (c, d) GBBEPx, and (e, 
f) GFAS. The top row of each panel shows the coefficient of determination (𝑅ଶ) of the model using the prior or assimilation using the 
posterior with respect to the measurements, whereas the bottom row represents the mean bias and the standard deviation of the model or 
assimilation with respect to the measurements. Tsukuba, Lauder, and Wollongong are collocated stations for both TCCON and NDACC. 
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 620 

To assess the impact of TCCON on the performance of the inversion more objectively, we also compare the inversion 

results with independent NDACC column measurements and surface in situ measurements in Fig. 8. The 𝑅ଶ, mean bias, and 

standard deviation relative to the measurements are shown for the model a priori (QFED, GBBEPx, and GFAS) in blue, the a 

posteriori from the TROPOMI-only assimilation in orange, and the a posteriori from the joint TROPOMI and TCCON 

assimilation (i.e., TROPOMI+TCCON) in red. We find a higher 𝑅ଶ for both a posteriori estimates (i.e., TROPOMI-only and 625 

TROPOMI+TCCON) relative to the a priori estimates in almost all the cases, while there is an additional increase in correlation 

for the joint inversion compared to the TROPOMI-only inversion. The a posteriori from the TROPOMI-only assimilation 

provides a small reduction of the mean bias and standard deviation, and by adding TCCON to the assimilation, there is a further 

reduction at several sites (Tsukuba, St. Petersburg, MNM, RYO, YON). The added improvement in the posterior XCO 

obtained by adding the TCCON data to the inversion differs between sites. For the NDACC sites collocated or downwind of 630 

TCCON sites, such as Tsukuba, Lauder, Wollongong (collocated stations), and St. Petersburg (~2000 km downwind of 

European stations), the 𝑅ଶ increases more by adding TCCON to the inversion. The evaluation at the Arrival Heights NDACC 

station located in a remote area in Antarctica, far from both the TROPOMI and TCCON assimilated observations, shows an 

improvement in the a posteriori that suggests that the assimilation improves global background concentrations of CO. 

However, at the Altzomoni NDACC site, located about 75 km southeast of Mexico City and almost 2 km higher in altitude, 635 

we found little improvement after the assimilation. It is likely that the local topography cannot be captured in our global model, 

which has a 2  2.5 spatial resolution. In addition, the local ambient atmospheric conditions, such as stability and humidity 

in this region, cause most of the fire emissions to stay within the boundary layer, and neither the model nor the assimilation is 

capable of capturing such effects (Sha et al., 2021).  

For the surface in situ measurements, we also find an increase in the correlation between the a priori and the a posteriori 640 

estimates using the TROPOMI+TCCON assimilation, but with a smaller improvement than observed at the NDACC stations, 

with the exception of the JFJ and MKN stations, where there is a larger improvement. The relatively smaller improvement 

compared to NDACC may primarily be attributed to the fact that the surface sites have a larger representativeness error given 

our 2  2.5 grid resolution, which limits the ability of the assimilation to significantly correct for them. For example, at the 

CGR station, the local atmosphere is influenced by a land-sea wind regime that cannot be resolved by the relatively coarse 645 

grid resolution of the model. In addition, the vertical sensitivity of the TCCON and NDACC data based on their averaging 

kernels may partly impact these evaluations. 

Similar to the evaluation against NDACC, we find slight improvements in the mean bias and standard deviation at 

WDCGG surface stations. In most cases, adding TCCON to the assimilation reduces the error standard deviations (i.e., 

posterior−measurement errors), while the mean bias remains almost identical to that of the TROPOMI-only inversion. 650 

Comparison among the three BB cases shown in Fig. 8 indicates that, for equivalent a priori or a posteriori emissions estimates 

(e.g., for TROPOMI-only), their statistics are not significantly different at most measurement sites. 
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4.2 North America analysis 

4.2.1 Assimilation performance for constraining boreal wildfires emissions  

Our posterior emissions from the inversions indicated that North America has the highest level of BB emissions and 655 

contributed one-third of the global total in summer 2023. The emissions primarily came from the boreal forest across Canada, 

which were poorly estimated by the bottom-up emissions inventories, with a 31%–67% underestimation in the a priori relative 

to the a posteriori from both TROPOMI-only and joint inversions in this region during the study period (see Section 4.1 and 

Table 3). Thus, we take a closer look at the spatial and temporal characteristics of the XCO over North America to better 

understand the localized and episodic behavior of the fire emissions with respect to the different inventories. In addition to the 660 

three global BB emissions inventories discussed in the previous sections, here, we also include a regional bottom-up emissions 

inventory in North America from CFFEPS (Chen et al., 2019) provided by ECCC to compare with those global emissions. 

Note that for our global simulation with CFFEPS emissions in North America, we use GFAS for the global emissions which 

are replaced by CFFEPS in North America.  

 665 

Figure 9: Evaluation of the domain-averaged CO concentrations (XCO) of the a priori model (dashed lines) and a posteriori using TROPOMI 
assimilations (solid lines) for four different inventories in North America, including QFED (blue), GBBEPx (green), GFAS (red), and 
CFFEPS (purple), against TROPOMI XCO measurements (black). The a priori model refers to a model forecast using prior emissions and 
the a posteriori is equivalent to the ensemble mean from LETKF. Three extreme wildfire episodes across boreal regions are chosen for 
comparison between the assimilation results using different inventories and for comparison of the assimilation with the a priori model. 670 

We first focus on the temporal variability of the domain-averaged XCO in North America from the a priori model and 

a posteriori estimate using TROPOMI inversion with the four inventories. In Fig. 9, the model a priori for each emission 

inventory is shown in dashed lines with an ‘x’ marker, the a posteriori is shown with solid lines with a square marker, and the 

TROPOMI measurements themselves are indicated by the black line with circles. Fig. 9 shows that the a priori using QFED 
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and GBBEPx emissions have similar XCO in the entire period, except a slightly higher level of XCO with GBBEPx during 675 

May and June. On the other hand, the a priori XCO estimates with GFAS and CFFEPS are both greater in magnitude (~10 ppb 

higher) and more variable than those with QFED and GBBEPx. Although, the model-estimated CO shows similar trends 

between CFFEPS and GFAS, the two inventories produce XCO with different temporal variability and both underestimate the 

XCO observed by TROPOMI. In fact, during the large emissions episodes from wildfires in mid-May and late June, CFFEPS 

has higher emissions and better captures the variability in TROPOMI XCO, whereas from July to September, they produce 680 

comparable levels and variability of CO, with slightly higher CO for GFAS at the peaks in late July and early August. 

Nevertheless, the inversion using TROPOMI suggests that all the a posteriori emission estimates are a significant 

improvement from the a priori after about a month, and show reasonable agreement with the temporal variability of the 

TROPOMI measurements. The a posteriori XCO also suggests that the seasonal variability that is usually characterized by 

decreasing CO in summer, due to the higher rate of oxidation with OH radical, is balanced by the higher rate of BB CO 685 

emissions estimated in the inversions, resulting in an almost uniform XCO during the summer-fall 2023. Despite their poorer 

a priori estimates, QFED and GBBEPx provide a posteriori XCO that agrees with TROPOMI measurements better than the a 

priori of GFAS and CFFEPS. However, comparing the XCO between the four inversions suggests that CFFEPS, followed by 

GFAS, perform better at the XCO peaks, and thus can better capture the variability in the TROPOMI measurements.  

We looked closely at three extreme wildfire episodes that occurred across the Canadian boreal forest at different times 690 

and regions in summer 2023 to better examine the spatial characteristics of the a priori and a posteriori estimates at the time 

of the fires. As shown in Fig. 9, the first episode covers five days of large wildfires in Alberta between 19th and 23rd of May, 

the second episode occurred in Nova Scotia and Quebec between the 22nd and 26th of June, and the third episode was in British 

Columbia and the Northwest Territories between the 17th and 19th of July. To evaluate the inversion results from these events, 

we compare in Fig. 10 the model a priori (M) and a posteriori analysis (A) with the TROPOMI observations to obtain analysis 695 

minus observations (A − O) and model minus observations (M − O) differences for the four emissions inventories during the 

three extreme wildfire episodes in North America. A comparison of M – O between the different inventories for all the episodes 

reveals that CFFEPS, followed by GFAS, has a smaller underestimation of CO concentrations compared to QFED and 

GBBEPx. Although the reduction of this bias occurred over a large domain, including downwind of the emissions, the 

reduction is more significant in the vicinity of the wildfire emissions. Our results comparing different inventories are consistent 700 

with our findings in Fig. 9, which show that CO concentrations from the a priori are underestimated due to the lower emissions 

in the inventories (Fig. 4), in the same order as observed here. We find similar improvements in our a posteriori analysis 

between the different inventories, in which A – O exhibits lower bias with CFFEPS, followed by GFAS, in comparison with 

QFED and GBBEPx. Although the CFFEPS a posteriori XCO is significantly closer to the TROPOMI observation, the QFED 

a posteriori still shows a slight improvement on the CFFEPS a priori, indicating the larger impact of assimilating TROPOMI 705 

observations compared to providing a better prior. 
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Figure 10: Comparison of the difference between model (M) or assimilation (A) and TROPOMI XCO observations (O) (i.e., M – O or A – 
O), for three extreme wildfire episodes across boreal regions. Episode 1: May 19–23; episode 2: June 22–26; episode 3: July 17–19. 
Assimilation is based on TROPOMI observations and uses different inventories in North America as prior CO emission estimates. The 710 
model and assimilation fields were transformed using the TROPOMI a priori profiles and averaging kernels. 
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Figure 11: Taylor diagram for evaluation of the assimilation and a priori model using four different biomass burning inventories against 
TCCON XCO measurements at East Trout Lake (ETL) between May and September 2023. (a) Assimilation is performed using TROPOMI-
only (square) and joint TROPOMI and TCCON (triangle) data, while their correlations and standard deviations are compared with the model 715 
a priori (coloured circles) and TCCON XCO measurements (black circle). (b) Evaluation of the mean bias and error of the priors (blue), 
assimilation using TROPOMI-only data (green), and assimilation using joint TROPOMI and TCCON data (red).  

We also evaluated the a priori and a posteriori XCO with TCCON data from ETL for the entire simulation period 

between May and September 2023. Fig. 11a presents a Taylor diagram comparing the standard deviation and correlation of 

the a priori or a posteriori against TCCON measurements at ETL, and Fig. 11b shows the mean bias and standard deviation of 720 

the prior/posterior − measurement residuals. The a priori XCO are shown in circles, the a posteriori from the TROPOMI-only 

assimilation in squares, and the a posteriori from the joint TROPOMI+TCCON assimilation in triangles. It shows that the a 

priori estimates with QFED and GBBEPx have not only low correlation with the measurements, but also low variability. The 

a priori estimates with CFFEPS and GFAS improve on the correlation but more significantly on the variability, in addition to 

the mean bias (Fig. 11b) that is reduced by more than a factor of 2. The a posteriori for all cases provides significant 725 
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improvements on the a priori by increasing the correlation and lowering the mean bias and standard deviation, resulting in 

closer estimates to the measurements. Among all the a posteriori cases, the joint TROPOMI and TCCON inversion has a 

noticeable level of improvement with increased correlation and slightly smaller mean bias and standard deviation, in addition 

to adjusting the variability towards the measurements variability. A comparison among the inventories suggests that the joint 

inversion using CFFEPS provides the highest correlation, lowest standard deviation, and nearly unbiased estimates with 730 

variability matching the measurements. The best agreement between the joint inversion and the TCCON measurements at ETL 

is with CFFEPS, followed by GFAS, then GBBEPx, and QFED. 

4.2.2 Implications for vertical sensitivities in the inversion 

In this section, we examine the potential use of the experimental TCCON XCO product from the mid-infrared (InSb) 

detector available at ETL for the inversions of BB CO emissions. Since the measurements provide us with an independent set 735 

of XCO with distinct averaging kernels, we take those as separate pieces of information into our joint TROPOMI and TCCON 

inversion. Similar to the standard TCCON, we assume uncorrelated errors for the InSb data, however, the effect of possible 

error correlations can be approximated and taken into account by re-tuning the regularization factor. The InSb CO 

measurements are processed in a similar way to produce a separate set of hourly gridded TCCON InSb data. Thus, when these 

data are added to the joint inversion, the size of the observation vector and observation error covariance increases accordingly. 740 

The vertical profile of the averaging kernels in the InSb CO product (Fig. 1d) has higher sensitivity to the surface and lower 

troposphere, and lower sensitivity to higher altitudes compared with the standard XCO. Thus, we aim to understand the added 

benefit of assimilating these data for constraining CO emissions in the inversion. To achieve this, we conducted inversions 

using joint TROPOMI and TCCON data that incorporate three variations of the TCCON product, including the standard XCO, 

the InSb XCO, and the combined InSb and standard TCCON product. The inversions show nearly identical improvements 745 

between the posteriors and the prior when using the CFFEPS inventory, indicating a less than 1% discrepancy of total BB 

emissions in North America. However, there is a noticeable difference in their spatial distributions, especially in the wildfire 

hotspots in British Columbia, Alberta, and Quebec (see Fig. S3 in the supplements). 
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 750 

Figure 12: Evaluation of the assimilation and a priori model using the CFFEPS biomass burning inventory against tall tower measurements 
at ~60 m above sea level at East Trout Lake (ETL). (a-b) a priori model (blue), (c-d) assimilation using joint TROPOMI and standard 
TCCON data (red), (e-f) assimilation using joint TROPOMI and InSb TCCON data (yellow), and (g-h) assimilation using joint TROPOMI 
and the standard and InSb TCCON data (orange) are compared with tall tower measurements (green). 

To evaluate the performance of these inversions, we use two independent in situ datasets: tall tower measurements from 755 

Environment and Climate Change Canada (Chen et al., 2014) and aircraft profiles from the National Oceanic and Atmospheric 

Administration (McKain et al., 2024; https://gml.noaa.gov/aftp/data/trace_gases/co/pfp/aircraft/) at ETL. We compare the tall 

tower measurements with the a priori (blue) in Fig. 12a,b and the a posteriori (red) from the joint TROPOMI and TCCON 

assimilation using standard TCCON in Fig. 12c,d, the a posteriori (yellow) from the joint assimilation using the TROPOMI 

and InSb TCCON data in Fig. 12e,f, and the a posteriori (orange) from the combined TROPOMI plus the standard and InSb 760 

TCCON data in Fig. 12g,h. We find a significant improvement in all inversion cases compared to the a priori, especially at the 

concentration peaks, resulting in an increase in 𝑅ଶ and the slope of the regression.  
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Figure 13: Evaluation of vertical profiles from the joint inversion using TCCON standard CO (red), InSb CO (yellow), combined standard 
and InSb CO (orange), and the a priori model (blue) against aircraft measurement profiles from NOAA at ETL (green squares) on (a) July 765 
7, (b) July 16, (c) August 13, and (d) August 20, 2023. 

The evaluation of the inversions shows that the assimilation with TROPOMI and the InSb XCO data improves the 

correlation from the case with standard TCCON XCO (from 𝑅ଶ = 0.68 to 𝑅ଶ = 0.78), although the slope of the regression 

has slightly decreased (from 𝑠𝑙𝑜𝑝𝑒 = 0.72 to 𝑠𝑙𝑜𝑝𝑒 = 0.68). However, the inversion using the combined standard and InSb 

TCCON product improves on both correlation and the slope of the regression (𝑠𝑙𝑜𝑝𝑒 = 0.73, 𝑅ଶ = 0.77) with respect to the 770 

inversion using the standard TCCON. This suggests that the inversion using the InSb XCO better captures the variability of 

CO near the surface, likely associated with the greater sensitivity of these data to lower altitudes, which improves the sensitivity 

of the data to surface emissions in localized regions with short-range transport. The slightly lower slope is likely due to the 

greater level of underestimation of CO at the peak concentrations compared to the standard TCCON inversion. This might be 

because the lower sensitivity of the InSb XCO to the mid-troposphere than the standard CO, could reduce the measurement 775 

sensitivity to CO plumes at higher altitudes or in the background, which is normally captured through longer range transport. 

However, the combined standard TCCON and InSb CO assimilation captures the variability slightly better than the standard 
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TCCON CO assimilation, with improved correlations relative to independent data, and also provides us with more 

representative estimates of the background CO. Thus, adding the InSb XCO dataset potentially benefits the inversion by 

providing a better constraint on the surface BB CO emissions. 780 

Furthermore, an evaluation of the vertical profiles of CO from the a priori and a posteriori simulations against aircraft 

in situ measurements by NOAA at ETL in Fig. 13 shows that there is a consistent improvement with the joint inversion using 

different variations of TCCON data (the inversion using standard TCCON CO is shown in red, whereas the inversion using 

the InSb TCCON CO is shown in yellow), and the combined standard and InSb TCCON CO (in orange). Note that through 

the inversion process, we update only CO emissions, without directly updating concentrations. The results indicate that 785 

replacing the standard TCCON with the InSb product improves the agreement with the measurements at lower altitudes (1-2.5 

km), while at higher altitudes (2.5-3.5 km) the standard TCCON assimilation performs slightly better. Despite the fact that a 

perfect constraint on vertical profiles cannot be obtained by assimilating only total column measurements, due to the limited 

vertical sensitivity, using both the standard and InSb CO data together in the assimilation maintains a balanced and reasonable 

agreement with the independent measurements at both lower and higher altitudes. This suggests that using all the TCCON 790 

standard and InSb CO measurements in the inversion provides an improved constraint on the fire plumes at a broader range of 

altitudes. This is likely associated with uniformly larger sensitivities with altitude compared to the inversion using each of the 

TCCON XCO datasets individually. Note that we have not found a similar level of improvement from adding the ETL InSb 

XCO dataset to our inversions when we evaluate against aircraft in situ data at the Park Falls TCCON station (not shown), 

which is about 1700 km to the southeast of ETL. This suggests that, although adding the InSb XCO to the inversion benefits 795 

the inversion results, it has a more local effect and may not provide a substantial additional constraint on the regional/global 

scale. Therefore, providing the InSb product at other TCCON locations is recommended for a better constraint on the emissions 

on larger scales. 

5 Summary and conclusions 

We used total column measurements from the TROPOMI satellite and the TCCON ground network to infer CO biomass 800 

burning emissions during the extreme North American fire season between May and September 2023. Using the CHEEREIO 

toolkit, we optimized CO emissions globally at a 2  2.5 grid resolution every 3 days. One objective of this work is to better 

understand the influence of the TCCON measurements in providing additional constraints for quantifying CO emissions 

through a joint TCCON and TROPOMI inversion. Despite the limited spatial coverage, TCCON has substantially more 

observations in time with high accuracy on column-averaged dry mole fraction measurements. This motivates the evaluation 805 

of the joint inversion in comparison with the TROPOMI-only inversion to constrain emissions from localized and episodic 

wildfires. A second objective is to evaluate the global QFED, GBBEPx, and GFAS a priori BB emission inventories, as well 

as the regional North American CFFEPS emissions, and to assess their impact on the inversion analyses.  
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All of the inversion results indicate that the priors significantly underestimate the BB CO emissions. Based only on 

TROPOMI observations, the global posterior emission estimates for QFED, GBBEPx, and GFAS are 302.9±67, 309.6±67, 810 

and 328.6±67 Tg CO, compared to prior estimates of 164.5, 182.6, and 230.3 Tg CO, respectively. For North America, the 

posterior emissions for QFED, GBBEPx, GFAS, and CFFEPS are greater than the priors by a factor of 3.0, 2.6, 1.4, and 1.4, 

respectively. Adding TCCON through a joint inversion with TROPOMI makes little difference to the global total and regional 

estimates (< 5%), but it improves the temporal variation as well as the spatial distribution in the BB hotspots. Furthermore, we 

found that the joint inversion reduces the uncertainty of the posterior in all major inversion regions, but with different 815 

magnitudes, reaching near 30% over North America. The spatial distribution shows that the uncertainty reductions are larger 

in proximity and upwind of the TCCON measurement sites. Our evaluation of the information content in the ensemble subspace 

also indicates that the joint TCCON and TROPOMI inversion increase the DOFS by 33–39%, depending on the prior 

inventory. However, the additional constraints provided by the TCCON data correlate with the spatial density of the TCCON 

sites (more sites in the Northern Hemisphere), such that a greater benefit is obtained in North America and Siberia than in 820 

Africa and South America.  

The evaluation of the results against the TCCON measurements and independent NDACC column and in situ surface 

measurements obtained from WDCGG reveals that the TROPOMI-only inversion primarily improves on the biases while the 

joint inversion further increases the correlations. The joint inversion can better capture the temporal variability of the 

measurements, resulting in a more accurate estimate at the peak concentrations during the extreme wildfire events. The 825 

statistics also reveal that the standard deviations and the mean errors of the differences between the assimilation and 

measurements are lower in the joint inversion in comparison with the TROPOMI-only inversion, providing us with more 

reliable estimates of atmospheric CO. These improvements due to the joint inversion are not consistent throughout all the 

measurement sites we used for evaluation; there is stronger agreement at the NDACC and in situ sites that are located in close 

proximity to the TCCON measurements used in the inversion. Thus, the spatial distribution of TCCON is also a factor driving 830 

the improvements in the inversion.  

Our comparison using different inventories suggests that, although they all provide similar spatial distributions of BB 

CO emissions, their magnitude and temporal variability can be different. For example, our evaluations against TROPOMI in 

North America suggest that GBBEPx has slightly higher and GFAS has significantly higher emissions than QFED. CFFEPS 

has an overall similar level of emissions to GFAS, but provides enhanced temporal variability that is in better agreement with 835 

the TROPOMI measurements. However, the inversion posteriors with all inventories indicate a significant improvement on 

the priors, such that the posterior obtained with QFED, which has the lowest prior emissions, provides posterior CO that is in 

better agreement with the measurements than the priors based on GFAS or CFFEPS, which had higher emissions. However, 

the impact of better prior emissions is not negligible; for instance, the posterior with CFFEPS produces CO which agrees better 

with observations. In fact, CFFEPS, in addition to lowering spatial biases of the inversion results (Assimilation – Observation), 840 

more closely captures the temporal variability of the measurements with the addition of the TCCON data in the inversion.  
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Finally, we investigated the potential use of the experimental TCCON InSb CO measurements at ETL in the inversion. 

The experimental TCCON XCO provides greater sensitivity than the standard TCCON XCO to the surface. The evaluation of 

the inversion results against independent measurements suggests that replacing the TCCON standard CO with the InSb CO 

results in posterior CO that correlates better with surface measurements, although the mean bias slightly increases. This 845 

suggests that using InSb CO increases the sensitivity to the local surface emissions, but may degrade the sensitivity to 

transported plumes or the background CO. However, the inversion with both the standard and InSb CO data of TCCON 

improves on the standard CO inversion, provides higher correlations and lower mean biases relative to the surface 

measurements. The evaluation against aircraft data also emphasizes the potential benefit of using InSb CO measurements in 

the inversion for constraining surface emissions, as it improves the agreements with observations at lower altitudes.  850 

Our results using TCCON measurements in a joint inversion with TROPOMI data suggest that increasing the 

spatiotemporal density of observations allows the assimilation to constrain CO emissions at finer scales, providing useful 

information for a more reliable estimation of local and episodic wildfires. Furthermore, we showed the benefits of the TCCON 

measurements accuracy and temporal density when they are used jointly with TROPOMI in the inversion. However, 

assimilating TCCON data alone is not sufficient to fully constrain the spatial context. Integrating more observations from 855 

ground networks, such as NDACC, COCCON, and in situ observations (e.g., Schuldt et al., 2024), with satellite observations 

offers the potential to greatly enhance the performance of inversion analyses for quantifying fire emissions. 

Appendix A: OSSEs with joint TCCON and TROPOMI inversion 

Observing System Simulation Experiments (OSSEs) are widely used to evaluate the behaviour of atmospheric 

inversion or assimilation systems by using simulated observations under idealized conditions. OSSEs allow us to explore how 860 

individual observation datasets or the underlying system setup (e.g., assimilation parameters) can enhance the overall 

performance of the system (Lahoz and Schneider, 2014; Bocquet et al., 2015; Abida et al., 2017; Voshtani et al., 2023). Here, 

we conduct twin experiments (Ghil and Mo, 1991) to evaluate the implementation of the inversion system. Specifically, we 

assess the potential utility of TCCON observations for quantifying CO emissions. Additionally, we use the OSSEs to estimate 

assimilation parameters and error statistics of the background and observations, using diagnostics such as chi-square tests 865 

(Ménard and Chang, 2000; Tang et al., 2024) or statistics based on observation-minus-forecast (OmF) (Miyazaki et al., 2020; 

Voshtani et al., 2022). 
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Figure A1: Two OSSEs within the twin experiments that start with the a priori of −50% CO emissions with respect to the true emissions as 
shown in (a) prior − true and (c) posterior − true emissions; and with the a priori of +50% CO emissions with respect to the true emissions 870 
as shown in (b) prior − true and (d) posterior − true emissions; time series of CO emissions in the a priori (blue), a posteriori (red), and true 
(green) for the OSSE with (e) −50% CO emissions and (f) +50% CO emissions.  

Each OSSE setup involves multiple inversion runs. A “nature run” (without observation assimilation) is conducted 

to generate the “true” state of the concentration fields using GEOS-Chem with unperturbed emissions—the a priori emissions 

in the inversion with real observations. The true state is then mapped into the observation space by an observation operator, 875 

generating simulated observations that include added observation errors under a perfect model transport assumption. A set of 

“control runs” assimilates these simulated observations. Each control run may vary in terms of perturbations in the magnitude 

of the emissions and/or the assimilation parameter range, depending on the experiment’s objectives. In our first OSSE, we use 

a combined set of simulated TROPOMI and TCCON observations and apply observation errors proportional to the retrieval 

errors, based on the ratio of simulated to retrieval XCO. Emissions in the control runs are perturbed by ±50% to evaluate the 880 

system's performance in recovering the true emissions. 
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Fig. A1 shows that the posteriors (Fig. A1 c,d) effectively capture and recover the spatial context of the CO emissions 

globally for both control runs, which have 50% CO emissions in the prior (Fig. A1 a,b). Additionally, the time series of total 

CO emissions reveal that approximately 1.5 months (from the start of the assimilation) are required to constrain the magnitude 

and temporal variability of the global CO emissions (Fig. A1 e,f). In other experiments (not shown) where perturbations are 885 

applied only to major source regions (Fig. 2), we observe similar behaviour, even though the convergence rate for recovering 

true emissions slightly varies. For example, emissions are recovered relatively faster in North America (within ~3 weeks), 

followed by Europe (~4 weeks), likely due to a higher density of TCCON observations in these regions. This trend holds 

despite the nearly globally uniform spatiotemporal distribution of quality-filtered TROPOMI observations (i.e., super 

observations). In this experiment, we employ a set of previously optimized LETKF parameters and error statistics for 890 

background and observation errors, described below in Appendix B. 

Appendix B: Comparing OSSEs with TROPOMI-only and TCCON-only inversions against joint TCCON and 
TROPOMI inversion  

Similar OSSEs to those in Appendix A are conducted, using either only TROPOMI or only TCCON observations, 

with prior emissions perturbed by −50% in one region at a time, as shown in Table B1. We compute the mean bias and standard 895 

deviation of OmF, along with the convergence time from the start of assimilation to recover the true emissions. Here, the 

forecast represents a model field, driven by either a priori or a posteriori emissions, mapped into the observation space. For 

the TROPOMI-only and TCCON-only inversions, we observe that biases and standard deviations generally increase across 

most cases; however, the inversion remains capable of recovering the true emissions. Compared to the joint TROPOMI and 

TCCON inversion, the convergence rate for the TROPOMI-only inversion slows down by up to a factor of two, depending on 900 

the perturbed region in the inversion. In contrast, convergence for the TCCON-only inversion can vary significantly. 

Specifically, the time to recover true emissions extends to 3 months in North America and 4 months in Europe, likely due to 

the lower spatial coverage of TCCON observations in these areas compared to TROPOMI. Additionally, we find that the 

TCCON-only inversion requires considerably more time to recover the true emissions globally and, especially, in Southern 

Hemisphere regions, such as Africa. The delay is primarily due to the limited number of TCCON sites in the Southern 905 

Hemisphere—only two sites are available for this study—and the extended time of inter-hemispheric exchange of air, which 

takes about 1 year (Jacob, 1999). As a result, sufficient information to constrain emissions in the Southern Hemisphere may 

not be achievable, especially within the limited 5-month period of inversion in this study. 
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Table B1: Mean bias and standard deviation of OmF for prior, posterior using TCCON-only, TROPOMI-only, and joint TROPOMI and 
TCCON (TROPOMI+TCCON) emissions. Each OSSE starts with −50% prior emissions in the specified region. Convergence times to 910 
recover the true emissions are shown from the start of assimilation. 

Region 
OSSE 

 (−50% CO emissions) 

OmFa mean bias 

(ppb) 

OmF standard deviation 

(ppb) 

Convergence time 

(month) 

Global 

Prior −14.2 8.2 - 

TCCON-only −2.5 4.7 >6b 

TROPOMI-only 0.9 4.1 3.0 

TROPOMI+TCCON −0.3 3.5 1.5 

North 

America 

Prior −7.9 4.5 - 

TCCON-only −0.5 2.6 3.0 

TROPOMI-only 0.7 2.8 2.0 

TROPOMI+TCCON −0.2 2.1 1.0 

Europe 

Prior −3.1 4.7 - 

TCCON-only −0.4 2.1 4.0 

TROPOMI-only −0.5 2.2 2.5 

TROPOMI+TCCON −0.3 1.9 1.5 

Africa 

Prior −6.2 5.5 - 

TCCON-only −3.7 3.6 >6 

TROPOMI-only 0.6 2.3 2.0 

TROPOMI+TCCON 0.5 2.0 2.0 

a Forecast (F) in OmF uses a posteriori emissions for the assimilation run and a priori emissions for the prior (control) run. 
b It means that the true emissions are not fully recovered, (ห𝐸௧

୮୭ୱ୲ୣ୰୧୭୰
− 𝐸௧

௧௥௨௘ห 𝐸௧
௧௥௨௘ൗ ) ≮ 𝛿, within 6 months of inversion (𝛿 = 2%). 

 
To optimize the performance of the inversion, we employ OmF diagnostics to estimate key LETKF parameters. 915 

Specifically, we use the global mean bias and standard deviation of OmF over the full assimilation period to derive optimal 

values for parameters, such as the regularization factor 𝛾, the inflation factor Δ, and the localization radius (𝑟). We also 

configure essential setup elements, like the assimilation spin-up time, the burn-in duration, and the ensemble size to support 

efficient system operation. Our analysis yields the following optimal values: 𝛾்ோை௉ைெூ = 0.2  and 𝛾்஼஼ைே = 5, Δ = 0.08, 𝑟 =

500 𝑘𝑚, with a minimum of three months for spin-up, one month for burn-in, and a minimum of 24 ensemble members—920 

each chosen to minimize OmF statistics (e.g., see Fig. S4). Although we assume no transport modelling error, we apply an 

additional adjustment by inflating observation errors to offset this assumption. These configurations are consistently used 

across all OSSEs in this study. 
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Overall, our OSSEs results indicate that assimilating TCCON observations alone may not provide us with sufficient 

information to fully constrain the spatial context of CO emissions in regions in the Southern Hemisphere within the limited 925 

study period. However, in regions of the Northern Hemisphere, including North America and Europe, CO emissions are fully 

recovered within 2–3 months, likely due to the higher density of TCCON stations in these areas. In contrast, in the joint 

inversion, TROPOMI observations address the larger spatial biases, which typically exist in the model a priori, while TCCON 

measurements contribute finer constraints that enhance the representation of spatiotemporal variability. 

 930 

Code and data availability. TROPOMI CO data can be downloaded from https://doi.org/10.5270/S5P-bj3nry0 (Copernicus 

Sentinel-5P, 2024). The individual TCCON GGG2020 datasets used in this publication are cited in Table 1, and the references 

are included in the reference list. The TCCON data are available at https://tccondata.org/2020 (last access: 6 July 2024; Total 

Carbon Column Observing Network (TCCON) Team, 2022). The NDACC data are obtained as part of the Network for the 

Detection of Atmospheric Composition Change (NDACC) and are publicly available (see https://www-935 

air.larc.nasa.gov/missions/ndacc/data.html; last access: 6 July, 2024). CO in situ measurements from WDCGG are available 

at http://ds.data.jma.go.jp/gmd/wdcgg/ (last access: 1 July 2024). In situ aircraft CO measurements from Global Monitoring 

Laboratory of the National Oceanic and Atmospheric Administration (NOAA) are available at 

https://gml.noaa.gov/aftp/data/trace_gases/co/pfp/aircraft/ (last access: 1 July 2024). In situ tall tower measurements at ETL 

provided by Environment and Climate Change Canada are available at https://gaw.kishou.go.jp/search/station#4007 (last 940 

access: 1 July 2024). GEOS-Chem version 14.1.1 source code is archived at https://doi.org/10.5281/zenodo.7696651 (The 

International GEOS-Chem User Community, 2023), and MERRA-2 meteorology input data can be downloaded from WashU 

data portal at http://geoschemdata.wustl.edu/ExtData/GEOS_2x2.5/MERRA2/ (last access: 1 July 2024). The QFED emissions 

(version 2.5, release 1) data can be accessed from http://geoschemdata.wustl.edu/ExtData/HEMCO/QFED/v2023-05/ (last 

access: 1 July 2024). The GBBEPx version 4 emissions data are available at 945 

https://www.ospo.noaa.gov/pub/Blended/GBBEPx/ (last access: 1 July 2024). GFAS emissions (version 1.2) can be 

downloaded from https://ads.atmosphere.copernicus.eu/datasets/cams-global-fire-emissions-gfas?tab=overview (last access: 

11 June 2024). The CFFEPS output is produced for ECCC’s operational air quality forecast system (D. Kornic et al., 2024). 

The CFFEPS emissions code and the accompanying user manual are available at https://zenodo.org/records/2579383 (last 

access: 1 July 2024) (Anderson and cast of thousands, 2019). The CHEEREIO source code is available at 950 

https://github.com/drewpendergrass/CHEEREIO (last access: 1 July 2024) (Pendergrass et al., 2024) and is documented at 

https://cheereio.readthedocs.io (last access: 22 August 2024). A forked repository of CHEEREIO used in this study, which 

contains the TCCON CO and TROPOMI CO observation operators and the assimilation configuration, is available at 

https://github.com/Sinavo/CHEEREIO (last access: 22 August 2024). 
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