
1 

 

Heterogeneous impacts of fire-sourced ozone (O3) pollution on global 1 

crop yields in the future climate scenarios 2 

Rui Lia, b, Yumeng Shaoa, Dongmei Tanga, b, *, Yining Gaoa, Hongfang Zhaoa * 3 

a Key Laboratory of Geographic Information Science of the Ministry of Education, School of 4 

Geographic Sciences, East China Normal University, Shanghai, 200241, PR China 5 

b Institute of Eco-Chongming (IEC), 20 Cuiniao Road, Chenjia Town, Chongming District, 6 

Shanghai, 202162, China 7 

* Corresponding author  8 

Prof. Tang (dmtang@geo.ecnu.edu.cn) and Prof. Zhao (hfzhao@geo.ecnu.edu.cn) 9 

Abstract 10 

Wildfire smoke often aggravates the ozone (O3) pollution and negatively affect crop yields. To date, 11 

the global impact of fire-sourced O3 exposure on crop yields still remained unknown. To address 12 

this issue, a multi-stage model was developed to quantify the global wildfire-induced ambient O3 13 

concentrations in the future scenarios. The results suggested that the relationship between observed 14 

K⁺ and levoglucosan levels with simulated fire-sourced maximum daily average 8-hour (MDA8) O3 15 

concentration reached 0.67 and 0.73, respectively, indicating the robustness of fire-sourced O3 16 

estimate. In both of historical and future scenarios, Sub-Sahara Africa (SS: 14.9 ± 8.4 (historical) 17 

and 18.3 ± 9.6 (mean of the future scenarios) μg/m3) and South America (SA: 4.0 ± 2.5 and 4.7 ± 18 

3.2 μg/m3) showed the highest fire-sourced MDA8 O3 concentrations among all of the regions. 19 

However, the crop production losses (CPL) caused by O3 exposure reached the highest values in 20 

China due to very high total crop yields and relatively high wildfire-induced MDA8 O3 levels. 21 

Moreover, CPL in China was sensitive to emission scenario, indicating the effective emission 22 

control could largely decrease fire-sourced O3 damage to crop. In contrast, both of SS and SA even 23 

showed the higher CPL in low-carbon scenario (SSP1-2.6), suggesting more stringent control 24 

measures are required to offset the wildfire contribution. Our findings call for attention on the threat 25 

to future global food security from the absence of pollution mitigation and the persistence of global 26 

warming. 27 
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Along with the warming climate, large-scale wildfire events have experienced dramatic 30 

increases in frequency and intensity in the past decades, and the wildfire seasons have been 31 

significantly prolonged in many regions such as the western part of the United States and Australia 32 

(Jones et al. 2022, Richardson et al. 2022, Wang et al. 2022). Wildfire often released a large number 33 

of gaseous precursors such as carbon monoxide (CO), nitrogen dioxides (NOx), and volatile organic 34 

compounds (VOC) (Anderson et al. 2024, Xu et al. 2022), which could significantly enhance the 35 

ozone (O3) levels through photochemical reactions (Jaffe et al. 2013). Recent studies have revealed 36 

that wildfire contributed to 3.6% of ambient all-source O3 level globally (Xu et al. 2023). The 37 

aggravation of O3 pollution not only poses detrimental effects on human health (Liu et al. 2018), 38 

but also reduced the crop yields because the excessive O3 exposure could affect plant photosynthesis 39 

via stomatal uptake (Karmakar et al. 2022, Zhao et al. 2020). Thus, quantifying the negative impacts 40 

of fire-sourced O3 pollution on crop yields was beneficial to propose optimal strategy to ensure 41 

agricultural production.  42 

Notably, warming climate in the future not only would increase wildfire burned areas, but also 43 

intensified the severity of fire weather (Richardson et al. 2022, Wasserman and Mueller 2023). 44 

Moreover, wildfire and heatwave have generated the positive feedback and the mechanism would 45 

be further enhanced in the future (Senande-Rivera et al. 2022, Zhao et al. 2024). Meanwhile, the 46 

ambient O3 concentration was very sensitive to air temperature, and the continuous increase of air 47 

temperature inevitably aggravate wildfire-related O3 pollution in the future (Bloomer et al. 2009, Li 48 

et al. 2024a, Selin et al. 2009). Therefore, it is necessary to analyze the spatiotemporal characteristics 49 

of global wildfire-induced O3 concentrations especially in the future scenarios, which was favorable 50 

to accurately identify the hotspots for wildfire-induced O3 pollution and to propose effective control 51 

measures targeting different future scenarios. 52 

A growing body of studies have focused on the wildfire contribution to O3 pollution. Lee et al. 53 

(2024) employed the generalized additive model (GAM) to predict the wildfire-related O3 54 

concentration in the United States and found wildfire increased maximum daily average 8-hour 55 

(MDA8) O3 concentration across the entire country (Lee and Jaffe 2024). Besides, Xu et al. (2023) 56 

have quantified that the wildfire led to average 3.2 µg/m3 increase of O3 concentration globally 57 

using the GEOS-Chem model. Unfortunately, most of the current studies assessed the contribution 58 
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of historical wildfire to ambient O3 level, and the estimates showed large uncertainties associated 59 

with the burned areas, fuel consumption, and fuel types. Moreover, most of these studies only 60 

focused on the historical estimates, while only two studies explored the wildfire contribution to O3 61 

pollution in the future scenarios (Yang et al. 2022, Yue et al. 2015). Both of these studies only 62 

focused on wildfire in North America, whereas the future wildfire contribution to O3 pollution in 63 

other regions are still unknown. Moreover, their negative impacts on crop yields are also not clear. 64 

In fact, the global wheat yield losses reached 0.95% (around 20 t/km2) per ppb O3 increase (Guarin 65 

et al. 2019). Although the current contribution ratio of wildfire to all-source O3 level is not high, the 66 

higher wildfire risk and total crop yields in the future scenarios highlights the seriousness of crop 67 

yield losses.  68 

Here, our study developed an ensemble machine-learning model to predict fire-sourced MDA8 69 

O3 levels under four future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Then, the 70 

spatiotemporal variations of these concentrations and the key drivers behind them were further 71 

revealed. Finally, a crop yield loss assessment framework was applied to quantify the negative 72 

impacts (crop yield losses) of wildfire-induced O3 exposure on global crop yield. The hotspots of 73 

crop yield losses in different scenarios should be determined and the appropriate control measures 74 

should be proposed to reduce the economic losses. 75 

2. Materials and methods 76 

2.1 Data preparation 77 

Most ground-level MDA8 O3 observations focused on East Asia, India, Western Europe, and 78 

the contiguous United States. Daily MDA8 O3 data during 2015-2019 over China were collected 79 

from the Ministry of Ecology and Environment of China. The observation network comprises of 80 

2,000 monitoring sites distributed across various land-use types (Figure S1). Quality assurance for 81 

the ground-level observations in China was performed based on the HJ 630-2011 specifications. 82 

The dataset of daily MDA8 O3 concentrations from 2015 to 2019 in India were collected from the 83 

Central Pollution Control Board (CPCB) online database (https://app.cpcbccr.com/ccr/#/caaqm-84 

dashboard-all/caaqm-landing). The detailed data quality assurance/control has been introduced by 85 

Gurjar et al. (2016). Ground-level observation dataset for member countries of the European 86 

Economic Area were collected from the European Environment Agency. The data quality control of 87 

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
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European Environment Agency was explained by Keller et al. (2021). The dataset of daily MDA8 88 

O3 levels in more than 200 monitoring sites across the United States were downloaded from the 89 

website of https://www.epa.gov/ (Figure S1). The quality control of these observations in EPA was 90 

carefully introduced by (Lamsal et al. 2015). Observation data in other countries and territories were 91 

downloaded from the website of OpenAQ (https://openaq.org/). After the data cleaning and quality 92 

control, more than 300,000 daily MDA8 O3 measurements in 3015 sites were collected to simulate 93 

the global O3 concentrations. For O3, 1 part per billion (ppb) was approximated as 1.96 µg/m3 based 94 

on the standard air pressure and temperature (25.5 °C and 101.325 kPa). The Unite of O3 was 95 

changed into μg/m3 unified. 96 

GEOS-Chem (v13.4.0) model was utilized to estimate atmospheric MDA8 O3 concentrations 97 

during Jan. 1-Dec. 31 during 2015-2019, 2045-2049, and 2095-2099 periods. In our study, the years 98 

of 2015-2019 was regarded as the historical period, whereas the years of 2045-2049 and 2095-2099 99 

were regarded as the future period. This model comprises of a complex chemistry mechanism of 100 

tropospheric NOx-VOC-O3-aerosol (Geddes et al. 2015, Zhao et al. 2017). This model for O3 101 

estimates during historical period and future scenario were driven by MERRA2 and 102 

GCAP2_CMIP6 reanalysis meteorological factors, respectively (Bali et al. 2021, Zhang 2016). The 103 

future scenario includes SSP1-2.6 (low-carbon emission scenario), SSP2-4.5 (middle-carbon 104 

emission scenario), SSP3-7.0 (traditional energy scenario), and SS5-8.5 (high energy consumption 105 

scenario). A global simulation was performed at a spatial resolution of 2 × 2.5° resolution (Bindle 106 

et al. 2021, Wainwright et al. 2012). The historical anthropogenic emission inventory during 2015-107 

2019 was downloaded from Community Emissions Data System (CEDS) (Hoesly et al. 2018). The 108 

anthropogenic and wildfire emissions during 2045-2049 and 2095-2099 were collected from the 109 

website of https://esgf-node.llnl.gov/search/input4mips/. Wildfire emission during 2015-2019 was 110 

obtained from GFED (Chen et al. 2023, Pan et al. 2020, Peiro et al. 2022, van Wees et al. 2022). 111 

Some other natural emission such as the lightning NOx emission was collected from 112 

http://geoschemdata.wustl.edu/ExtData/HEMCO/OFFLINE_LIGHTNING/v2020-03/MERRA2/ 113 

(Li et al. 2022, Nault et al. 2017, Verma et al. 2021). The whole simulation processes included four 114 

steps. Firstly, we run the GEOS-Chem model with all emissions (including wildfires) to establish 115 

reference O3 concentrations (Baseline simulation). Second, we repeated the simulation while 116 

https://esgf-node.llnl.gov/search/input4mips/
http://geoschemdata.wustl.edu/ExtData/HEMCO/OFFLINE_LIGHTNING/v2020-03/MERRA2/
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excluding wildfire emissions with the same meteorological conditions (MERRA2 and 117 

GCAP2_CMIP6) and anthropogenic emission inventory (CEDS). Third, we computed the wildfire-118 

induced O3 by subtracting zero-out results from the baseline. At last, we compare modeled O3 119 

concentrations with observational data (e.g., ground-based measurements) to assess uncertainty. 120 

Meteorological factors including 2 m dewpoint temperature (D2m), surface pressure (Sp), 2 m 121 

temperature (T2m), and total precipitation (Tp), 10 m wind component (U10 and V10) during 2015-122 

2019 were collected from the fifth-generation European Centre for Medium-Range Weather 123 

Forecasts Reanalysis (ERA-5). All of these meteorological data showed the same spatial resolution 124 

of 0.25°×0.25°. For the estimates in the future scenarios, the CMIP6 dataset in four scenarios (e.g., 125 

SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were also applied to predict MDA8 O3 126 

concentrations during 2015-2019, 2045-2049, and 2095-2099. The dataset includes simulated O3 127 

concentrations, 2-m air temperatures, wind speed at 850 and 500 hPa, total cloud cover, precipitation, 128 

relative humidity, and short-wave radiation. The modelled meteorological parameters and chemical 129 

compositions derived from multiple earth system models were integrated into the machine-learning 130 

model. The detailed models are introduced in our previous studies (Li et al. 2024b). The elevation 131 

was collected from ETOPO at a spatial resolution of 1’. Additionally, the land use type data were 132 

downloaded from the reference of Liu et al. (2020).  133 

2.2 Model development 134 

A multi-stage model was developed to estimate the global fire-sourced MDA8 O3 135 

concentrations (Figure S2). In the first stage, the ground-level MDA8 O3 levels, meteorological 136 

factors, land use types, and simulated O3 levels derived from GEOS-Chem model were integrated 137 

into XGBoost model to simulate the full-coverage MDA8 O3 levels during 2015-2019. In the second 138 

stage, the simulated O3 concentrations and meteorological parameters in four scenarios (SSP1-2.6, 139 

SSP2-4.5, SSP3-7.0, and SSP5-8.5) during 2015-2019, 2045-2049, and 2095-2099 were collected 140 

from CMIP6 dataset including 16 earth system models. Then, the data in the future scenarios were 141 

integrated into the XGBoost model to further calibrate the CMIP6 modeling results based on 142 

historical dataset (2015-2019) derived from the first stage model. This stage could obtain the 143 

calibrated MDA8 O3 concentrations in different scenarios during 2015-2019, 2045-2049, and 2095-144 

2099. The detailed equations of XGBoost model are summarized as follows: 145 
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where F(t) represents the cost function at the t-th period;   denotes the derivative of the function; 147 

( 1)

2
ty −  means the second derivative of the function; l refers to the differentiable convex loss function 148 

that reveals the difference of the predicted O3 level ( y


) of the i-th instance at the t-th period and 149 

the target value (yi); ft(x) is the increment; ( )tf  reflects the regularizer. Maximum tree depth 150 

and learning rate are 20 and 0.1, respectively.  151 

All of the independent variables obtained from various sources were resampled to 0.25° grids 152 

using Kriging interpolation. For the machine-learning model development, it was necessary to 153 

eliminate some redundant independent variables and then determine the optimal variable group. The 154 

redundant variables were identified based on the fact that the overall predictive accuracy could 155 

degrade after the removal of these variables. 10-fold cross-validation method was applied to 156 

examine the predictive accuracy of XGBoost model. 157 

In the third/final stage, the calibrated MDA8 O3 concentrations based on previous two-stage 158 

models were utilized to optimize the fire-sourced MDA8 O3 concentrations. Due to uncertainties in 159 

the GFED and anthropogenic emission inventories, as well as in the chemical mechanisms, the 160 

simulated total and fire-sourced MDA8 O3 concentrations often deviate substantially from ground-161 

based observations. Therefore, it is essential to use the calibrated MDA8 O3 concentrations from 162 

the previous two stages rather than the originally simulated values to adjust the fire-sourced O3 163 

levels. However, the magnitude of the error between the simulated fire-sourced O3 concentrations 164 

and the actual values cannot be directly quantified. Based on previous studies (McDuffie et al., 165 

2021), we assumed that the ratio of simulated fire-sourced O3 concentration to simulated total O3 166 

concentration from the GEOS-Chem model was equivalent to the ratio of optimized fire-sourced O3 167 

concentration to calibrated total O3 concentration. The detailed equations are summarized as follows: 168 

3_ _ 3_ _ 3_ _ 3_ _( / )opt fire cal total chem fire chem totalO O O O= 
 (2) 169 

where 3_ _opt fireO   is optimized wildfire-induced MDA8 O3 concentration in the final stage. 170 

3_ _cal totalO is calibrated total MDA8 O3 concentration. 3_ _chem fireO  is simulated wildfire-induced 171 
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MDA8 O3 concentration using GEOS-Chem model. 3_ _chem totalO   is simulated total MDA8 O3 172 

concentrations using GEOS-Chem model.  173 

In future simulations of fire-sourced MDA8 O3 concentrations, we did not apply the historical 174 

ratio of fire-sourced O3 to total O3 concentrations to future scenarios directly, but used the GEOS-175 

Chem model to calculate the ratios of fire-sourced O3 to total O3 concentrations under four future 176 

climate scenarios. 177 

The modelling accuracy of wildfire emission tofire-induced MDA8 O3 cannot be evaluated 178 

directly, whereas the modelling performance of total MDA8 O3 concentrations could be assessed. 179 

Some typical statistical indices (supporting information) were applied to evaluate the modelling 180 

accuracy of this model on the basis of the ground-level observations. For the accuracy of fire-181 

sourced MDA8 O3 estimate, we used some fire fingerprints (K+ and levoglucosan) to assess their 182 

relationships with fire-sourced O3 concentrations. This method could also examine whether the 183 

assumption of in the stage 3 was right and suitable to our study.  184 

2.3 The crop yield loss estimate 185 

Maize, rice, spring wheat, and winter wheat were major food crops globally, and they were 186 

sensitive to O3 stress. A typical AOT40 exposure index was defined to assess the negative impact of 187 

O3 exposure on crop yields. The AOT40 index was calculated by summing the hourly mean O3 188 

levels above 40 ppb during the 8 h over the crop growing season. 189 

 40 3 3

1

( ) ( 40)   [CO ] 40 ppb
n

i i

AOT ppbh CO
=

= −  (3) 190 

where [CO3]i is the hourly O3 (ppb), and n denotes the number of hours over the growing season. 191 

This growing season was determined by the University of Wisconsin Center for Sustainability and 192 

the Global Environment (UW SAGE) global crop calendar containing the planting and harvest dates 193 

by crop species and variety (Sacks et al., 2010; Schiferl et al., 2018). To date, some OTC/FACE 194 

experiments have been applied to assess the adverse effects of elevated O3 concentrations on maize, 195 

rice, spring wheat, and winter wheat. The relationships between AOT40 and the relative yields (RY) 196 

for major crops have also been developed in recent years. The detailed equations are shown in Table 197 

S1. The relative yield loss (RYL) of crop is defined as 198 

RYL=1-RY (4) 199 
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The estimated yield and economic losses are not only related to the RYL, while also associated 200 

with the grain yield in each grid. The detail equations are shown as follows: 201 

/ (1 )i i i iCPL RYL CP RYL=  −  (5) 202 

where CPLi is the estimated crop production loss and CPi is the actual crop production in each grid 203 

during the study period. 204 

The data about actual crop production in each grid were collected from The Agricultural Model 205 

Intercomparison and Improvement Project (AgMIP). The average value of simulated crop yields 206 

based on four models including DSSAT-Pythia, pDSSAT, LPJ-GUESS, and LPJ-ML were applied 207 

to estimate the actual crop production in each grid during 2015-2019, 2045-2049, and 2095-2099. 208 

We selected the simulate results of these models because they showed the better accuracy.  209 

3. Results and discussions 210 

3.1 Model evaluation 211 

Multi-source information data were integrated into the multi-stage model to predict fire-212 

sourced MDA8 O3 concentrations globally. At first, the global MDA8 O3 simulation was evaluated. 213 

As illustrated in Figure S3, the 10-fold cross-validation (CV) results suggested that the R2 value for 214 

MDA8 O3 estimate reached 0.72. The root mean square error (RMSE) and mean absolute error 215 

(MAE) for MDA8 O3 were 18.1 and 13.2 μg/m³, respectively (Figure S3). The CV R2 value in our 216 

study reached 0.72, which was higher than that estimated by Liu et al. (2020) (0.64), indicating the 217 

satisfied predictive accuracy of O3 estimates. However, the result was slightly lower than that (R2: 218 

0.80 and 0.81) estimated by Xu et al. (2023) and Delang et al. (2021). It was supposed that the 219 

training samples in our study was much less than those used by Xu et al. (2023) (2000-2019 220 

simulation) and Delang et al. (2021) (1990-2019 simulation). It was well known that the predictive 221 

accuracy was strongly dependent on the sample size (Li et al. 2020a, Li et al. 2020b). Overall, the 222 

predictive performance of ambient O3 pollution was robust. 223 

Although the prediction capability of this model has been well validated, the accuracy for the 224 

fire-sourced MDA8 O3 estimates could not be directly tested. It is well-known that potassium (K⁺) 225 

is often considered to be a fingerprint of wildfire, and thus we employ the relationship between 226 

ground-level K⁺ observations and wildfire-induced MDA8 O3 concentrations to examine the 227 

modelling accuracy. As shown in Figure S3, the correlation (R value) between observed K⁺ levels 228 
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and fire-sourced MDA8 O3 concentrations reached 0.67 (146 training samples), which was above 229 

0.5 (p < 0.01). The results have confirmed that the wildfire-induced O3 estimate showed the satisfied 230 

predictive performance. Although K+ has been often applied to reflect the wildfire contribution, the 231 

K+ could be also derived from anthropogenic emission and dust resuspension. To further validate 232 

the modelling performance of wildfire-related MDA8 O3, the strong fire fingerprint (levoglucosan) 233 

was employed to construct the relationship with fire-sourced MDA8 O3 concentrations. The results 234 

suggested that the R value (R = 0.73) was even higher than that between observed K⁺ levels and 235 

fire-sourced MDA8 O3 concentrations. Overall, the predictive performance was close to some 236 

previous studies (Childs et al. 2022, O’Dell et al. 2019, Xu et al. 2023), and thus we could use the 237 

result to further perform the data analysis.   238 

3.2 Spatiotemporal trends of fire-sourced O3 concentrations 239 

Global variations of fire-sourced MDA8 O3 concentrations in historical and future scenarios 240 

are shown in Figure 1 and 2. From 2015 to 2019, the fire-sourced MDA8 O3 level was in the order 241 

of Sub-Saharan Africa (SS) (14.9 ± 8.4 μg/m3) > South Asia (SA) (4.0 ± 2.5 μg/m3) > China (1.6 ± 242 

0.7 μg/m3) > United States (US) (1.3 ± 0.9 μg/m3) > Europe (1.2 ± 0.4 μg/m3). In future scenarios, 243 

fire-sourced MDA8 O3 levels display marked spatial variability across different Shared 244 

Socioeconomic Pathways (SSPs). MDA8 O3 showed the higher concentrations in some regions such 245 

as SS, SA, and US. Among all of the scenarios, fire-sourced O3 levels displayed the highest 246 

concentrations in SS. It was assumed that this region possessed extensive burned area (52%) and 247 

higher biomass fuel consumption (5200 g C m-2) compared with other regions (van Wees et al. 2022). 248 

Following SS, SA also exhibited the higher wildfire-related MDA8 O3 concentrations. The elevated 249 

concentrations of fire-sourced O3 levels in SA were closely associated with exceptionally high fuel 250 

consumption (8600 g C m-2) (Chen et al. 2023, van Wees et al. 2022) though the burned areas were 251 

not very high among all of the regions. In addition, it should be noted that many previous studies 252 

have confirmed US showed the higher wildfire-induced PM2.5 or other aerosol components 253 

compared with many other regions (e.g., East Asia and South America) (Park et al. 2024, Xu et al. 254 

2023). However, it did not show the higher O3 concentrations in nearly all of the scenarios in our 255 

study. It was assumed that the MDA8 O3 concentration exhibited significant latitudinal distribution 256 

(decreasing with the increase of latitude) globally. Both of China and Europe showed very low 257 
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burned areas (0.2%) and fuel consumption (950 g C m-2), and thus the fire-sourced MDA8 O3 258 

concentrations were relatively lower compared with SS and SA.  259 

Besides, the fire-sourced MDA8 O3 levels exhibited significant inter-annual trends and large 260 

discrepancy between different scenarios. The global average fire-sourced MDA8 O3 concentrations 261 

showed overall increase from 2010s (1.3 ± 0.7 μg/m3) to 2090s (SSP1-2.6, SSP3-7.0, and SSP5-8.5: 262 

1.9 ± 0.9, 1.6 ± 0.8, and 1.4 ± 0.7 μg/m3) for nearly all of the scenarios. The global average wildfire-263 

related MDA8 O3 concentrations (the average of 2040s and 2090s) followed the order of SSP3-7.0 264 

(1.6 ± 0.9 μg/m3) > SSP5-8.5 (1.5 ± 0.8 μg/m3) > SSP1-2.6 (1.4 ± 0.8 μg/m3). The highest wildfire-265 

related MDA8 O3 levels in SSP3-7.0 (air temperature: about 1.8℃ higher than SSP1-2.6) and SSP5-266 

8.5 (air temperature: about 2.3℃ higher than SSP1-2.6) scenarios were contributed by the increased 267 

fuel consumption and the warmer condition because O3 level was more sensitive to air temperature 268 

increase (Wang et al. 2021, Wu et al. 2021).  269 

Nevertheless, different regions showed distinct long-term trends. Wildfire-related MDA8 O3 270 

levels in nearly all of the regions in SSP3-7.0 scenario (air temperature: about 1.1℃ higher than 271 

historical period) showed remarkable increases compared with the historical period because the 272 

warmer condition facilitated the rapid increase of O3 level (Zhao et al. 2020). For low-carbon 273 

scenario (SSP1-2.6), the wildfire-related MDA8 O3 concentrations in China, Europe, and US 274 

showed the relatively lower O3 levels, whereas SA and SS still increased by 40% and 64%, 275 

respectively. The results suggested that the low-carbon pathway cannot effectively reduce the 276 

wildfire-induced O3 pollution in both of SA and SS. 277 

3.3 The crop yield losses caused by O3 exposures 278 

As shown in Figure 3 and 4, the global crop yield losses caused by fire-sourced O3 exposure 279 

have been quantified based on the equations 3-5. During historical period, the global fire-sourced 280 

O3 caused 3.1 (2.4-3.8), 1.7 (1.5-1.9), 24 (21-27), and 43 (39-47) t/km2 crop losses for maize, rice, 281 

spring wheat, and winter wheat, respectively. Compared with the historical period, CPL values in 282 

different future scenarios displayed large discrepancy. In SSP1-2.6 scenario, CPL of maize, rice, 283 

spring wheat, and winter wheat associated with fire-sourced O3 exposure were 1.1 (0.9-1.3), 0.5 284 

(0.4-0.6), 4.6 (4.1-5.4), and 4.6 (3.5-5.2) t/km2, respectively (Figure S4-S11). However, CPL for 285 

maize (2.1 (1.9-2.3) and 2.4 (2.1-3.0) t/km2), rice (1.1 (0.9-1.3) and 1.3 (1.1-1.5) t/km2), spring 286 
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wheat (557 (486-628) and 184 (154-218) t/km2), and winter wheat (258 (208-308) and 19 (14-22) 287 

t/km2) caused by fire-sourced O3 exposure experienced dramatic increases in SSP3-7.0 and SSP5-288 

8.5 scenarios (Figure S4-S11). There are two reasons accounting for the fact. First of all, the 289 

wildfire-related O3 exposures showed marked increase in high-emission scenarios (Yang et al. 2022, 290 

Yue et al. 2017). Moreover, the crop yields also displayed substantial increases in both of these 291 

scenarios because rapid increase of fertilizer consumption (Brunelle et al. 2015, Randive et al. 2021).  292 

In addition, CPL caused by fire-sourced O3 exposure also suffered significant spatial difference. 293 

During the historical period, the total CPL for four major foods caused by fire-sourced O3 exposure 294 

in China, Europe, US, SA, and SS were 1451 (1302-1650), 65 (54-82), 61 (48-70), 56 (52-59), and 295 

404 (372-425) t/km2, respectively. In the future scenario (SSP1-2.6, SSP3-7.0, and SSP5-8.5), the 296 

total CPL for four major foods caused by fire-sourced O3 exposure in China, Europe, US, SA, and 297 

SS were 23 (19-28) (711 (630-802) and 339 (299-375)), 14 (12-16) (684 (596-768) and 32 (28-34)), 298 

11 (8-12) (19 (17-22) and 21 (18-23)), 14 (12-15) (35 (30-39) and 21 (18-24)), 298 (272-320) (160 299 

(145-179) and 745 (641-840) t/km2, respectively. In both of historical and future scenarios, SS, SA, 300 

and China showed the higher CPL compared with other regions. The higher CPL in SS and SA 301 

might be attributable to the higher fire-sourced O3 concentrations and crop yields. The higher CPL 302 

in China might be associated with exceptionally high crop yields though the wildfire-induced O3 303 

level was not very high. For most regions, CPL showed the higher values in high-emission scenarios 304 

(SSP3-7.0 and SSP5-8.5). Although SS and SA also showed the higher CPL in high-emission 305 

scenarios (SSP5-8.5), the CPL values of SS and SA in SSP1-2.6 scenario were still very high. The 306 

results suggested that the low-carbon policy still cannot effectively weaken local agricultural 307 

damage of fire-sourced O3 exposure.  308 

3.4 Implications and limitations 309 

Our study developed a multi-stage machine-learning model based on the multi-source 310 

information data to predict the fire-sourced MDA8 O3 concentrations at the global scale. It is the 311 

first study to use the ground-level observations as the constraint to improve the O3 estimates in the 312 

future scenarios. The results confirmed that the model showed the better predictive accuracy and 313 

transferability.  314 

Our assessment highlighted the severity and scale of the fire-sourced MDA8 O3 level and a 315 
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notable increasing trend in the future scenarios. Especially in high-emission scenarios (SSP3-7.0 316 

and SSP5-8.5), the fire-sourced MDA8 O3 showed the higher concentrations compared with the 317 

low-carbon scenario. Therefore, the global mean temperature increase should be limited to 2.0 °C 318 

or 1.5 °C above pre-industrial levels. In addition, both of SS and SA showed the highest wildfire-319 

induced MDA8 O3 concentration compared with other regions, indicating these hotspots should be 320 

determined to propose some control measures. For instance, wildfires could be partially controlled 321 

via effective evidence-based fire management and appropriate planning (González-Mathiesen and 322 

March 2021, Gonzalez-Mathiesen et al. 2021). Some prevention policy should be proposed to 323 

reduce agricultural waste incineration and some prescribed fires (Koul et al. 2022, Lange and 324 

Gillespie 2023). Some wildlands could be also changed into agricultural or commercial lands to 325 

reduce the occurrence frequency of forest wildfire (Mansoor et al. 2022).  326 

Besides, the impacts of fire-sourced O3 pollution on crop yields were also quantified. The 327 

results confirmed China was faced of serious crop production losses, which was even higher than 328 

those in SS and SA because the higher crop production and increasing O3 pollution risk in the future 329 

scenarios. Overall, crop yield losses of China showed significantly higher values in high-emission 330 

scenario (SSP3-7.0 and SSP5-8.5) compared with low-emission scenario (SSP1-2.6). The results 331 

suggested that low-carbon policy not only largely weaken O3 pollution derived from anthropogenic 332 

emission in China, but also decrease wildfire-induced O3 damages to crop yields effectively. The 333 

results also confirm that the carbon neutrality policy implemented in China possess sufficient 334 

agricultural benefits. In contrast, crop yield losses of SS and SA in low-carbon scenario still showed 335 

very high risks. It requires more stringent control measures to further reduce local anthropogenic 336 

emission in order to offset the wildfire-induced O3 contribution. 337 

It should be noted that our study is still subject to some limitations. Firstly, the future wildfire 338 

emission inventory still shows some uncertainties because the accuracy of land use types and burned 339 

areas in the future scenarios cannot be examined directly. Furthermore, in the historical estimates, 340 

we only used a chemical transport model (GEOS-Chem model) to simulate the fire-sourced O3 341 

concentrations though the ground-level observations were assimilated. However, only one model 342 

could increase the uncertainties because the O3 background might be overestimated. Second, the 343 

chemical transport model used in our study did not account for plume rise, which could overestimate 344 
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the contribution of wildfire emissions to O3 pollution. Third, the ground-level observations of 345 

ambient O3 are unevenly distributed around the world, which could limit the predictive accuracy of 346 

O3 levels especially in some regions (e.g., SS and SA) lack of monitoring sites. In the future, it is 347 

highly necessary to add sufficient ground-level O3 observations to further improve the accuracy of 348 

O3 estimates. Finally, the zero-out method might suffer from some limitations because O3 chemistry 349 

is highly nonlinear. More other methods such as air pollutant tracing method should be applied to 350 

quantify the fire-sourced O3 concentrations combined with zero-out method. In the GEOS-Chem 351 

model, wildfire-emitted precursors (e.g., NOₓ, VOCs) could be assigned unique "tags" as separate 352 

tracers. These tagged species undergo the same transport, chemistry, and deposition processes as 353 

regular emissions but are tracked independently. For ozone (O3) attribution, the model calculates 354 

the fraction of O3 produced from wildfire-tagged NOₓ/VOCs oxidation pathways. The tagged O3 355 

concentrations are then extracted to quantify the wildfire contribution, while accounting for 356 

nonlinear chemical interactions (e.g., NOₓ saturation effects). The combination of multiple methods 357 

could increase the robustness of fire-sourced O3 estimates. 358 

Acknowledgements 359 

This work was supported by the National Natural Science Foundation of China (grant no. 360 

U23A2030). 361 

Data availability 362 

The CMIP6 dataset used in this publication is available at https://esgf-363 

node.ipsl.upmc.fr/search/cmip6-ipsl. 364 

Author contributions 365 

RL, DT, and HZ designed the study. RL developed the model. DT, YS, YG, and HZ analyzed the 366 

observations and model data. RL wrote the paper. RL and YS revised the paper. 367 

Competing interests 368 

The contact author has declared that none of the authors has any competing interests.  369 



14 

 

Figure 1 The multi-year average concentrations of fire-sourced MDA8 O3 (Unit: μg/m3) during 

2015-2019 (2010s) at the global scale (a). The latitudinal variations of fire-sourced MDA8 O3 levels 

(Unit: μg/m3) (b). The spatial distributions of fire-sourced MDA8 O3 concentrations (Unit: μg/m3) 

during 2015-2019 (2010s) (c). US, SA, and SS represent the United States, South America, and Sub-

Sahara Africa, respectively. The difference of fire-sourced MDA8 O3 concentrations in different 

regions (d).  
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Figure 2 The global variations of fire-sourced MDA8 O3 levels (Unit: μg/m3) in SSP1-2.6 (a), SSP3-

7.0 (b), and SSP5-8.5 (c) scenarios during 2040s. The spatial distributions of wildfire-related MDA8 

O3 concentrations (Unit: μg/m3) in different regions during 2040s (d). US, SA, and SS represent the 

United States, South America, and Sub-Sahara Africa, respectively. 
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Figure 3 The global variations of fire-sourced O3-related maize yield losses (Unit: t/km2) during 

historical (a), SSP1-2.6 (b), SSP3-7.0 (d), and SSP5-8.5 (e) scenarios during 2040s, respectively. 

The spatial variations of fire-sourced maize yield losses (Unit: t/km2) in major regions during 2040s. 

US, SA, and SS represent the United States, South America, and Sub-Sahara Africa, respectively. 
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Figure 4 The spatial variations of fire-sourced O3-related maize (a), rice (b), spring wheat (c), and 

winter wheat (d) yield losses (Unit: t/km2) during SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios 

during 2040s, respectively. A, B, and C denote SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios, 

respectively. (e)-(h) represent fire-sourced O3-related maize (e), rice (f), spring wheat (g), and winter 

wheat (h) yield losses during SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios during 2090s, 

respectively. US, SA, and SS represent the United States, South America, and Sub-Sahara Africa, 

respectively. 
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