Responses to Reviewer #2

The authors present a machine learning based approach for disentangling the
effects of different anthropogenic forcing agents on historical temperatures by training
on an opportunistic ensemble of climate model simulations. They find a significant
cooling contribution due to aerosol, which leads to enhanced future warming as aerosol
emissions decline. The study is framed well and, if true, would represent an interesting
and useful approach for attributing observed warming trends without having to run
dedicated single (or all-but-one) forcing simulations.

That said, I have strong concerns about the methodology, and in particular the
approach for training and testing the model. Because the scenarios used for training the
model are all strong correlated, the use of a random sub-sampling of test data leads to
a serious risk of overfitting. That is, the randomly sampled test data provides no real
validation that the model is able to extrapolate to the scenarios the authors then use the
model to explore, undermining the presented results. A more appropriate approach to
select test data would be to hold back a whole scenario, as in ClimateBench (Watson-
Parris et al. 2022), which also specifically tests emulators against ssp245-aero to
perform aerosol attribution.

If invited for resubmission, the manuscript would benefit from proof-reading by a
native English speaker as there are many grammatical and style aspects that could be

improved.

Response:

We sincerely thank the reviewer for their insightful and constructive comments.
We fully understand the reviewer’s concern regarding the training and validation
strategy, particularly the potential risk of overfitting due to strong correlations among
different forcing scenarios. As the reviewer rightly pointed out, using randomly
sampled data for validation may lead to overly optimistic performance estimates, as the
test data may share similar temporal or forcing patterns with the training data, thus
weakening the ability to assess the model’s true generalization performance.

To address this critical issue, we have made a fundamental revision to our



training-validation approach. Specifically, we no longer use random sub-sampling
to construct the test dataset. Instead, we now exclude the entire SSP2-4.5 scenario
from the training data and use it solely as an independent validation set. This
stricter partitioning can better evaluate the model’s ability in generalizing the
“unseen” scenarios and aligns with best practices recommended in the
ClimateBench framework (Watson-Parris et al., 2022). This modification
significantly reduces validation bias caused by inter-scenario correlation.

The LightGBM continues to perform well for the model testing of the held-out
SSP2-4.5 scenario. The predicted global annual mean surface air temperature (GSAT)
closely matches the CMIP6 multi-model ensemble mean, with an R*> of 0.94, RMSE
of 0.23 °C, and MAE of 0.18 °C (Figure R1a). The model also demonstrates strong
performance in reproducing regional and zonal surface air temperature, with R> values
exceeding 0.90 across latitude bands in the Northern Hemisphere, and R? values
between 0.7 - 0.9 in the mid- to high-latitudes of the Southern Hemisphere, as well as
over China, Europe, and North America (Figures R1b—d and R2). Moreover, the model
successfully captures the temporal evolution of global and regional mean temperatures
from 2021 - 2100 under the SSP2-4.5 scenario (Figures R3—R6).

Moreover, using the newly trained model validated through the SSP2-4.5 scenario,
we re-conducted the temperature attribution analysis. The results remain consistent with
our original findings, which demonstrates good generalization and robustness under a
more rigorous validation framework. We have revised the methods and corresponding
results in the manuscript:

“The following steps describe the specific procedure by which ML models
attribute and predict SAT (Fig. 1):

First, the datasets for training the machine learning models are constructed
following the experimental design of CMIP6 simulations, with forcing factors varying
according to the specific experiments and time period. For example, the historical
experiment corresponds to the period of 1850-2014, during which all forcing factors
vary with time. The hist-aer experiment simulates changes in anthropogenic aerosols

from 1850 to 2020, where anthropogenic emission data of aerosols and precursors from



1850 to 2014 are derived from the historical inputs and data from 2015 to 2020 are
based on the SSP2-4.5 scenario, while other forcing factors are fixed at the 1850 levels.
Similarly, the hist-GHG, hist-nat, and hist-CO. experiments simulate individual
changes in greenhouse gases, natural forcings, and CO-, respectively, with other
forcings held constant at 1850 levels. Future attribution simulations including ssp245-
aer and ssp245-GHG represent variations in anthropogenic aerosols and GHGs,
respectively, from 2015 to 2100, with other forcings fixed at 1850 levels. The SSP1-
1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios simulate concurrent
variations in all forcing factors during 2015-2100. This dataset construction enables
the machine learning models to leverage time-evolving forcing factor data from
multiple experiments, facilitating accurate prediction and attribution of surface air
temperature responses.

Secondly, one ML model is trained to predict GSAT, eighteen models are
developed for zonal SAT bands from 90° S to 90° N, and three regional models focus
on key regions including China, Europe and North America. The training dataset
combine data from historical, hist-GHG, hist-aer, hist-CO2, ssp245-GHG, ssp245-
aer, SSP1-1.9, SSP1-2.6, SSP3-7.0, and SSP5-8.5 experiments, while the SSP2-4.5
scenario is reserved as an independent test set to evaluate model performance,
similar to the method recommended in the ClimateBench framework (Watson-
Parris et al., 2022). Key hyperparameters including boosting_type, objective function,
num_leaves, num boost round, learning rate, reg alpha, reg lambda, and
colsample bytree are optimized through five-fold cross-validation for each LightGBM
model. The best performing hyperparameters for the GSAT model are: boosting_type
= gbdt, objective = regression, num leaves = 31, num_ boost round = 200,
learning_rate = 0.05, reg_alpha = 0.1, reg_lambda = 0.1, and colsample bytree = 0.9.
The coefficient of determination (R?), root mean square error (RMSE), and mean
absolute error (MAE) are calculated to evaluate the performance of the ML models.”

We believe that this approach, which trains machine learning models on multi-
model simulation data while validating against an independent scenario, provides a

more reasonable methodological pathway for rapid and quantitative attribution of



historical and future climate change without the need to run large numbers of single-
forcing simulations. Finally, in response to the reviewer’s suggestion regarding
language issues, we have carefully proofread and revised the manuscript to

improve the accuracy and clarity of the English writing.
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Figure R1. Scatterplot of the density of global and regional SAT (°C) over China,
Europe, and North America from CMIP6 multimodel mean versus the predicted values
from the LightGBM model under the SSP2-4.5 scenario. The black and red solid lines
are the 1:1 lines and linear regression lines, respectively. Statistical metrics including

RMSE, MAE, and R? are given in the upper left corner of each panel.
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Figure R2. Scatterplot of the SAT density (°C) from CMIP6 multimodel simulations
versus the predicted values from the LightGBM model for the eighteen latitudinal bands
each spacing 10° from 90° S to 90° N, with color bars indicating the density of the data
distribution. The black and red solid lines are the 1:1 lines and linear regression lines,

respectively. Statistical metrics including RMSE, MAE, and R? are given in the upper

left corner of each panel.
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Figure R3. Time series of LightGBM-predicted GSAT anomalies (°C) and
corresponding CMIP6 DAMIP values during 2021 - 2100 under the SSP2-4.5 scenario
due to changes in (a) all forcing, (b) anthropogenic aerosols and (c) GHGs. Shaded
areas indicate the range of the ML prediction by random separation of training and

testing datasets for 100 times.
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Figure R4. Spatial distribution of the 2015-2100 mean surface air temperature
under the SSP2-4.5 scenario predicted by LightGBM and simulated by the CM

IP6 multi-model ensemble.
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Figure R5. Same as Fig.R4, but for Europe.
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Figure R6. Same as Fig.R4, but for North America.
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