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Abstract. We perform a global inverse modelling analysis to quantify biomass burning emissions of carbon monoxide (CO)

from the extreme wildfires in Canada between May and September 2023. Using the GEOS-Chem model, we assimilated
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observations at 3-day temporal and 2° x 2.5° horizontal resolution from the Tropospheric Monitoring Instrument (TROPOMI)
separately and then jointly with Total Carbon Column Observing Network (TCCON) measurements. We also evaluated prior
emissions from the Quick Fire Emissions Dataset (QFED), Blended Global Biomass Burning Emissions Product eXtended
(GBBEPXx), Global Fire Assimilation System (GFAS), and Canadian Forest Fire Emissions Prediction System (CFFEPS). The
assimilation of TROPOMI-only measurements estimated posterior North America emissions for QFED, GBBEPx, GFAS, and
CFFEPS of 110.4+20, 112.8+20, 127.2+17, and 125.6+18 Tg CO compared to prior estimates of 37.1, 42.7,91.0, and 90.2 Tg
CO, respectively. The joint assimilation of TROPOMI+TCCON reduced the posterior 1o uncertainty on the North American
emission estimates by up to about 30%, while showing only a modest impact (< 5%) on the mean estimate of the inferred
emissions. An evaluation against independent measurements reveals that adding TCCON data increases the correlations and
slightly lowers the biases and standard deviations. Additionally, including an experimental TCCON product at East Trout Lake
with higher surface sensitivity, we find better agreement of the assimilation results with nearby in situ tall tower and aircraft
measurements. This highlights the potential importance of vertical sensitivity in these experimental data for constraining local
surface emissions. Our results demonstrate the complementarity of the greater temporal coverage provided by TCCON with

the spatial coverage of TROPOMI when these data are jointly assimilated.

1 Introduction

Biomass burning (BB) from wildfires is a major source of carbon emissions released into the atmosphere with large
climate and air quality impacts, exerting a significant influence on human health, ecosystems, and the environment (Cascio,
2018; Chen et al., 2017; O’Neill et al., 2021; Wu et al., 2022). Over the past few years, wildfires have become more frequent
and destructive in different regions of the world (Jegasothy et al., 2023; Mataveli et al., 2024; You and Xu, 2023). More
specifically, in Canada in 2023, the total area burned by wildfires surpassed the previous record in 1989 (75,596 km?) by nearly
a factor of 2.5 while the amount of emitted carbon also dramatically increased by more than 11 times compared to the 1998—
2022 average (Jain et al., 2024; Jones et al., 2024; Kolden et al., 2024). Therefore, reactive trace gases (e.g., CO) and
greenhouse gases (GHGs) (e.g., CH4 and CO;) had an unprecedent increase during the 2023 wildfire emissions (Byrne et al.,
2024). In addition to perturbing the carbon budget, these emissions also have implications for air quality. However, obtaining
reliable estimates of wildfire emissions is a challenging task due to several factors, such as the episodic and localized nature
of these emissions (Sokolik et al., 2019; Zhao et al., 2025). Here, we focus on estimating emissions from carbon monoxide
(CO) from wildfires during the summer 2023. With a lifetime of up to several months (Holloway et al., 2000), which is
sufficiently long to track long-range transport on intercontinental scales, CO is an ideal tracer of combustion. CO plays an
important role in both air quality and climate as it is a precursor of ozone (O3) and the dominant sink of the hydroxyl radical
(OH), which is the main atmospheric oxidant (Aschi and Largo, 2003; Fowler et al., 2008). Observations of CO have provided
information on combustion sources on a range of scales, from urban to regional and global scales (Borsdorff et al., 2020;

Cristofanelli et al., 2024; Pommier et al., 2013; Schneising et al., 2020; Tang et al., 2019).
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CO emissions from wildfires can be estimated either from bottom-up or top-down approaches. In the bottom-up
approach, emissions are represented as the product of an emission factor, which is the amount of trace gas emitted per unit of
fuel consumed, and the amount of dry matter burned. Bottom-up inventories use either observations of burned area to determine
the mass of dry matter burned (Liu et al., 2024; van der Werf et al., 2017; Wiedinmyer et al., 2023) or estimates of fire radiative
power (FRP) to quantify the rate of fuel consumption (Filizzola et al., 2023; Kaiser et al., 2012). There are typically large
uncertainties in these inventories (Andreae, 2019; Hundal et al., 2024) arising from discrepancies in the emission factors and
the estimated mass of dry matter burned, resulting in significant differences in emission estimates (Chen et al., 2022; Nguyen
et al., 2023; Saikawa et al., 2017; Zhang et al., 2023). The top-down approach makes use of CO observations to optimize
emissions through an inverse modelling method, but this approach depends on the use of an atmospheric chemistry-transport
model and a priori emission estimates, which are typically obtained from a bottom-up inventory.

Over the past two decades, global CO observations- have been provided by several satellite sensors, including the
Measurements of Pollution in the Troposphere (MOPITT) instrument (Deeter et al., 2003; Edwards et al., 2006), the Infrared
Atmospheric Sounding Interferometer (IASI) (Pope et al., 2021; Turquety et al., 2004), and the Tropospheric Emission
Spectrometer (TES) (Lopez et al., 2008), and these data have been used in numerous inverse modelling studies to quantify CO
emissions (e.g., Kasibhatla et al., 2002; Arellano Jr. et al., 2006; Warner et al., 2007; Jones et al., 2009; Kopacz et al., 2010;
Miyazaki et al., 2012; Miyazaki, Eskes, and Sudo 2015; Jiang et al., 2017; Zheng et al., 2019). However, large discrepancies
between the inversion results have been reported, which may arise from differences between spatiotemporal coverage of the
observations, the vertical sensitivity of the measurements, and observation biases (Deeter et al., 2015; Jiang et al., 2017; Jones
et al., 2009; Miyazaki et al., 2015; Warner et al., 2010). Nonetheless, a few recent studies attempted to address some of the
challenges by reducing potential biases in the model (Gaubert et al., 2023; Miyazaki et al., 2020) or by improving the quality
of the assimilated data (Tang et al., 2024). The Tropospheric Monitoring Instrument (TROPOMI) (Borsdorff et al., 2018),
launched in 2017, has provided CO retrievals with improved accuracy, higher spatial resolution, and significantly greater
observational coverage (Landgraf et al., 2016; Schneising et al., 2020). In particular, it offers higher sensitivity to near-surface
CO compared to earlier thermal infrared measurements from instruments such as IASI and TES. These factors make it well-
suited for inverse modelling of CO emissions, as demonstrated in many recent studies (Borsdorff et al., 2023; Byrne et al.,
2024; Goudar et al., 2023; Griffin et al., 2024; Inness et al., 2022; Shahrokhi et al., 2023; Stockwell et al., 2022; Wan et al.,
2023).

Measurements from surface in situ networks and aircraft campaigns have been used for CO trend determination (Patel
et al., 2024) and CO inversion studies in the past (Palmer et al., 2003; Yumimoto & Uno, 2006; Koohkan & Bocquet, 2012;
Tang et al., 2013; Feng et al., 2020). However, mainly due to limited spatiotemporal coverage and/or vertical distribution, they
are typically incapable of sufficiently constraining emission estimates on fine spatial scales;; and-therefore, model errors; such
as those from vertical transport, the OH field, and the a priori emissions, can significantly impact the inferred emission
estimates (Hooghiemstra et al., 2011). Only a few studies have attempted to use both satellite and surface observations together

to exploit the complementarity of these observations to reduce the influence of errors, such as those that arise from the
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sensitivity to the vertical distribution of CO (Tang et al., 2022) and long-range transport (Kim et al., 2024). However, most of
these studies focused on inversions over a limited area, where sufficient surface CO observations are available. There are also
ground-based total column measurements from networks such as the Total Carbon Column Observing Network (TCCON,
Wunch et al. 2011), which was designed in part to validate satellite observations (Borsdorff et al., 2019; Bukosa et al., 2023;
Hedelius et al., 2021; Sha et al., 2021; Tang et al., 2024). FThe-TCCON provides time-resolved and accurate column--averaged
dry-air mole fractions of CO (XCO) under sunny skies. Although TCCON observations are spatially sparse, they are of high
temporal density; and therefore could provide valuable information in constraining episodic CO emissions from wildfires.
However, a standard method of integrating TCCON measurements with satellite data in a data assimilation or inversion system
is still lacking, as most current studies assimilate satellite data, while reserving the TCCON data to evaluate the performance
of the assimilation.

In this study, we quantify biomass burning CO emissions between May and September 2023 using the CHemistry and
Emissions REanalysis Interface with Observations (CHEEREIO) assimilation toolkit (Pendergrass et al., 2023), which
employs the GEOS-Chem model and an ensemble Kalman filter (EnKF) scheme. We conduct a global analysis, but our focus
is on quantifying boreal emissions associated with the 2023 fires in Canada. We jointly assimilate TCCON and TROPOMI
data and conduct a comparison with a TROPOMI-only assimilation to assess the added value of TCCON observations in the
assimilation and to determine the additional constraints that TCCON data provide for optimizing CO emissions from localized
and episodic wildfires. We include two distinct types of TCCON data with different vertical sensitivities in our inversion,
while using independent total column and in situ surface and aircraft vertical profile observations to characterize the success
of our analysis. Additionally, we evaluate the following three global and one regional biomass burning inventories in the
context of the assimilation: the Quick Fire Emissions Dataset (QFED) (Koster et al., 2015), the Blended Global Biomass
Burning Emissions Product eXtended (GBBEPx) (Zhang et al. 2012; 2019), the Global Fire Assimilation System (GFAS)
product (Kaiser et al. 2012; Di Giuseppe et al. 2021), and the Canadian Forest Fire Emissions Prediction System (CFFEPS)
(Chen et al., 2019).

We begin in Section 2 with a description of the observations and model configurations, including the a priori emissions
used in the inversion. Section 3 presents the inversion methods, the main assumptions, and sensitivity experiments using
simulated observations to tune the inversion performance. Section 4 provides the main results and discussion, and finally, the

study concludes with a few summary points and a suggestion for future works.

2 Observations and model

This section describes the observational datasets and modelling framework and inputs used in this study. We first
describe in Sections 2.1-2.2 the two types of observations that are assimilated in the inversion framework: (i) TROPOMI
satellite CO products and (ii) TCCON ground-based CO measurements. Then, in Section 2.3, we present several independent

datasets (not assimilated) used for evaluation, including the Network for the Detection of Atmospheric Composition (NDACC,
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De Maziére et al., 2018) ground-based total column observations, in situ surface CO measurements from the World Data
Centre for Greenhouse Gases (WDCGGQG) network and from Environment and Climate Change Canada’s (ECCC) tall tower at
East Trout Lake (ETL), and vertical profiles from in situ aircraft measurements. The same-assimilated TCCON data are also
used for comparisons between different experiments, although they are no longer independent information for the joint
inversion. Finally, Section 2.4 provides a description of the GEOS-Chem model and emissions inventories that are used as the
a priori estimate in our inversion’s setup. The priors include three global inventories, including QFED, GBBEPx, and GFAS,

and one regional inventory, CFFEPS, for North America.

2.1 TROPOMI

The TROPOMI instrument is on board the Copernicus Sentinel 5 Precursor (S5P) satellite, which was launched in
October 2017. Total column abundances of carbon monoxide (XCO) are retrieved from spectra measured in the shortwave
infrared (SWIR) band at 2305-2385 nm, with daily global coverage, a local overpass solar times of 13:30_ UTC, and high
spatial resolution of 5.5 x 7 km? (Veefkind et al., 2012). We use the operational XCO product publicly available from the
European Space Agency (ESA) Sentinel-5P data hub at https://scihub.copernicus.eu/ (last access: 4 June 2024) (Landgraf,
2019), with a reported bias of better than 15 ppb in comparison with TCCON GGG2014 data product (Sha et al., 2021). The
XCO data are published together with the total column averaging kernels to account for the sensitivity of the retrieved total
column to the true atmosphere, thus, they can be used along with a priori vertical profiles to obtain model--equivalent total CO
columns representing the observed data (Apituley et al., 2018). The TROPOMI retrieval algorithm provides clear-sky and
cloudy observations over land and ocean (Borsdorff et al., 2019), however, we only use measurements with a quality flag equal
to and greater than 0.7 to ensure high-quality data obtained under cloud-free or low cloud conditions. As shown in the Fig. 1a,
we exclude TROPOMI observations poleward of 60°, primarily to avoid biases due to low surface albedo in the SWIR from
snow cover (Hasekamp et al., 2022; Lorente et al., 2021) and biases due to the stratosphere in the chemical transport model
(CTM) affecting the inversion performance (Turner et al., 2015). Since the horizontal resolution of the TROPOMI data is
substantially higher than the GEOS-Chem model resolution used in this study (2° x 2.5°), the observations are not spatially
representative for the model grid cells, resulting in a large representativeness error wwithin the assimilation process. To
overcome this, we aggregate the observations into so-called super-observations before using them in the assimilation. In fact,
for the duration of the study between May and September 2023, we compute the error-weighted median average of
measurements within each grid cell, where each measurement is weighted by the inverse of its reported error standard deviation
(Eskes et al., 2003; Miyazaki et al., 2012). To account for error reduction because of averaging, we follow a similar method
as Pendergrass et al. (2023) to compute the associated super-observation errors. This includes average of individual
measurement errors and assumptions on error correlations and transport errors. The relative weight of the super-observation
error to the prior error is then estimated through parameter tuning in the inversion system to ensure robustness to possible error

misspecification (see Section 3 and Appendices A and B). Finally, a total of 1,744,682 number of observations are processed.
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Several previous studies evaluated TROPOMI XCO observations and found reasonable agreement with satellite and
ground-based measurements. For example, Sha et al. (2021); reported a bias of 2.45 £ 3.38% against the unscaled TCCON
and a bias of 6.50 = 3.45% against NDACC, which remains within the range of TROPOMI’s precision and accuracy. In
addition, the TROPOMI validation reports (https://mpc-vdaf.tropomi.eu/, last access: 28 June 2024;; Lambert et al., 2024)
shows that operational TROPOMI XCO data are in good agreement with collocated measurements from NDACC, TCCON,
and the Collaborative Carbon Column Observing Network (COCCON:; Alberti et al., 2022; Frey et al., 2019) monitoring

networks.

2.2 TCCON

TCCON (https://www.tccon.caltech.edu/) is a ground-based network of solar-viewing Fourier transform spectrometers
(FTS) that collect atmospheric transmission spectra every 2-—3 minutes. The spectra range covers the near and short-wave
infrared region, and measurements collected under clear-sky conditions are used to retrieve column-averaged dry-air mole
fractions of trace gases, including carbon monoxide (i.e., XCO) (Wunch et al., 2011). We use data from 15 sites around the
world, shown in Fig. 1 and listed in Table 1, derived from the standard GGG2020 retrieval software (Laughner et al., 2024).
The difference between the GGG2020 and GGG2014 XCO retrieval data is 6.3 ppb, with GGG2020 larger than GGG2014.
This is because TCCON XCO data are no longer scaled to the WMO trace gas scale (Wunch et al., 2025). The accuracy and
precision of the standard TCCON XCO product is reported to be around 8 ppb. These data are publicly available and can be
accessed via https://tccondata.org/ (last access: 1 June 2024). In addition to the standard XCO retrievals, which use spectra
measured using an InGaAs detector and a CO window centred at 4290 cm™!, we use retrievals of XCO available from spectra
collected at the East Trout Lake TCCON station from an additional InSb detector. The spectral range of the InSb detector
includes two mid-infrared windows (centred at 2111 cm™! and 2160 cm'") that contain strong CO absorption features that result
in an XCO retrieval with markedly different averaging kernels (orange) from the standard XCO retrieval (blue), as shown in
Fig. lc-d. These mid-infrared spectral windows were used in a previous study together with the standard TCCON CO window
to extract vertical information from the TCCON measurements (Parker et al., 2023). The XCO retrievals from the InSb spectra
have higher sensitivity to the surface and lower sensitivity to the higher altitudes than the standard XCO retrievals. The impact
of including these mid-infrared XCO retrievals on the inversion performance to constrain CO emissions is discussed in Section
422,

We filter all TCCON datasets to include only data with a quality flag = 0 (i.e., the highest quality data). To prepare for
the assimilation, first, all the measurements are aggregated in time, based on the model output hourly timestep, weighted by
the measurement reported errors. This produced 213,784 quality-controlled data points that were then mapped on the GEOS-
Chem grid resolution, providing 19,733 median hourly averaged observations for the period of May—September 2023 in this
study.
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Figure 1: (a) NFhe-number of quality--controlled and aggregated TROPOMI and TCCON observations (XCO) used in the global inversion
as described in Sections 2.1 and 2.2. (b) VFhe-variability of the number of non-aggregated TROPOMI (blue) and TCCON (red) observations
(red)-at the East Trout Lake (ETL) TCCON station from April-September 2023. (c) Timeemperal series (MM-DD) of XCO column retrievals
offrom standard TCCON GGG2020 data (blue) and XCO measurements from_the InSb detector (orange) at East Frout-Lake(ETL) between
May-September 2023. (d) Column averaging kernels for the-standard TCCON GGG2020 XCO (blue)_and eolumn-averaging kernels—for
XCO measurements derived from an alternative CO absorption window on the ETL InSb detector (orange) atEast Froutake(ETE)-between
May-September 2023.

2.3 NDACC and in situ surface and aircraft data

This study employs two independent ground-based data sources for validation purpose. We utilize measurements from
NDACC, a global network of ground-based stations equipped with Fourier transform infrared (FTIR) spectrometers that
provide long-term total column measurements of XCO (De Maziére et al., 2018). NDACC XCO measurements, similar to
those from TCCON (i.e., same spectral domain as the InSb TCCON data), are of high-quality and well-suited for validating
models, satellite observations, and assimilation system performance (Kerzenmacher et al., 2012; Lutsch et al., 2020; Sha et al.,
2021). In this study, we include mid-infrared NDACC total column data from seven stations covering the study period (see
Table 1). The data are publicly available at http://www.ndacc.org (last access: 30 July 2024).

Additionally, continuous and discrete surface in situ CO measurements obtained from WDCGG serve as a second

independent dataset to evaluate surface CO concentrations obtained from our experiments-{see-Fable2}. In situ measurements
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compiled by the WDCGG have been widely used in previous inverse modelling studies for validating results and testing model
performance (Chevallier et al., 2011; Jiang et al., 2017; Miyazaki et al., 2020; Tanimoto et al., 2008). We use the archived data
from nine sites over the study period, which are publicly available and accessed from https://gaw kishou.go.jp/ (last access: 1
July 2024). We also use in situ tall tower measurements from the ETL site provided by ECCC (Chen et al., 2014) to assess the
impact of using the XCO retrievals from the InSb spectra on the inversion results. The evaluation results are presented in
Section 4.2.2.

We use in situ aircraft CO measurements from the National Oceanic and Atmospheric Administration (NOAA) air
sampling network (McKain et al., 2024) taken as another independent source to evaluate our inversion results. The data product
is freely available to public via https://gml.noaa.gov/ccgg/aircraft/. The aircraft program aims to capture temporal variability
(i.e., seasonal and interannual changes) of the greenhouse gases in the lower atmosphere. Dry air mole fractions of CO are
measured using flask air samples at different fixed altitude levels. It provides measurements at different sites across the United
States and Canada and at different altitudes, descending from a maximum of 8000 m to the lowest sampling level at ~750 m
(a.s.]). These data have been commonly used in previous studies to explore the large-scale changes in horizontal and vertical
distribution of CO and greenhouse gases (Sweeney et al., 2015), to serve as benchmark for validating forward and inverse
modelling analysis (Stephens et al., 2007; Yang et al., 2007), and to calibrate remote sensing retrievals (Wunch et al., 2010).
Focusing on the impact of the experimental TCCON InSb data used in the inversion to constrain surface CO emissions, we
use aircraft profiles at ETL during multiple time events (details are discussed in Section 4.2.2). Table 1 shows the list and

geographical information of all observations used for evaluation.



Table 1: List of ground network, surface in situ, aircraft, and tall tower measurements used in this study between May and September 2023.

Measurement Site (ID) Latitude Longitude Altitude Reference
(km a.s.l)
TCCON Sodankyld, Finland 67.4°N 26.6°E 0.188 (Kivi et al., 2022)
TCCON Karlsruhe, Germany 49.1° N 8.4°E 0.116 (Hase et al., 2023)
TCCON Garmisch, Germany 47.4°N 11.1I°E 0.740 (Sussmann and Rettinger, 2023)
TCCON Paris, France 48.8° N 24°E 0.060 (Té et al., 2022)
TCCON Harwell, UK 51.6°N 1.3°W 0.142 (Weidmann et al., 2023)
TCCON Izana, Tenerife, Spain 28.3°N 16.5°W 2.370 (Garcia et al., 2022)
TCCON East Trout Lake, Canada 54.3°N 104.9° W 0.502 (Wunch et al., 2022)
TCCON Lamont, USA 36.6° N 97.5°W 0.320 (Wennberg et al., 2022b)
TCCON Park Falls, USA 45.9°N 90.3° W 0.440 (Wennberg et al., 2022¢)
TCCON Caltech, USA 34.1°N 118.1°W 0.230 (Wennberg et al., 2022a)
TCCON Edwards, USA 34.0°N 117.8° W 0.700 (Iraci et al., 2022)
TCCON Rikubetsu, Japan 43.5°N 143.8°E 0.380 (Morino et al., 2022a)
TCCON Tsukuba, Japan 36.1°N 140.1° E 0.030 (Morino et al., 2022b)
TCCON Wollongong, Australia 34.4°S 150.9°E 0.300 (Deutscher et al., 2023)
TCCON Lauder, New Zealand 45.0° S 169.7° E 0.370 (Pollard et al., 2022)
NDACC Tsukuba, Japan 36.1°N 140.1° E 0.030 (Morino et al., 2022b)
NDACC Wollongong, Australia 34.4° S 150.9°E 0.300 (Jones et al., 2009)
NDACC Lauder, New Zealand 45.0° S 169.7° E 0.370 (Begue et al., 2024)
NDACC Arrival Heights, Antarctica 77.8°8 66.67° E 0.184 (Smale et al., 2021)
NDACC St. Petersburg, Russia 59.9°N 29.8°E 0.020 (Makarova et al., 2024)
NDACC Jungfraujoch, Switzerland 46.5°N 79°E 3.580 (Zander et al., 2008)
NDACC Altzomoni, Mexico 19.1°N 98.6° W 3.985 (Grutter et al., 2008)
In Situ Bukit Kototabang (BKT), Indonesia 0.2°S 100.3° E 0.864 (Eko Cahyono et al., 2022), Reza Mahdi, BMKG
In Situ Minamitorishima (MNM), Japan 24°N 153.9°E 0.007 (Takatsuji, S., 2024a)
In Situ Ryori (RYO), Japan 39.3°N 141.8°E 0.260 (Takatsuji, S., 2024b)
In Situ Yonagunijima (YON), Japan 24.4°N 123°E 0.030 (Takatsuji, S., 2024c)
In Situ Capo Granitola (CGR), Italy 37.6°N 126° E 0.005 (Cristofanelli et al., 2017)
In Situ Cape Point (CPT), South Africa 34.3°S 18.5°E 0.230 (Labuschagne et al., 2018)
In Situ Cape Verde Atmospheric Observatory 16.9°N 24.9°W 0.010 (Kozlova, E. et al., 2021)
(CVO), Cabo Verde
In Situ Jungfraujoch (JFJ), Switzerland 46.5°N 79°E 3.580 (Hueglin et al., 2024), Martin Steinbacher, Empa
In Situ Mt. Kenya (MKN), Kenya 0.06° S 373°E 3.678 (Kirago et al., 2023), Martin Steinbacher, Empa
Tall tower East Trout Lake, Canada 54.3°N 104.9° W 0.502° (Chen et al., 2014), Douglas Worthy, ECCC
Aircraft East Trout Lake, Canada 54.3°N 104.9° W - (McKain et al., 2024)

*This is the surface altitude, and the measurement intake are at four levels (95, 55, 33, 22 m) installed on a 105 m SaskTel communication tower.

245 2.4 GEOS-Chem and prior estimates

The GEOS-Chem model (http://www.geos-chem.org, last access: 1 July 2024) is a global 3D CTM that uses assimilated
meteorological observations as input from the NASA Global Modelling and Assimilation Office (GMAOQO). We use version
14.1.1 of the GEOS-Chem CTM driven by meteorological input from the Modern-Era Retrospective analysis for Research and
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Applications, Version 2 (MERRA-2; Gelaro et al., 2017). The meteorological fields have a native resolution of 0.25° x 0.3125°
with 72 vertical levels from the surface to 0.01 hPa, which is degraded to 2° x 2.5° horizontal grid and 47 vertical levels (Bey
et al., 2001). For the purpose of global CO assimilation in this study, the linear CO-only simulation of GEOS-Chem, also
known as “tagged CO”, is used with prescribed monthly mean OH fields from a 10-year archived full chemistry simulation
based on version 14 of the model. The tagged CO simulation reduces the computation cost relative to the full-chemistry and
has been widely applied in different studies in the past (Heald et al., 2004; Jiang et al., 2017; Jones et al., 2009; Kopacz et al.,
2010; Lutsch et al., 2020; Tang et al., 2023; Wunch et al., 2019). Version 14.1.1 of the tagged CO simulation incorporated the
improved secondary CO production scheme for the tagged CO simulation, which reduces the differences between full
chemistry and tagged CO simulations, especially in regions strongly influenced by biogenic emissions and chemistry (Fisher
et al., 2017). The biogenic source of CO in the full chemistry simulation is based on the oxidation of volatile organic
compounds (VOCs) produced by the Model of Emissions of Gases and Aerosols from Nature (MEGAN version 2.1) inventory
(Guenther et al., 2012).

For the results presented here, we specify fossil fuel emissions of CO from the Community Emissions Data System
(CEDS) inventory (Hoesly et al., 2018). Biomass burning (BB) emissions are based on the four different BB inventories
described below. These BB emissions have been used in various studies (Griffin et al., 2020; Jin et al., 2024; Li et al., 2020;

Zhang et al., 2022), and are used as our prior emissions in the inversion analyses conducted here.

2.4.1 QFED

The Quick Fire Emissions Dataset version 2.5r1 (QFED v2.5r1) (Koster et al., 2015), is a global product of biomass
burning emissions which was developed for the NASA GEOS model. It applies the fire radiative power (FRP) method with a
cloud correction technique (Koster et al., 2015), where the location of fires and FRP are derived from the polar orbiting
Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the NASA’s Terra and Aqua satellites. QFED
provides daily emissions with a horizontal spatial resolution of 0.1° x 0.1°, and GEOS-Chem applies a climatological profile
based on WRAP (Western Regional Air Partnership) method (WRAP, 2005) to distribute the emissions over the diurnal cycle.
In the QFED implementation in GEOS-Chem, the setup of the plume injection height follows Fischer et al. (2014) and Travis
et al. (2016), where the 65% of the biomass burning emissions are allocated to the planetary boundary layer (PBL) and the
remaining 35%  belongs to the free troposphere. The QFED data can be accessed from

http://geoschemdata.wustl.edu/ExtData/HEMCO/QFED/v2023-05/ (last access: 1 July 2024).

2.4.2 GBBEPx

The Blended Global Biomass Burning Emissions Product eXtended (GBBEPx v4, Zhang et al., 2012; 2019), developed
by NOAA National Environmental Satellite, Data, and Information Service (NESDIS), produces daily global biomass burning
emissions. GBBEPx blends information from QFED and fire emissions estimated from the Visible Infrared Imaging
Radiometer Suite (VIIRS) instrument onboard Suomi National Polar-orbiting Partnership (SNPP) and Joint Polar Satellite
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System (JPSS). VIIRS fire emissions are obtained using FRP derived from VIIRS data in an approach that is similar to the use
of MODIS FRP data in QFED (Csiszar et al., 2016), but with a different fire detection scheme (Zhang et al., 2019). The blended
GBBEPx emissions are produced daily at a resolution of 0.25° x 0.3125°, and the same profile is applied to distribute the
emissions over the diurnal cycle as is used for QFED. The implementation of GBBEPx in GEOS-Chem assumes the same
plume injection height scheme as for QFED. The GBBEPx v4 data can be accessed from
https://www.ospo.noaa.gov/pub/Blended/GBBEPx/ (last access: 1 July 2024).

2.4.3 GFAS

The Global Fire Assimilation System (GFAS v1.2, Kaiser et al. 2012; Di Giuseppe et al., 2021), utilized by the
Copernicus Atmosphere Monitoring Service (CAMS), provides daily estimate of biomass burning emissions by assimilating
FRP observations from MODIS instruments on the Terra and Aqua satellites. GFAS estimates emissions by conversion of
FRP to the dry matter burned and the use of biome-specific emission factors. GFAS utilizes the vegetation -type prescribed by
the Global Fire Emissions Database (GFED). The daily data are globally available at a resolution of 0.1° x 0.1° from 2003 to
the present time, which can be accessed from https://ads.atmosphere.copernicus.eu/datasets/cams-global-fire-emissions-
gfas?tab=overview, (last access: 11 June 2024). In the GEOS-Chem simulations, we use the same diurnal cycle as used in
QFED and GBBEPx. Additionally, GFAS provides information about the daily injection height (i.e., mean altitude of
maximum injection (MAMI)) of the emissions. In GEOS-Chem, it is assumed that the emissions are injected uniformly from

the surface to the MAMI.

2.4.4 CFFEPS

The Canadian Forest Fire Emissions Prediction System (CFFEPS v4.0, Chen et al., 2019) produces biomass burning
emissions for North America using information from the Canadian Forest Service (CFS), Canadian Wildland Fire Information
System (CWFIS), and meteorological inputs from ECCC’s Global Environmental Multiscale (GEM) model. The product
provides hourly fire emissions and smoke plume injection height at individual hotspot locations. In implementing the CFFEPS
emissions in GEOS-Chem, the emissions were aggregated to the GEOS-Chem grid resolution with a weighted averaged plume
height based on the CO, emission level. The CO, emission level was used in determining the injection height for all species in
CFFEPS, even though here we focus only on the CO emissions. The plume injection height estimates from the FireWork
plume rise model (Anderson et al., 2011; Chen et al., 2019) on which CFFEPS is based, haves been validated against satellite-
driven (e.g., TROPOMI) dsiven-aerosol plume heights (Griffin et al., 2020).

3 Inversion methodology

The inversion framework utilizes the CHEEREIO assimilation toolkit (Pendergrass et al., 2023), which employs a
localized ensemble transform Kalman filter (LETKF). A detailed description of the LETKF algorithm used is provided in Hunt
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et al. (2007). We use CHEEREIO to derive optimized estimates of globally gridded emissions of CO between May and
September 2023 at a spatial resolution of 2° x 2.5° and a temporal resolution of three days by assimilation of TROPOMI
satellite and TCCON observations. The solution state vector of emissions, x%, is given by
X7 =% + yX*Pa(¥?) R (y° — H@xP)), (1)
where the overbar represents the ensemble mean, xP is the background state vector, y° is the observation vector, H (xP) is the
model simulation of the observations with observation operator H, R is the observation error covariance matrix, Pa is the
analysis error covariance matrix where tilde represents the ensemble space, X? is the background perturbation matrix, ¥? is
the observation perturbation matrix (see the detailed description of LETKF variables in Hunt et al., 2007). y is a regularization
factor used to prevent overfitting or underfitting to observations by balancing the relative influence of the a priori estimate and
the measurements in the inversion. It serves as a pragmatic correction for uncertainties that are hard to quantify, such as
unaccounted observation error correlations (Hakami et al., 2005; Lu et al., 2022; Voshtani et al., 2023).
To simulate the observations, we have developed an observation operator for each measurement type. The observation
operator maps the model emission fields (i.e., state space) into the observation space as follow:
H(xb) — hv[Ca priori + A(M(xb) —c® priori)]’ (2)
where A denotes the averaging kernel of the retrieval, capturing the vertical sensitivity of the retrieval profiles relative to the

apriori js the a priori profile provided by measurement data, M(x?) represents a forward operator that

real atmosphere, ¢
operates on the emissions state vector and produces CO profiles that are spatially and temporally interpolated at the locations
and times of the measurements, and h,, describes the vertical summation operator based on pressure weighting for computing
model--equivalent column retrievals. To obtain a posteriori estimate of CO emissions, we begin by initializing the ensemble
scaling factors using a multiplicative random perturbation to the prior estimates from all emission sources_at the grid scale

(i.e., spatially varying perturbations), sampled from based-en-a multivariate lognormal distribution (see the detailed description

of ensemble generation in {Pendergrass et al.; (2023), Section 3.2). We assume lognormal errors on the prior emissions to

ensure the positivity of the solution (i.e., prevent unrealistic negative scaling factors) and to better capture the skewed tails of
the emissions distribution (Maasakkers et al., 2019; Plant et al., 2022). In the next step, CHEEREIO first runs GEOS-Chem
for each ensemble member over the assimilation window and then applies Eq. 2 to those ensembles in the LETKF process.
This process further scales the emissions based on the observation increments (i.e., y° — H(x?)), and the observation and the
prior error covariances (Eq.1). Note that during the construction of error covariances, a logarithmic transform of the scaling
factor distributions to a normal distribution is required to satisfy the assumptions ofbyy LETKF (Hunt et al., 2007), which can
be transformed back to the lognormal distribution after the LETKF process. Finally, gridded total CO emissions from all
sources, including biomass burning (BB), fossil fuel, and biogenic emissions, are updated through the inversion process. Note
that the analysis here will focus on regions where BB plays a dominant role in the attribution of CO emissions between May

and September 2023, and where the-BB emissions are spatially distinct from fossil fuel emissions. As a result, misattribution
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of CO emissions to BB from other sources will be minor and likely falls within the uncertainty bounds of the a posteriori
estimates.

To obtain an efficient performance of the inversion using TCCON data, it is important to tune the assimilation
parameters with the available configuration in CHEEREIO. This was accomplished through a series of observing system
simulation experiments (OSSEs), which are described in Appendices A and B. We use 24 ensemble members following
previous inversion studies with the same approach (Liu et al., 2019; Pendergrass et al., 2023). Our sensitivity test with a larger
ensemble size of 36 produced nearly identical posterior error estimates, with negligible improvements; thus, for saving on the
computational cost of the analysis, we used the smaller ensemble size.

Before starting the inversion, we first conducted a 1-year model spin-up in 2022 (January-December) for all experiments
to minimize the impact of the initial conditions on the analysis. Then, an ensemble spin-up without assimilating observations

is performed, where emissions are randomlywe perturbed at each grid point emisstons-based on a lognormal distribution to

create an ensemble spread. We assume a lognormal standard deviation of o = 0.2, centered around 1, that provides ensemble
members scaling factors between 0.55 te-and 1.82 with 99% confidence. This perturbation level is sufficient to generate
meaningful ensemble spread while avoiding unrealistically high or low values for constructing the prior error covariance. The

scaling factors are assumed to be spatially correlated using an exponential decay function with a correlation distance of 500

km, while no explicit temporal correlations are imposed. We use a spin-up of about three months, comparable to the CO

lifetime during summer, not only to provide a reasonable spread in the ensemble members but also to ensure the concentrations

will reflect the perturbations ef-in emissions.

- At the start of the assimilation, we adjusted the
ensemble members by a global multiplicative factor, making the ensemble mean equivalent to the TROPOMI and TCCON
observations. This maintains a globally unbiased field of concentrations relative to the observations. Because the LETKF is
sequential, it takes some time for the observations to provide sufficient information to update the emissions. To account for
this lag, we use a one-month burn-in period in CHEEREIO (Pendergrass et al., 2023), for which the inversion output is
discarded in postprocessing.

The performance of the inversion can be also enhanced using different LETKF parameters, such as localization and
inflation parameters (Bisht et al., 2023; Miyazaki et al., 2012, 2020). For the TROPOMI and TCCON data, we use
regularization factors, Yrropomr = 0.2 and yrccon = 5, respectively, estimated separately for each observation type through
the OSSE experiments (see Appendix B). These factors scale the observation error covariances to balance the weight given to
the measurements relative to the prior weight in the inversion. For the high spatial density of satellite observations, a factor of
y < 1is required to prevent overfitting, while for sparse measurements like TCCON, a factor of y > 1 is typically suitable to
prevent underfitting of the observations. We also use an inflation factor (A = 0.08) to compensate for a rapideguiek reduction
of the ensemble spread, which may otherwise result—in—anprevent the inversion fromaet being updated by subsequent

observations. We set a localization radius of 500 km following previous CO inversion studies (Gaubert et al., 2023; Miyazaki
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et al., 2015) to avoid the impact of distant observations, which may be impaeted-affected by sampling errors and spurious
correlations (see Fig. S1). We generate super-observations for both TROPOMI and TCCON by aggregating measurements to
the model time and grid. This aggregation helps mitigate spatiotemporal representativity errors and facilitates LETKF
computations. The associated super-observation errors are calculated as described in Section 2.1. We further apply an inflation
factor to the observation errors, while initially assuming an observation error correlation of 0.28, following previous studies
(Chen et al., 2023; Pendergrass et al., 2023). We do not explicitly account for model transport errors in calculating the super-
observations, but the influence of these errors will be captured by the error inflation in the inversion.

We conducted a series of assimilation experiments, which are listed in Table 2, to assess the impact of the use of TCCON
and TROPOMI data and the choice of a priori emission inventories on the inferred CO emissions. Each experiment pairs a
specific emission inventory—QFED, GBBEPx, GFAS, or CFFEPS—with either only TROPOMI observations or both
TROPOMI and TCCON data in the assimilation process. Although the emissions are optimized at the grid box scale, we
aggregate emissions for the following five regions (shown in Fig. 2), where there are typically significant fire emissions
between May and September: North America (NA), Siberia (SI), South America (SA), Africa (AF), and South Asia and
Australia (SA&A). Any emission from outside of these five regions are captured in the Rest of the World (ROW) category.

The emissions from the five regions account for 90%—95% of biomass burning emissions globally.
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Figure 2: Major source regions of the biomass burning CO emissions used in the inversion analysis between May-September 2023, with an
example of the a priori emission estimate using the GFAS bottom-up inventory. The a priori estimates for these regions from other inventories

are listed in Table 3.
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Table 2: Assimilation experiments with the choice of emission inventories and assimilated observations used in the global inversion between
May-September 2023.

Experiment Biomass burning emission inventory  Assimilated observations®

1 QFED )
2 QFED TROPOMI

3 QFED TROPOMI+TCCON
4 GBBEPx ]

5 GBBEPx TROPOMI

6 GBBEPx TROPOMI+TCCON
7 GFAS ]

8 GFAS TROPOMI

9 GFAS TROPOMI+TCCON
10 CFFEPS® -

11 CFFEPS TROPOMI

12 CFFEPS TROPOMI+TCCON

* The inversions based on CFFEPS emission inventory in North America uses GFAS global emissions for the regions outside of North America.
® No observations are assimilated (-), corresponding to the model a priori or control run with a particular biomass burning emission inventory.

4 Results and discussions

This section presents our main results by first assessing the CO emissions on a global scale (Section 4.1) and then
focusing on North American emissions (Section 4.2), where the most extreme fire events took place during the study period
in summer 2023. A series of experiments are conducted as listed in Table 2 for both global and regional analysis. For the global
analysis (Sections 4.1.1-4.1.3), we use three biomass burning emission inventories (QFED, GBBEPx, GFAS) as priors, and
compare how assimilating TROPOMI satellite observations alone or jointly with TCCON ground-based measurements affects
our emissions estimates. A method to measure and compare error variance and information content is presented. For evaluation,
two types of independent data, including NDACC total column and surface WDCGG measurements, in addition to the same
TCCON observations (non-independent) are used. Focusing on North America analysis (Sections 4.2.1-4.2.2), we include an
additional regional prior emissions inventory from CFFEPS (Chen et al., 2019) provided by ECCC and additional experimental
InSb XCO data from TCCON at ETL inte our analysis. First, our analysis explores the spatiotemporal variability of a posteriori
and a priori CO fields during extreme fire episodes. Then, as a case study at ETL, we assess the impact of assimilating
additional information from experimental TCCON data at ETL, with unique retrieval characteristics, on local emissions

constraints. The evaluations are performed using independent aircraft and tall tower measurements. The discussion presented
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in these two sections allows us to highlight both the broad and local impacts of our approach and the specific improvements

achieved in areas most affected by fires.

4.1 Global analysis
4.1.1 Comparison between prior and posterior emissions

Table 3 shows the total regional BB CO emissions from the a priori bottom-up inventories and the a posteriori emission
estimates (i.e., ensemble mean) obtained from the TROPOMI-only assimilation and the joint TROPOMI and TCCON (i.e.,
TROPOMI+TCCON) assimilation. The standard deviations shown in this table are posterior ensemble spread based on the
LETKF assimilation, which is referred to as posterior uncertainty throughout the discussion in this study. The vector of
posterior uncertainties has the same size as the state vector, computed for each grid cell after each assimilation window.
Accordingly, the posterior uncertainty in an inversion region (i.e., regional or global scale) is the ensemble standard deviation
of the total emissions. The total emissions per ensemble is obtained by summing the emissions across all grid cells in that
region. For the inversion period between May and September 2023, there is a large discrepancy in the a priori emissions
between the three global inventories, with GFAS producing the highest global emissions of 230.3 Tg CO, which is a factor of
1.3 times GBBEPx (182.6 Tg CO) and 1.4 times QFED (164.5 Tg CO) emissions. These differences are more substantial in
the regions of North America (NA) and Siberia (SI), where the boreal wildfires play an important role. In NA, the GFAS
emissions are greater than the emissions from GBBEPx and QFED by a factor of 2.1 and 2.5, respectively. In SI, GFAS is a
factor of 3.1 and 2.1 greater than GBBEPx and QFED, respectively. Although all GFAS, GBBEPx, and QFED are based on
estimates of FRP derived from satellite products (i.e., MODIS and/or VIIRS), there are many driving factors that cause the
differences in the total emissions (Li et al., 2020; Liu et al., 2024), which can reach up to an order of magnitude in a finer
spatiotemporal scale (Stockwell et al., 2022). In contrast, the CFFEPS emissions in NA are comparable to GFAS despite using

a different approach for estimating the emissions.
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Table 3: Biomass burning CO emissions estimates of a priori and a posteriori in the major source regions based on Fig. 2 for the period
between May and September 2023. The a posteriori estimates are denoted by the ensemble mean and standard deviation.

A priori* (Tg CO) A posteriori TROPOMI-only (Tg CO) A posteriori TROPOMI+TCCON (Tg CO)
Region
QFED GBBEPx GFAS  CFFEPS’ QFED GBBEPx GFAS CFFEPS QFED GBBEPx GFAS CFFEPS
North
. 110.4 = 112.8 £ 1272+ 125.6 = 1112+ 1153 130.1 £ 129.3 +
America 37.1 42.7 91.0 90.2
19.8 19.9 17.2 17.7 15.5 15.1 12.9 12.5
(NA)
. 104.6 = 1172+ 100.3 = 103.4 £ 117.8 £ 100.8 £
Africa (AF) 65.1 87.4 53.5
17.3 18.8 17.4 16.2 17.7 16.4
. . 44.5 +
Siberia (SI) 16.5 11.1 34.5 294+£9.8 24.1+£85 126 29.1+8.2 22.8£6.9 46.4+9.2
South
272+ 274+ 249 +
America 22.1 22.1 19.1 28.1+£9.7 27.0£9.4 25.0+9.1
10.3 10.3 10.0
(8A)
South Asia
& Australia 13.8 12.1 16.3 172+£6.4 15.6+6.3 19.5£6.8 17.2+5.7 16.1£59 202+6.1
(SA&A)
Rest of the
World 9.8 72 5.8 14.1£3.0 12.5+3.0 122+£32 18.9+2.7 126 +£2.2 162 +2.7
(ROW)*
302.9 £ 309.6 + 328.6 = 307.9 + 311.6 £ 338.7
Global 164.5 182.6 230.3
66.6 66.8 67.1 58.0 57.1 56.4

* A priori Fossil fuel and biofuel emissions are provided by CEDS inventory and biogenic emissions are obtained from MEGAN version 2.1 in all the cases.
® The global inversions with CFFEPS BB emissions uses GFAS global BB emissions for the regions outside of North America.
¢ The source of CO in the rest of the world also includes the oxidation of methane and non-methane hydrocarbons.

After assimilating the TROPOMI data, the a posteriori emissions suggest a large increase in global emissions from the
a priori, with global a posteriori emissions of all inventories in close agreement with each other. We estimate global fire
emissions of 303+67 Tg CO, 310+67 Tg CO, and 329+67 Tg CO for QFED, GBBEPx, and GFAS, respectively. In North
America, the a posteriori emission estimates are also consistent, with estimates of 126+18 Tg CO, 127+17 Tg CO, 113£20 Tg
CO, and 110+20 Tg CO for CFFEPS, GFAS, GBBEPx, and QFED, respectively. For most other regions, the inferred emissions
all agree with within the a posteriori uncertainty except for Siberia, where the a posteriori emission estimates are 45+13 Tg
CO, 2449 Tg CO, and 29+10 Tg CO for GFAS, GBBEPx, and QFED, respectively. The discrepancy between the a posteriori
Siberian emissions could be because the assimilation did not ingest TROPOMI observations poleward of 60°N, and there are
large emission sources poleward of 60°N, as can be seen in Fig. 4. Note that although the emissions beyond 60° may not be
directly corrected from local observations at the current assimilation step, they can still be updated using observations between

60°S-60°N and through model transport and cycling of the assimilation that propagate information globally. The overall
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agreement between the a posteriori emission estimates obtained with the different a priori emissions suggest that TROPOMI
provides sufficient information to constrain the regional emission estimates.

The joint TCCON and TROPOMI inversion produces a posteriori emission estimates that agree to within 5% of the a
posteriori emissions from the TROPOMI-only inversion, but these differences vary among the source regions. At the global
scale, the a posteriori estimates remain within 1o uncertainty, implying that the increment from the joint inversion closely
matches that from the TROPOMI-only assimilatieninversion. Previous inversion studies with CO, and CO, measurements
showed that combining satellite total column observations with surface in situ measurements (Byrne et al., 2020; Kim et al.,
2024; Wang et al., 2018) could benefit from the complementarity between the two types of measurements and provide posterior
fluxes that are better informed by measurements. We will discuss later in this section the spatiotemporal distributions of the a
posteriori emissions in comparison with the a priori between-across all-the inventories. Table 3 shows that the joint inversion
reduces the uncertainties in the posterior relative to the inversion using only the TROPOMI data. We find a global uncertainty
reduction of nearly 15% in all the a posteriori emission estimates when including the standard TCCON XCO in the inversion.
This reduction is likely due to the additional temporal information and higher accuracy provided by TCCON, compared to
TROPOMI. The reduction of uncertainty varies between the source regions. In the Northern Hemisphere extratropics, where
most efthe-TCCON stations are located, the uncertainty reduction reachesinereasesto 29% in NA with CFFEPS emissions,
followed by Siberia with GFAS emissions (26% reduction-efuneertainty). On the other hand, for the tropics and subtropics in
the Southern Hemisphere, where there are fewer TCCON stations, we find smaller reductions in uncertainties (between 5%
and 10%). Goudar et al. (2023) investigated the uncertainties in estimating CO emissions from isolated fires using TROPOMI
assimilation. They reported that these estimated uncertainties primarily arise from errors due to spatial under-sampling of the
CO field by TROPOMI observations and errors due to assumptions about the temporal variability of the emissions. Although
we did not examine individual fire events, the lower overall uncertainty from the joint TCCON and TROPOMI assimilation
suggests an improved handling of the spatial under-sampling error in TROPOMI-only assimilation, which is reflected in the
uncertainty estimates. This improvement could be particularly important, as it shows the isolated effect of adding TCCON
data to the inversions, when other factors such as a priori emissions and their errors were kept fixed between the joint and

TROPOMI-only assimilations.
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Figure 3: Comparison of the temporal variability of the CO emissions estimate for the priors (blue), posteriors using TROPOMI-only
assimilations (green), and posteriors using joint TROPOMI and TCCON assimilations (red), among the three global biomass burning

480 inventories, including (a-¢) QFED, (f-j) GBBEPx, and (k-0) GFAS used as the priors, and for the major inversion source regions as shown
in Fig. 2.
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Figure 4: Comparison of the spatial distribution of the time-averaged biomass burning CO emissions in the (a-c) a priori, (d-f) a posteriori
— a priori using TROPOMI-only assimilation, and (g-i) a posteriori — a priori using joint TROPOMI and TCCON assimilation, and among
three global biomass burning inventories.

To better understand the influence of assimilating TCCON XCO together with the TROPOMI XCO, we examine the
temporal and spatial variability of the estimated emissions. Fig. 3 shows a priori emissions in blue, a posteriori emissions from
the TROPOMI-only assimilation in green, and the a posteriori emissions from the joint inversion in red between May and
September. In North America, QFED shows only slight variations in the a priori emissions (Fig. 3a). GBBEPx (Fig. 3f) shows
some degree of improvement over QFED relative to TROPOMI posterior during a few fire episodes. For GFAS, however, this
improvement over QFED (Fig. 3k) is significant, so that the GFAS prior exhibits reasonable agreement in both magnitude and
temporal variability with the a posteriori emissions from the TROPOMI-only assimilation. The posteriors from different priors,
but with the same set of assimilated observations, show overall stronger temporal variability compared to their respective
priors. For instance, in North America, while the QFED and GBBEPx priors are relatively flat compared to the GFAS prior,

all their posteriors exhibit enhanced and more consistent variability (Fig. 3a,f,k). Still, differences to some extent remain
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noticeable between these posterior time series, likely driven by differences in the spatial and temporal distribution of the priors,
and their interaction with observational constraints through model transport and mixing. Comparison of the spatial distribution
of the a priori emissions (Fig. 4a-c) indicates that two main regions of boreal wildfires in (eastern) Quebec and (western)
Alberta and British Columbia, Canada, correspond to the large differences in regional emissions among the inventories,
although their overall global spatial distributions are similar. The a posteriori — a priori emissions from the TROPOMI-only
inversions confirm the underestimate of CO emissions in QFED and GBBEPX, in those regions in Canada (Fig. 4d-f). GFAS,
unlike the other two inventories, has significantly larger emissions from wildfires across Canada, so that they are comparable
with the magnitude of the a posteriori emissions in that region (see Table 3 for a comparison of total emissions and Fig. S2 in
the supplements for the separate a posteriori emission maps associated with Fig. 4).

In Siberia, the a posteriori emissions provide an enhancement on the a priori in a few episodes in July and August (Fig.
3c¢,h,m), indicating an overall low level of emissions from all inventories. GFAS, followed by QFED, has not only higher
emissions in the same locations as GBBEPX, but also has a greater area of BB emissions. However, the a posteriori emissions
suggest that the GFAS inventory required larger adjustments in the central and western part of SI, suggesting errors in the
spatial allocation of the a posteriori fire emissions in Siberia. In Africa and South America, the emissions enhancement occurs
in late July through the end of the inversion period in September, which are shown in Fig. 3b.g.l.d,i,n. For these regions,
GBBEPx, followed by QFED, provide a closer estimate to the a posteriori than GFAS, while the posterior emissions from the
TROPOMI-only and joint inversions remain nearly identical (Fig. 4d-f versus 4g-i). This could be because there are very few
TCCON measurements in the Southern Hemisphere near that region. In South Asia and Australia, the emissions enhancement
occurs only in two episodes in early May and early September, which remain nearly consistent among the inventories. Finally,
comparing the regional a posteriori emissions from the TROPOMI-only and joint inversions (Fig. 3k,I,m,n,0), we find different
temporal variability of the updated emissions, which are distinctive for several wildfire episodes. Additionally, we observed
improvements in the correlation between analogous posterior timeseries across different BB inventories. For example, the
temporal correlation between the QFED and GFAS posterior emissions in North America increased from r = 0.85 in the
TROPOMI-only assimilation to r = 0.90 in the joint TROPOMI and TCCON assimilation. These findings suggest that the
higher temporal resolution of the TCCON measurements provide additional constraints on temporal variability of the emissions
in the inversion, which is consistent with findings from previous studies on CO; inverse modelling (Byrne et al., 2020, 2024;
Chevallier et al., 2011).

Overall, according to the discussion above and the results from the Observing System Simulation Experiments (OSSEs)
demonstrated in Appendices A and B, we find that although TCCON alone may not significantly constrain spatiotemporal
variability in the major inversion regions—Ilikely due to the limited number of measurement sites—it is still clear that adding
TCCON to TROPOMI in the joint inversion reduces the posterior uncertainty estimates everywhere compared to the
TROPOMI-only inversion. We found that the reduction of the uncertainty by adding TCCON measurements becomes more
significant during high BB emission episodes or wildfire events. Later, in Section 4.1.3, we evaluate the a priori together with

the a posteriori from both TROPOMI-only and joint inversions using independent measurements.
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4.1.2 Error variance reduction and the information content

We evaluate the performance of the inversion for constraining BB CO emissions by quantifying the information content
provided by the TROPOMI and TCCON data. To achieve this, we use two approaches: (i) computing the reduction of
uncertainty in the model space and (ii) computing the degree of freedom for signal (DOFS) in the ensemble subspace. Using
these methods will quantify the information provided by the two observing systems individually. In the first approach, we
compute the a priori and a posteriori error variance for each grid point, which is obtained as part of the solution for LETKF
processing in CHEEREIO. The reduction of error variance can be used as a metric for evaluating the inversion performance
(Feng et al., 2009); as such, a greater error variance reduction at a grid point indicates that more reliable information from
observing system is available to constrain emissions for that grid. Accordingly, we define a normalized error reduction (€) for
each grid point as follows:

_ (o?

&=1-r3. 3)

where (6{*)? and (g/)? denote the error variance of the a posteriori and the a priori, respectively, for the i emissions in the
state vector. &; varies between 0 to 1, with greater values indicating a higher reduction of a priori uncertainties. Although the
LETKF method approximates the a posteriori uncertainty due to the reduced rank representation associated with the limited
number of ensembles used to construct the error covariances (Livings et al., 2008), it still provides useful information with

which to evaluate the analyses.
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Figure 5: Comparison of the time-averaged (May-September 2023) a posteriori error variance reduction, €, of (a-c) TROPOMI-only
assimilation and (d-f) joint TROPOMI and TCCON assimilation for three global biomass burning inventories used as a prior.

Fig. 5 shows the error variance reduction, ¢; , for the a posteriori emissions based on the three different global BB
inventories (i.e., QFED, GBBEPx, and GFAS) using TROPOMI-only measurements (Fig. 5a-c) and using joint TROPOMI
and TCCON measurements (Fig. 5d-f). The greater reduction in error variances implies higher confidence in the posterior
estimate at those locations. We find greater reduction of error variance in the joint inversion compared to the inversion with
TROPOMI-only data, primarily in NA and in the vicinity of TCCON stations. In fact, the reductions correlate with the weight
of observations compared to the model a priori, so that increasing the weight of observations with respect to the model a priori
could result in higher reductions of the error variances. For example, with QFED as the a priori emissions, the rate of reduction
is greater in boreal Canada, central and southern part of the United States, western Europe, eastern Asia, Siberia, and Australia.
This indicates where TCCON provides additional information to further constrain the emissions based on the QFED BB
inventory. In addition, comparing the cases with different inventories suggests that there could be differences in error variance

reduction due to the model a priori. Accordingly, the slightly greater reduction with GFAS, compared to QFED or GBBEPx,
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is likely due to its higher spatiotemporal variability, which enables the inversion to better exploit the information from

observations.

I Posterior TROPOMI
[ Posterior TROPOMI+TCCON

QFED GBBEPx GFAS

Figure 6: Computed degree of freedom for signal in ensemble subspace (DOFS;) associated to the TROPOMI-only (blue) and joint
TROPOMI and TCCON (red) inversions-+ed) for three global biomass burning inventories (QFED, GBBEPx, GFAS) used as a priori.

In the second approach, following Zupanski et al.; (2007), we compute the degree of freedom for signal (DOFS)
approximated for the ensemble-based assimilation method. The DOFS, as defined by Rodgers (2000), quantifies the number
of pieces of independent information in an observing system toward constraining the state vector of dimension » (also
equivalent to the total number of grids in the model). It is defined as

DOFS,, = tr(Inxn = Pfixn (PRxn) ™) = tr(Anxn), “4)
where P%,,, and PL,, are analysis and background error covariances, I, 5, denotes the identity matrix, and A5, represents
the averaging kernel matrix. To compute 4,4, and then DOFS,,, a Jacobian matrix must be constructed in full rank, requiring
extensive computational cost (e.g., Varon et al., 2022). In an ensemble-based approach, computing the Jacobian matrix in the
state space is impractical since the limited number of ensembles are not sufficient to describe full rank error covariances.
However, those quantities can be approximated for the ensemble subspace with reduced rank error covariance matrices, so
that the information provided by the observation system is measured relative to the maximum independent pieces of
information determined by the ensembles size, k. Therefore, the DOFS,, is defined as,

DOFS; = tr((Iixk + Crexi) ™ Ciexic) = 7 (Apexic)s (5)
where Cyy; denotes the symmetric information matrix, I, is the identity matrix, and Ay, represents an equivalent
averaging kernel or influence matrix, all obtained in the ensemble subspace. The derivation of Eq. (5) started from Eq. (4) is
described in Zupanski et al. (2007) and Zupanski (2005). Subsequently, we can compute the information matrix, Cjyy, either
within the LETKF calculation of CHEEREIO or as a postprocessing step if all the outputs from the ensemble members and
the control run are already stored. Accordingly, every element of matrix C, are computed as

Ci;=1zz, (6)

where z is the-a vector of dimension; m (the number of observations) and is defined as

25



585

590

595

600

605

610

1

2,(m) = R j (Hon (6) = Hiy (%)), )
where the observation operator H,, is applied to the perturbed, x;, and unperturbed state vector x, and weighted by the inverse
of square root of observation error covariance R,;,y,. Migliorini (2013) used the same method in the square root filter, where
the forecast error covariance matrix is approximated by the sample covariance matrix, which is produced by the forecast of
each ensemble member. Once matrix C is constructed, one can use Eq. (5) to obtain A, and the DOFS;, for the ensemble
subspace. Note that using this approach, there are at most £ — 1 independent pieces of information for the entire assimilation
period. Thus, with & = 24 in this work, the computed DOFS may vary between 0 and 23, mainly depending on the
characteristics of the assimilated observations, such as their density and error statistics. Although this method does not produce
DOFS in the state space of the emissions (Zagar et al., 2016), it enables a straightforward comparison of the information
content across different experiments.

The computed DOFS for different inversions are shown in Fig. 6. Adding TCCON data to the inversion increases the
DOFS from the TROPOMI-only inversion for all the cases. These values increase from 11.1, 11.4, and 12.7 for the TROPOMI-
only inversions to 15.5, 15.6, and 16.9 for the inversions with TROPOMI and TCCON data using QFED, GBBEPx, and GFAS
emissions, respectively. The higher DOFS from GFAS compared to the other BB inventories is also in agreement with its
higher reduction of uncertainty in Fig. 5. This likely implies that the difference between the perturbed and unperturbed forecast
of the state vector, which defines the elements of matrix C, correlates with the spatiotemporal variability of the prior emissions.

Thus, GFAS prior, with greater variability than the other priors (e.g., Fig. 3a,fk and Fig. 4a-c), may result in higher DOFS.

4.1.3 Evaluation using ground-based observations

We evaluate the inversion against TCCON, NDACC total column retrievals, and in situ WDCGG measurements to
better understand the constraint from each measurement type used in the inversion. NDACC and WDCGG are independent
data while TCCON are the same data as those used in the assimilation, so they are not independent for evaluating the joint
inversions. Table 1 shows the measurement sites with their geographical information (latitude, longitude, and altitude above
sea level). First, we evaluate the results against all the TCCON measurements from May to September 2023. In Fig. 7, the
model is evaluated against hourly averaged TCCON data, with the a priori shown in blue and the a posteriori in red from either
the TROPOMI-only inversions (in the left) or the joint TROPOMI and TCCON inversions (in the right). The statistics indicate
that the inversions significantly improves on the prior for all the cases. Examination of the a priori models shows that the
GBBEPx simulation slightly improves on the QFED simulation, with a coefficient of determination of R? = 0.31 compared to
R? =0.27 with QFED. The GFAS simulation has the highest a priori correlation (R? = 0.54), resulting in the best a posteriori
agreement with TCCON, with R? = 0.82 and R? = 0.87 for the TROPOMI-only and TROPOMI+TCCON assimilations,
respectively. The time series plots in Fig. 7 shows the improvement of GBBEPx on QFED, with better agreement between the
simulation and the TCCON measurements when there are wildfire enhancements of XCO. The GFAS simulation shows a

significant improvement during those peaks, indicating that the GFAS simulation better captures the time variability in the
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measurements. The evaluation of the joint inversion using TROPOMI and TCCON XCO data against the TCCON
measurements shows a further improvement of the inversions; both the slope and the R? are closer to 1.0 than the results from

the TROPOMI-only assimilation. This is expected; because the same TCCON data are used in the inversion and the evaluation

(Fig. 7d,h,]).
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Figure 7: Evaluation of the model a priori (blue) and a posteriori from TROPOMI-only assimilation (red) against TCCON measurements
(green) ef-for all sites together using-a time series and scatter plots based on (a, b) QFED, (e, f) GBBEPx, and (i, j) GFAS biomass burning
emissions (left side). A similar evaluation of the model a priori against TCCON, hewever-but with a posteriori from joint TROPOMI and
TCCON assimilation (red) using (c, d) QFED, (g, h) GBBEPx, and (k, 1) GFAS as the prior biomass burning emissions estimates (right
side).
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Figure 8: Evaluation of the time-averaged model a priori (blue), a posteriori using TROPOMI-only assimilation (orange), and a posteriori
using joint TROPOMI and TCCON observations (red) against independent NDACC and in situ measurements between May-September
2023. Each panel is associated with a particular prior biomass burning emissions frem-bettem-up-inventoryies, including (a, b) QFED, (c,
d) GBBEPx, and (e, f) GFAS. The top row of each panel shows the coefficient of determination (R?) of the model using the prior or
assimilation using the posterior with respect to the measurements, whereas the bottom row represents the mean bias and the standard
deviation of the model or assimilation with respect to the measurements. Tsukuba, Lauder, and Wollongong are collocated stations for both
TCCON and NDACC.
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To assess the impact of TCCON on the performance of the inversion more objectively, we also compare the inversion
results with independent NDACC column measurements and surface in situ measurements in Fig. 8. The R?, mean bias, and
standard deviation relative to the measurements are shown for the model a priori (QFED, GBBEPx, and GFAS) in blue, the a
posteriori from the TROPOMI-only assimilation in orange, and the a posteriori from the joint TROPOMI and TCCON
assimilation (i.e., TROPOMI+TCCON) in red. We find a higher R? for both a posteriori estimates (i.e., TROPOMI-only and
TROPOMI+TCCON) relative to the a priori estimates in almost all the cases, while there is an additional increase in correlation
for the joint inversion compared to the TROPOMI-only inversion. The a posteriori from the TROPOMI-only assimilation
provides a small reduction of the mean bias and standard deviation, and by adding TCCON to the assimilation, there is a further
reduction at several sites (Tsukuba, St. Petersburg, MNM, RYO, YON). The added improvement in the posterior XCO
obtained by adding the TCCON data to the inversion differs between sites. For the NDACC sites collocated or downwind of
TCCON sites, such as Tsukuba, Lauder, Wollongong (collocated stations), and St. Petersburg (~2000 km downwind of
European stations), the R? increases more by adding TCCON to the inversion. The evaluation at the Arrival Heights NDACC
station located in a remote area in Antarctica, far from both the TROPOMI and TCCON assimilated observations, shows an
improvement in the a posteriori that suggests that the assimilation improves global background concentrations of CO.
However, at the Altzomoni NDACC site, located about 75 km southeast of Mexico City and almost 2 km higher in altitude,
we found little improvement after the assimilation. It is likely that the local topography cannot be captured in our global model,
which has a 2° x_2.5° spatial resolution. In addition, the local ambient atmospheric conditions, such as stability and humidity
in this region, causes most of the fire emissions to stay within the boundary layer, and neither the model nor the assimilation
are-is capable of capturing such effects (Sha et al., 2021).

For the surface in situ measurements, we also find an increase ef-in the correlation between the a priori and the a
posteriori estimates using the TROPOMI+TCCON assimilation, but with a smaller improvement than we-seeobserved at the
NDACC stations, with the exception of the JFJ and MKN stations, where there is a larger improvement. The relatively smaller
improvement compared to NDACC may primarily be attributed to the fact that the surface sites have a larger representativeness
error given our 2° x_2.5° grid resolution, which limits the ability of the assimilation to significantly correct for them. For
example, fer-at the CGR station, the local atmosphere is influenced by a land-sea wind regime that cannot be resolved by the
relatively coarse grid resolution of the model. In addition, the vertical sensitivity of the TCCON and NDACC data based on
their averaging kernels may partly impact these evaluations.

Similar to the evaluation against NDACC, we find slight improvements in the mean bias and standard deviation at
WDCGG surface stations. In most efthe-cases, adding TCCON to the assimilation reduces the error standard deviations (i.e.,
posterior—measurement errors), while the mean bias remains almost identical to the-biasthat of the TROPOMI-only inversion.
Comparison among the three BB cases shown in Fig. 8 indicates that, for an-equivalent a priori or a posteriori emissions

estimates (e.g.. for TROPOMI-only), their statistics are not significantly different at most measurement sites.
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4.2 North America analysis
4.2.1 Assimilation performance for constraining boreal wildfires emissions

Our posterior emissions from the inversions indicated that North America has the highest level of BB emissions and

contributed one-third of the global total in summer 2023. The emissions primarily came from the boreal forest across Canada,

which were poorly estimated by the bottom-up emissions inventories, with a 31%——67% underestimation in the a priori

relative to the a posteriori from both TROPOMI-only and joint inversions in this region during the study time-period (see
Section 4.1 and Table 3). Thus, we take a closer look at the spatial and temporal characteristics of the XCO over North America
to better understand the localized and episodic behavior of the fire emissions with respect to the different inventories. In
addition to the three global BB emissions inventories discussed in the previous sections, here, we also include a regional
bottom-up emissions inventory in North America from CFFEPS (Chen et al., 2019) provided by ECCC to compare with those
global emissions. Note that for our global simulation with CFFEPS emissions in North America, we use GFAS for the global

emissions which are replaced by CFFEPS in North America.

Averaged CO concentrations in North America
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Figure 9: Evaluation of the domain-averaged CO concentrations (XCO) of the a priori model (dashed lines) and a posteriori using TROPOMI
assimilations (solid lines) between-for four different inventories in North America, including QFED (blue), GBBEPx (green), GFAS (red),
and CFFEPS (purple), against TROPOMI XCO measurements (black). The aA: priori model refers to a model forecast using prior emissions
and the a posteriori is equivalent to the ensemble mean from LETKF. Three extreme wildfire episodes across boreal regions are chosen for
comparison efbetween the assimilation results using different inventories and for comparison of the assimilation with the a priori model.

We first focus on the temporal variability of the domain-averaged XCO in North America from the a priori model and
a posteriori assimtation-estimate using TROPOMI inversion with the four inventories. In Fig. 9, the model a priori with-for
each emission inventory is shown in dashed lines with an ‘x’ marker, the a posteriori is shown with solid lines with a square

marker, and the TROPOMI measurements themselves are indicated by the black line with circles. Fig. 9 shows that the a priori
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using QFED and GBBEPx emissions have similar XCO in the entire period, except a slightly higher level of XCO with
GBBEPx during May and June. On the other hand, the a priori XCO estimates with GFAS and CFFEPS are both greater than
QFEED-and-GBBEPx-in magnitude (i-e5—~10 ppb higher) and more variable_than those with QFED and GBBEPx. Although,
the model--estimated CO has-shows similar trends between CFFEPS and GFAS, the two inventories produce XCO with

different temporal variability and both underestimate the XCO observed by TROPOMI. In fact, during the large emissions
episodes from wildfires in mid-May and late June, CFFEPS has higher emissions and better captures the variability in
TROPOMI XCO, while-whereas from July to September, they produce comparable levels and variability of CO, with slightly
higher CO for GFAS at the peaks in late July and early August.

Nevertheless, the inversion using TROPOMI suggests that all the a posteriori emission estimates are a significant
improvement from the a priori after about a month, and show reasonable agreement with the temporal variability of the
TROPOMI measurements. The a posteriori XCO also suggests that the seasonal variability that is usually characterized by
decreasing CO in summer, due to the higher rate of oxidation with OH radical, is balanced by the higher rate of BB CO
emissions estimated in the inversions, resulting in an almost uniform XCO during the summer-fall 2023. Despite their poorer
a priori estimates, QFED and GBBEPx provides a posteriori XCO that agrees with TROPOMI measurements better than the
a priori of GFAS and CFFEPS. However, comparing the XCO between the four inversions suggests that CFFEPS, followed
by GFAS, perform better at the XCO peaks, and thus can better capture the variability in the TROPOMI measurements.

We looked closely at three extreme wildfire episodes that occurred across the Canadian boreal forest at different times
and regions in summer 2023 to better examine the spatial characteristics of the a priori and a posteriori estimates at the time
of the fires. As shown in Fig. 9, the first episode covers five days of large wildfires in Alberta between 19% and 23™ of May,
the second episode efextremewildfires-occurred in Nova Scotia and Quebec between the 22 and 26" of June, and the third
episode was in British Columbia and the Northwest Territories between the 17% and 19 of July. To evaluate the inversion
results from these events, we compare in Fig. 10 the model a priori (M) and a posteriori analysis (A) with the TROPOMI
observations to obtain analysis minus observations (A — O) and model minus observations (M — O) differences for the four
emissions inventories during the three extreme wildfire episodes in North America. A comparison of M — O between the
different inventories for all the episodes reveals that CFFEPS, followed by GFAS, has a smaller underestimation of CO
concentrations compared to QFED and GBBEPx. Although the reduction of this bias occurred over a large domain, including
downwind of the emissions, the reduction is more significant in the vicinity of the wildfire emissions. Our results comparing
different inventories are consistent with our findings in Fig. 9, which show that CO concentrations from the a priori are
underestimated due to the lower emissions in the inventories (Fig. 4), in the same order as observed here. We find similar
improvements in our a posteriori analysis between the different inventories, in which A — O exhibits lower bias with
CEEEPSCFFEPS, followed by GFAS, in comparison with QFED and GBBEPx. Although the CFFEPS a posteriori XCO is
significantly closer to the TROPOMI observation, the QFED a posteriori still shows a slight improvement on the CFFEPS a

priori, indicating the larger impact of assimilating TROPOMI observations compared to providing a better prior.
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720  Figure 10: Comparison of the difference between model (M) or assimilation (A) and TROPOMI XCO observations (O) (i.e., M—O or A —
0), for three extreme wildfire episodes across boreal regions. Episode 1: May 19—23; episode 2: June 22—26; episode 3: July 17—19.
Assimilation is based on TROPOMI observations and uses different inventories in North America as the-prior CO emission estimates. The
model and assimilation fields were transformed using the TROPOMI a priori profiles and averaging kernels.
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Figure 11: Taylor diagram for evaluation of the assimilation and a priori model using four different biomass burning inventories against
TCCON XCO measurements at East Trout Lake (ETL) between May and September 2023. (a) Assimilation is prerformed using TROPOMI-
only (square) and joint TROPOMI and TCCON (triangle) data, while their correlations and standard deviations are compared with the model
a priori (coloured circles) and TCCON XCO measurements (black circle). (b) Evaluation of the mean bias and error of the priors (blue),
assimilation using TROPOMI-only data (green), and assimilation using-a joint TROPOMI and TCCON data (red).

We also evaluated the a priori and a posteriori XCO with TCCON data from ETL for the entire simulation period
between May and September 2023. Fig. 11a presents a Taylor diagram comparing the standard deviation and correlation of
the a priori or a posteriori against TCCON measurements at ETL, and Fig. 11b shows the mean bias and standard deviation of
the prior/posterior — measurement residuals. The a priori XCO are shown in circles, the a posteriori from the TROPOMI-only
assimilation in squares, and the a posteriori from the joint TROPOMI+TCCON assimilation in triangles. It shows that the a
priori estimates with QFED and GBBEPx have not only low correlation with the measurements, but also have-low variability.
The a priori estimates with CFFEPS and GFAS improve on the correlation but more significantly on the variability, in addition

to the mean bias (Fig. 11b) that is reduced by more than a factor of 2. The a posteriori for all cases provides significant
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improvements on the a priori by increasing the correlation and lowering the mean bias and standard deviation, resulting in-a
closer estimates to the measurements. Among all the a posteriori cases, the joint TROPOMI and TCCON inversion has a
noticeable level of improvement with increased correlation and slightly smaller mean bias and standard deviation, in addition
to adjusting the variability towards the measurement’s variability. A comparison among the inventories suggests that the joint
inversion using CFFEPS provides the highest correlation, lowest standard deviation, and nearly unbiased estimates with
matehing-variability matchingwith the measurements. The best agreement between the joint inversion and the TCCON
measurements at ETL is with CFFEPS, followed by GFAS, then GBBEPx, and QFED.

4.2.2 Implications for vertical sensitivities in the inversion

In this section, we examine the potential use of the experimental TCCON XCO product from the mid-infrared (InSb)
detector available at ETL for the inversions of BB CO emissions. Since the measurements provide us with an independent set
of XCO; with distinct averaging kernels, we take those as separate pieces of information into our joint TROPOMI and TCCON
inversion. Similar to the standard TCCON, we assume uncorrelated errors for the InSb data, however, the effect of possible
error correlations can be approximated and taken into account by re-tuning the regularization factor. The InSb CO
measurements are processed in a similar way to produce a separate set of hourly gridded TCCON InSb data. Thus, when these
data are added to the joint inversion, the size of the observation vector and observation error covariance increases accordingly.
The vertical profile of the averaging kernels in the InSb CO product (Fig. 1d) has higher sensitivity to the surface and lower
troposphere, and lower sensitivity to higher altitudes compared with the standard XCO. Thus, we aim to understand the added
benefit of assimilating these data for constraining CO emissions in the inversion. To achieve this, we conducted inversions
using joint TROPOMI and TCCON data that incorporate three variations of the TCCON product, including the standard XCO,
the InSb XCO, and the combined InSb and standard TCCON product. The inversions show nearly identical improvements
between the posteriors and the prior when using the CFFEPS inventory, indicating a less than 1% discrepancy of total BB
emissions in North America. However, there is a noticeable difference in their spatial distributions, especially in the wildfire

hotspots in British Coluembia, Alberta, and Quebec (see Fig. S3 in the supplements).
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Figure 12: Evaluation of the assimilation and a priori model using the CFFEPS biomass burning inventory against tall tower measurements
at ~60 m above sea level at East Trout Lake (ETL). (a-b) a priori model (blue), (c-d) assimilation using joint TROPOMI and FECON
standard X€O-TCCON data (red), (e-f) assimilation using joint TROPOMI and InSb X€O-TCCON data (yellow), and (g-h) assimilation
using joint TROPOMI and the standard and InSb TCCON data (orange) are compared with tall tower measurements (green).

To evaluate the performance of these inversions, we use two independent in situ datasets;—: tall tower measurements
from Environment and Climate Change Canada (Chen et al., 2014) and aircraft profiles from the National Oceanic and
Atmospheric Administration (McKain et al., 2024; https://gml.noaa.gov/aftp/data/trace_gases/co/pfp/aircraft/) at ETL. We
compare the tall tower measurements with the a priori (in-blue) in Fig. 12a,b and the a posteriori (in-red) from the joint
TROPOMI and TCCON assimilation using standard TCCON in Fig. 12-c,d, the a posteriori (in—yellow) from the joint
assimilation using the TROPOMI and InSb TCCON data in Fig. 12e,f, and the a posteriori (in-orange) from the combined
TROPOMI plus the standard and InSb TCCON data in Fig. 12g,h. We find a significant improvement in all the-inversion cases

compared to the a priori, especially at the concentration peaks, resulting in an increase in R? and the slope of the regression.
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Figure 13: Evaluationg of vertical profiles fromef the joint inversion using TCCON standard CO (red), InSb CO (yellow), combined
standard and InSb CO (orange), and the a priori model (blue) against aircraft measurement profiles from NOAA at ETL (green squares); on
(a) July 7, (b) July 16, (c) August 13, and (d) August 20, 2023.

The evaluation of the inversions shows that the assimilation with TROPOMI and the InSb XCO data improves the
correlation from the case with standard TCCON XCO (from R? = 0.68 to R? = 0.78), although the slope of the regression
has slightly decreased (from slope = 0.72 to slope = 0.68). However, the inversion using the combined standard and InSb
TCCON products improves on both correlation and the slope of the regression (slope = 0.73-, R? = 0.77) with respect to the
inversion using the standard TCCON. This suggests that the inversion using the InSb XCO better captures the variability of
CO near the surface, likely associated with the greater sensitivity of these data to lower altitudes, which improves the sensitivity
of the data to surface emissions in localized regions with short-range transport. The slightly lower slope is likely due to the
greater level of underestimation of CO at the peak concentrations compared to the standard TCCON inversion. This might be
because the lower sensitivity of the InSb XCO to the mid-troposphere than the standard CO, could reduce the measurement
sensitivity to CO plumes at higher altitudes or in the background, which is normally captured through longer range transport.

However, the combined standard TCCON and InSb CO assimilation captures the variability slightly better than the standard
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TCCON CO assimilation, with improved correlations relative to independent data, and also provides us with more
representative estimates of the background CO. Thus, adding the InSb XCO dataset potentially benefits the inversion by
providing a better constraint on the surface BB CO emissions.

Furthermore, an evaluation of the vertical profiles of CO from the a priori and a posteriori simulations against aircraft
in situ measurements by NOAA at ETL in Fig. 13 shows that there is a consistent improvement with the joint inversion using
different variations of TCCON data (the inversion using standard TCCON CO is shown in red, whereas the inversion using
the InSb TCCON CO is shown in yellow), and the combined standard and InSb TCCON CO (in orange). Note that through
the inversion process, we update only CO emissions, without directly updating concentrations. The results indicate that
replacing the standard TCCON with the InSb product improves the agreement with the measurements at lower altitudes (1-2.5
km), while at higher altitudes (2.5-3.5 km) the standard TCCON assimilation performs slightly better. Despite the fact that a
perfect constraint on vertical profiles cannot be obtained by assimilating only total column measurements, due to the limited
vertical sensitivity, using both the standard and InSb CO data together in the assimilation maintains a balanced and reasonable
agreement with the independent measurements at both lower and higher altitudes. This suggests that using all the TCCON
standard and InSb CO measurements in the inversion provides an improved constraint on the fire plumes at a broader range of
altitudes. This is likely associated with uniformly larger sensitivities with altitude compared to the inversion using each of the
TCCON XCO datasets individually. Note that we have not found a similar level of improvement from adding the ETL InSb
XCO dataset to our inversions when we evaluate against aircraft in situ data at the Park Falls TCCON station (not shown),
which is about 1700 km to the southeast of ETL. This suggests that, although adding the InSb XCO to the inversion benefits
the inversion results, it has a more local effect; and may not provide a substantial additional constraint on the regional/global
scale. Therefore, providing the InSb product at other TCCON locations is recommended for a better constraint on the emissions

on larger scales.

5 Summary and conclusions

We used total column measurements from the TROPOMI satellite and the TCCON ground network to infer CO biomass
burning emissions during the extreme North American fire season between May and September 2023. Using the CHEEREIO
toolkit, we optimized CO emissions globally at a 2° x 2.5° grid resolution every 3 days. One objective of this work is to better
understand the influence of the TCCON measurements in providing additional constraints for quantifying CO emissions
through a joint TCCON and TROPOMI inversion. Despite the limited spatial coverage, TCCON has substantially more
observations in time with high accuracy on column--averaged dry mole fraction measurements. This motivates the evaluation
of the joint inversion in comparison with the TROPOMI-only inversion to constrain emissions from localized and episodic
wildfires. A second objective is to evaluate the global QFED, GBBEPx, and GFAS a priori BB emission inventories, as well

as the regional North American CFFEPS emissions, and to assess their impact on the inversion analyses.

37



825

830

835

840

845

850

All of the inversion results indicate that the priors significantly underestimate the BB CO emissions. Based only on
TROPOMI observations, the global posterior emission estimates for QFED, GBBEPx, and GFAS are 302.9+67, 309.6+67,
and 328.6+67 Tg CO, compared to prior estimates of 164.5, 182.6, and 230.3 Tg CO, respectively. For North America, the
posterior emissions for QFED, GBBEPx, GFAS, and CFFEPS are greater than the priors by a factor of 3.0, 2.6, 1.4, and 1.4,
respectively. Adding TCCON through a joint inversion with TROPOMI makes little difference to the global total and regional
estimates (< 5%), but it improves the temporal variation as well as the spatial distribution in the BB hotspots. Furthermore, we
found that the joint inversion reduces the uncertainty of the posterior in all major inversion regions, but with different
magnitudes, reaching near 30% over North America. The spatial distribution shows that the uncertainty reductions are larger
in proximity and upwind of the TCCON measurement sites. Our evaluation of the information content in the ensemble subspace
also indicates that the joint TCCON and TROPOMI inversion increase the DOFS by between-33—39%, depending on the
prior inventory. However, the additional constraints provided by the TCCON data correlate with the spatial density of the
TCCON sites (more sites in the Northern Hemisphere), such that a greater benefit is obtained in North America and Siberia
than in Africa and South America.

The evaluation of the results against the TCCON measurements and independent NDACC column and in situ surface
measurements obtained from WDCGG reveals that the TROPOMI-only inversion primarily improves on the biases while the
joint inversion further increases the correlations. The joint inversion can better capture the temporal variability of the
measurements, resulting in a more accurate estimate at the peak concentrations during the extreme wildfire events. The
statistics also reveal that the standard deviations and the mean errors of the differences between the assimilation and
measurements are lower in the joint inversion in comparison with the TROPOMI-only inversion, providing us with more
reliable estimates of atmospheric CO. These improvements due to the joint inversion are not consistent throughout all the
measurement sites we used for evaluation; there is stronger agreement at the NDACC and in situ sites that are located in close
proximity to the TCCON measurements used in the inversion. Thus, the spatial distribution of TCCON is also a factor driving
the improvements in the inversion.

Our comparison using different inventories suggests that, although they all provide similar spatial distributions of BB
CO emissions, their magnitude and temporal variability can be different. For example, our evaluations against TROPOMI in
North America suggest that GBBEPx has slightly higher and GFAS has significantly higher emissions than QFED. CFFEPS
has an overall similar level of emissions to GFAS, but provides enhanced temporal variability that is in better agreement with
the TROPOMI measurements. However, the inversion posteriors with all inventories indicate a significant improvement on
the priors, such that the posterior obtained with QFED, which has the lowest prior emissions, provides posterior CO that is in
better agreement with the measurements than the priors based on GFAS or CFFEPS, which had higher emissions. However,
the impact of better prior emissions is not negligible; for instance, the posterior with CFFEPS produces CO which agrees better
with observations. In fact, CFFEPS, in addition to lowering spatial biases of the inversion results (Assimilation — Observation),

more closely captures the temporal variability of the measurements with the addition of the TCCON data in the inversion.
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Finally, we investigated the potential use of the experimental TCCON InSb CO measurements at ETL in the inversion.
The experimental TCCON XCO provides greater sensitivity than the standard TCCON XCO to the surface. The evaluation of
the inversion results against independent measurements suggests that replacing the TCCON standard CO with the InSb CO
results in posterior CO that correlates better with surface measurements, although the mean bias slightly increases. This
suggests that using InSb CO increases the sensitivity to the local surface emissions, but may degrade the sensitivity to
transported plumes or the background CO. However, the inversions with both the standard and InSb CO data of TCCON
improves on the standard CO inversion, provides higher correlations and lower mean biases relative to the surface
measurements. The evaluation against aircraft data also emphasizes the potential benefit of using InSb CO measurements in
the inversion for constraining surface emissions, as it improves the agreements with observations at lower altitudes.

Our results using TCCON measurements in a joint inversion with TROPOMI data suggest that increasing the
spatiotemporal density of observations allows the assimilation to constrain CO emissions at finer scales, providing useful
information for a more reliable estimation of local and episodic wildfires. Furthermore, we showed the benefits of the TCCON
measurements” accuracy and temporal density when they are used jointly with TROPOMI in the inversion. However,
assimilating TCCON data alone is not sufficient to fully constrain the spatial context. Integrating more observations from
ground networks, such as NDACC, COCCON, and in situ observations (e.g., Schuldt et al., 2024), with satellite observations

offers the potential to greatly enhance the performance of inversion analyses for quantifying fire emissions.

Appendix A: OSSEs with joint TCCON and TROPOMI inversion

Observing System Simulation Experiments (OSSEs) are widely used to evaluate the behaviour of atmospheric
inversion or assimilation systems by using simulated observations under an-idealized conditions. OSSEs allow us to explore
how individual observation datasets or the underlying system setup (e.g., assimilation parameters) can enhance the overall
performance of the system (Lahoz and Schneider, 2014; Bocquet et al., 2015; Abida et al., 2017; Voshtani et al., 2023). Here,
we conduct twin experiments (Ghil and Mo, 1991); to evaluate the implementation of the inversion system. Specifically, we
assess the potential utility of TCCON observations for quantifying CO emissions. Additionally, we use the OSSEs to estimate
assimilation parameters and error statistics of the background and observations, using diagnostics such as chi-square tests
(Ménard and Chang, 2000; Tang et al., 2024) or statistics based on observation-minus-forecast (OmF) (Miyazaki et al., 2020;
Voshtani et al., 2022).
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Figure A1: Two OSSEs within the twin experiments that start with the a priori of —50% CO emissions with respect to the true emissions as
shown in (a) prior — true—prier and (c) posterior — true emissions; and with the a priori of +50% CO emissions with respect to the true
emissions as shown in (b) prior — true—psior and (de) posterior — true emissions; time series of CO emissions in the a priori (blue), a
posteriori (red), and true (green) for the OSSE with (e) —50% CO emissions and (f) +50% CO emissions.

Each OSSE setup involves multiple inversion runs. A “nature run” (without observation assimilation) is conducted
to generate the “true” state of the concentration fields using GEOS-Chem with unperturbed emissions—the a priori emissions
in the inversion with real observations. The true state is then mapped into the observation space by an observation operator,
generating simulated observations that include added observation errors and-under a perfect model transport assumption. A set
of “control runs” assimilates these simulated observations. Each control run may vary in terms of perturbations in the
magnitude of the emissions and/or the assimilation parameter range, depending on the experiment’s objectives. In our first
OSSE, we use a combined set of simulated TROPOMI and TCCON observations and apply observation errors proportional to
the retrieval errors, based on the ratio of simulated to retrieval XCO. Emissions in the control runs are perturbed by +50% to

evaluate the system's performance in recovering the true emissions.
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Fig. A1 shows that the posteriors (Fig. Al c,d) effectively capture and recover the spatial context of the CO emissions
globally for both control runs, which have +-50% CO emissions in the prior (Fig. Al a,b). Additionally, the time series of total
CO emissions reveal that approximately 1.5 months (from the start of the assimilation) are required to constrain the magnitude
and temporal variability of the global CO emissions (Fig. Al e,f). In other experiments (not shown) where perturbations are
applied only to major source regions (Fig. 2), we observe similar behaviour, even though the convergence rate for recovering
true emissions slightly varies. For example, emissions are recovered relatively faster in North America (within ~3 weeks),
followed by Europe (~4 weeks), likely due to a higher density of TCCON observations in these regions. This trend holds
despite the nearly globally uniform spatiotemporal distribution of quality-filtered TROPOMI observations (i.e., super
observations). In this experiment, we employ a set of previously optimized LETKF parameters and error statistics for

background and observation errors, described below in Appendix B.

Appendix B: Comparing OSSEs with TROPOMI-only and TCCON-only inversions against joint TCCON and
TROPOMI inversion

Similar OSSEs to those in Appendix A are conducted, using either only TROPOMI or only TCCON observations,
with prior emissions perturbed by —-50% in one region at a time, as shown in Table B1. We compute the mean bias and
standard deviation of OmF, along with the convergence time from the start of assimilation to recover the true emissions. Here,
the forecast represents a model field, driven by either a priori or a posteriori emissions, mapped into the observation space. For
the TROPOMI-only and TCCON-only inversions, we observe that biases and standard deviations generally increase across
most cases; however, the inversion remains capable of recovering the true emissions. Compared to the joint TROPOMI and
TCCON inversion, the convergence rate for the TROPOMI-only inversion slows down by up to a factor of two, depending on
the perturbed region in the inversion. In contrast, convergence for the TCCON-only inversion can vary significantly.
Specifically, the time to recover true emissions extends to 3 months in North America and 4 months in Europe, likely due to
the lower spatial coverage of TCCON observations in these areas compared to TROPOMI. Additionally, we find that the
TCCON-only inversion requires considerably more time to recover the true emissions globally and, especially, in Southern
Hemisphere regions, such as Africa. The delay is primarily due to the limited number of TCCON sites in the Southern
Hemisphere—only two sites are available for this study—and the extended time of inter-hemispheric exchange of air, which
takes about 1 year (Jacob, 1999). As a result, sufficient information to constrain emissions in the Southern Hemisphere may

not be achievable, especially within the limited 5-month period of inversion in this study.

41



Table B1: Mean bias and standard deviation of OmF for prior, posterior using TCCON-only, TROPOMI-only, and joint TROPOMI and

TCCON (TROPOMI+TCCON) emissions. Each OSSE starts with —-50% prior emissions in the specified region. Convergence times to
recover the true emissions are shown from the start of assimilation.
Reai OSSE OmF? mean bias OmF standard deviation Convergence time
egion
(=-50% CO emissions) (ppb) (ppb) (month)
Prior —14.2 8.2 -
TCCON-only =25 4.7 >6b
Global
TROPOMI-only 0.9 4.1 3.0
TROPOMI+TCCON —0.3 3.5 1.5
Prior —7.9 4.5 -
North TCCON-only —0.5 2.6 3.0
America TROPOMI-only 0.7 2.8 2.0
TROPOMI+TCCON —0.2 2.1 1.0
Prior —3.1 4.7 -
TCCON-only —0.4 2.1 4.0
Europe
TROPOMI-only —0.5 22 2.5
TROPOMI+TCCON —0.3 1.9 1.5
Prior —6.2 5.5 -
TCCON-only —3.7 3.6 >6
Africa
TROPOMI-only 0.6 23 2.0
TROPOMI+TCCON 0.5 2.0 2.0

# Forecast (F) in OmF uses a posteriori emissions for the assimilation run and a prirori emissions for the prior (control) run.
925  ®It means that the true emissions is-are not fully recovered, (|E} osterior _ ptrue |/Efr#€) < §, within 6 months of inversion (§ = 2%).

To optimize the performance of the inversion, we employ OmF diagnostics to estimate key LETKF parameters.

Specifically, we use the global mean bias and standard deviation of OmF over the full assimilation period to derive optimal
values for parameters, such as the regularization factor y, the inflation factor A, and the localization radius (r). We also

930 configure essential setup elements, like the assimilation spin-up time, the burn-in duration, and the ensemble size to support
efficient system operation. Our analysis yields the following optimal values: yrropoys = 0.2 and Yrccoy = 5,4 = 0.08,r =

500 km, with a minimum of three months for spin-up, one month for burn-in, and a minimum of 24 ensemble members—

each chosen to minimize OmF statistics (e.g., see Fig. S4). Although we assume no transport modelling error, we apply an
additional adjustment by inflating observation errors to offset this assumption. These configurations are consistently used

935 across all OSSEs in this study.
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Overall, our OSSEs results indicate that assimilating TCCON observations alone may not provide us with sufficient
information to fully constrain the spatial context of CO emissions in regions in the Southern Hemisphere within the limited
study period. However, in regions of the Northern Hemisphere, including North America and Europe, CO emissions are fully
recovered within 2—3 months, likely due to the higher density of TCCON stations in these areas. In contrast, in the joint
inversion, TROPOMI observations address the larger spatial biases, which typically exist in the model a priori, while TCCON

measurements contribute finer constraints that enhance the representation of spatiotemporal variability.

Code and data availability. TROPOMI CO data can be downloaded from https://doi.org/10.5270/S5P-bj3nry0 (Copernicus
Sentinel-5P, 2024). The individual TCCON GGG2020 datasets used in this publication are cited in Table 1, and the references
are included in the reference list. The TCCON data are available at https://tccondata.org/2020 (last access: 6 July 2024) {Total
Carbon Column Observing Network (TCCON) Team.- {2022). The NDACC data are obtained as part of the Network for the
Detection of Atmospheric Composition Change (NDACC) and are publicly available (see https://www-
air.larc.nasa.gov/missions/ndacc/data.html;; last access: 6 July, 2024). CO in situ measurements from WDCGG are available
at http://ds.data.jma.go.jp/gmd/wdcgg/ (last access: 1 July 2024). In situ aircraft CO measurements from Global Monitoring
Laboratory of the National Oceanic and Atmospheric = Administration (NOAA) are available at
https://gml.noaa.gov/aftp/data/trace gases/co/pfp/aircraft/ (last access: 1 July 2024). In situ tall tower measurements at ETL
provided by Environment and Climate Change Canada areis available at https://gaw.kishou.go.jp/search/station#4007 (last
access: 1 July 2024). GEOS-Chem version 14.1.1 source code is archived at https://doi.org/10.5281/zenodo.7696651 (The
International GEOS-Chem User Community, 2023), and MERRA-2 meteorology input data can be downloaded from WashU
data portal at http://geoschemdata.wustl.edu/ExtData/GEOS 2x2.5/MERRA?2/ (last access: 1 July 2024). The QFED emissions
(version 2.5, release 1) data can be accessed from http://geoschemdata.wustl.edu/ExtData/HEMCO/QFED/v2023-05/ (last
access: 1 July 2024). The GBBEPx version 4 emissions data are available at
https://www.ospo.noaa.gov/pub/Blended/GBBEPx/ (last access: 1 July 2024). GFAS emissions (version 1.2) can be
downloaded from https://ads.atmosphere.copernicus.eu/datasets/cams-global-fire-emissions-gfas?tab=overview (last access:
11 June 2024). The CFFEPS output is produced for ECCC’s operational air quality forecast system (D. Kornic et al., 2024).
The CFFEPS emissions code and the accompanying user manual are available at https://zenodo.org/records/2579383 (last
access: 1 July 2024) (Anderson and cast of thousands, 2019). The CHEEREIO source code is available at
https://github.com/drewpendergrass/CHEEREIO (last access: 1 July 2024) (Pendergrass et al., 2024) and is documented at
https://cheereio.readthedocs.io (last access: 22 August 2024). A forked repository of CHEEREIO used in this study, which
that-contains the TCCON CO and TROPOMI CO observation operators and the assimilation configuration, is available at
https://github.com/Sinavo/CHEEREIO (last access: 22 August 2024).
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