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Abstract. Dynamic vulnerability, driven by changing social, economic, physical, and environmental characteristics, is critical
to understanding flood risk. Despite its importance, existing flood risk assessment research often overlooks the mechanisms
that drive dynamic vulnerability and the interactions between underlying characteristics. In this study, we systematically review
methods used to assess dynamic vulnerability in the context of floods and compile their findings about the drivers and effects
of the dynamics in a dataset. We identify 28 relevant studies and group them into four categories of vulnerability dynamics:
single-event, consecutive events, co-occurring events, and underlying dynamics. We find that most studies rely on indicator-
based, statistical, or qualitative methods, with a notable under-representation of damage curves and process-based modeling
approaches such as agent-based models. Demographics, economic characteristics, and awareness of flood risks are vulnerability
dimensions most frequently assessed, whereas governance, health, crime, and conflict are rarely addressed. Data sources vary
widely, with interviews and surveys dominating studies on consecutive events and single-event dynamics. In contrast, studies
on underlying dynamics and co-occurring event dynamics use a much wider array of data sources (e.g., cadastral data, maps, or
modeled data). This review highlights methodological gaps, including the limited analysis of causal relationships and the lack
of integrated approaches for multi-hazard contexts. Advancing flood risk research requires holistic assessments, integration of

diverse dimensions, and the development of dynamic modeling techniques to capture evolving vulnerability processes.

1 Introduction

Floods rank among the most significant natural hazards globally in terms of their impacts (IFRC, 2023; Rentschler et al.,
2022). Since 2000, the number of flood events reported in the CRED EM-DAT database has more than doubled (WMO, 2021).
This increase is partly attributed to growing exposure to flood-prone areas because of population increase and urbanization
(Rentschler et al., 2022). It also might be influenced by the effects of climate change (Hirabayashi et al., 2021). Notably, the
population in flood-prone regions grew by about 20-24% between 2000 and 2015 (Tellman et al., 2021). At the same time,
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progress in reducing flood vulnerability has not been sufficient to counterbalance the increased exposure. Still, it can potentially
minimize flood impacts, particularly with robust protective infrastructure (Sauer et al., 2024).

Understanding and tackling vulnerability is crucial to mitigating the catastrophic effects of floods. Vulnerability is a mul-
tifaceted concept with varying interpretations. For example, some studies, such as those using a Coastal Vulnerability Index
(e.g., Mclaughlin and Cooper, 2010), frame vulnerability in terms of physical susceptibility to hazards, often emphasizing
geomorphological and hazard-related factors while disregarding socioeconomic dimensions. In contrast, broader frameworks,
including those by the UNDRR (2017) and IPCC (2022), conceptualize vulnerability as a distinct dimension of risk alongside
hazard and exposure, incorporating social, economic, and institutional factors. For this study, we adopt the definitions by the
UNDRR and IPCC, as they provide a more comprehensive understanding of vulnerability in the context of flood risk assess-
ment. Under this risk framework, vulnerability refers to the social, economic, and physical characteristics of an element at risk
that make it susceptible to harm in the event of exposure to a hazard (IPCC, 2022). Flood vulnerability analyses commonly
focus on quantifying the susceptibility of infrastructure and buildings to damage or isolating the sociodemographic or eco-
nomic factors that influence human health and well-being in the event of a disaster (Merz et al., 2010). However, vulnerability
can also evolve due to changing demographics, varying socioeconomic conditions, or experiences with and recovery from past
impacts (Alwang et al., 2001). As a result, vulnerability is multi-dimensional, dynamic, and highly context-dependent (Cutter,
1996).

The dynamic nature of vulnerability has prompted calls for studies that account for its spatiotemporal evolution (Handmer
et al., 1999; Simpson et al., 2021; de Ruiter and van Loon, 2022; Stolte et al., 2024). While various methods for assessing
vulnerability exist (for an overview, see e.g. Douglas, 2007; de Ruiter et al., 2017; Hagenlocher et al., 2019), recent studies
highlight significant gaps in capturing its dynamics (Moreira et al., 2021; de Ruiter and van Loon, 2022; Jurgilevich et al.,
2017). These challenges are evident in assessments of single-hazard vulnerability (e.g., vulnerability to floods) and in under-
standing the interactions of vulnerabilities in multi-hazard contexts, such as triggering, amplification, or cascading hazards
(Gill et al., 2022; Schlumberger et al., 2024; Sakié¢ Trogrli¢ et al., 2024).

Given the growing emphasis on understanding flood vulnerability and its underlying drivers, reviewing advancements in
flood risk research, including the methods employed and available data, is essential. Previous reviews have partially explored
the temporal vulnerability dynamics but primarily focus on the "what" of assessments, leaving critical questions about the
"why" and "how" of its evolution unanswered. For instance, Moreira et al. (2021) categorized flood vulnerability indices into
pre-event, event, and post-event phases, highlighting a predominant focus on pre-event vulnerability with limited attention to
post-event assessments (e.g. Carlier et al., 2018; Miguez and Ver6l, 2017). Similarly, Drakes and Tate (2022) systematically re-
viewed which subdimensions of social vulnerability have been considered outcomes versus those assumed to be preconditioned
in consecutive, co-occurring, or aggravating multi-hazard scenarios.

To address these gaps, this study provides a comprehensive overview of approaches for assessing dynamic flood vulner-
ability. We identify case studies that explicitly assess vulnerability as a dynamic process, examining the methods and data

sources used. Additionally, we analyze which (sub)dimensions of vulnerability are incorporated and identify patterns and gaps
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in current practices. Our study offers a roadmap for advancing more robust and dynamic flood vulnerability assessments by

synthesizing existing approaches and highlighting critical gaps.

2  Methods
2.1 Applied Concepts and Scope for the Analysis

We identify four categories of dynamic vulnerability essential for flood risk assessment (Figure 1). We use them to investigate
whether specific methods or data are more prevalent in studies aiming to address one of the vulnerability categories than
another. Our definitions build on those identified by de Ruiter and van Loon (2022), who categorized vulnerability dynamics
into (a) vulnerability dynamics from underlying (non-hazard specific) processes, (b) vulnerability dynamics from long-lasting
disasters, and (c) vulnerability dynamics from compound or consecutive events. We further refine these categories, and add a

fourth to capture better the mechanisms influencing dynamic flood vulnerability:

— Single-event dynamics: Changes in vulnerability in response to a single flood event, such as physical damage to build-
ings or injuries that reduce capacity to future stresses. For example, Thomson et al. (2023) demonstrated how financial
vulnerability can change after a flood event by simulating mortgage default risks following Hurricane Florence, where
uninsured losses and property devaluation increased the likelihood of abandonment and financial instability for affected

homeowners.

— Consecutive-event dynamics: Changes in vulnerability due to the overlapping effects of consecutive flood events and
ongoing recovery processes. For instance, a partially damaged building may respond differently to subsequent flood
events (i.e., physical vulnerability) or individuals with prior flood experience may react differently to warnings (i.e.,

social vulnerability).

— Co-occurring event dynamics: Changes in vulnerability due to simultaneous hazards, at least one of which is a flood.
For example, a farmer experiencing both flooding and pandemic lockdowns may face compounded vulnerabilities due to

limitations in finding field workers and in experiencing damages to their equipment and vegetables (Begum et al., 2023)

— Underlying dynamics: Changes in vulnerability due to non-hazard specific or long-term factors such as socioeconomic
development or conflict. For example, financial vulnerability may increase during economic crises, reducing an individ-

ual or community’s capacity to invest in adaptation measures (Matano et al., 2022).

2.2 Review process

Figure 2 highlights the process for conducting a systematic literature review of dynamic flood vulnerability. While systematic,
the review did not strictly adhere to specific protocols, similar to a semi-systematic literature review as defined by Snyder

(2019) or a meta-narrative review as defined by Wong et al. (2013). This allowed more flexibility in dealing with the emerging
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Figure 1. Vulnerability dynamics considered in this review. Single-event dynamics (focuses on changes in vulnerability before, during, and

after a single flood event), consecutive-event dynamics (assesses recovery or combined effects of partial recovery and a new event), co-

occurring event dynamics (examines how multiple simultaneous hazard-related drivers combine and interact influencing vulnerability), and

underlying dynamics (analyses long-term changes in vulnerability without disentangling individual event-related dynamics). In this Figure,

V = vulnerability; AV = change in vulnerability; ¢; = moment in time. Note that changes in vulnerability can be positive or negative. A

magnifying glass denotes the most characteristic part of each vulnerability dynamics category.

field of dynamic vulnerability, where definitions and concepts vary widely within and across research communities. A search

query in Google Scholar on November 13, 2024, used keywords related to dynamic vulnerability and multi-hazard vulnerability

assessment (Table 1). We also invited collaborators to suggest additional studies. This process yielded 980 publications.

Table 1. Overview of the applied search terms on Google Scholar and yielded results.

N of publications

"dynamic vulnerability assessment" AND (flood OR floods OR flooding 100
OR "flood event" OR “flood events” OR “floods”)

"multi-hazard vulnerability assessment” AND (flood OR floods OR 315
flooding OR "flood event" OR “flood events” OR “floods”)

"multi-hazard vulnerability analysis" AND (flood OR floods OR flood- 19
ing OR "flood event" OR “flood events” OR “floods”)

"dynamic vulnerability analysis" AND (flood OR floods OR flooding 85
OR "flood event" OR “flood events” OR “floods”)

"vulnerability dynamics" AND (flood OR floods OR flooding OR "flood 419
event" OR “flood events” OR “floods”)

Additional papers added by collaborators 41
Total 980

To be included, publications had to meet the following criteria: (i) published in English; (ii) peer-reviewed; (iii) freely

accessible to the reviewers; (iv) investigate vulnerability concerning floods, potentially amongst other hazards; (v) adopt a
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definition of vulnerability consistent with the IPCC (2022) or UNDRR (2017); (vi) addressing one of the vulnerability dynamics
identified in Figure 1; (vii) provide details on vulnerability assessment processes, data, equations, or methodologies, allowing
replication; and (viii) is a case study. As a consequence of criteria (v) and (vi), we exclude research that interprets changes
in exposure as part of vulnerability, such as studies examining changes in risk due to population growth (e.g., Ballesteros and
Esteves, 2021; Herslund et al., 2016; Ku et al., 2021; Londe et al., 2015) or hazard exposure due to coastal erosion/sea level rise
(e.g., Hastuti et al., 2022; Hoque et al., 2019; Islam et al., 2020; Kantamaneni et al., 2018). This narrower definition enhances
the comparability of the included studies (UNDRR, 2017).

Not Peer-reviewed

192
Studies Screened Out Not Accessible
289 35
I l Duplicates
62
Studies Identified Excluded Based on Title & Abstract
980 368

Studies Screened In

691

Excluded by Single Reader
198

Excluded by Second Reader
97

- Included
28

Made at SankeyMATIC.com

Figure 2. Summary of the literature review and number of publications included in this analysis.

Following the study selection, we performed a full-text analysis using the classification system in the Appendix in Table Al.
This analysis examined the assessment methods, elements-at-risk, and data used in each study. We categorized the methods

into five groups, extending a framework by Nasiri et al. (2016):

1. Indicator-based methods aggregate data into vulnerability indicators (e.g., de Brito et al., 2017; Kappes et al., 2012;
Moreira et al., 2021).
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2. Curve methods relate hazard intensity (e.g., inundation depth) to damage inflicted (e.g., Arrighi et al., 2020; Fuchs et al.,
2019; Tarbotton et al., 2015).

3. Process-based modeling methods use system or process-based approaches to capture causal relationships between haz-

ards, vulnerability, and impacts (e.g., Lu et al., 2023; Dzulkarnain et al., 2019; Joakim et al., 2016).

4. Disaster impact data methods leverage historical flood impact data to estimate vulnerability (e.g., Mechler and Bouwer,

2015; Tanoue et al., 2016).

We first removed duplicates, inaccessible publications, and non-English or non-peer-reviewed works to identify relevant
papers meeting these criteria. Next, we excluded irrelevant studies based on title and abstract. Finally, at least two authors
reviewed each of the remaining publications for relevance, focusing on the categories of dynamic vulnerability defined in
Section 2.1. Decisions on their relevance were made collectively based on the inclusion criteria. Through this double-review
process, 28 papers were identified as relevant, applying some form of dynamic vulnerability assessment in a specific case study.
Due to the relatively small number of studies in each category, conducting meta-analyses or statistical comparisons was not
feasible. Instead, we provide a qualitative description of key studies and their methodological approaches.

Statistical analysis methods analyze correlations between data and vulnerability dynamics. Qualitative analysis methods use
narratives and expert knowledge to describe cause-effect relationships qualitatively (de Ruiter and van Loon, 2022; de Brito
et al., 2024). To address varying definitions of vulnerability, we characterize the vulnerability by the dimensions considered in
the study, focusing on the physical and social dimensions, as recently applied by Stolte et al. (2024). The physical dimension
of vulnerability refers to the physical properties of elements at risk (de Ruiter et al., 2017), whereas the social dimension refers
to the characteristics of a person or group in terms of their capacity to anticipate, cope with, resist, and recover from the impact

of a flood (Wisner et al., 2004). Each dimension is, in turn, divided into several subdimensions of vulnerability.

3 Results

We identify 28 relevant studies that assess dynamic vulnerability. Most studies address underlying vulnerability dynamics,
followed by consecutive and co-occurring dynamics as shown in Figure 3a. Single-event dynamics are covered the least often.
The temporal distribution of studies shows an exponential growth in the number of publications that meet our criteria over
the past four decades, especially since 2010 (Figure 3b). The earliest study dates to 1988 (Phifer et al., 1988) and examined
consecutive event dynamics, but no additional studies meeting our criteria were published until 2010. After that, the number
of publications grew exponentially and roughly quadrupled between 2015 and 2024.

As shown in Figure 3c, most studies (n=10) focus on European contexts, particularly Germany. Several other studies adopt a
global scope, but their implementations vary widely. For instance, Formetta and Feyen (2019) and Jongman et al. (2012) utilize
global datasets or models, while Kreibich et al. (2017, 2023) analyze case studies from various countries.

Figure 4 summarizes the general approaches, methods, dimensions of analysis, and data sources used. The following sub-

sections provide detailed insights into these studies, grouped by the category of vulnerability dynamics they address.
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Figure 3. Distribution across categories (A), the temporal evolution (B), and the geographic distribution (C) of studies that develop or apply

methods for assessing dynamic vulnerability. The colors indicate different categories of dynamic vulnerability assessed in each case study.

3.1 Single-event dynamics

Two studies assess vulnerability dynamics due to single flood events (Jamshed et al., 2021; Salvucci and Santos, 2020). The
studies account for different elements of the social dimension of vulnerability to examine how flood events drive changes in
vulnerability using surveys and statistical methods (see Figure 4). Jamshed et al. (2021) conduct retrospective surveys with 384
households in Pakistan and apply regression models to determine factors affecting rural-urban linkages and poverty as drivers
of vulnerability. Likewise, Salvucci and Santos (2020) used a four-wave national household panel survey from 2014-2015 with
11,600 households to investigate the impact of the 2015 Mozambique flood on household consumption and poverty levels.
They use the causal inference methods employing a difference-in-difference approach (Angrist and Pischke, 2009) to quantify
changes in vulnerability attributable to the flood event.

Both studies focus on human life and health as the primary element at risk. Jamshed et al. (2021) investigate how flooding,
directly and indirectly, impacts dependence between rural and urban communities and how this affects the flow of finance,
information, goods, and people. Similarly, Salvucci and Santos (2020) observe that consumption shortly after flood events

decreases significantly, especially for poorer households, increasing their vulnerability to future hazards.
3.2 Consecutive event dynamics

Eight studies assess the vulnerability dynamics due to consecutive events, including the processes that influence recovery. Most
studies (n=4) rely solely on survey data, while the others consider solely literature or reports (n=2) or a combination of survey
data and literature (n=1) or survey data and modeled data (n=1).

The studies vary widely regarding the time intervals between the consecutive events, the number of flood events considered,

and the duration of the analyses (Figure 5). Most focus on recent floods, with only a few examining multiple decades (e.g.,
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Figure 4. Summary of key characteristics of dynamic vulnerability assessment studies (n=28), including the category of vulnerability dy-
namics covered, the general approach followed, the physical and social dimensions considered, and the type of data used. The heatmap shows
the frequency of overlaps between different characteristics of studies where each subplot represents a specific pair of characteristics (e.g.,

"Dynamics" vs. "Method").

Kreibich et al., 2017, 2023; Bubeck et al., 2012) and one covering the past century (Schoppa et al., 2024). The period between

consecutive events (solely flood-flood consecutive multi-hazards were found) ranges from one to 42 years (average: 9.7 years,
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median: 5 years). The timing of data collection for the assessment ranges from a few months to 29 years after a flood (average:
8.3 years, median: 7 years). It is important to note that Kreibich et al. (2017, 2023) use a literature review considering various
reports and publications from different years to assess vulnerability dynamics, while we took the date of the scientific publica-
tion to determine the time lag between events and data collection. If excluding these two studies, the timing of data collection
for the assessment ranges from a few months to seven years after the last flood (average: 1,8 years; median: 1 year). Further-
more, it is worth mentioning that some studies capture multiple flood events without collecting data between all consecutive
events (e.g., Kohler et al., 2023; Kienzler et al., 2015). Only one study considers pre-event data and collects data at multiple

moments between consecutive flood events (Phifer et al., 1988).

Four studies use statistical methods to investigate vulnerability dynamics. Phifer et al. (1988) apply factor and hierarchical
regression analysis on data from 200 older people in south-eastern Kentucky, USA, to investigate factors influencing health
changes at different timings after consecutive flood events. Kohler et al. (2023) apply linear and logistic regressions on sur-
vey data from 2462 residents in Saxony, Germany, to explore relationships between flood experience, adaptive behavior, and
self-reported resilience. Similarly, Kienzler et al. (2015) and Bubeck et al. (2012) use descriptive statistics (mean, frequency
distribution) on multi-wave survey data (between n=461 and n=1697) and 752 computer-aided telephone interviews. Three
studies rely on literature and reports (e.g., Thieken et al., 2016; Kreibich et al., 2017, 2023). Thieken et al. (2016) use flood-
related parliamentary inquiries, policy documents, and laws, reports of relief and aid organizations, expert workshops, and a
survey (n=1652 private households and n=557 companies) to investigate how changes in flood risk management between 2002
and 2013 influenced the outcome of the 2013 German floods. Kreibich et al. (2017, 2023) apply a meta-analysis approach, com-
paring reports and studies regarding single flood events to identify changes in vulnerability related to preparedness, awareness,
and crisis management. Finally, Schoppa et al. (2024) develop a process-based flood risk model. They integrate household loss
data with telephone survey responses on awareness and preparedness (n=597) using Bayesian Inference to create continuous
data across years with and without data to model flood risk changes over 120 years in Dresden, Germany. The authors also
develop a process-based socio-hydrological model using system dynamics and differential equations to capture the temporal
dynamics due to consecutive flood events.

The studies mentioned above capture the vulnerability dynamics regarding different elements at risk and vulnerability di-
mensions. While Phifer et al. (1988) focus on human health and well-being, taking into account demographic, economic, and

health dimensions of vulnerability,
3.3 Co-occuring event dynamics

Five studies assess vulnerability dynamics due to floods co-occurring with other hazard types, including windstorms (Sarker
and Adnan, 2023; Bernier and Padgett, 2019), hurricanes (van Verseveld et al., 2015), the COVID-pandemic (Whytlaw et al.,
2021; Albulescu and Armas, 2024), and droughts (Bola Bosongo et al., 2014).

Input data vary significantly across studies. Some rely on expert knowledge to qualitatively analyze changing vulnerabilities

during co-occurring events (Whytlaw et al., 2021; Albulescu and Armas, 2024) or use it as input for Fuzzy Analytic Hier-
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Figure 5. Timing of consecutive flood events (triangles) and the timing of data collection (circles) for different studies grouped by color
according to the methods used. *Kreibich et al. (2017) reports on five separate consecutive events. ** Kreibich et al. (2023) analyses 26

separate consecutive flood events. Schoppa et al. (2024) uses a process model that assesses vulnerability on a yearly timestep.

archy Process (Sarker and Adnan, 2023). These studies combine expert knowledge with secondary data to link hazards with
vulnerabilities and impacts. Bola Bosongo et al. (2014) use primary data from interviews and surveys (n=144) and secondary
data from public administration to compare impacts during years with co-occurring floods and droughts against years with
only droughts. As such, they offer a comparative view of vulnerability during multi-hazard events using vulnerability indica-
tors. Bernier and Padgett (2019) investigate the relationship between storage tanks’ response to waves, wind, and floods using
mechanistic models and modeled data to determine tank failure due to different drivers. van Verseveld et al. (2015) establish re-
lationships between observed damages and multiple hazard indicators using Discrete Bayesian Networks to develop predictive
impact models.

The studies target a wide range of elements at risk. Whytlaw et al. (2021) and Sarker and Adnan (2023) focus on human
life and well-being in the context of evacuation in the US and Bangladesh, respectively. Bola Bosongo et al. (2014) assess the
socioeconomic impacts of floods on farming in Zimbabwe, while van Verseveld et al. (2015) examine housing building damages
in New York City, US, and Bernier and Padgett (2019) assess the impacts on storage tanks in the context of petrochemical
industrial facilities in Texas, US. Albulescu and Armas (2024) use augmented impact chains to express the effects of hazard

impacts and risk mitigation measures on vulnerability without focusing on a certain element at risk.

10
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3.4 Underlying dynamics

Thirteen studies explore changes in vulnerability over time due to underlying (i.e., non-hazard triggered) socioeconomic dy-
namics (Meijer et al., 2023; Cian et al., 2021; Jalal et al., 2021; Jurgilevich et al., 2021; Rahaman and Esraz-Ul-Zannat, 2021;
Formetta and Feyen, 2019; Fekete, 2019; Araya-Muiioz et al., 2017; Jongman et al., 2012; Tanoue et al., 2016; Giupponi et al.,
2013; Menoni et al., 2012; Li, 2024). The temporal extents of these studies (Figure 6) range from nine to 70 years, with resolu-
tions between one year and two discrete moments in time (average temporal timestep: 16.56 years, median timestep: 10 years).

Three also include future vulnerability projections (Jurgilevich et al., 2021; Jongman et al., 2012; Giupponi et al., 2013).

Formetta & Feyen (2019)
Jongman et al. (2015) A

Tanoue et al. (2016)

Araya-Mufioz et al. (2017) 1 o Y o
Cian et al. (2021) A 0--0--0--0--0--0
Fekete (2019) - O------ Ie)

Author

Giupponi et al. (2013) - CCOCOEEEOEEEEE@EEEEaEa@EEa@aEaEa@a@@a@aaaaaaeaaaaaaaaaeaeaece

Jalal et al. (2021) |

Li (2024) A O------ o
) Methods

Meijer et al. (2023) - O----- o Disaster impact data

Bl Indicator-based

Jurgilevich et al. (2021) 4 L i Ommm Qualitative
Shapes

Rahman et al. (2021) 1 [ ettt O ------- o -0~ Data collection

1960 1980 2000 2020 2040 2060 2080

Figure 6. Analysis of underlying vulnerability dynamics at different points of data collection (circles) grouped by color based on the methods
used. Note: Menoni et al. (2012) is not presented in this figure, as their analysis of underlying dynamics is oriented along the relative timing
of different phases of the DRM cycle. Giupponi et al. (2013) uses a process model that assesses vulnerability on a yearly timestep. Formetta

and Feyen (2019) and Jongman et al. (2012) use continuous impact data to determine the vulnerability dynamics on a yearly time step.

Indicator-based approaches are the most prominent methods (n=7) in this class of studies. They combine data from census
and cadastral records and earth observation data. A range of statistical methods is then used to reduce, standardize, weigh, and
combine the underlying indicators into one index, including fuzzy logic modeling (Araya-Muifioz et al., 2017; Giupponi et al.,
2013) simple and ordered weighting (Cian et al., 2021), Principal Component Analysis and Hierarchical Agglomerative Clus-
tering (Meijer et al., 2022). Disaster impact data is used in two studies (e.g., Formetta and Feyen, 2019; Jongman et al., 2012).
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They combined historic flood impact data with flood models to implicitly assess vulnerability by taking the relative number of
deaths compared to the total number of exposed people (mortality rate) and the relative amount of losses compared to the total
exposed GDP (loss rate). Lastly, studies applying qualitative analysis of underlying vulnerability dynamics most frequently re-
lied on literature and reports, complemented by cadastral and census data or interviews (Menoni et al., 2012; Jurgilevich et al.,
2017; Rahaman and Esraz-Ul-Zannat, 2021). Jongman et al. (2012), Formetta and Feyen (2019), and Tanoue et al. (2016)
determine vulnerability through loss/mortality rates, diverging from typical vulnerability assessment methods. All other stud-
ies consider multiple vulnerability characteristics. Qualitative studies (Jurgilevich et al., 2017; Rahman et al., 2021; Menoni
et al., 2012) cover a wider range of vulnerability subdimensions (around 5-9 subdimensions) than quantitative/indicator-based
studies (2-4 subdimensions), see Figure 4. All studies except Jongman et al. (2012) and Formetta and Feyen (2019) focus on
demographic and economic vulnerability drivers. Most also consider infrastructural/building vulnerability (Cian et al., 2021;
Jurgilevich et al., 2017; Rahaman and Esraz-Ul-Zannat, 2021; Fekete, 2019; Araya-Muiioz et al., 2017; Giupponi et al., 2013;
Menoni et al., 2012). Other subdimensions of vulnerability are rarely assessed, for instance, behavioral (Rahaman and Esraz-
Ul-Zannat, 2021; Araya-Muiloz et al., 2017; Menoni et al., 2012), environmental (Jalal et al., 2021; Rahman et al., 2021;
Giupponi et al., 2013), agricultural (Jalal et al., 2021; Rahman et al., 2021), governance/institutions (Jurgilevich et al., 2017,
Rahaman and Esraz-Ul-Zannat, 2021; Giupponi et al., 2013), awareness/information (Rahman et al., 2021; Menoni et al.,
2012), and health (Rahman et al., 2021).

3.5 Dataset for vulnerability dynamics

While investigating the data and methods used in different publications, we also collected a set of findings on the drivers and
consequences of dynamic vulnerability in these studies. We compiled a full list of these findings in the supplementary material

and briefly reflected on general patterns in the following.

Studies on consecutive event dynamics show that while flood exposure often leads to increased awareness and prepared-
ness, improvements are inconsistent, and psychological resilience does not necessarily follow, as vulnerability fluctuates due
to behavioral, cognitive, and structural factors. Phifer et al. (1988) found that flood vulnerability extends beyond immediate
damage, as health effects persist over time, particularly among those who experience both personal and community-wide de-
struction. Similarly, Kohler et al. (2023) identified a paradox where individuals with more flood experience tend to take more
precautionary measures but simultaneously feel less resilient. These findings underscore the role of psychological and social
dynamics in vulnerability. While Bubeck et al. (2012) demonstrated that flood events trigger accelerated mitigation efforts and
preparedness improvements, Kienzler et al. (2015) showed that these improvements are inconsistent across cases. The effec-
tiveness of early warnings and responses is highly dependent on flood characteristics and regional conditions. Schoppa et al.
(2024) expanded this understanding by modeling awareness and preparedness as dynamic processes influenced by emotions,
past experiences, and the deterioration of precautionary measures over time.

Analysis of paired flood events by Kreibich et al. (2017, 2023) reveals general trends across four vulnerability dimensions:

awareness, preparedness, emergency management, and coping capacity. Awareness often increases after flood events due to
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experience or public campaigns, but cases such as Barcelona (1995-2018) show that improved access to information does
not always translate into higher awareness. Preparedness typically improves through better forecasting and early warning sys-
tems, as seen in North Wales (1990-2013), but risk communication may remain ineffective, as in Barcelona. While emergency
management structures improved in most cases (e.g., Beijing, 2012-2016; Danube Catchment, 2002-2013), coping capacity
saw mixed results. While financial mechanisms such as insurance strengthened resilience in Kansas (1951-1993), other re-
gions, such as Piura (1998-2017) and the Mekong (2000-2011), remained economically constrained and reliant on external
aid. These patterns suggest that technical and institutional advancements alone are insufficient—long-term success depends
on financial resources, governance structures, and community engagement. This stresses the importance of understanding and

incorporating context in vulnerability assessments.

Studies on co-occurring hazard dynamics highlight that overlapping hazards can amplify vulnerability, shift risks between
hazards, or even create new vulnerabilities through adaptation measures, demonstrating the need for integrated multi-hazard
risk assessments. Bola Bosongo et al. (2014) demonstrated that crop production was significantly lower when floods and
droughts co-occurred compared to droughts alone, reinforcing that overlapping hazards amplify negative outcomes. Similarly,
Bernier and Padgett (2019) found that the combined impact of wind, wave, and water loads increased structural failure risk by
12%, emphasizing the importance of multi-hazard risk assessments.

Whytlaw et al. (2021) observed that evacuations during a pandemic introduced new vulnerabilities, such as financial inse-
curity and mental health challenges, revealing the need for adaptive strategies like expanding shelter locations and enhancing
communication. Albulescu and Armas (2024) applied an enhanced impact chain approach to multi-hazard conditions, showing
that vulnerabilities can intensify, shift between hazards, or even emerge from adaptation measures. For example, evacuation
strategies heightened infection risks, demonstrating how well-intended adaptation efforts can sometimes exacerbate vulnera-
bility. These studies collectively highlight that failure to consider hazard interactions can lead to significant underestimations

of risk.

Studies on single-event dynamics reveal that vulnerability manifests through socioeconomic disruptions, with floods ex-
acerbating financial insecurity, altering migration patterns, and reshaping access to resources, leading to divergent recovery
trajectories across different social groups. Salvucci and Santos (2020) used a Difference-in-Difference approach to show that
floods caused a short-term consumption drop of 11-17% and an increase in poverty by six percentage points, illustrating how
disasters deepen financial insecurity. Jamshed et al. (2020) examined post-flood changes in rural livelihoods, showing shifts
in labor migration, credit access, and supply chains. Their findings highlight how rural households adjust to flood impacts by
increasing their reliance on urban financial and informational networks, though poorer households with fewer social ties often
struggle to access these resources. These results reinforce that vulnerability is deeply tied to socioeconomic positioning and

infrastructure accessibility.
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Studies on underlying vulnerability trends indicate that while economic development and policy interventions can reduce
vulnerability over time, structural inequalities, demographic shifts, and unintended consequences of adaptation strategies con-
tinue to shape long-term risk dynamics. Araya-Mufioz et al. (2017) showed that poverty reduction led to decreased sensitivity,
yet structural inequalities persisted, maintaining vulnerability disparities between regions. Fekete (2019) emphasized how de-
mographic shifts, such as aging populations or infrastructure development, alter vulnerability landscapes, while Cian et al.
(2021) demonstrated that economic and social transformations in the historic center of Padova pushed people to cheaper but
less flood-prone areas, leaving this population less vulnerable.

Several global-scale studies revealed contrasting trends. Jongman et al. (2012) and Formetta and Feyen (2019) observed
an overall decline in vulnerability due to economic development, particularly in lower-income countries. However, Tanoue
et al. (2016) found that vulnerability follows an inverted U-shape, implying that economic growth does not always lead to
linear reductions in risk. Rahman et al. (2021) demonstrated that infrastructure developments, such as embankments, initially
reduce risk but later create new vulnerabilities, illustrating the unintended consequences of adaptation strategies. These findings

confirm that vulnerability is highly dynamic and shaped by economic, social, and environmental interactions.

4 Discussion and Conclusion

In this study, we investigated methods and data for assessing vulnerability dynamics in the context of flood hazards, identifying
key patterns, limitations, and gaps in the existing literature. The discussion is structured to address several core topics. First,
we examine patterns in methods, data, and (sub)dimensions used across studies, highlighting dominant trends and challenges,
specifically transferability and temporal resolution. Second, we explore methodological limitations, such as the reliance on
static approaches, ambiguous terminology, and the lack of consensus on defining vulnerability. Third, we discuss the critical
challenge of establishing causality in vulnerability dynamics research. Finally, we consider opportunities for future research,
including the need for innovative approaches and the inclusion of overlooked vulnerability (sub)dimensions (Stolte et al.,
2024). These discussions aim to provide a comprehensive understanding of the field’s current state and outline pathways for

advancing research on dynamic flood vulnerability.
4.1 Patterns across the vulnerability dynamics categories

Our review returned 28 publications with a strong representation of the underlying dynamics category. A somewhat unexpected
finding was that we identified only two studies assessing vulnerability dynamics due to a single flood event. We expected a
much higher number of studies addressing this dynamics category, as the analysis seems theoretically much easier and aligned
with traditional flood impact assessment studies. A possible explanation is that the terminology used for this specific vulnerabil-
ity dynamic category is different (e.g. using terms such as pre-event and post-event vulnerability, omitting the word “dynamic”,
see for example Moreira et al. (2021). Another explanation is that the data are not available in sufficient temporal resolution

to investigate the single-event effects on vulnerability (e.g., comparing the building substance’s state before and after the event).
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The diverse set of methods, data, and scopes of the reviewed publications made comparing and identifying patterns complex
(see Figure 4 for a summary). One clear pattern we found is that most of the reviewed studies apply qualitative assessments
using forensics, narrative-based, or other descriptive approaches (e.g., Kreibich et al., 2017; Rahaman and Esraz-Ul-Zannat,
2021). This seems to be in divergence from traditional vulnerability assessments, which have much wider established applica-
tion of indicator- and curve-based vulnerability assessments (see, e.g., Nasiri et al., 2016; de Ruiter et al., 2017; Moreira et al.,
2021).

We find that indicator-based approaches are solely applied to assess underlying dynamics. These approaches often use
statistical methods to combine different vulnerability characteristics into indicators that can be merged into one index. However,
similar characteristics are used in multiple studies that apply statistical methods to analyze flood vulnerability dynamics (Kohler
et al., 2023; Kienzler et al., 2015; Bubeck et al., 2012; Phifer et al., 1988; Schoppa et al., 2024; Jamshed et al., 2020; Salvucci
and Tarp, 2021). However, none of these studies investigate how vulnerability indicators change because of (consecutive)
flood events. While the authors do not explain why they did not aggregate their statistical analysis of change into indicators,
we identify several possible reasons. Firstly, data like census and cadaster data usually come in less granular timesteps (i.e.,
annually or monthly), which may either not reflect changes due to flood impacts at all or obscure the effect of flood impacts
(see also the temporal resolutions in Figure 5 vs Figure 6). Secondly, many statistical methods studies investigated changes in
preparedness, awareness, and protection measures on a household scale. This information might be more valuable to directly
inform flood risk models (i.e., structural protection, behavioral changes) (Schlumberger et al., 2022). Thirdly, while indicators
are primarily used to describe a current state of vulnerability abstractly (Birkmann, 2007), trying to capture a change process
across multiple (potentially) dynamic vulnerability characteristics in one single value might be very challenging.

Only one study applies curve methods, despite this being a well-established method in traditional static flood vulnerability
assessment (e.g., Nasiri et al., 2016; van Ginkel et al., 2021; Arrighi et al., 2020; Fuchs et al., 2019). At a conference, Jochen
Schwarz and Holger Maiwald (2012) sketched the idea of the vulnerability curve of pre-damaged houses in the context of
consecutive flood and earthquake events. Still, we could not find any follow-up work implementing this idea. One possible
explanation for this limited application of curve methods for dynamic vulnerability might be that curve methods such as depth-
damage curves are not validated for static vulnerability assessments. Additionally, one could argue that the complexity of
embracing vulnerability dynamics makes it difficult to use such a quantitative, deterministic analysis of relevant processes for
objects that have more complicated (non-linear) failure modes than storage tanks (as in Bernier and Padgett, 2019). Dynamic
vulnerability curves are unavailable even for well-studied elements at risk, such as residential buildings. As a result, uncertain-
ties significantly increase when adding the complexity of dynamics and require a good understanding and validation of these

methods before being able to apply them in dynamic contexts.
Despite the recognized value of agent-based modeling approaches in assessing vulnerability (e.g., Taberna et al., 2020;

de Ruiter and van Loon, 2022) no peer-reviewed study seems to apply this method to the assessment of dynamics. During the

review process, we excluded a non-peer-reviewed study by Sobiech (2013) who developed and used empirical data from a case
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study region in Northern Germany to initialize an Agent-based Model, where temporal vulnerability dynamics are introduced
using awareness, which is a function of time from the last flood event. Schoppa et al. (2024) and van Verseveld et al. (2015)
are the only two studies assessing dynamic vulnerability using process-based modeling approaches. An interesting approach
could be combining such approaches with methods such as those developed by Albulescu and Armas (2024), who apply system
dynamics thinking to assess the effects of hazards and mitigation measures on the vulnerabilities within a system.

Regarding the (sub)dimensions of vulnerability taken into consideration, our analysis shows that most studies assess social
dimensions of vulnerability, particularly demographics, economic characteristics, awareness, and preparedness characteristics.
While being recognized as relevant, subdimensions of vulnerability, health, governance, and crime & conflict are the least
well represented (e.g., Matano et al., 2022). While this finding is aligned with outcomes of other studies with regards to the
subdimensions of health and crime & conflict (e.g., Stolte et al., 2024), the lack of consideration of the governance element,
meaning, for instance, planning, empowerment, and (stakeholder) collaboration seems less intuitive. A possible explanation is
that most studies focus on vulnerability in the context of household-level risk mitigation or disaster response, where partially

practical institutional components such as emergency shelters are considered but not its organizational aspects.

Regarding the data types used for the assessment, interviews and surveys are the most frequently used data sources. Studies
assessing dynamic vulnerabilities of consecutive events relied only on interviews/survey data and reports, while all identified
data types were used in studies to determine underlying vulnerability dynamics. Some data types, such as census or cadaster
data, might appear less suitable for investigating vulnerability dynamics across different time scales due to their fixed, perennial
sampling intervals. However, other data types remain underexplored and could be highly appropriate for such assessments. For
example, earth-observation data, with its higher temporal resolution, could be combined with methods such as difference-in-

difference to investigate the vulnerability dynamics due to consecutive and single events(Bujis et al. in preparation).
4.2 On the challenge of causality

Despite the diversity of methods, data sources, and vulnerability dimensions used to assess dynamic vulnerability, a critical
challenge lies in addressing causality, as shown in Section 3.5. Most quantitative studies focus on correlation analysis, which
reveals associations between variables but falls short of identifying causal mechanisms. For instance, while studies such as
Phifer et al. (1988) and Fekete (2019) explore vulnerability dynamics, and others like Jongman et al. (2012) and Kohler et al.
(2023) discuss how changes in vulnerability alter impacts, there is a notable lack of research that pinpoints the causal pathways
of these dynamics. This gap limits the transferability and practical application of findings in disaster risk management. Con-
versely, qualitative approaches offer deeper insights into the processes driving vulnerability dynamics. Albulescu and Armas
(2024) developed advanced impact chains to guide qualitative assessments. These chains map system-level processes that in-
fluence vulnerability, providing a structured way to conceptualize causality (in review Sparkes et al., 2024). Similarly, Whytlaw
et al. (2021) used expert knowledge to identify changes in vulnerability during co-occurring events, highlighting the complex

interactions that qualitative methods can uncover.
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Assessing dynamic vulnerabilities in the context of flood hazards underscores these challenges. The goal extends beyond
assessing risk as a function of hazard, exposure, and vulnerability to understanding how vulnerability dynamics evolve and
affect risk reduction or emergency response measures (Mohammadi et al., 2024). For example, dimensions such as "underlying
dynamics" and "co-occurring events" offer valuable insights into how vulnerabilities shift over time. Furthermore, analyses of
consecutive events reveal how past flood experiences may influence future impacts, such as increased awareness or changes in
preparedness at both individual and institutional levels (Kohler and Han, 2024). However, while these studies highlight essential
relationships, they often remain descriptive and fail to establish causal mechanisms. Addressing the challenge of causality
in dynamic vulnerability research is essential to advancing the field. Establishing causality would improve the reliability of

findings and enhance their applicability to disaster risk reduction and management efforts.
4.3 The pitfalls of ambiguous terminology and other limitations of this study

The lack of consensus on vulnerability definitions (Kuhlicke et al., 2023; Rufat et al., 2019) posed a significant challenge for
the analysis in this study. Divergent practices were found in attributing indicators to different social and physical dimensions
of vulnerability or components of risk (hazard, exposure, vulnerability), using other concepts such as sensitivity and adaptive
capacities. The term ‘vulnerability’ was inconsistently applied in distinction from the different components of risk. For ex-
ample, we excluded a study by (Bryant et al., 2022), which examined how the Government of Alberta, Canada’s optimized
river operating rules affected flood risk, as the authors framed these changes as adjustments to hazard rather than vulnerability
dynamics.

In addition, we found that the term "multi-hazard" was inconsistently applied. We identified numerous papers that use indi-
cators that are relevant for multiple hazards (e.g., Quader et al., 2021; Faisal et al., 2021; Godfrey et al., 2015; Haque et al.,
2020; Ghosh and Mistri, 2021; Mahadev and Rao, 2023; Mansour, 2019; Lazzati et al., 2023; Mullick et al., 2019), but do
not account for the effects of multi-hazard interactions. As a result, they offer no insights into the impacts of multi-hazard
dynamics or the spatio-temporal interactions between events. For example, Sarker and Adnan (2023) define tropical cyclones
as multi-hazard events but use generic indicators (e.g., age group, poverty) to represent vulnerability and adaptive capacity

without disentangling the relations between the different hazard-related impact drivers and these vulnerability characteristics.

Thus, the findings presented in this study should be interpreted in light of our methodological choices. As with any literature
review, our results are biased by the search terminology used to identify publications. The search terminology was mainly
built around ‘dynamic vulnerability’, a well-established term in the (multi-)risk community. At the same time, other research
communities or previous research might use different terminology (see also the discussion of the limited representation of
single-event dynamics). Terms such as "panel” and "longitudinal" are commonly associated with survey-based studies evalu-
ating developments over longer time horizons in social science but may not have been captured by the search terms we used
(Beauchemin and Schoumaker, 2016; Park, 2006). While a multi-step screening process and a double-review system ensured
that we captured a broad and representative sample of studies relevant to dynamic flood vulnerability assessment, we did not ad-

here to formal review protocols such as PRISMA or SALSA. Instead, our method was designed to be flexible and exploratory,
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reflecting the complexity and heterogeneity of the literature on dynamic vulnerability assessment for flood hazards. Decisions
about relevance were made iteratively and collaboratively with the author team during the review process. While this approach
introduced potential subjectivity in study selection, notably when excluding studies based on individual reviewer judgment,
it also allowed us to review a large body of literature (i.e., 980 identified publications) on a highly heterogeneous topic. It
also enabled us to supplement or replace literature based on our knowledge of the field. For example, while the search terms
returned Lan et al. (2021) as a potentially relevant study, we replaced it with Bernier and Padgett (2019), as this study includes
the original vulnerability assessment of storage tanks that underpins the risk assessment undertaken by Lan et al. (2021). Nev-
ertheless, our analysis should not be considered exhaustive, and methods and approaches from the non-peer-reviewed literature

or published in languages other than English were intentionally excluded from our review.
4.4 Advancing research on dynamic vulnerability: lessons and future directions

We collected findings about the dynamics of vulnerability due to single-event dynamics, co-occurring or consecutive events,
and underlying dynamics (see Section 3.5). Interestingly, many studies find a decrease in vulnerability in response to (a se-
quence of) events. A persistent challenge in vulnerability and risk assessment is the transferability of findings across different
case studies (Kienzler et al., 2015; Moreira et al., 2021; Kohler and Han, 2024). For example, multiple studies on consecu-
tive event dynamics emphasize the role of prior flood experiences in reducing vulnerability. Conversely, Kohler et al. (2023)
suggests that greater flood exposure does not necessarily enhance resilience. Instead, individuals may become better prepared
while feeling less capable of coping. This indicates that adaptation is not solely a function of repeated flood exposure but is also
shaped by cognitive and emotional responses, which may not be easily generalized across different population groups. Simi-
larly, while specific broad trends - such as improved preparedness after flood events or the amplifying effect of multi-hazard
interactions - are commonly observed, the particular outcomes highly depend on local governance, socioeconomic conditions,
and institutional capacities. This underscores that while dynamic vulnerability assessments can identify general trends, their
predictive power remains limited unless they account for underlying structural conditions and potential unintended conse-
quences of adaptation measures.

Co-occurring hazard studies further demonstrate that overlapping risks do not merely compound vulnerability but can also
shift unexpectedly. Albulescu and Armas (2024) illustrate how floods and pandemics interacted to exacerbate vulnerability,
with adaptation strategies, such as evacuation, unintentionally increasing the risk of infection. The ability to anticipate and
manage such shifts depends on governance and institutional capacity, which varies significantly across contexts. Furthermore,
methodological differences pose questions of comparability and transferability of the findings. For instance, studies differ in
defining the temporal resolution of vulnerability dynamics. Kohler and Han (2024) examined how flood timing influences cop-
ing, while others suggest that risk perception is also shaped by the time elapsed since past events and active memory of past
disasters (Lechowska, 2018). These differences call for further investigation into the sensitivities of temporal resolution of anal-
ysis and methodological approaches. Further, distinguishing between temporary adjustments and long-term transformations in
vulnerability is a key challenge. While single-event studies such as Salvucci and Santos (2020) document immediate economic

impacts, whether these short-term disruptions lead to sustained changes in coping capacity or vulnerability remains unclear.
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Studies on underlying dynamics reveal contrasting long-term trends: Jongman et al. (2012) and Formetta and Feyen (2019)
observed an overall decline in global vulnerability, while Tanoue et al. (2016) identified an inverted U-shaped trend, suggesting
that economic growth may initially increase vulnerability before leading to reductions. These findings raise important questions

about the sensitivity of vulnerability assessments to uncertainty and data availability
4.5 Broadening the scope of dynamic vulnerability research

In this study, we focus our review on flood-related vulnerability dynamics. Insights from research on vulnerability related to
other natural hazards (e.g., earthquakes, droughts, or landslides) could be valuable inspiration for new methods applied to flood
risk assessment (e.g., Cremen et al., 2022). In addition, we limited our review to studies that focus on vulnerability assessment
(also about the search terms). Still, it may be useful to investigate how studies that assess flood impacts account for vulnerability
dynamics. For example, Dottori et al. (2016) developed a flood impact model, INSYDE, that uses different vulnerability curves
based on the presence of different impact drivers within a single flood event (e.g., duration of flood event, consideration
of water quality) and Schlumberger et al. (2022) made use of scenario-based impact assessments to account for potential
changes/uncertainties regarding vulnerability. These studies provide examples of methods that could be used to investigate
further how events increase/decrease the vulnerability of elements at risk, ultimately leading to vulnerability dynamics over
time. We also see opportunities for expanding the utilization of agent-based modeling approaches (e.g., Thomson et al., 2023) or
exploratory modeling approaches (e.g., Moallemi et al., 2020; Schlumberger et al., 2024) to map processes and investigate the
complex relationships between hazard, exposure, and vulnerability rather than predict their effects on vulnerability dynamics.

Finally, we observed some blind spots regarding the (sub)dimensions of vulnerability considered in the assessment methods,
most notably crime and conflict, governance, and health. Thus, uncharted opportunities remain for new or tailored methods for

more holistic assessments of dynamic vulnerability.
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Appendix A: Categories used to classify the analyzed publications

Table A1. Categories used to classify the analysed publications

EGUsphere\

Categories

Options

Typology source

Approach

(a) Indicator-based, (b) Curve, (c) Process-based modeling, (d) Statistical

analysis, (e) Disaster impact data (f)Qualitative analysis

Extended based on
Nasiri et al. (2016)

Dynamic vulnerability category

(a) single-event dynamics, (b) consecutive event dynamics, (c) co-

occurring event dynamics, (d) underlying dynamics

Extended based on
de Ruiter and van Loon

(2022)

Elaboration on how temporal
and multi-hazard dynamics are

considered

Free-text elaboration

Description of the method(s)

used

Free-text elaboration

Data

(a) Building and infrastructure data; (b) Damage/impact data; (c) Earth
observation; (d) Focus groups/workshops; (e) Fragility model; (f) Hazard
data; (g) Interviews/Surveys/Questionnaires; (i) Regional plans; (j) Report-

s/documents; (k) Socioeconomic data

Developed based on the

authors’ expertise

Data source

(a) Cadastral Data; (b) Census; (c) Field Monitoring Data; (d) Interviews
etc.; (e) Literature and Reports; (f) Maps and Topography; (g) Modelled
Data; (h) Remote Sensing Data; (i) Workshops etc.

Developed based on the

authors’ expertise

Social vulnerability categories

(a) Awareness & Information; (b) Crime & Conflict; (¢) Culture & Behav-

ior; (d) Demographic; (e) Economic; (f) Governance; (g) Health; (h) Insti-

Stolte et al. (2024)

tutional
Physical vulnerability cate- (a) Critical Infrastructure; (b) Environment; (c) General (urban) assets Stolte et al. (2024)
gories
Scale (a) global, (b) regional, (c) sub-national, (d) national, (e) local, (f) multiple

scales

Case study or review paper

(a) yes (b) no

21



485

490

495

500

505

510

515

https://doi.org/10.5194/egusphere-2025-850
Preprint. Discussion started: 6 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

References

Albulescu, A.-C. and Armas, I.: An impact-chain-based exploration of multi-hazard vulnerability dynamics: the multi-hazard of floods and
the COVID-19 pandemic in Romania, Natural Hazards and Earth System Sciences, 24, 2895-2922, https://doi.org/10.5194/nhess-24-
2895-2024, 2024.

Alwang, J., Siegel, P. B., and Jorgensen, S. L.: Vulnerability: a view from different disciplines, World Bank, Washington, DC, https://
documents1.worldbank.org/curated/en/636921468765021121/pdf/multiOpage.pdf, 2001.

Angrist, J. D. and Pischke, J.-S.: Mostly harmless econometrics: An empiricist’s companion, Princeton University Press, Princeton, ISBN
9780691120355, 20009.

Araya-Muiioz, D., Metzger, M. J., Stuart, N., Wilson, A. M. W., and Carvajal, D.: A spatial fuzzy logic approach to urban multi-hazard impact
assessment in Concepcion, Chile, The Science of the total environment, 576, 508-519, https://doi.org/10.1016/j.scitotenv.2016.10.077,
2017.

Arrighi, C., Mazzanti, B., Pistone, F., and Castelli, F.: Empirical flash flood vulnerability functions for residential buildings, SN Applied
Sciences, 2, 1-12, https://doi.org/10.1007/s42452-020-2696-1, 2020.

Ballesteros, C. and Esteves, L. S.: Integrated Assessment of Coastal Exposure and Social Vulnerability to Coastal Hazards in East Africa,
Estuaries and coasts : journal of the Estuarine Research Federation, 44, 2056-2072, https://doi.org/10.1007/s12237-021-00930-5, 2021.

Beauchemin, C. and Schoumaker, B.: Micro Methods: Longitudinal Surveys and Analyses, International Handbook of Migration and Popu-
lation Distribution, 6, 175-204, https://doi.org/10.1007/978-94-017-7282-2_9, 2016.

Begum, M. E. A., Hossain, M. 1., and Mainuddin, M.: Climate change perceptions, determinants and impact of adaptation strate-
gies on watermelon farmers in the saline coastal areas of Bangladesh, Letters in Spatial and Resource Sciences, 16, 1-31,
https://doi.org/10.1007/s12076-022-00324-6, 2023.

Bernier, C. and Padgett, J. E.: Neural Networks for Estimating Storm Surge Loads on Storage Tanks, ISBN 979-11-967125-0-1,
https://doi.org/10.22725/ICASP13.015, 2019.

Birkmann: Measuring Vulnerability to Natural Hazards: Towards disaster resilient societies, The Energy and Resources Institute (TERI),
ISBN 9788179931226, 2007.

Bola Bosongo, G., Ndembo Longo, J., Goldin, J., and Lukanda Muamba, V.: Socioeconomic impacts of floods and droughts in the middle
Zambezi river basin, vol. 6, Emerald Group Publishing Limited, https://doi.org/10.1108/IJCCSM-03-2013-0016, 2014.

Bryant, S. P, Davies, E. G. R., Sol, D., and Davis, S.: The progression of flood risk in southern Alberta since the 2013 flood, Journal of Flood
Risk Management, 15, e12 811, https://doi.org/10.1111/j{r3.12811, 2022.

Bubeck, P, Botzen, W. J. W., Kreibich, H., and Aerts, J. C. J. H.: Long-term development and effectiveness of private flood miti-
gation measures: an analysis for the German part of the river Rhine, Natural Hazards and Earth System Sciences, 12, 3507-3518,
https://doi.org/10.5194/nhess-12-3507-2012, 2012.

Carlier, B., Puissant, A., Dujarric, C., and Arnaud-Fassetta, G.: Upgrading of an index-oriented methodology for consequence analysis
of natural hazards: application to the Upper Guil catchment (southern French Alps), Natural Hazards and Earth System Sciences, 18,
2221-22309, https://doi.org/10.5194/nhess-18-2221-2018, 2018.

Cian, E., Giupponi, C., and Marconcini, M.: Integration of earth observation and census data for mapping a multi-temporal flood vulnerability

index: a case study on Northeast Italy, Natural Hazards, 106, 2163-2184, https://doi.org/10.1007/s11069-021-04535-w, 2021.

22



520

525

530

535

540

545

550

555

https://doi.org/10.5194/egusphere-2025-850
Preprint. Discussion started: 6 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Cremen, G., Galasso, C., and McCloskey, J.: Modelling and quantifying tomorrow’s risks from natural hazards, The Science of the total
environment, 817, 152 552, https://doi.org/10.1016/j.scitotenv.2021.152552, 2022.

Cutter, S. L..: Vulnerability to  environmental hazards, Progress in  Human  Geography, 20, 529-539,
https://doi.org/10.1177/030913259602000407, 1996.

de Brito, M. M., Evers, M., and Hollermann, B.: Prioritization of flood vulnerability, coping capacity and exposure indicators through
the Delphi technique: A case study in Taquari-Antas basin, Brazil, International Journal of Disaster Risk Reduction, 24, 119-128,
https://doi.org/10.1016/j.ijdrr.2017.05.027, 2017.

de Brito, M. M., Sodoge, J., Fekete, A., Hagenlocher, M., Koks, E., Kuhlicke, C., Messori, G., de Ruiter, M., Schweizer, P.-J., and Ward, P. J.:
Uncovering the Dynamics of Multi—Sector Impacts of Hydrological Extremes: A Methods Overview, Earth’s Future, 12, e2023EF003 906,
https://doi.org/10.1029/2023EF003906, 2024.

de Ruiter, M. C. and van Loon, A. F.: The challenges of dynamic vulnerability and how to assess it, iScience, 25, 104720,
https://doi.org/10.1016/j.isci.2022.104720, 2022.

de Ruiter, M. C., Ward, P. J., Daniell, J. E., and Aerts, Jeroen C. J. H.: Review Article: A comparison of flood and earthquake vulnerability
assessment indicators, Natural Hazards and Earth System Sciences, 17, 1231-1251, https://doi.org/10.5194/nhess-17-1231-2017, 2017.

Dottori, F., Figueiredo, R., Martina, M. L. V., Molinari, D., and Scorzini, A. R.: INSYDE: a synthetic, probabilistic flood damage model
based on explicit cost analysis, Natural Hazards and Earth System Sciences, 16, 2577-2591, https://doi.org/10.5194/nhess-16-2577-2016,
2016.

Douglas, J.: Physical vulnerability modelling in natural hazard risk assessment, Natural Hazards and Earth System Sciences, 7, 283-288,
https://doi.org/10.5194/nhess-7-283-2007, 2007.

Drakes, O. and Tate, E.: Social vulnerability in a multi-hazard context: a systematic review, Environmental Research Letters, 17, 033 001,
https://doi.org/10.1088/1748-9326/ac5140, 2022.

Dzulkarnain, A., Suryani, E., and Aprillya, M. R.: Analysis of Flood Identification and Mitigation for Disaster Preparedness: A System
Thinking Approach, Procedia Computer Science, 161, 927-934, https://doi.org/10.1016/j.procs.2019.11.201, 2019.

Faisal, M., Saha, M. K., Sattar, M. A., Biswas, A. K. M. A. A., and Hossain, M. A.: Evaluation of climate induced hazards
risk for coastal Bangladesh: a participatory approach-based assessment, Geomatics, Natural Hazards and Risk, 12, 2477-2499,
https://doi.org/10.1080/19475705.2021.1967203, 2021.

Fekete, A.: Social vulnerability change assessment: monitoring longitudinal demographic indicators of disaster risk in Germany from 2005
to 2015, Natural Hazards, 95, 585-614, https://doi.org/10.1007/s11069-018-3506-6, 2019.

Formetta, G. and Feyen, L.: Empirical evidence of declining global vulnerability to climate-related hazards, Global environmental change :
human and policy dimensions, 57, 101 920, https://doi.org/10.1016/j.gloenvcha.2019.05.004, 2019.

Fuchs, S., Heiser, M., Schlogl, M., Zischg, A., Papathoma-Kohle, M., and Keiler, M.: Short communication: A model to predict flood loss in
mountain areas, Environmental Modelling & Software, 117, 176180, https://doi.org/10.1016/j.envsoft.2019.03.026, 2019.

Ghosh, S. and Mistri, B.: Assessing coastal vulnerability to environmental hazards of Indian Sundarban delta using multi-criteria decision-
making approaches, Ocean & Coastal Management, 209, 105 641, https://doi.org/10.1016/j.ocecoaman.2021.105641, 2021.

Gill, J. C., Duncan, M., Ciurean, R., Smale, L., Stuparu, D., Schlumberger, J., de Ruiter, M., Tiggeloven, T., Torresan, S., Gottardo, S.,
Mysiak, J., Harris, R., Petrescu, E.-C., Girard, T., Khazai, B., Claassen, J., Dai, R., Adrian Champion, Daloz, A., Blanco Cipollone, F.,
Carlos Campillo Torres, Irene Palomino Antolin, Davide Ferrario, Sharon Tatman, Annegien Tijssen, Shristi Vaidya, Adewole Adesiyun,

Thierry Goger, Alessia Angiuli, Marie Audren, Marta Machado, Stefan Hochrainer-Stigler, Robert Sakié¢ Trogrli¢, James Daniell, Bernard

23



560

565

570

575

580

585

590

595

https://doi.org/10.5194/egusphere-2025-850
Preprint. Discussion started: 6 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Bulder, Siddharth Krishna Swamy, Edwin-Jan Wiggelinkhuizen, Jaime Diaz Pacheco, Abel Lopez Diez, Javier Mendoza Jiménez, Noemi
Padrén-Fumero, Lea Appulo, René Orth, Jana Sillmann, and Philip Ward: Handbook of Multi-Hazard, Multi-Risk Definitions and Con-
cepts, Zenodo, https://doi.org/10.5281/zenodo.7135138, 2022.

Giupponi, C., Giove, S., and Giannini, V.: A dynamic assessment tool for exploring and communicating vulnerability to floods and climate
change, Environmental Modelling & Software, 44, 136-147, https://doi.org/10.1016/j.envsoft.2012.05.004, 2013.

Godfrey, A., Ciurean, R. L., van Westen, C. J., Kingma, N. C., and Glade, T.: Assessing vulnerability of buildings to hydro-meteorological
hazards using an expert based approach — An application in Nehoiu Valley, Romania, International Journal of Disaster Risk Reduction,
13,229-241, https://doi.org/10.1016/j.ijdrr.2015.06.001, 2015.

Hagenlocher, M., Meza, 1., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., Siebert, S., and Sebesvari, Z.: Drought vulnera-
bility and risk assessments: state of the art, persistent gaps, and research agenda, Environmental Research Letters, 14, 083002,
https://doi.org/10.1088/1748-9326/ab225d, 2019.

Handmer, J. W., Dovers, S., and Downing, T. E.: Societal Vulnerability to Climate Change and Variability, Mitigation and Adaptation
Strategies for Global Change, 4, 267281, https://doi.org/10.1023/A:1009611621048, 1999.

Haque, D. M. E., Mimi, A., Mazumder, R. K., and Salman, A. M.: Evaluation of natural hazard risk for coastal districts of Bangladesh using
the INFORM approach, International Journal of Disaster Risk Reduction, 48, 101 569, https://doi.org/10.1016/].ijdrr.2020.101569, 2020.

Hastuti, A. W., Nagai, M., and Suniada, K. I.: Coastal Vulnerability Assessment of Bali Province, Indonesia Using Remote Sensing and GIS
Approaches, Remote Sensing, 14, 4409, https://doi.org/10.3390/rs14174409, 2022.

Herslund, L. B., Jalayer, F., Jean-Baptiste, N., Jgrgensen, G., Kabisch, S., Kombe, W., Lindley, S., Nyed, P. K., Pauleit, S., Printz, A,
and Vedeld, T.: A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa, Natural Hazards, 82,
149-172, https://doi.org/10.1007/s11069-015-1856-x, 2016.

Hirabayashi, Y., Tanoue, M., Sasaki, O., Zhou, X., and Yamazaki, D.: Global exposure to flooding from the new CMIP6 climate model
projections, Scientific Reports, 11, 3740, https://doi.org/10.1038/s41598-021-83279-w, 2021.

Hoque, M. A.-A.,, Ahmed, N., Pradhan, B., and Roy, S.: Assessment of coastal vulnerability to multi-hazardous events
using geospatial techniques along the eastern coast of Bangladesh, Ocean & Coastal Management, 181, 104898,
https://doi.org/10.1016/j.ocecoaman.2019.104898, 2019.

IFRC: WORLD DISASTERS REPORT: Trust, equity and local action, INTL FED OF RED CROSS, GENEVA, ISBN 978-2-9701289-8-4,
2023.

IPCC: Annex II: Glossary, in: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by IPCC, pp. 2897-2930, Cambridge University Press,
ISBN In Press, https://www.ipcc.ch/report/ar6/wg2/, 2022.

Islam, S. M. S., Tanim, A. H., and Mullick, M. R. A.: Vulnerability Assessment of Bangladesh Coastline Using Gornitz Method, in: Water,
Flood Management and Water Security Under a Changing Climate, edited by Haque, A. and Chowdhury, A. I. A., pp. 301-313, Springer
International Publishing, Cham, ISBN 978-3-030-47786-8, https://doi.org/10.1007/978-3-030-47786-8_21, 2020.

Jalal, M. J. E., Khan, M. A., Hossain, M. E., Yedla, S., and Alam, G. M. M.: Does climate change stimulate household vulnerability and in-
come diversity? Evidence from southern coastal region of Bangladesh, Heliyon, 7, €07 990, https://doi.org/10.1016/j.heliyon.2021.e07990,
2021.

Jamshed, A., Birkmann, J., Feldmeyer, D., and Rana, I. A.: A Conceptual Framework to Understand the Dynamics of Rural-Urban Linkages
for Rural Flood Vulnerability, Sustainability, 12, 2894, https://doi.org/10.3390/su12072894, 2020.

24



600

605

610

615

620

625

630

https://doi.org/10.5194/egusphere-2025-850
Preprint. Discussion started: 6 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Jamshed, A., Birkmann, J., McMillan, J. M., Rana, I. A., Feldmeyer, D., and Sauter, H.: How do rural-urban linkages change after an
extreme flood event? Empirical evidence from rural communities in Pakistan, The Science of the total environment, 750, 141462,
https://doi.org/10.1016/j.scitotenv.2020.141462, 2021.

Joakim, E. P, Mortsch, L., Oulahen, G., Harford, D., Klein, Y., Damude, K., and Tang, K.: Using system dynamics to
model social vulnerability and resilience to coastal hazards, International Journal of Emergency Management, 12, 366,
https://doi.org/10.1504/1IJEM.2016.079846, 2016.

Jochen Schwarz and Holger Maiwald: Empirical vulnerability assessment and damage description for natural hazards following the principles
of modern macroseismic scales, https://doi.org/10.13140/2.1.3455.4565, 2012.

Jongman, B., Ward, P. J., and Aerts, J. C.: Global exposure to river and coastal flooding: Long term trends and changes, Global Environmental
Change, 22, 823-835, https://doi.org/10.1016/j.gloenvcha.2012.07.004, 2012.

Jurgilevich, A., Résédnen, A., Groundstroem, F., and Juhola, S.: A systematic review of dynamics in climate risk and vulnerability assessments,
Environmental Research Letters, 12, 013 002, https://doi.org/10.1088/1748-9326/aa5508, 2017.

Jurgilevich, A., Risdnen, A., and Juhola, S.: Assessing the dynamics of urban vulnerability to climate change: Case of Helsinki, Finland,
Environmental Science & Policy, 125, 32—43, https://doi.org/10.1016/j.envsci.2021.08.002, 2021.

Kantamaneni, K., Phillips, M., Thomas, T., and Jenkins, R.: Assessing coastal vulnerability: Development of a combined physical and
economic index, Ocean & Coastal Management, 158, 164175, https://doi.org/10.1016/j.ocecoaman.2018.03.039, 2018.

Kappes, M. S., Papathoma-Kohle, M., and Keiler, M.: Assessing physical vulnerability for multi-hazards using an indicator-based method-
ology, Applied Geography, 32, 577-590, https://doi.org/10.1016/j.apgeog.2011.07.002, 2012.

Kienzler, S., Pech, 1., Kreibich, H., Miiller, M., and Thieken, A. H.: After the extreme flood in 2002: changes in preparedness, response
and recovery of flood-affected residents in Germany between 2005 and 2011, Natural Hazards and Earth System Sciences, 15, 505-526,
https://doi.org/10.5194/nhess-15-505-2015, 2015.

Kohler, L. and Han, S.: The driving effect of experience: How perceived frequency of floods and feeling of loss of control are linked
to household-level adaptation, International Journal of Disaster Risk Reduction, 112, https://www.sciencedirect.com/science/article/pii/
$2212420924005077, 2024.

Kohler, L., Masson, T., Kohler, S., and Kuhlicke, C.: Better prepared but less resilient: the paradoxical impact of frequent flood experience
on adaptive behavior and resilience, Natural Hazards and Earth System Sciences, 23, 2787-2806, https://doi.org/10.5194/nhess-23-2787-
2023, 2023.

Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, Jeroen C. J. H., Apel, H., Aronica, G. T., Arnbjerg-Nielsen, K., Bouwer,
L. M., Bubeck, P.,, Caloiero, T., Chinh, D. T., Cortes, M., Gain, A. K., Giamp4d, V., Kuhlicke, C., Kundzewicz, Z. W., Llasat,
M. C., Mard, J., Matczak, P., Mazzoleni, M., Molinari, D., Dung, N. V., Petrucci, O., Schréter, K., Slager, K., Thieken, A. H.,
Ward, P. J., and Merz, B.: Adaptation to flood risk: Results of international paired flood event studies, Earth’s Future, 5, 953-965,
https://doi.org/10.1002/2017EF000606, 2017.

Kreibich, H., Schréter, K., Di Baldassarre, G., van Loon, A. F., Mazzoleni, M., Abeshu, G. W., Agafonova, S., AghaKouchak, A., Aksoy, H.,
Alvarez-Garreton, C., Aznar, B., Balkhi, L., Barendrecht, M. H., Biancamaria, S., Bos-Burgering, L., Bradley, C., Budiyono, Y., Buytaert,
W., Capewell, L., Carlson, H., Cavus, Y., Couasnon, A., Coxon, G., Daliakopoulos, 1., de Ruiter, M. C., Delus, C., Erfurt, M., Esposito,
G., Francois, D., Frappart, F., Freer, J., Frolova, N., Gain, A. K., Grillakis, M., Grima, J. O., Guzméan, D. A., Huning, L. S., Ionita, M.,
Kharlamov, M., Khoi, D. N., Kieboom, N., Kireeva, M., Koutroulis, A., Lavado-Casimiro, W., Li, H.-Y., Llasat, M. C., Macdonald, D.,
Mard, J., Mathew-Richards, H., McKenzie, A., Mejia, A., Mendiondo, E. M., Mens, M., Mobini, S., Mohor, G. S., Nagavciuc, V., Ngo-

25



635

640

645

650

655

660

665

670

https://doi.org/10.5194/egusphere-2025-850
Preprint. Discussion started: 6 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Duc, T., Nguyen, H. T. T., Nhi, P. T. T., Petrucci, O., Quan, N. H., Quintana-Segui, P., Razavi, S., Ridolfi, E., Riegel, J., Sadik, M. S.,
Sairam, N., Savelli, E., Sazonov, A., Sharma, S., Sorensen, J., Souza, F. A. A., Stahl, K., Steinhausen, M., Stoelzle, M., Szalifiska, W., Tang,
Q., Tian, F.,, Tokarczyk, T., Tovar, C., van Tran, T. T., van Huijgevoort, M. H. J., van Vliet, M. T. H., Vorogushyn, S., Wagener, T., Wang,
Y., Wendt, D. E., Wickham, E., Yang, L., Zambrano-Bigiarini, M., and Ward, P. J.: Panta Rhei benchmark dataset: socio-hydrological data
of paired events of floods and droughts, Earth System Science Data, 15, 2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023.

Ku, H., Kim, T., and Song, Y.-i.: Coastal vulnerability assessment of sea-level rise associated with typhoon-induced surges in South Korea,
Ocean & Coastal Management, 213, 105 884, https://doi.org/10.1016/j.ocecoaman.2021.105884, 2021.

Kuhlicke, C., de Brito, M. M., Bartkowski, B., Botzen, W., Dogulu, C., Han, S., Hudson, P., Karanci, A. N., Klassert, C. J., Otto, D.,
et al.: Spinning in circles? A systematic review on the role of theory in social vulnerability, resilience and adaptation research, Global
Environmental Change, 80, 102 672, 2023.

Lan, M., Shao, Y., Zhu, J.,, Lo, S., and Ng, S. T.: A hybrid copula-fragility approach for investigating the impact of hazard dependence
on a process facility’s failure, Process Safety and Environmental Protection, 149, 1017-1030, https://doi.org/10.1016/j.psep.2021.03.014,
2021.

Lazzati, M., de Angeli, S., Boni, G., Cattari, S., and Romao, X.: DEFINITION OF MULTI-HAZARD VULNERABILITY INDICATORS
FOR CULTURAL HERITAGE BUILDINGS, pp. 2709-2724, https://doi.org/10.7712/120123.10595.20690, 2023.

Lechowska, E.: What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements,
Natural Hazards, 94, 1341-1366, https://doi.org/10.1007/s11069-018-3480-z, 2018.

Li, X.: Measuring social vulnerability to natural hazards in China: a modified index approach, Population and Environment, 46, 1-27,
https://doi.org/10.1007/s11111-024-00455-6, 2024.

Londe, L. d. R., Santos, L. B. L., Soriano, E., Tomas, L. R., and Carvalho, T.: Urban mobility data to support the assessment of dynamic vul-
nerability to disasters, in: 2015 2nd International Conference on Information and Communication Technologies for Disaster Management
(ICT-DM), IEEE, https://doi.org/10.1109/ict-dm.2015.7402036, 2015.

Lu, Y., Wang, Y., and Zhang, L.: System dynamic modeling of the NGO post-disaster relief contribution in the 2021 Henan flood in China,
International Journal of Disaster Risk Reduction, 89, 103 626, https://doi.org/10.1016/j.ijdrr.2023.103626, 2023.

Mahadev, H. and Rao, P.: Analyzing the Relationship of Cyclone Risk Determinants on the East Coast of India: SME Perspective, The
International Journal of Climate Change: Impacts and Responses, 16, 79-106, https://doi.org/10.18848/1835-7156/cgp/v16i01/79-106,
2023.

Mansour, S.: Geospatial modelling of tropical cyclone risks to the southern Oman coasts, International Journal of Disaster Risk Reduction,
40, 101 151, https://doi.org/10.1016/j.ijdrr.2019.101151, 2019.

Matand, A., de Ruiter, M. C., Koehler, J., Ward, P. J,, and van Loon, A. F. Caught Between Extremes: Understand-
ing Human—Water Interactions During Drought-To-Flood Events in the Horn of Africa, Earth’s Future, 10, e2022EF002 747,
https://doi.org/10.1029/2022EF002747, 2022.

Mclaughlin, S. and Cooper, J. A. G.: A multi-scale coastal vulnerability index: A tool for coastal managers?, Environmental Hazards, 9,
233-248, 2010.

Mechler, R. and Bouwer, L. M.: Understanding trends and projections of disaster losses and climate change: is vulnerability the missing
link?, Climatic Change, 133, 23-35, https://doi.org/10.1007/s10584-014-1141-0, 2015.

Meijer, L., Reimann, L., and Aerts, J.: Comparing Spatially Explicit Approaches to Assess Social Vulnerability Dynamics to Flooding,
https://doi.org/10.2139/ssrn.4270162, 2022.

26



675

680

685

690

695

700

705

https://doi.org/10.5194/egusphere-2025-850
Preprint. Discussion started: 6 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Meijer, L. G., Reimann, L., and Aerts, J.: Comparing spatially explicit approaches to assess social vulnerability dynamics to flooding,
International Journal of Disaster Risk Reduction, 96, 103 883, https://doi.org/10.1016/].ijdrr.2023.103883, 2023.

Menoni, S., Molinari, D., Parker, D., Ballio, F., and Tapsell, S.: Assessing multifaceted vulnerability and resilience in order to design risk-
mitigation strategies, Natural Hazards, 64, 2057-2082, https://doi.org/10.1007/s11069-012-0134-4, 2012.

Merz, B., Hall, J., Disse, M., and Schumann, A.: Fluvial flood risk management in a changing world, Natural Hazards and Earth System
Sciences, 10, 509-527, https://doi.org/10.5194/nhess-10-509-2010, 2010.

Miguez, M. G. and Verdl, A. P.: A catchment scale Integrated Flood Resilience Index to support decision making in urban flood control
design, Environment and Planning B: Urban Analytics and City Science, 44, 925-946, https://doi.org/10.1177/0265813516655799, 2017.

Moallemi, E. A., Kwakkel, J., de Haan, F. J., and Bryan, B. A.: Exploratory modeling for analyzing coupled human-natural systems under
uncertainty, Global Environmental Change, 65, 102 186, https://doi.org/10.1016/j.gloenvcha.2020.102186, 2020.

Mohammadi, S., de Angeli, S., Boni, G., Pirlone, F., and Cattari, S.: Review article: Current approaches and critical issues in
multi-risk recovery planning of urban areas exposed to natural hazards, Natural Hazards and Earth System Sciences, 24, 79-107,
https://doi.org/10.5194/nhess-24-79-2024, 2024.

Moreira, L. L., de Brito, M. M., and Kobiyama, M.: Review article: A systematic review and future prospects of flood vulnerability indices,
Natural Hazards and Earth System Sciences, 21, 1513-1530, https://doi.org/10.5194/nhess-21-1513-2021, 2021.

Mullick, M. R. A., Tanim, A. H., and Islam, S. M. S.: Coastal vulnerability analysis of Bangladesh coast using fuzzy logic based geospatial
techniques, Ocean & Coastal Management, 174, 154-169, https://doi.org/10.1016/j.ocecoaman.2019.03.010, 2019.

Nasiri, H., Mohd Yusof, M. J., and Mohammad Ali, T. A.: An overview to flood vulnerability assessment methods, Sustainable Water
Resources Management, 2, 331-336, https://doi.org/10.1007/s40899-016-0051-x, 2016.

Park, J.: Dispersion of human capital and economic growth, Journal of Macroeconomics, 28, 520-539,
https://doi.org/10.1016/j.jmacro.2004.09.004, 2006.

Phifer, J. F., Kaniasty, K. Z., and Norris, F. H.: The Impact of Natural Disaster on the Health of Older Adults: A Multiwave Prospective
Study, Journal of Health and Social Behavior, 29, 65, https://doi.org/10.2307/2137181, 1988.

Quader, M. A., Khan, A. U., and Kervyn, M.: Spatial variation in household-level risk to natural hazards across the coast of Bangladesh,
Geomatics, Natural Hazards and Risk, 12, 1532-1559, https://doi.org/10.1080/19475705.2021.1927205, 2021.

Rahaman, M. and Esraz-Ul-Zannat, M.: Evaluating the impacts of major cyclonic catastrophes in coastal Bangladesh using geospatial tech-
niques, SN Applied Sciences, 3, 1-21, https://doi.org/10.1007/s42452-021-04700-7, 2021.

Rahman, M. A., Dawes, L., Donehue, P., and Rahman, M. R.: Cross-temporal analysis of disaster vulnerability of the southwest coastal
communities in Bangladesh, Regional Environmental Change, 21, 1-13, https://doi.org/10.1007/s10113-021-01797-9, 2021.

Rentschler, J., Salhab, M., and Jafino, B. A.: Flood exposure and poverty in 188 countries, Nature Communications, 13, 3527,
https://doi.org/10.1038/s41467-022-30727-4, 2022.

Rufat, S., Tate, E., Emrich, C. T., and Antolini, F.: How valid are social vulnerability models?, Annals of the American Association of
Geographers, 109, 1131-1153, 2019.

Salvucci, V. and Santos, R.: Vulnerability to Natural Shocks: Assessing the Short-Term Impact on Consumption and Poverty of the 2015
Flood in Mozambique, Ecological Economics, 176, 106 713, https://doi.org/10.1016/j.ecolecon.2020.106713, 2020.

Salvucci, V. and Tarp, F.: Poverty and vulnerability in Mozambique: An analysis of dynamics and correlates in light of the Covid-19 crisis

using synthetic panels, Review of development economics, 25, 1895-1918, https://doi.org/10.1111/rode.12835, 2021.

27



710

715

720

725

730

735

740

745

https://doi.org/10.5194/egusphere-2025-850
Preprint. Discussion started: 6 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Sarker, S. and Adnan, M. S. G.: Evaluating multi-hazard risk associated with tropical cyclones using the fuzzy analytic hierarchy process
model, Natural Hazards Research, https://doi.org/10.1016/j.nhres.2023.11.007, 2023.

Sauer, L. J., Mester, B., Frieler, K., Zimmermann, S., Schewe, J., and Otto, C.: Limited progress in global reduction of vulnerability to flood
impacts over the past two decades, Communications Earth & Environment, 5, https://doi.org/10.1038/s43247-024-01401-y, 2024.

Schlumberger, J., Ferrarin, C., Jonkman, S. N., Diaz Loaiza, M. A., Antonini, A., and Fatorié, S.: Developing a framework for the assessment
of current and future flood risk in Venice, Italy, Natural Hazards and Earth System Sciences, 22, 2381-2400, https://doi.org/10.5194/nhess-
22-2381-2022, 2022.

Schlumberger, J., Haasnoot, M., Aerts, Jeroen C. J. H., Bril, V., van der Weide, L., and de Ruiter, M.: Evaluating Adaptation Pathways in a
Complex Multi-Risk System, Earth’s Future, 12, https://doi.org/10.1029/2023EF004288, 2024.

Schoppa, L., Barendrecht, M. H., Paprotny, D., Sairam, N., Sieg, T., and Kreibich, H.: Projecting Flood Risk Dynamics for Effective Long—
Term Adaptation, Earth’s Future, 12, e2022EF003 258, https://doi.org/10.1029/2022EF003258, 2024.

Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., Lawrence, J., Lempert, R. J., Muccione, V., Mackey,
B., New, M. G., O’Neill, B., Otto, F., Portner, H.-O., Reisinger, A., Roberts, D., Schmidt, D. N., Seneviratne, S., Strongin, S.,
van Aalst, M., Totin, E., and Trisos, C. H.: A framework for complex climate change risk assessment, One Earth, 4, 489-501,
https://doi.org/10.1016/j.oneear.2021.03.005, 2021.

Snyder, H.: Literature review as a research methodology: An overview and guidelines, Journal of Business Research, 104, 333-339,
https://doi.org/10.1016/j.jbusres.2019.07.039, 2019.

Sobiech, C.: Agent-based simulation of vulnerability dynamics: A case study of the German North Sea coast, Springer theses, Springer,
Heidelberg, ISBN 9783642323645, 2013.

Sparkes, E., Cotti, D., Valdiviezo Ajila, A., E. Werners, S., and Hagenlocher, M.: Impact Webs: A novel conceptual modelling approach for
characterising and assessing complex risks, EGUsphere, pp. 1-20, https://doi.org/10.5194/egusphere-2024-2844, 2024.

Stolte, T. R., Koks, E. E., de Moel, H., Reimann, L., van Vliet, J., de Ruiter, M. C., and Ward, P. J.: VulneraCity—drivers and dynamics
of urban vulnerability based on a global systematic literature review, International Journal of Disaster Risk Reduction, 108, 104 535,
https://doi.org/10.1016/].ijdrr.2024.104535, 2024.

Taberna, A., Filatova, T., Roy, D., and Noll, B.: Tracing resilience, social dynamics and behavioral change: a review of agent-based flood
risk models, 2663-3027, https://opus.lib.uts.edu.au/handle/10453/146588, 2020.

Tanoue, M., Hirabayashi, Y., and Ikeuchi, H.: Global-scale river flood vulnerability in the last 50 years, Scientific Reports, 6, 36 021,
https://doi.org/10.1038/srep36021, 2016.

Tarbotton, C., Dall’Osso, F., Dominey-Howes, D., and Goff, J.: The use of empirical vulnerability functions to assess the re-
sponse of buildings to tsunami impact: Comparative review and summary of best practice, Earth-Science Reviews, 142, 120-134,
https://doi.org/10.1016/j.earscirev.2015.01.002, 2015.

Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S., Brakenridge, G. R., Erickson, T. A., and Slayback, D. A.: Satellite imaging
reveals increased proportion of population exposed to floods, Nature, 596, 80-86, https://doi.org/10.1038/s41586-021-03695-w, 2021.
Thieken, A. H., Kienzler, S., Kreibich, H., Kuhlicke, C., Kunz, M., Miihr, B., Miiller, M., Otto, A., Petrow, T., Pisi, S., and Schréter, K.: Re-
view of the flood risk management system in Germany after the major flood in 2013, Ecology and Society, 21, https://doi.org/10.5751/ES-

08547-210251, 2016.

Thomson, H., Zeff, H. B., Kleiman, R., Sebastian, A., and Characklis, G. W.: Systemic Financial Risk Arising from Residential Flood Losses,

Earth’s Future, 11, e2022EF003 206, https://doi.org/10.1029/2022EF003206, 2023.

28



750

755

760

https://doi.org/10.5194/egusphere-2025-850
Preprint. Discussion started: 6 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

UNDRR: Terminology, https://www.undrr.org/terminology/, 2017.

van Ginkel, K. C. H., Dottori, F., Alfieri, L., Feyen, L., and Koks, E. E.: Flood risk assessment of the European road network, Natural Hazards
and Earth System Sciences, 21, 1011-1027, https://doi.org/10.5194/nhess-21-1011-2021, 2021.

van Verseveld, H., van Dongeren, A. R., Plant, N. G., Jager, W. S., and den Heijer, C.: Modelling multi-hazard hurricane damages on an
urbanized coast with a Bayesian Network approach, Coastal Engineering, 103, 1-14, https://doi.org/10.1016/j.coastaleng.2015.05.006,
2015.

Saki¢ Trogrlié, R., Reiter, K., Ciurean, R. L., Gottardo, S., Torresan, S., Daloz, A. S., Ma, L., Padrén Fumero, N., Tatman, S., Hochrainer-
Stigler, S., de Ruiter, M. C., Schlumberger, J., Harris, R., Garcia-Gonzalez, S., Garcia-Vaquero, M., Arévalo, T. L. F., Hernandez-
Martin, R., Mendoza-Jimenez, J., Ferrario, D. M., Geurts, D., Stuparu, D., Tiggeloven, T., Duncan, M. J., and Ward, P. J.: Challenges
in assessing and managing multi-hazard risks: A European stakeholders perspective, Environmental Science & Policy, 157, 103774,
https://doi.org/10.1016/j.envsci.2024.103774, 2024.

Whytlaw, J. L., Hutton, N., Wie Yusuf, J.-E., Richardson, T., Hill, S., Olanrewaju-Lasisi, T., Antwi-Nimarko, P., Landaeta, E., and Diaz, R.:
Changing vulnerability for hurricane evacuation during a pandemic: Issues and anticipated responses in the early days of the COVID-19
pandemic, International journal of disaster risk reduction : IJDRR, 61, 102 386, https://doi.org/10.1016/].ijdrr.2021.102386, 2021.

Wisner, B., Blaikie, P., Cannon, T., and Davis, L.: At risk: Natural hazards, people’s vulnerability, and disasters, Routledge, London and New
York, 2nd ed. edn., ISBN 9780415252164, 2004.

Wong, G., Greenhalgh, T., Westhorp, G., Buckingham, J., and Pawson, R.: RAMESES publication standards: meta-narrative reviews, Journal
of Advanced Nursing, 69, 987-1004, https://doi.org/10.1111/jan.12092, 2013.

29



