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Abstract

Wildfire smoke often aggravates the ozone (Os) pollution and negatively affect crop yields. To date,
the global impact of fire-sourced O3 exposure on crop yields still remained unknown. To address
this issue, a multi-stage model was developed to quantify the global wildfire-induced ambient O3
concentrations in the future scenarios. The results suggested that the relationship between observed
K" and levoglucosan levels with simulated fire-sourced maximum daily average 8-hour (MDAS) O3
concentration reached 0.67 and 0.73, respectively, indicating the robustness of fire-sourced O;
estimate. In both of historical and future scenarios, Sub-Sahara Africa (SS: 14.9 + 8.4 (historical)
and 18.3 + 9.6 (mean of the future scenarios) pg/m?) and South America (SA: 4.0 2.5 and 4.7 +
3.2 pg/m?) showed the highest fire-sourced MDAS Os concentrations among all of the regions.
However, the crop production losses (CPL) caused by Oz exposure reached the highest values in
China due to very high total crop yields and relatively high wildfire-induced MDAS O3 levels.
Moreover, CPL in China was sensitive to emission scenario, indicating the effective emission
control could largely decrease fire-sourced O3z damage to crop. In contrast, both of SS and SA even
showed the higher CPL in low-carbon scenario (SSP1-2.6), suggesting more stringent control
measures are required to offset the wildfire contribution. Our findings call for attention on the threat
to future global food security from the absence of pollution mitigation and the persistence of global
warming.

Keywords: MDAS O3, wildfire, crop yield, Sub-Sahara Africa, China

1. Introduction
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Along with the warming climate, large-scale wildfire events have experienced dramatic
increases in frequency and intensity in the past decades, and the wildfire seasons have been
significantly prolonged in many regions such as the western part of the United States and Australia
(Jones et al. 2022, Richardson et al. 2022, Wang et al. 2022). Wildfire often released a large number
of gaseous precursors such as carbon monoxide (CO), nitrogen dioxides (NOy), and volatile organic
compounds (VOC) (Anderson et al. 2024, Xu et al. 2022), which could significantly enhance the
ozone (O3) levels through photochemical reactions (Jaffe et al. 2013). Recent studies have revealed
that wildfire contributed to 3.6% of ambient all-source O3 level globally (Xu et al. 2023). The
aggravation of O3 pollution not only poses detrimental effects on human health (Liu et al. 2018),
but also reduced the crop yields because the excessive O3 exposure could affect plant photosynthesis
via stomatal uptake (Karmakar et al. 2022, Zhao et al. 2020). Thus, quantifying the negative impacts
of fire-sourced O3 pollution on crop yields was beneficial to propose optimal strategy to ensure
agricultural production.

Notably, warming climate in the future not only would increase wildfire burned areas, but also
intensified the severity of fire weather (Richardson et al. 2022, Wasserman and Mueller 2023).
Moreover, wildfire and heatwave have generated the positive feedback and the mechanism would
be further enhanced in the future (Senande-Rivera et al. 2022, Zhao et al. 2024). Meanwhile, the
ambient O3 concentration was very sensitive to air temperature, and the continuous increase of air
temperature inevitably aggravate wildfire-related O3 pollution in the future (Bloomer et al. 2009, Li
etal. 2024a, Selin et al. 2009). Therefore, it is necessary to analyze the spatiotemporal characteristics
of global wildfire-induced O3 concentrations especially in the future scenarios, which was favorable
to accurately identify the hotspots for wildfire-induced O3 pollution and to propose effective control
measures targeting different future scenarios.

A growing body of studies have focused on the wildfire contribution to O3 pollution. Lee et al.
(2024) employed the generalized additive model (GAM) to predict the wildfire-related O3
concentration in the United States and found wildfire increased maximum daily average 8-hour
(MDAS) Os concentration across the entire country (Lee and Jaffe 2024). Besides, Xu et al. (2023)
have quantified that the wildfire led to average 3.2 ug/m?® increase of O3 concentration globally

using the GEOS-Chem model. Unfortunately, most of the current studies assessed the contribution
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of historical wildfire to ambient O3 level, and the estimates showed large uncertainties associated
with the burned areas, fuel consumption, and fuel types. Moreover, most of these studies only
focused on the historical estimates, while only two studies explored the wildfire contribution to O3
pollution in the future scenarios (Yang et al. 2022, Yue et al. 2015). Both of these studies only
focused on wildfire in North America, whereas the future wildfire contribution to O3 pollution in
other regions are still unknown. Moreover, their negative impacts on crop yields are also not clear.
In fact, the global wheat yield losses reached 0.95% (around 20 t/km?) per ppb Os increase (Guarin
et al. 2019). Although the current contribution ratio of wildfire to all-source O3 level is not high, the
higher wildfire risk and total crop yields in the future scenarios highlights the seriousness of crop
yield losses.

Here, our study developed an ensemble machine-learning model to predict fire-sourced MDAS
O3 levels under four future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Then, the
spatiotemporal variations of these concentrations and the key drivers behind them were further
revealed. Finally, a crop yield loss assessment framework was applied to quantify the negative
impacts (crop yield losses) of wildfire-induced O3 exposure on global crop yield. The hotspots of
crop yield losses in different scenarios should be determined and the appropriate control measures
should be proposed to reduce the economic losses.
2. Materials and methods
2.1 Data preparation

Most ground-level MDAS8 O3 observations focused on East Asia, India, Western Europe, and
the contiguous United States. Daily MDAS8 O3 data during 2015-2019 over China were collected
from the Ministry of Ecology and Environment of China. The observation network comprises of
2,000 monitoring sites distributed across various land-use types (Figure S1). Quality assurance for
the ground-level observations in China was performed based on the HJ 630-2011 specifications.
The dataset of daily MDAS8 Os concentrations from 2015 to 2019 in India were collected from the

Central Pollution Control Board (CPCB) online database (https://app.cpcbecr.com/cer/#/caagm-

dashboard-all/caagm-landing). The detailed data quality assurance/control has been introduced by

Gurjar et al. (2016). Ground-level observation dataset for member countries of the European

Economic Area were collected from the European Environment Agency. The data quality control of
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European Environment Agency was explained by Keller et al. (2021). The dataset of daily MDAS
O3 levels in more than 200 monitoring sites across the United States were downloaded from the
website of https://www.epa.gov/ (Figure S1). The quality control of these observations in EPA was
carefully introduced by (Lamsal et al. 2015). Observation data in other countries and territories were
downloaded from the website of OpenAQ (https://openaq.org/). After the data cleaning and quality
control, more than 300,000 daily MDAS8 O3 measurements in 3015 sites were collected to simulate
the global Os concentrations. For Os, 1 part per billion (ppb) was approximated as 1.96 pg/m? based
on the standard air pressure and temperature (25.5 °C and 101.325 kPa). The Unite of O3 was
changed into pg/m? unified.

GEOS-Chem (v13.4.0) model was utilized to estimate atmospheric MDAS8 O3 concentrations
during Jan. 1-Dec. 31 during 2015-2019, 2045-2049, and 2095-2099 periods. In our study, the years
0f2015-2019 was regarded as the historical period, whereas the years of 2045-2049 and 2095-2099
were regarded as the future period. This model comprises of a complex chemistry mechanism of
tropospheric NOx-VOC-Os-aerosol (Geddes et al. 2015, Zhao et al. 2017). This model for O3
estimates during historical period and future scenario were driven by MERRA2 and
GCAP2_CMIP6 reanalysis meteorological factors, respectively (Bali et al. 2021, Zhang 2016). The
future scenario includes SSP1-2.6 (low-carbon emission scenario), SSP2-4.5 (middle-carbon
emission scenario), SSP3-7.0 (traditional energy scenario), and SS5-8.5 (high energy consumption
scenario). A global simulation was performed at a spatial resolution of 2 x 2.5° resolution (Bindle
et al. 2021, Wainwright et al. 2012). The historical anthropogenic emission inventory during 2015-
2019 was downloaded from Community Emissions Data System (CEDS) (Hoesly et al. 2018). The
anthropogenic and wildfire emissions during 2045-2049 and 2095-2099 were collected from the

website of https://esgf-node.llnl.gov/search/input4dmips/. Wildfire emission during 2015-2019 was

obtained from GFED (Chen et al. 2023, Pan et al. 2020, Peiro et al. 2022, van Wees et al. 2022).
Some other natural emission such as the lightning NOx emission was collected from

http://geoschemdata.wustl.eduw/ExtData/HEMCO/OFFLINE_LIGHTNING/v2020-03/MERRA2/

(Li et al. 2022, Nault et al. 2017, Verma et al. 2021). The whole simulation processes included four
steps. Firstly, we run the GEOS-Chem model with all emissions (including wildfires) to establish

reference O3 concentrations (Baseline simulation). Second, we repeated the simulation while
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excluding wildfire emissions with the same meteorological conditions (MERRA2 and
GCAP2_CMIP6) and anthropogenic emission inventory (CEDS). Third, we computed the wildfire-
induced O3 by subtracting zero-out results from the baseline. At last, we compare modeled O;
concentrations with observational data (e.g., ground-based measurements) to assess uncertainty.

Meteorological factors including 2 m dewpoint temperature (D2m), surface pressure (Sp), 2 m
temperature (T2m), and total precipitation (Tp), 10 m wind component (U10 and V10) during 2015-
2019 were collected from the fifth-generation European Centre for Medium-Range Weather
Forecasts Reanalysis (ERA-5). All of these meteorological data showed the same spatial resolution
0f 0.25°%0.25°. For the estimates in the future scenarios, the CMIP6 dataset in four scenarios (e.g.,
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were also applied to predict MDAS8 O;
concentrations during 2015-2019, 2045-2049, and 2095-2099. The dataset includes simulated O;
concentrations, 2-m air temperatures, wind speed at 850 and 500 hPa, total cloud cover, precipitation,
relative humidity, and short-wave radiation. The modelled meteorological parameters and chemical
compositions derived from multiple earth system models were integrated into the machine-learning
model. The detailed models are introduced in our previous studies (Li et al. 2024b). The elevation
was collected from ETOPO at a spatial resolution of 1°. Additionally, the land use type data were
downloaded from the reference of Liu et al. (2020).
2.2 Model development

A multi-stage model was developed to estimate the global fire-sourced MDAS O3
concentrations (Figure S2). In the first stage, the ground-level MDAS O3 levels, meteorological
factors, land use types, and simulated O3 levels derived from GEOS-Chem model were integrated
into XGBoost model to simulate the full-coverage MDAS O3 levels during 2015-2019. In the second
stage, the simulated O3 concentrations and meteorological parameters in four scenarios (SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5) during 2015-2019, 2045-2049, and 2095-2099 were collected
from CMIP6 dataset including 16 earth system models. Then, the data in the future scenarios were
integrated into the XGBoost model to further calibrate the CMIP6 modeling results based on
historical dataset (2015-2019) derived from the first stage model. This stage could obtain the
calibrated MDAS O3 concentrations in different scenarios during 2015-2019, 2045-2049, and 2095-

2099. The detailed equations of XGBoost model are summarized as follows:
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n A D Al-D 1., A
F(t) =Z[l(y”y )+8}_<[71J(y,-,y ).](t(xi)+za),(zfl)l(yi’y )f; (xl)]+Q(ff)
P (1)

where FO represents the cost function at the t-th period; O denotes the derivative of the function;

8;,4) means the second derivative of the function; / refers to the differentiable convex loss function

A
that reveals the difference of the predicted O3 level (} ) of the i-th instance at the t-th period and

the target value (y;); fi(x) is the increment; Q( f[) reflects the regularizer. Maximum tree depth

and learning rate are 20 and 0.1, respectively.

In the third/final stage, the calibrated MDAS& O3 concentrations based on previous two-stage
models were utilized to correct the bias of GEOS-Chem output. Due to the uncertainty of
GFED/anthropogenic emission inventory and chemical mechanism, the simulated MDAS O3
concentration often largely biased from the ground-level observations. Therefore, it is necessary to
use the assimilated results to optimize the wildfire-induced concentrations. The detailed equations

are summarized as follows:
0370pt7ﬁre = 03ica17tota1 X (03ic/1emiﬁre / 037chemitotal) (2)

where 037 is optimized wildfire-induced MDAS8 O; concentration in the final stage.

opt_ fire

037 cal_rotal 18 calibrated total MDAS8 O3 concentration. 037 is simulated wildfire-induced

chem_ fire

MDAS O; concentration using GEOS-Chem model. 03 ; 1s simulated total MDAS8 O3

_chem_tota
concentrations using GEOS-Chem model. The ratios of fire-sourced O3 concentrations and the total
O; concentrations during historical and different climate scenarios were not invariable, which were
estimated by GEOS-Chem based on different meteorological conditions and emission scenarios.

All of the independent variables obtained from various sources were resampled to 0.25° grids
using Kriging interpolation. For the machine-learning model development, it was necessary to
eliminate some redundant independent variables and then determine the optimal variable group. The
redundant variables were identified based on the fact that the overall predictive accuracy could
degrade after the removal of these variables. 10-fold cross-validation method was applied to
examine the predictive accuracy of XGBoost model.

The modelling accuracy of wildfire emission to MDAS O3 cannot be evaluated directly,
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whereas the modelling performance of total MDAS8 O3 concentrations could be assessed. Some
typical statistical indices (supporting information) were applied to evaluate the modelling accuracy
of this model on the basis of the ground-level observations.
2.3 The crop yield loss estimate

Maize, rice, spring wheat, and winter wheat were major food crops globally, and they were
sensitive to O3 stress. A typical AOT40 exposure index was defined to assess the negative impact of
O3 exposure on crop yields. The AOT40 index was calculated by summing the hourly mean O3

levels above 40 ppb during the 8 h over the crop growing season.

AOT,(ppbh) =) ([CO;] —40) [CO,]1=40 ppb (3)
i=1 i
where [COs]; is the hourly O3 (ppb), and n denotes the number of hours over the growing season.
This growing season was determined by the University of Wisconsin Center for Sustainability and
the Global Environment (UW SAGE) global crop calendar containing the planting and harvest dates
by crop species and variety (Sacks et al., 2010; Schiferl et al., 2018). To date, some OTC/FACE
experiments have been applied to assess the adverse effects of elevated O3 concentrations on maize,
rice, spring wheat, and winter wheat. The relationships between AOT40 and the relative yields (RY)
for major crops have also been developed in recent years. The detailed equations are shown in Table
S1. The relative yield loss (RYL) of crop is defined as
RYL=1-RY (4)
The estimated yield and economic losses are not only related to the RYL, while also associated

with the grain yield in each grid. The detail equations are shown as follows:
CPL, =RYL xCP /(1-RYL) (5

where CPL; is the estimated crop production loss and CP; is the actual crop production in each grid
during the study period.

The data about actual crop production in each grid were collected from The Agricultural Model
Intercomparison and Improvement Project (AgMIP). The average value of simulated crop yields
based on four models including DSSAT-Pythia, pDSSAT, LPJ-GUESS, and LPJ-ML were applied
to estimate the actual crop production in each grid during 2015-2019, 2045-2049, and 2095-2099.

We selected the simulate results of these models because they showed the better accuracy.

7
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3. Results and discussions
3.1 Model evaluation

Multi-source information data were integrated into the multi-stage model to predict fire-
sourced MDAS O3 concentrations globally. At first, the global MDAS8 O3 simulation was evaluated.
As illustrated in Figure S3, the 10-fold cross-validation (CV) results suggested that the R? value for
MDAS O3 estimate reached 0.72. The root mean square error (RMSE) and mean absolute error
(MAE) for MDAS O3 were 18.1 and 13.2 pg/m?, respectively (Figure S3). The CV R? value in our
study reached 0.72, which was higher than that estimated by Liu et al. (2020) (0.64), indicating the
satisfied predictive accuracy of Os estimates. However, the result was slightly lower than that (R2:
0.80 and 0.81) estimated by Xu et al. (2023) and Delang et al. (2021). It was supposed that the
training samples in our study was much less than those used by Xu et al. (2023) (2000-2019
simulation) and Delang et al. (2021) (1990-2019 simulation). It was well known that the predictive
accuracy was strongly dependent on the sample size (Li et al. 2020a, Li et al. 2020b). Overall, the
predictive performance of ambient O3 pollution was robust.

Although the prediction capability of this model has been well validated, the accuracy for the
fire-sourced MDAS O3 estimates could not be directly tested. It is well-known that potassium (K*)
is often considered to be a fingerprint of wildfire, and thus we employ the relationship between
ground-level K* observations and wildfire-induced MDAS8 O3 concentrations to examine the
modelling accuracy. As shown in Figure S3, the correlation (R value) between observed K* levels
and fire-sourced MDAS O3 concentrations reached 0.67 (146 training samples), which was above
0.5 (p <0.01). The results have confirmed that the wildfire-induced O3 estimate showed the satisfied
predictive performance. Although K* has been often applied to reflect the wildfire contribution, the
K™ could be also derived from anthropogenic emission and dust resuspension. To further validate
the modelling performance of wildfire-related MDAS O3, the strong fire fingerprint (levoglucosan)
was employed to construct the relationship with fire-sourced MDAS8 O3 concentrations. The results
suggested that the R value (R = 0.73) was even higher than that between observed K* levels and
fire-sourced MDAS O3 concentrations. Overall, the predictive performance was close to some
previous studies (Childs et al. 2022, O’Dell et al. 2019, Xu et al. 2023), and thus we could use the

result to further perform the data analysis.
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3.2 Spatiotemporal trends of fire-sourced O3 concentrations

Global variations of fire-sourced MDAS8 O3 concentrations in historical and future scenarios
are shown in Figure 1 and 2. From 2015 to 2019, the fire-sourced MDAS O3 level was in the order
of Sub-Saharan Africa (SS) (14.9 + 8.4 pug/m?) > South Asia (SA) (4.0 + 2.5 ug/m?®) > China (1.6 +
0.7 pg/m?) > United States (US) (1.3 £ 0.9 pg/m?) > Europe (1.2 £ 0.4 pg/m?). In future scenarios,
fire-sourced MDAS8 O3 levels display marked spatial variability across different Shared
Socioeconomic Pathways (SSPs). MDAS O3 showed the higher concentrations in some regions such
as SS, SA, and US. Among all of the scenarios, fire-sourced O3 levels displayed the highest
concentrations in SS. It was assumed that this region possessed extensive burned area (52%) and
higher biomass fuel consumption (5200 g C m?) compared with other regions (van Wees et al. 2022).
Following SS, SA also exhibited the higher wildfire-related MDAS O3 concentrations. The elevated
concentrations of fire-sourced O; levels in SA were closely associated with exceptionally high fuel
consumption (8600 g C m2) (Chen et al. 2023, van Wees et al. 2022) though the burned areas were
not very high among all of the regions. In addition, it should be noted that many previous studies
have confirmed US showed the higher wildfire-induced PM,s or other aerosol components
compared with many other regions (e.g., East Asia and South America) (Park et al. 2024, Xu et al.
2023). However, it did not show the higher O3 concentrations in nearly all of the scenarios in our
study. It was assumed that the MDAS O; concentration exhibited significant latitudinal distribution
(decreasing with the increase of latitude) globally. Both of China and Europe showed very low
burned areas (0.2%) and fuel consumption (950 g C m?), and thus the fire-sourced MDAS O3
concentrations were relatively lower compared with SS and SA.

Besides, the fire-sourced MDAS O3 levels exhibited significant inter-annual trends and large
discrepancy between different scenarios. The global average fire-sourced MDAS8 O3 concentrations
showed overall increase from 2010s (1.3 + 0.7 ug/m?) to 2090s (SSP1-2.6, SSP3-7.0, and SSP5-8.5:
1.9+0.9,1.6+0.8, and 1.4 +0.7 ug/m?) for nearly all of the scenarios. The global average wildfire-
related MDAS8 O3 concentrations (the average of 2040s and 2090s) followed the order of SSP3-7.0
(1.6 0.9 pg/m3) > SSP5-8.5 (1.5 + 0.8 pg/m3) > SSP1-2.6 (1.4 + 0.8 pug/m?). The highest wildfire-
related MDAS O3 levels in SSP3-7.0 (air temperature: about 1.8°C higher than SSP1-2.6) and SSP5-

8.5 (air temperature: about 2.3°C higher than SSP1-2.6) scenarios were contributed by the increased
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fuel consumption and the warmer condition because O3 level was more sensitive to air temperature
increase (Wang et al. 2021, Wu et al. 2021),

Nevertheless, different regions showed distinct long-term trends. Wildfire-related MDAS O3
levels in nearly all of the regions in SSP3-7.0 scenario (air temperature: about 1.1°C higher than
historical period) showed remarkable increases compared with the historical period because the
warmer condition facilitated the rapid increase of O3 level (Zhao et al. 2020). For low-carbon
scenario (SSP1-2.6), the wildfire-related MDAS8 O3 concentrations in China, Europe, and US
showed the relatively lower O; levels, whereas SA and SS still increased by 40% and 64%,
respectively. The results suggested that the low-carbon pathway cannot effectively reduce the
wildfire-induced O3 pollution in both of SA and SS.

3.3 The crop yield losses caused by O3 exposures

As shown in Figure 3 and 4, the global crop yield losses caused by fire-sourced O3 exposure
have been quantified based on the equations 3-5. During historical period, the global fire-sourced
O3 caused 3.1 (2.4-3.8), 1.7 (1.5-1.9), 24 (21-27), and 43 (39-47) t/km? crop losses for maize, rice,
spring wheat, and winter wheat, respectively. Compared with the historical period, CPL values in
different future scenarios displayed large discrepancy. In SSP1-2.6 scenario, CPL of maize, rice,
spring wheat, and winter wheat associated with fire-sourced O3 exposure were 1.1 (0.9-1.3), 0.5
(0.4-0.6), 4.6 (4.1-5.4), and 4.6 (3.5-5.2) t/km?, respectively (Figure S4-S11). However, CPL for
maize (2.1 (1.9-2.3) and 2.4 (2.1-3.0) t/km?), rice (1.1 (0.9-1.3) and 1.3 (1.1-1.5) t/km?), spring
wheat (557 (486-628) and 184 (154-218) t/km?), and winter wheat (258 (208-308) and 19 (14-22)
t/km?) caused by fire-sourced O3 exposure experienced dramatic increases in SSP3-7.0 and SSP5-
8.5 scenarios (Figure S4-S11). There are two reasons accounting for the fact. First of all, the
wildfire-related O3 exposures showed marked increase in high-emission scenarios (Yang et al. 2022,
Yue et al. 2017). Moreover, the crop yields also displayed substantial increases in both of these
scenarios because rapid increase of fertilizer consumption (Brunelle et al. 2015, Randive et al. 2021).

In addition, CPL caused by fire-sourced Oz exposure also suffered significant spatial difference.
During the historical period, the total CPL for four major foods caused by fire-sourced O3 exposure
in China, Europe, US, SA, and SS were 1451 (1302-1650), 65 (54-82), 61 (48-70), 56 (52-59), and

404 (372-425) t/km?, respectively. In the future scenario (SSP1-2.6, SSP3-7.0, and SSP5-8.5), the

10
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total CPL for four major foods caused by fire-sourced O3 exposure in China, Europe, US, SA, and
SS were 23 (19-28) (711 (630-802) and 339 (299-375)), 14 (12-16) (684 (596-768) and 32 (28-34)),
11 (8-12) (19 (17-22) and 21 (18-23)), 14 (12-15) (35 (30-39) and 21 (18-24)), 298 (272-320) (160
(145-179) and 745 (641-840) t/km?, respectively. In both of historical and future scenarios, SS, SA,
and China showed the higher CPL compared with other regions. The higher CPL in SS and SA
might be attributable to the higher fire-sourced Oz concentrations and crop yields. The higher CPL
in China might be associated with exceptionally high crop yields though the wildfire-induced O;
level was not very high. For most regions, CPL showed the higher values in high-emission scenarios
(SSP3-7.0 and SSP5-8.5). Although SS and SA also showed the higher CPL in high-emission
scenarios (SSP5-8.5), the CPL values of SS and SA in SSP1-2.6 scenario were still very high. The
results suggested that the low-carbon policy still cannot effectively weaken local agricultural
damage of fire-sourced O3 exposure.

3.4 Implications and limitations

Our study developed a multi-stage machine-learning model based on the multi-source
information data to predict the fire-sourced MDAS8 O3 concentrations at the global scale. It is the
first study to use the ground-level observations as the constraint to improve the O3 estimates in the
future scenarios. The results confirmed that the model showed the better predictive accuracy and
transferability.

Our assessment highlighted the severity and scale of the fire-sourced MDAS O3 level and a
notable increasing trend in the future scenarios. Especially in high-emission scenarios (SSP3-7.0
and SSP5-8.5), the fire-sourced MDAS8 O3 showed the higher concentrations compared with the
low-carbon scenario. Therefore, the global mean temperature increase should be limited to 2.0 °C
or 1.5 °C above pre-industrial levels. In addition, both of SS and SA showed the highest wildfire-
induced MDAS O3 concentration compared with other regions, indicating these hotspots should be
determined to propose some control measures. For instance, wildfires could be partially controlled
via effective evidence-based fire management and appropriate planning (Gonzalez-Mathiesen and
March 2021, Gonzalez-Mathiesen et al. 2021). Some prevention policy should be proposed to
reduce agricultural waste incineration and some prescribed fires (Koul et al. 2022, Lange and

Gillespie 2023). Some wildlands could be also changed into agricultural or commercial lands to
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reduce the occurrence frequency of forest wildfire (Mansoor et al. 2022).

Besides, the impacts of fire-sourced O3 pollution on crop yields were also quantified. The
results confirmed China was faced of serious crop production losses, which was even higher than
those in SS and SA because the higher crop production and increasing O3 pollution risk in the future
scenarios. Overall, crop yield losses of China showed significantly higher values in high-emission
scenario (SSP3-7.0 and SSP5-8.5) compared with low-emission scenario (SSP1-2.6). The results
suggested that low-carbon policy not only largely weaken O3 pollution derived from anthropogenic
emission in China, but also decrease wildfire-induced O3 damages to crop yields effectively. The
results also confirm that the carbon neutrality policy implemented in China possess sufficient
agricultural benefits. In contrast, crop yield losses of SS and SA in low-carbon scenario still showed
very high risks. It requires more stringent control measures to further reduce local anthropogenic
emission in order to offset the wildfire-induced O3 contribution.

It should be noted that our study is still subject to some limitations. Firstly, the future wildfire
emission inventory still shows some uncertainties because the accuracy of land use types and burned
areas in the future scenarios cannot be examined directly. Furthermore, in the historical estimates,
we only used a chemical transport model (GEOS-Chem model) to simulate the fire-sourced O3
concentrations though the ground-level observations were assimilated. However, only one model
could increase the uncertainties because the O3 background might be overestimated. Second, the
chemical transport model used in our study did not account for plume rise, which could overestimate
the contribution of wildfire emissions to Oz pollution. Third, the ground-level observations of
ambient O are unevenly distributed around the world, which could limit the predictive accuracy of
O3 levels especially in some regions (e.g., SS and SA) lack of monitoring sites. In the future, it is
highly necessary to add sufficient ground-level O3 observations to further improve the accuracy of
O3 estimates. Finally, the zero-out method might suffer from some limitations because O3 chemistry
is highly nonlinear. More other methods such as air pollutant tracing method should be applied to
quantify the fire-sourced O3 concentrations combined with zero-out method. In the GEOS-Chem
model, wildfire-emitted precursors (e.g., NOx, VOCs) could be assigned unique "tags" as separate
tracers. These tagged species undergo the same transport, chemistry, and deposition processes as

regular emissions but are tracked independently. For ozone (O3) attribution, the model calculates
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the fraction of Oz produced from wildfire-tagged NO/VOCs oxidation pathways. The tagged O3
concentrations are then extracted to quantify the wildfire contribution, while accounting for
nonlinear chemical interactions (e.g., NOy saturation effects). The combination of multiple methods
could increase the robustness of fire-sourced Os estimates.
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Figure 1 The multi-year average concentrations of fire-sourced MDAS8 O3 (Unit: pg/m?®) during
2015-2019 (2010s) at the global scale (a). The latitudinal variations of fire-sourced MDAS O3 levels
(Unit: pg/m?) (b). The spatial distributions of fire-sourced MDAS Os concentrations (Unit: pg/m?)
during 2015-2019 (2010s) (c). US, SA, and SS represent the United States, South America, and Sub-
Sahara Africa, respectively. The difference of fire-sourced MDAS O3 concentrations in different

regions (d).
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Figure 2 The global variations of fire-sourced MDAS O3 levels (Unit: pg/m?) in SSP1-2.6 (a), SSP3-
7.0 (b), and SSP5-8.5 (¢) scenarios during 2040s. The spatial distributions of wildfire-related MDAS
Os concentrations (Unit: ug/m?) in different regions during 2040s (d). US, SA, and SS represent the
United States, South America, and Sub-Sahara Africa, respectively.
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Figure 3 The global variations of fire-sourced Os-related maize yield losses (Unit: t/km?) during
historical (a), SSP1-2.6 (b), SSP3-7.0 (d), and SSP5-8.5 (e) scenarios during 2040s, respectively.
The spatial variations of fire-sourced maize yield losses (Unit: t/km?) in major regions during 2040s.
US, SA, and SS represent the United States, South America, and Sub-Sahara Africa, respectively.
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Figure 4 The spatial variations of fire-sourced Os-related maize (a), rice (b), spring wheat (c), and
winter wheat (d) yield losses (Unit: t/km?) during SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios
during 2040s, respectively. A, B, and C denote SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios,
respectively. (e)-(h) represent fire-sourced Os-related maize (e), rice (f), spring wheat (g), and winter
wheat (h) yield losses during SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios during 2090s,
respectively. US, SA, and SS represent the United States, South America, and Sub-Sahara Africa,
respectively.
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