

1 The Determination of ClNO₂ via Thermal Dissociation-Tunable 2 Infrared Laser Direct Absorption Spectroscopy

4 John W. Halfacre¹, Lewis Marden¹, Marvin D Shaw¹, Lucy J Carpenter¹, Emily Matthews², Thomas J.
5 Bannan², Hugh Coe^{2,3}, Scott C. Herndon⁴, Joseph R. Roscioli⁴, Christoph Dyroff⁴, Tara I. Yacovitch⁴,
6 Patrick R. Veres^{5*}, Michael Robinson^{5,6}, Steven S. Brown^{5,7}, Pete M. Edwards^{1,8}

7
8 ¹Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington,
9 York, YO10 5DD, UK

10 ²Department of Earth and Environmental Science, Centre for Atmospheric Science, School of Natural Sciences, The University
11 of Manchester, Manchester M13 9PL, UK

12 ³National Centre for Atmospheric Science, University of Manchester, Manchester, UK

13 ⁴Aerodyne Research, Inc., Billerica, MA, 01821, USA

14 ⁵Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, 80305, USA

15 ⁶Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80305, USA

16 ⁷Department of Chemistry, University of Colorado, Boulder, CO 80309, USA

17 ⁸National Centre for Atmospheric Science, University of York, York, UK

18 *Now at National Science Foundation, National Center for Atmospheric Research, Boulder, CO, 80301, USA

19
20 *Correspondence to:* John Halfacre (john.halfacre@york.ac.uk), Pete Edwards (pete.edwards@york.ac.uk)
21
22 **Abstract.** Nitryl chloride (ClNO₂) is a reservoir species of chlorine atoms and nitrogen oxides, both of which play important
23 roles in atmospheric chemistry. To date, all ambient ClNO₂ observations have been obtained by chemical ionization mass
24 spectrometry (CIMS). In this work, Thermal Dissociation Tunable Infrared Laser Differential Absorption Spectrometer (TD-
25 TILDAS) is shown to be a viable method for quantifying ClNO₂ in laboratory and field settings. This technique relies on the
26 thermal dissociation of ClNO₂ to create chlorine radicals, which undergo fast reactions with hydrocarbons to produce hydrogen
27 chloride (HCl) that is detectable by the TILDAS instrument. Complete quantitative conversion of ClNO₂ to HCl was achieved
28 at temperatures > 400°C, achieving 1 Hz measurement precision of 11 ± 1 pptv (3σ limits of detection of 34 ± 2 pptv) during
29 laboratory comparisons with other ClNO₂ detection methods. After blank- and line loss-corrections, method accuracy is
30 estimated to be within ± 5%. Performance metrics of TD-TILDAS during ambient sampling were a 1Hz precision of 19 ± 1
31 pptv and 3σ limits of detection of 57 ± 3 pptv), which is directly comparable to previously reported ClNO₂ detection by
32 quadrupole CIMS. Thus, TD-TILDAS can provide an alternative analytical approach for a direct measurement of ClNO₂ that
33 can complement existing datasets and future studies. The quantitative nature of TD-TILDAS also makes it a potentially useful
34 tool for the calibration of CIMS instruments. However, interpretation of ambient data may be complicated by potential
interferences from unaccounted-for sources of thermolabile chlorine, such as ClNO, chloramines, and organochlorides.

35 1 Introduction

36 Nitryl chloride (ClNO₂) is an important nighttime reservoir of two highly reactive atmospheric species: atomic Cl and NO₂.
37 Atomic Cl radicals play multifaceted roles in oxidation chemistry throughout the boundary layer (Simpson et al., 2015),

38 including hydrocarbon oxidation (Atkinson et al., 2006a, and references therein), ozone production and destruction (Halfacre
 39 and Simpson, 2022; Liao et al., 2014; Sarwar et al., 2012, 2014; Simon et al., 2009; Wang et al., 2016), and mercury depletion
 40 (Driscoll et al., 2013). However, the quantitative magnitude to which they affect these processes remains an open question. On
 41 the other hand, NO_2 is one of the principal components of photochemical smog and the major anthropogenic precursor for
 42 ozone production. Accounting for all sources of NO_2 is therefore important for accurately informing chemical and air quality
 43 models.

44 The first in situ observation of ambient ClNO_2 was reported by Osthoff et al. (2008) utilising chemical ionization
 45 mass spectrometry (CIMS) in the polluted marine boundary layer. CIMS has since been used in a multitude of studies for
 46 additional ClNO_2 observations worldwide, including North America (Jaeglé et al., 2018; Lee et al., 2018a, b; Mielke et al.,
 47 2011; Riedel et al., 2012, 2013; Thornton et al., 2010; Wagner et al., 2013; Young et al., 2012), Europe (Bannan et al., 2015;
 48 Phillips et al., 2012; Sommariva et al., 2018; Tan et al., 2022), Asia (Le Breton et al., 2018; Liu et al., 2017; Tham et al., 2016,
 49 2018; Wang et al., 2022, 2016, 2017; Xia et al., 2020; Ye et al., 2021; Yu et al., 2020; Zhou et al., 2018), in the presence of
 50 snow/ice (Kercher et al., 2009; McNamara et al., 2020), and in indoor air quality studies (Moravek et al., 2022). Limits of
 51 detection are often reported at 10^0 pptv under 25–30 s averaging times, (Bannan et al., 2015; Kercher et al., 2009; McNamara
 52 et al., 2020; Mielke et al., 2011), and has been recently reported at sub-pptv for 1 s measurements (Decker et al., 2024). Typical
 53 observed mixing ratios range from 10^1 – 10^3 pptv, with the highest levels observed in coastal polluted regions, where sources
 54 of nitrogen oxides and Cl^- -rich aerosols are plentiful (Wang et al., 2019, 2021, and references therein).

55 While CIMS is a highly effective technique, ClNO_2 quantitation involves non-trivial calibration work. A laboratory
 56 source of ClNO_2 may be readily generated by flowing a known amount of N_2O_5 across a Cl^- -containing salt bed (or Cl_2 across
 57 NO_2^- -containing salt bed), but its quantitation assumes unit conversion out of the salt bed (e.g., Osthoff et al., 2008) or requires
 58 additional equipment to observe ClNO_2 thermal dissociation products, such as a thermal dissociation-cavity ring down
 59 spectrometer (TR-CRDS) (Thaler et al., 2011) or a cavity attenuated phase shift spectrometer (CAPS) (e.g., Tan et al., 2022).
 60 Further, I-based CIMS demonstrates variable sensitivities based on the temperature and relative humidity of the ion-molecule
 61 reactor, thereby requiring substantial laboratory work to develop humidity- and temperature-dependent calibration factors (Lee
 62 et al., 2014; Robinson et al., 2022). Thus, there is an opportunity to innovate a method that can detect ClNO_2 directly without
 63 the need for supplemental instrumentation.

64 The advantages of optical methods include analyte specificity and near absolute detection, utilizing well-defined
 65 physical absorption properties, and requiring only infrequent calibrations or method validation procedures. Thaler et al. (2011)
 66 previously used a TR-CRDS system to detect ClNO_2 as NO_2 by absorption at 405 nm under laboratory conditions, achieving
 67 CIMS-competitive metrics (e.g., reported 20 pptv limit of detection for 1 minute averaging). This was achieved by flowing
 68 sample air through both an unheated reference pathway and a heated (450 °C) sample pathway, under which ClNO_2 would
 69 thermally dissociate into Cl radicals and NO_2 (Reaction R1).

73 The difference in observed NO_2 signal between the two channels provided a quantitative ClNO_2 measurement. However, its
 74 use for conducting field measurements was reported to be limited, as the thermal degradation of alkyl nitrates (i.e., PAN) into
 75 NO_2 cannot be distinguished from NO_2 originating from ClNO_2 due to overlapping thermal dissociation profiles.

76 For this same thermal-dissociation setup, product chlorine radicals will react quickly (e.g., Cl radical lifetime of 0.2
 77 s for typical CH_4 mixing ratios of 2 ppmv and $k_{298} = 1 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Bryukov et al., 2002)) with ambient

78 hydrocarbons (e.g., methane) to form hydrogen chloride (HCl), which is a stable reservoir species for reactive chlorine
 79 (Reaction R2).

80

82

83 Several optical methods for the high-frequency and precise detection of HCl have recently been reported that overcome
 84 historical challenges with its sampling (Furlani et al., 2021; Hagen et al., 2014; Halfacre et al., 2023; Wilkerson et al., 2021),
 85 making them attractive candidates for an alternative thermal dissociation approach for the detection of ClNO₂. In this work,
 86 we demonstrate the coupling of a thermal dissociation furnace to HCl-TILDAS (TD-TILDAS) for quantitative detection of
 87 ClNO₂ as HCl. Compared with CIMS, TD-TILDAS is a lower time-cost method for determining ClNO₂ mixing ratios,
 88 involving less experimental calibration work and simpler data processing as a direct method.

89 **2 Methods**

90 **2.1 ClNO₂ Generation**

91 ClNO₂ was synthesized by flowing Cl₂ across a nitrite-rich slurry, as described by Thaler et al. (2011) and shown by Reaction
 92 R3.

93

95

96 However, it is believed the ClNO₂, once produced, may react further by dissolving into the water, hydrolyzing, and producing
 97 nitronium and chloride ions (R4) (Frenzel et al., 1998).

98

100

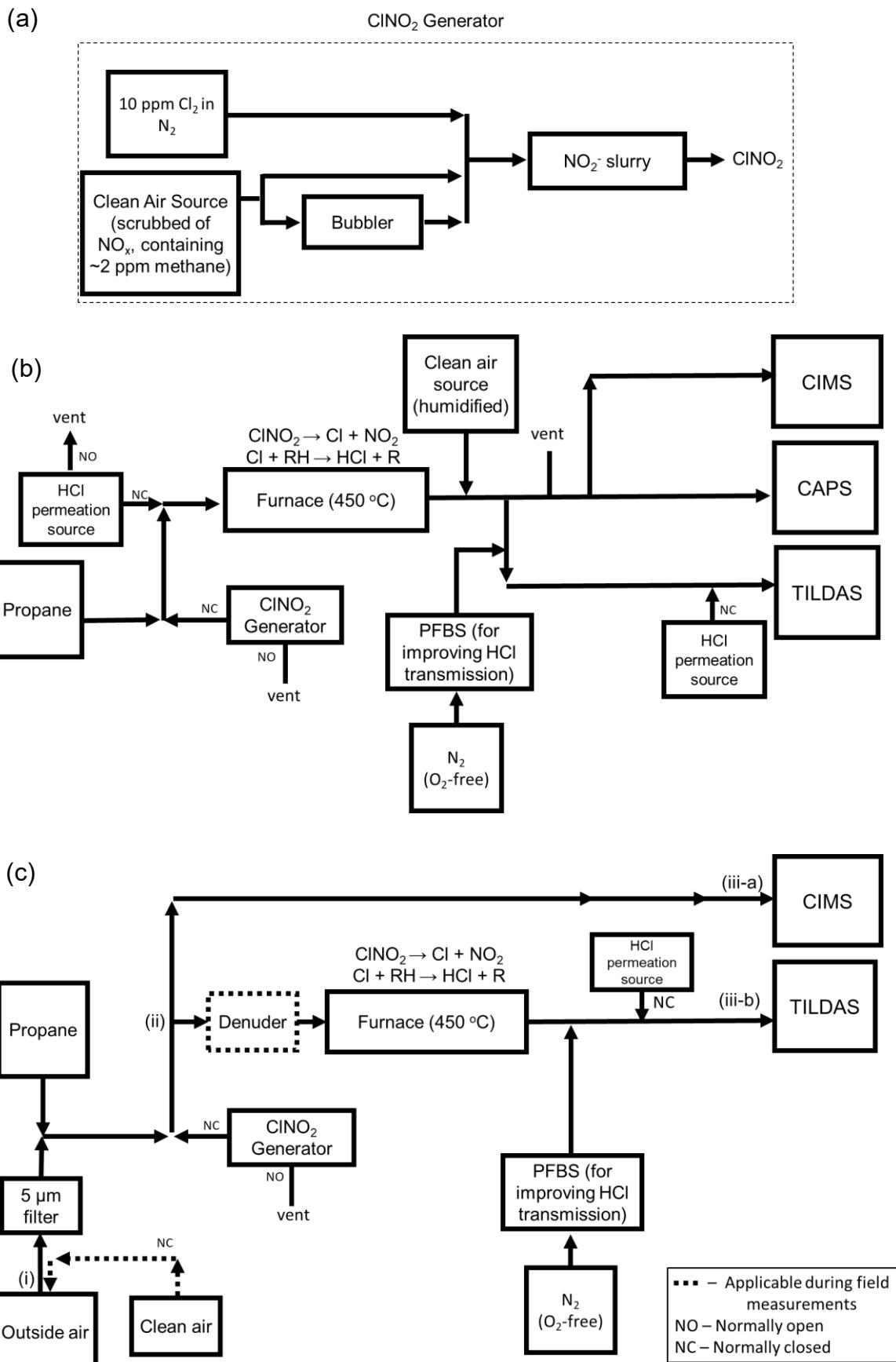
101 The nitronium ion can then react with NO₂⁻ to produce N₂O₄, which exists in equilibrium with NO₂ (R5).

102

104

105 As detailed by Thaler et al. (2011), this chemistry can be mitigated by minimizing the residence time of ClNO₂ in the reaction
 106 vessel and, to a lesser extent, by increasing the Cl⁻ content of the slurry to encourage the equilibrium in R4 towards ClNO₂.
 107 Therefore, we composed our slurry using sodium chloride (>99.5% pure, BioXtra, Sigma Aldrich product no S7653-5KG,
 108 USA) and sodium nitrite (99%, extra pure, Acros Organics Code 196620010, Belgium) at a mole ratio of 100:1 Cl⁻:NO₂⁻,
 109 wetting with 18MΩ deionized water (Millipore). The slurry was housed in ~10 cm of 1.25 cm diameter PFA tubing. Varied
 110 flow rates (0.5-5 mL min⁻¹) of 10 ppmv Cl₂ (diluted in nitrogen, BOC product no. 150916-AV-B, United Kingdom) were
 111 injected into a dilution flow (ranging from 200-2499.5 mL min⁻¹) of NO_x-scrubbed compressed air (using trap composed of
 112 50% Sofnofil (Molecular Products Ltd., Essex, United Kingdom) and 50% activated carbon) that was subsequently passed
 113 over the slurry, generating ClNO₂. A portion of the dilution flow was directed into a bubbler containing 18MΩ deionized water
 114 prior to entering the slurry to maintain a humid environment and prevent the slurry from drying out. A schematic diagram of
 115 this setup is presented in Fig. 1a.

116 **2.2 TD-TILDAS**


117 The TILDAS instrument and operation technique have been well-described previously (McManus et al., 2011, 2015). HCl-
 118 TILDAS was developed by Aerodyne Research, Inc. and characterized by Halfacre et al. (2023). Briefly, air is sampled at 3.0
 119 L min⁻¹ through a heated (50 °C) quartz “inertial inlet,” which is a type of virtual impactor used to remove particles >300 nm
 120 from the sample matrix. Sample air continues its flow through 3 m of heated (50 °C) tubing into the Herriott cell (204 m
 121 pathlength) inside the TILDAS. HCl is then detected via a mid-IR inter-band cascade laser that probes the strong R(1) H³⁵Cl
 122 absorption line at 2925.89645 cm⁻¹ within the (1-0) rovibrational absorption band (Guelachvili et al., 1981).

123 Nitryl chloride was converted to HCl for detection by TILDAS via thermal dissociation and the subsequent reaction of Cl
 124 radicals with hydrocarbons, namely methane (Reactions R1-R2) (Thaler et al., 2011). While modelling results predicted
 125 ambient mixing ratios of methane (~2 ppmv) are sufficient for achieving unit conversion of 1 ppbv ClNO₂ to HCl (Sect. 3.1),
 126 the sample flow was additionally spiked with propane (BOC Limited, product no. 34-A) to a mixing ratio of 5 ppmv to both
 127 ensure reaction completeness and outcompete Cl wall losses, as the rate constant for the reaction between Cl and propane is 3
 128 orders of magnitude faster than with methane (Atkinson et al., 2006a). Next, the sample was directed to a 90 cm length of
 129 quartz tubing (9.5 mm OD, 7.5 mm ID) housed within a furnace (Carbolite Gero TS1 12/60/450) upstream of the inertial inlet.
 130 Sixty centimetres of this tubing is held within the heated region of the furnace, resulting in a residence time of ~500 ms under
 131 a flow rate of 3 L min⁻¹. The internal temperature of the furnace is monitored using the furnace’s inbuilt temperature sensors
 132 and logged using the furnace software. To mitigate HCl surface interactions after ClNO₂-conversion, perfluorobutane-1-
 133 sulfonic acid (PFBS; Merck, product no. 562629, United Kingdom) vapor was introduced just after the furnace to actively
 134 passivate tubing and inlet surfaces, improving HCl transmission to the TILDAS inlet by 1) displacing HCl sorbed to surfaces
 135 and 2) increasing the non-polar character of surfaces by presenting a fluorinated chain to passing analytes (Halfacre et al.,
 136 2023; Roscioli et al., 2016). As detailed by Halfacre et al. (2023), a flow (50-75 mL min⁻¹) of oxygen-free nitrogen was flowed
 137 into the headspace of a Teflon bubbler containing 5 g of PFBS, thereby flushing the PFBS vapor into the sample line. A
 138 schematic diagram of this setup is presented in Fig. 1b.

139 The major sources of uncertainty with using TD-TILDAS to detect ClNO₂ include the degree of ClNO₂ conversion
 140 to HCl, instrument noise, background drifts, and potential line losses of HCl. Confirmation of the unit conversion of ClNO₂ to
 141 HCl was confirmed by modelling and laboratory experiments (see Sects. 3.1 and 3.2). Instrument noise and background drifts
 142 were assessed regularly from blanks. For laboratory experiments, blanks were performed by sampling the ClNO₂ standard
 143 (Sect. 2.1) diluted in NO_x-scrubbed compressed air through the unheated furnace. This dilution air was generated using an air
 144 compressor and dehumidifying system (dew point approximately -60 °C, absolute water vapor concentration ~ 0.01%). To
 145 vary sample humidity, carrier gas flow was split such that varied amounts were passed through a bubbler containing deionized
 146 water. Concerning line losses of HCl, the only source of HCl will be from ClNO₂ conversion during laboratory experiments,
 147 and therefore line losses were assessed between the furnace and the inertial inlet. As detailed in Fig. 1b, 30 mL min⁻¹ of flow
 148 from a homemade HCl permeation source (Furlani et al., 2021; Halfacre et al., 2023) was injected alternately before the
 149 furnace and just before the inertial inlet to determine loss of HCl over this region. So long as unit conversion of ClNO₂ to HCl
 150 can be confirmed and blank / line losses are corrected, this method will be as accurate as the TILDAS is for detecting HCl,
 151 which was previously found to be within the 5% tolerance of a commercial HCl cylinder with a certified concentration
 152 (Halfacre et al., 2023).

153 For ambient sampling (Fig. 1c), an additional 5m of 1.25 cm OD PTFA Teflon was added before the tee that splits
 154 the CIMS and TILDAS flow paths to sample outside air. A 5 µm PFA Teflon filter was also installed to collect particulates,
 155 reducing the potential for HCl displacement through thermodynamic partitioning of particulate Cl⁻ that would otherwise enter

156 the heated furnace (Huffman et al., 2009). This Teflon filter was not found to affect the observed mixing ratio of our ClNO₂
157 standard in measurement comparisons with and without the filter. However, the collection of particulates on the filter could
158 enable heterogenous chemistry with passing N₂O₅ plumes that may produce corresponding ClNO₂ plumes that are not reflective
159 of ambient chemistry, and so frequent replacement of these filters is necessary (e.g., daily). Blank air was generated by
160 pumping ambient air through a 50% activated carbon / 50% Sofnofil scrubber, which was found to effectively remove ClNO₂
161 from the sample stream. The pump (KNF model N035.1.2AN.18) was able to overblow the sample inlet at a flow rate of ~25
162 L min⁻¹. This approach is favoured over the use of synthetic cylinder air as significant changes in sample humidity can result
163 in release of HCl from surfaces (Halfacre et al., 2023). Blanks were performed for 10 minutes every 30 minutes to ensure the
164 instrument had enough time to respond and adjust to a stable background value. Additionally, ambient measurements will
165 include HCl, which would act as an interference for ClNO₂ observations. To obviate this, a denuder (coating of 2% Na₂CO₃
166 and 2% glycerol dissolved in 50% water and 50% methanol) was installed before the furnace to selectively remove acidic
167 gases (e.g., HCl, HNO₃) that may influence quantitation. Using the denuder for this purpose was found to be effective for at
168 least one-week periods, after which it was generally replaced to avoid coating exhaustion. The denuder was also found to affect
169 ClNO₂ throughput on shorter term timescales (e.g., daily), with a freshly coated denuder causing as much as 55% loss of the
170 ClNO₂ standard mixing ratio. This was determined by calculating the percent difference when sampling the ClNO₂ standard
171 both through and bypassing the denuder. Because ClNO₂ additions during ambient sampling will always be added through the
172 denuder, it was important that the ClNO₂ standard (Sect. 2.1) was sampled in dry air before and after overnight experiments
173 to quantify how this loss evolved over the course of an experiment such that data could be corrected using the percent difference
174 term. Periodic additions of HCl standard were also performed to assess line losses of HCl after conversion in the furnace. In
175 contrast to the laboratory experiment configuration, permeation source HCl in blank air was only injected just downstream of
176 the furnace mid-experiment to reduce exposure of unpassivated sampling surfaces to HCl. Losses were assessed by comparing
177 this observed HCl injection value to pre- and post-experiment injections over dry compressed air. Injections of HCl and ClNO₂
178 standards was controlled using 3-way Teflon solenoid valves (MasterFlex Model no. 01540-18, Cole Parmer, United
179 Kingdom).

185 **2.3 Supporting Instrumentation**

186 To confirm the efficacy of TD-TILDAS as a valid quantitative method for ClNO₂ detection, testing was performed
187 simultaneously with a Cavity Attenuated Phase Shift (CAPS) NO₂ instrument (Sect. 2.3.1) and Time of Flight-Chemical
188 Ionization Mass Spectrometer (Sect. 2.3.2), both of which have previously reported as ClNO₂ detection methods.

189 **2.3.1 Cavity Attenuated Phase Shift (CAPS) NO₂**

190 ClNO₂ mixing ratios observed by the TILDAS were confirmed via simultaneous detection of the NO₂ product of ClNO₂ thermal
191 dissociation using a commercial Cavity Attenuated Phase Shift NO₂ detector (Teledyne T500U CAPS). Briefly, emission from
192 a LED (emission centred around 425 nm) is reflected across two spherical mirrors and absorbed by NO₂ in the optical cell.
193 This difference in light is detected by a photodiode and quantified based on its absorbance via the Beer-Lambert Law. The
194 instrument was calibrated using gas-phase titration of NO by O₃ to produce varied concentrations of NO₂. A 1 ppm NO in
195 nitrogen cylinder (certified 982 ppb, NPL) was used to verify the concentration of NO in a 25 ppm NO in nitrogen working
196 standard (BOC). A multigas blender (Environics S6100) was used to generate a range of O₃ concentrations (range 0-130 ppbv)
197 for titrating some of the NO (NO in excess, 200 ppbv) into NO₂, and the decrease in the NO concentrations was measured
198 using a calibrated NO_x instrument (Teledyne API Chemiluminescence T200). The NO₂ introduced to the CAPS instrument is
199 thus the sum of the drop of NO from the added ozone and the NO₂ already present in the working standard. The T200 NO_x
200 instrument was also used to measure ambient air alongside the CAPS (range 0-25 ppbv), and these data are presented in Fig.
201 A1. Additionally, the Teledyne T500U includes an internal drying assembly and has a manufacturer recommended humidity
202 range of 0 – 95%.

203 **2.3.2 Time of Flight Chemical Ionisation Mass Spectrometry (CIMS)**

204 ClNO₂ was additionally detected using a VOCUS high-resolution chemical ionization time-of-flight CIMS (Tofwerk,
205 Switzerland) with a VOCUS AIM reactor and using iodide (I) as a reagent ion gas. A complete description of this instrument
206 and its operational principles are described in detail by Riva et al. (2024). Briefly, sample gas is drawn into the sampling inlet
207 and pulled through a critical orifice (0.475 mm) and PFA Teflon sample flow guide into a conical ion-molecule reactor (IMR)
208 at a flow rate of 1.8 L min⁻¹. The IMR was held at a constant pressure of 50 mbar using a vacuum pump (IDP3, Agilent
209 Technologies) and temperature controlled to 50 °C. The reagent ion source was a permeation tube containing trace amounts of
210 CH₃I dissolved in benzene (Tofwerk). Ultra-high purity, oxygen-free N₂ gas (generated by flowing compressed air through
211 gas with a commercial N₂ generator, Infinity NM32L, Peak Scientific Instruments, UK) is continually flowed over the
212 permeation tube to flush the gaseous CH₃I/benzene mixture into a compact vacuum ultraviolet ion source (VUV). Within the
213 VUV, UV light emitted from a Kr lamp (116.486 nm and 123.582 nm) is absorbed by benzene, generating low energy
214 photoelectrons that can react with CH₃I to produce I⁻ (Ji et al., 2020). The I⁻ reacts with analytes for approximately 30 ms
215 before being drawn through another critical orifice where the sample travels through four differentially pumped chambers
216 before reaching the drift region of the ToF-CIMS. Ions in the ToF chamber are extracted and converted into mass spectra via
217 an MCP detector with a preamplifier over a mass range of 7-510 Th. The extracted packets are averaged over a period of 1
218 second and the resolution of the instrument is \approx 5000. Data was collected at a rate of 1 Hz. Data averaging, mass calibration,
219 peak assignment, peak fitting and peak integration are all performed using the software package Tofware (version 4.0.0,
220 TOFWERK) used in Igor Pro 9 software (Wavemetrics). Peak fitting focused on I³⁵ClNO₂⁻ (m/z 207.8668) and I³⁷ClNO₂⁻ (m/z
221 209.8638), and isotope abundances were manually confirmed to be \sim 1:0.32, based on the natural abundance of chlorine
222 isotopes. CIMS signals were normalized against the sum of the total number of reagent ions, which is equivalent to I⁻ + I(H₂O)⁻

223 . Additionally, as the CIMS sensitivity to ClNO₂ varies with humidity in the ion-molecule reactor region, we define an
224 additional term equal to ratio of the iodide water cluster (I(H₂O)⁻) to the reagent ion sum (I⁻ + I(H₂O)⁻), hereafter referred to as
225 the Iodide Water Ratio (IWR). Instrument backgrounds were assessed using air scrubbed of ClNO₂, as described in Sect. 2.2.

226 **2.4 Data Analysis**

227 Data analysis was conducted using the R language for statistical computing (R Core Team, 2021). Linear regressions were
228 calculated using the York method (Cantrell, 2008) when possible so as to incorporate uncertainties in compared variables.

229 **2.5 Chemical Modelling**

230 The 0-D box model Kintecus (Ianni, 2003, 2022) was used to explore the gas phase chemistry occurring in the heated furnace
231 to predict the timescales of the thermal-dissociation of ClNO₂ and the subsequent formation of HCl after reaction with
232 hydrocarbons (Reaction R2). The only hydrocarbon included in these model experiments was methane. The model was also
233 used to identify potential interferents that could prevent unit conversion of ClNO₂ to HCl. The results of the model were used
234 to guide the experimental set-up. The modelled species, reaction list, tested interferents (including ClNO and alkenes), and
235 initial concentrations are included in the Appendix (Tables A1-A3). Reaction kinetics were sourced from the NIST Chemical
236 Kinetics Database and IUPAC Evaluated Kinetic Data websites (Manion et al., 2015; Wallington et al., 2021), and primary
237 literature references are listed next to each reaction. No chemical species were held constant or were otherwise constrained
238 outside of initial concentrations. The model integration time was set to 1 ms, and the entire simulation was set to last 150 ms.
239 The model initiated with a temperature of 25 °C (held for 10 ms) before increasing to 450 °C over the course of 22 ms. The
240 temperature was held at 450 °C for 40 ms, before gradually decaying back to 25 °C over 70 ms.

241 **3 Results & Discussion**

242 **3.1 Modelling TD Chemistry**

243 Box model simulations predicted the rapid, virtually unit conversion of ClNO₂ to HCl after increasing temperature to 450 °C
244 (Fig. 2) under the model conditions outlined in Tables A1-A3. Ninety percent conversion was calculated to occur within 23
245 ms from a starting ClNO₂ concentration of 2.46×10^{10} molecules cm⁻³ (1 ppbv at 25 °C), and ambient mixing ratios of methane
246 (i.e., 2 ppmv at 25°C) were found to be sufficient for facilitating this chemistry. While Cl-mediated hydrocarbon oxidation
247 was shown to produce a modest enhancement of hydroxyl radical concentrations (Fig. 2b), it was not enough to compete
248 meaningfully with Cl to mitigate or retard Reaction R1. Similarly, an initial O₃ concentration of 9.84×10^{11} molecules cm⁻³
249 (40 ppbv at 25°C) did not significantly inhibit the desired chemistry by the direct reaction of O₃ with Cl radicals.

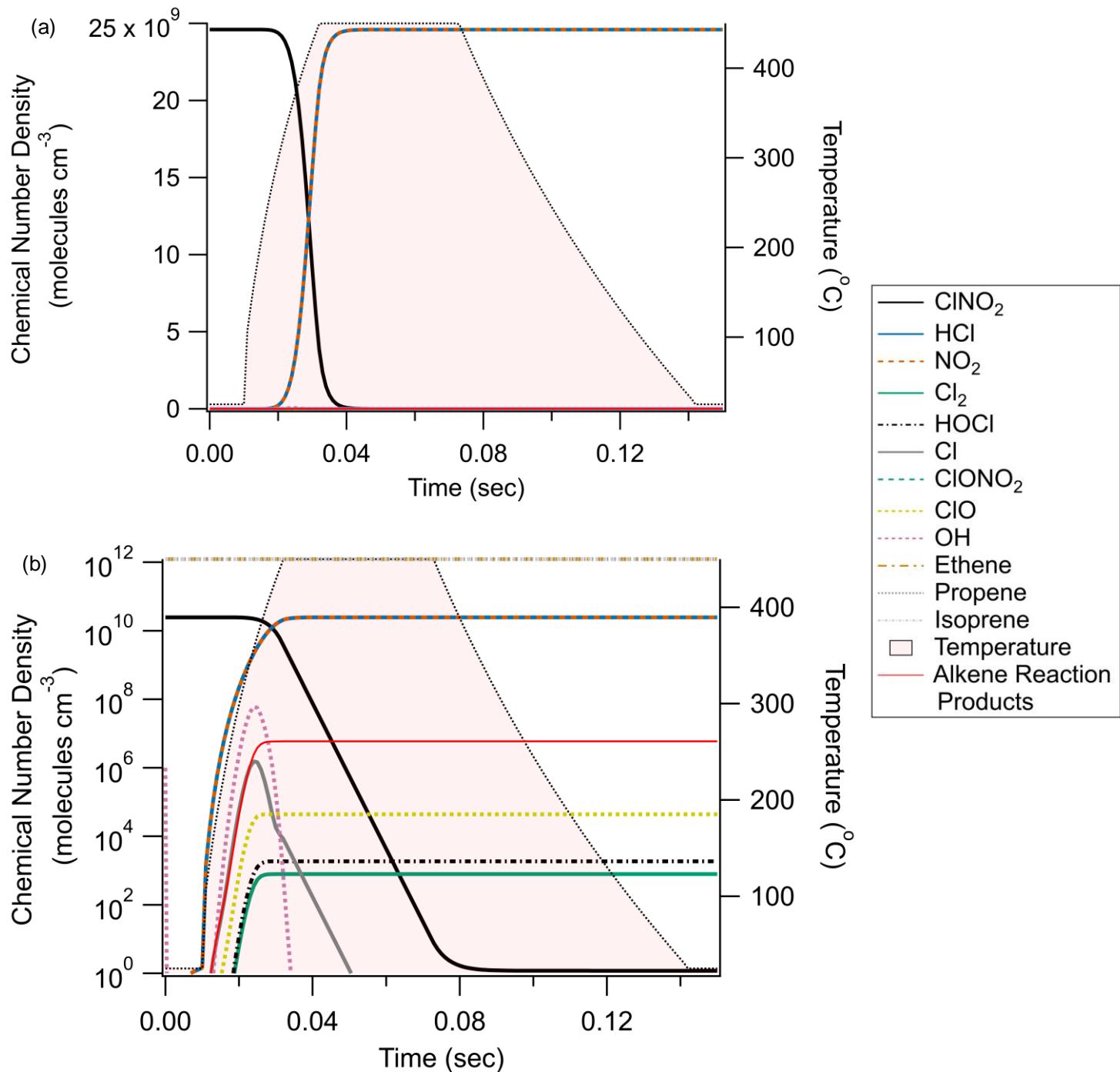


Figure 2: Chemical modelling results of the thermal dissociation of ClONO_2 and its subsequent conversion to HCl . Panel A presents results on a linear y-axis, while Panel B features the same data on a logarithmic y-axis. Note that ethene, propene, and isoprene are off-scale in Panel A (1.23×10^{12} molecules cm^{-3} / ~50 ppbv) to better display the relationships between ClONO_2 , HCl , and NO_2 , and are shown to remain constant in Panel B.

251

252

253 Concerning potential interferents, Cl can add to double bonds found on alkenes without producing HCl . Reactions with ethene,
 254 propene, and isoprene were included in the model at 1.23×10^{12} molecules cm^{-3} (50 ppbv at 25°C) each and were found to
 255 produce approximately 1×10^6 molecules cm^{-3} of non- HCl product, which is 4 orders of magnitude less than the HCl converted
 256 from ClONO_2 . As these mixing ratios of alkenes are larger than those typically found in real world environments (e.g.,

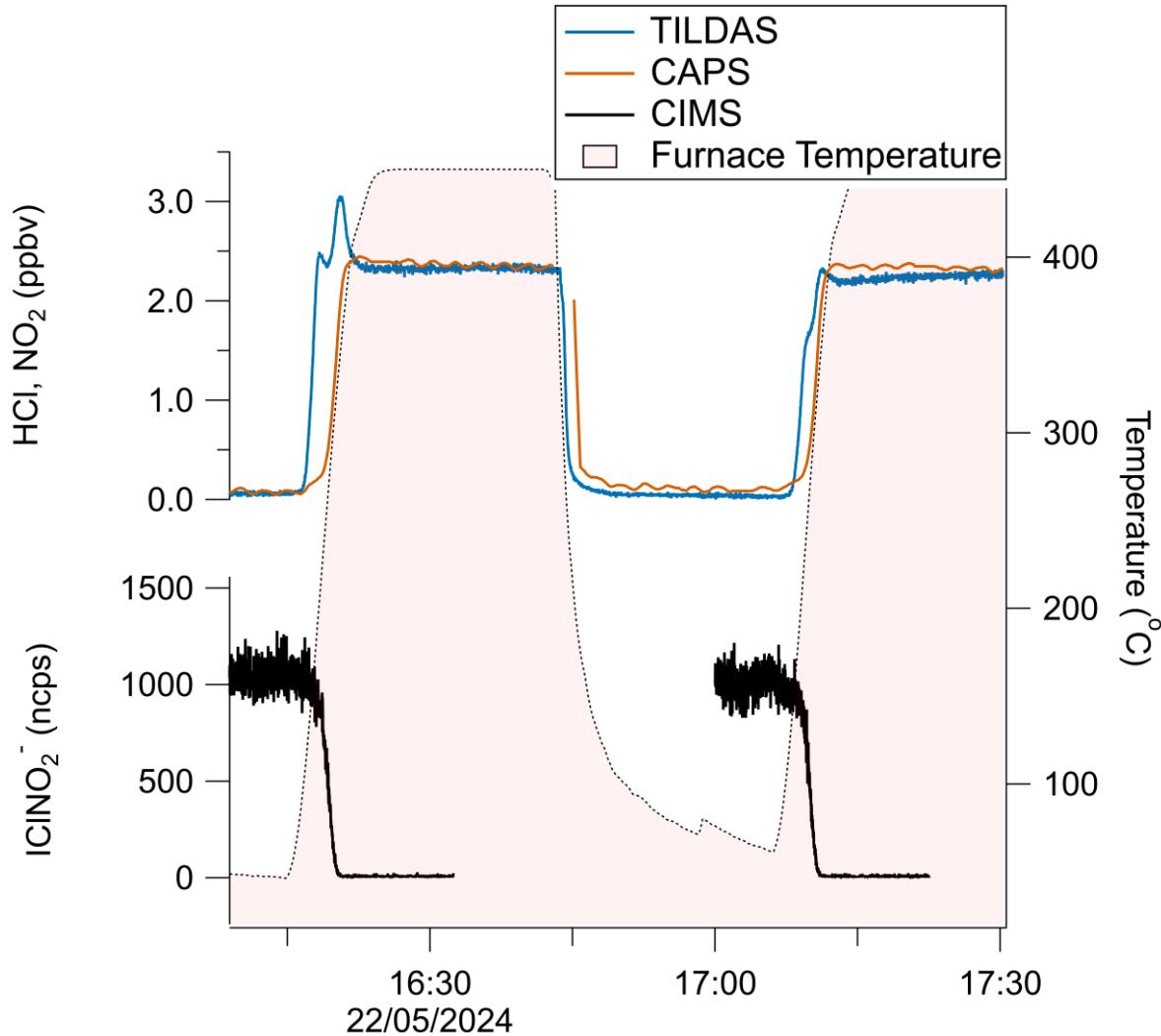
257 Budisulistiorini et al., 2015; Hellén et al., 2024; Tripathi et al., 2021), it is therefore unlikely alkenes will cause meaningful
258 interference for ClNO_2 quantification.

259 ClNO_2 was predicted to be the only known inorganic chlorine reservoir to thermally dissociate at 450 °C. This is
260 consistent with the relative bond dissociation energies found for ClNO_2 (142 kJ mol⁻¹) relative to the various other forms of
261 inorganic chlorine simulated ($\text{Cl-NO}_2 < \text{Cl-Cl} < \text{Cl-O} < \text{Cl-R} < \text{Cl-H}$) (Darwent, 1970). Production of other inorganic chlorine
262 compounds (e.g., Cl_2 , HOCl , ClONO_2 , or reformation of ClNO_2) was orders of magnitude less than the resulting HCl and is
263 therefore not believed to influence HCl production. Even so, there remain potential inorganic chlorine species that may still
264 act as interferents in this method. Nitrosyl chloride (ClNO) has been previously predicted by modelling to exist at ppbv-level
265 mixing ratios in polluted marine environments and could be an efficient Cl-atom source (Raff et al., 2009). Indeed, 1 ppbv
266 (2.46×10^{10} molecules cm⁻³) of ClNO was found to partially thermally dissociate in our Kintecus model (bond dissociation
267 energy of 159 kJ mol⁻¹) and generate additional HCl , as well as NO that was gradually converted to NO_2 (Fig. A2). On the
268 addition of heat, ClNO decreased by 40% while HCl increased by an equivalent amount (in addition to the 2.46×10^{10}
269 molecules cm⁻³ generated by ClNO_2 thermal dissociation). While we are unaware of any field measurements that have
270 confirmed the presence of ClNO in the boundary layer to date, it appears likely this method would be sensitive to interference
271 from ClNO if/where its presence is confirmed.

272 Additionally, one notable class of compounds that could not be simulated were chloramines, which have recently
273 received increased attention as relevant daytime sources of Cl atoms (A. Angelucci et al., 2023; Wang et al., 2023). Their
274 largest known anthropogenic sources include water disinfection processes, swimming pools, and cleaning products.
275 Trichloramine, dichloramine, and monochloramine have reported bond dissociation energies of 381, 280, 251 kJ mol⁻¹,
276 respectively (Darwent, 1970) (ClNO_2 bond dissociation energy = 142 kJ mol⁻¹), and so would not be expected to produce free
277 Cl radicals in the temperature range simulated herein if its thermochemistry is consistent with the above bond dissociation
278 energy trend. However, to the authors' knowledge no information is available regarding their thermal stability in the gas phase
279 at atmospherically relevant conditions, and this potential source of positive interference for our proposed method cannot be
280 discounted via the model at this time. Similarly, prevalent organochlorides, such as methyl chloride (CH_3Cl), dichloromethane
281 (CH_2Cl_2), chloroform (CHCl_3), and carbon tetrachloride (CCl_4) could cause positive interference if they dissociate and produce
282 Cl atoms in the furnace (World Meteorological Organization, 2022). Global average mixing ratios for CH_3Cl , CH_2Cl_2 , CHCl_3 ,
283 and CCl_4 were ~ 550 pptv, ~40 pptv, 9 pptv, and 77 pptv, respectively, during 2020. Appropriate thermal dissociation kinetic
284 parameters could not be sourced for the conditions used herein (i.e., temperatures ≤ 450 °C), and so these compounds could not
285 be properly simulated by the Kintecus model. Similarly to the chloramines, the bond dissociation energies are much higher
286 than other compounds simulated (339, 310, 346, 293 kJ mol⁻¹ for CH_3Cl , CH_2Cl_2 , CHCl_3 , and CCl_4 , respectively (Darwent,
287 1970; Weissman and Benson, 1983)).

288 3.2 Laboratory Characterization of TD-TILDAS

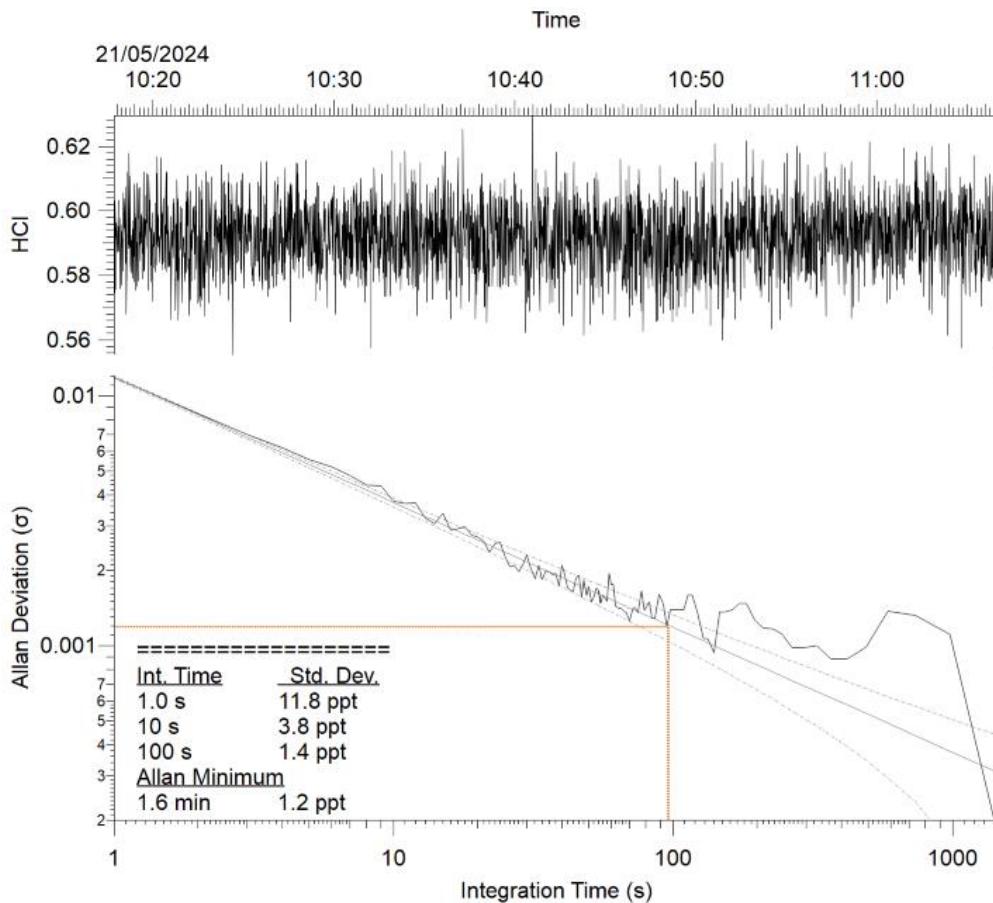
289 For laboratory characterization, a stable source of ClNO_2 was generated (Sect. 2.1) for assessing TD-TILDAS
290 performance in comparison with other established ClNO_2 sampling techniques, including CAPS NO_2 and CIMS (Sect. 2.3).
291 One key change between model simulations and this experimental setup is the inclusion of propane to the sample stream
292 (estimated mixing ratio of 5 ppmv within the heated section of sample configuration). While the model predicted the pertinent
293 chemistry will occur in ~23 ms using only ambient methane as the hydrocarbon (Sect. 3.1) and the residence time in the heated
294 furnace is ~500 ms, adding propane ensures complete conversion of ClNO_2 to HCl and ensures wall losses are negligible, as
295 Cl radicals react with propane approximately 3 orders of magnitude faster than with methane (Atkinson et al., 2006a). The fact


296 that no additional HCl signal was observed on addition of propane at varying levels (not shown) supports our calculations that
 297 unit conversion is achieved and competitive loss of Cl radicals to walls is negligible.

298 A schematic diagram of these experiments is shown in Fig. 1a. Figure 3 represents a typical comparison experiment
 299 in which ClNO_2 was sampled by all three instruments simultaneously. First, ClNO_2 was introduced into the flow stream with
 300 the furnace unheated, yielding a positive CIMS signal for IClNO_2^- (~1100 ncps for the example in Fig. 3), while TILDAS HCl
 301 and CAPS NO_2 mixing ratios remained at background levels. As the furnace temperature approached 450 °C, Reactions R1-
 302 R2 began to occur. HCl and NO_2 mixing ratios rose, plateauing at similar values (~2.2 ppbv in Fig. 3) while IClNO_2^- decreased
 303 to the instrument baseline, implying both Reactions R1-R2 proceeded to completion. Signals returned to their original positions
 304 once the furnace was allowed to cool back to room temperature (e.g., from 16:45 in Fig. 3). Note that HCl signal spike during
 305 the furnace's temperature ramp was seen consistently across experiments, and was most likely caused by a shift in HCl
 306 molecule partitioning between the surface of the quartz tubing toward the gas phase (Halfacre et al., 2023). Allan-Werle
 307 deviation calculations demonstrate favourable performance metrics for TILDAS while sampling ClNO_2 , with 1 Hz precision
 308 of 11.8 pptv, and as good as 1.2 pptv with an integration time of 96 seconds (Fig. 4).

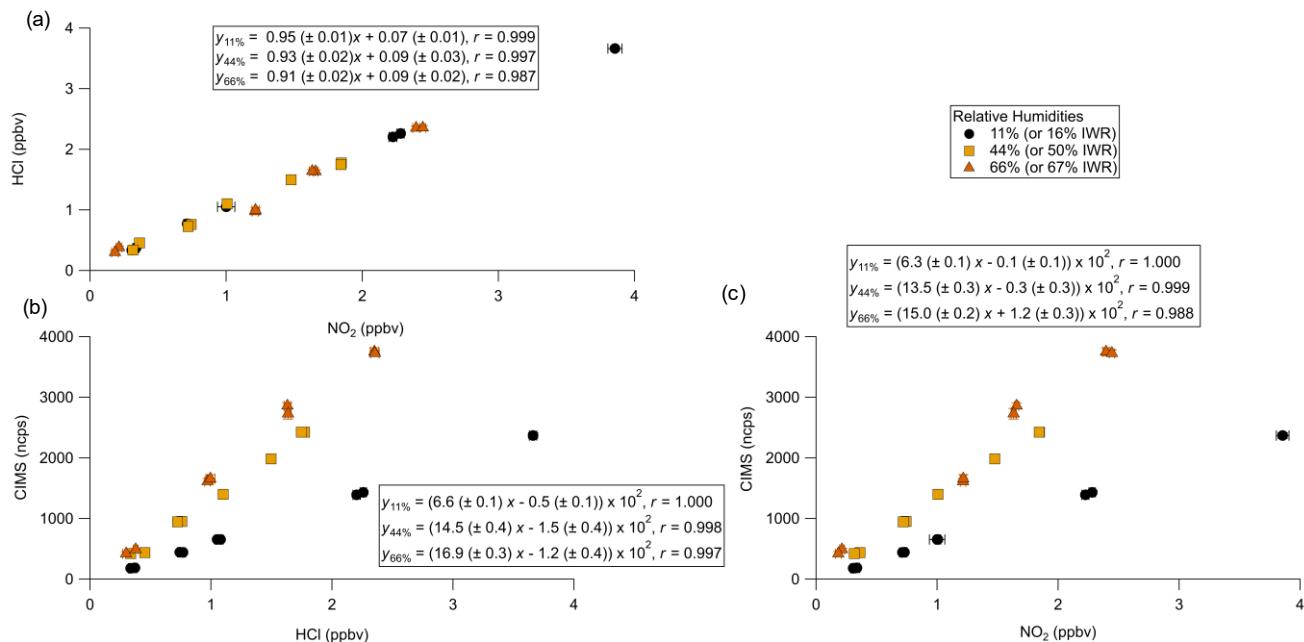
309 A summary of comparison experiments across varied humidities is presented in Fig. 5. The changes in HCl as
 310 observed by TILDAS correlated strongly with the changes in NO_2 observed by the CAPS instrument (Pearson correlation
 311 coefficients of 0.999, 0.997, and 0.987 for relative humidities of 11%, 44%, and 66%, respectively). However, the slopes were
 312 consistently less than unity (0.95 ± 0.01 , 0.93 ± 0.02 , and 0.91 ± 0.02 at 11%, 44%, and 66%, respectively), indicating observed
 313 HCl mixing ratios were less than corresponding NO_2 mixing ratios. One potential explanation for this could be loss of Cl
 314 radicals in the furnace, but we do not believe this to be the case (as detailed above). While physical losses of HCl to sampling
 315 lines would not be unexpected as HCl has a high affinity for sorbing to physical surfaces, experiments were designed to
 316 minimize these interactions, and line loss experiments were performed to quantify any losses observed at tested humidities.
 317 Experimentally, a small flow (50–75 mL min⁻¹) of PFBS vapour was injected into the TILDAS sampling line downstream of
 318 the furnace to reduce HCl affinity for surfaces (Sect. 2.2) (Note that PFBS was not introduced to the entirety of the flow path
 319 to avoid sampling of PFBS by other instruments. Additionally, there is evidence that PFBS degrades at temperatures above
 320 400°C (Xiao et al., 2020), and so its ultimately efficacy and reproducibility within the furnace system would be uncertain).
 321 Further, the high operating temperature of the furnace would also be expected to minimize HCl-wall interactions within the
 322 quartz tubing. Indeed, no line losses were found at 11% relative humidity between when the HCl permeation source standard
 323 was injected into the sampling line before the heated furnace (2.95 ± 0.02 ppbv) and when HCl was injected just before the
 324 inertial inlet (accounting for dilution factors) (2.95 ± 0.02 ppbv), consistent with Halfacre et al. (2023). Similar results were
 325 found at 44% relative humidity (pre-furnace value of 2.68 ± 0.03 ppbv vs 2.66 ± 0.03 ppbv when HCl was introduced at inlet),
 326 and real HCl loss was quantified at 66% relative humidity (pre-furnace value of 1.87 ± 0.03 ppbv vs 1.97 ± 0.03 ppbv when
 327 HCl introduced at inlet). Having accounted for these line losses, ANOVA calculations found no significant differences between
 328 these three slopes as presented in Fig. 3 ($F(2,19) = 0.10$, $p = 0.902$), indicating consistent performance between TILDAS and
 329 CAPS for detecting ClNO_2 . However, it does not appear to explain the deviation from unity, which will be discussed below.

330 As discussed in Sect. 2.1, chemistry may occur within the slurry to produce N_2O_4 , which can easily degrade at room
 331 temperature to produce two NO_2 molecules. If the N_2O_4 output from the $\text{NO}_2^-/\text{Cl}^-$ slurry is constant over the timescale of an
 332 experiment (< 1 hr), it would be expected this additional NO_2 is readily accounted for during blank subtraction calculations.
 333 While we believe this is largely true for the experiments presented above, discrepancies in ClNO_2 signals were observed as
 334 the slurry aged (>~3 weeks), with CAPS-observed NO_2 mixing ratios growing in significant excess of TILDAS-observed HCl
 335 mixing ratios (Fig. A3). Separate applications of TILDAS- and CAPS-based calibration factors (using data from Fig. 5) to
 336 concurrent CIMS ClNO_2 observations show closer resemblance to the TILDAS-observed mixing ratios (Fig. A3), suggesting


337 additional chemistry may be occurring within the salt bed that produces stable reservoirs of NO_2 that thermally dissociate in
 338 the furnace to produce undesired NO_2 . This NO_2 artefact serves as a likely explanation for the sub-unity slopes presented in
 339 Fig. 5, as it would positively bias the CAPS measurements but not the TILDAS, which is only sensitive to HCl. Thaler et al.
 340 (2011) present in great detail strategies for minimizing N_2O_4 production in their study by minimizing the residence time in
 341 their ClNO_2 generator (0.3 s herein) and adjusting the molar ratio of $\text{Cl}^-:\text{NO}_2^-$ of their salt bed (100:1 herein), but were
 342 ultimately unable to completely eliminate it; while we found these strategies helpful for reducing the overall NO_2 background
 343 as measured by CAPS, we found they were unsuccessful in eliminating the artefact when sample gas was passed through the
 344 heated furnace. We are not aware of such chemistry being addressed in the literature for this ClNO_2 generation method and do
 345 not propose potential reactions as it is outside the scope of this paper.

346

347 **Figure 3: a)** Time series demonstrating the reversible thermal conversion of ClNO_2 to NO_2 (red trace, CAPS) and HCl (blue trace,
 348 TILDAS), as evidenced by changes in CIMS-observed ICINO_2^- (black). Gaps in CIMS data are from internal CIMS tests not
 349 pertinent to this work.


350 Both HCl and NO_2 mixing ratios independently correlated strongly with the CIMS measurement of ICINO_2^- (Fig. 5b,
 351 c), and the I^- CIMS sensitivity for ICINO_2^- was found to vary strongly with humidity, as previously reported (Kercher et al.,
 352 2009; Mielke et al., 2011). The weakest Pearson correlation coefficient was for NO_2 and ICINO_2^- at 66% relative humidity (r
 353 = 0.988), virtually matching that of NO_2^- and HCl at the same humidity. Due to the uncertainty / unreliability of the NO_2 as it
 354 relates to ClNO_2 quantitation, we do not further consider the relationship between CAPS and CIMS.

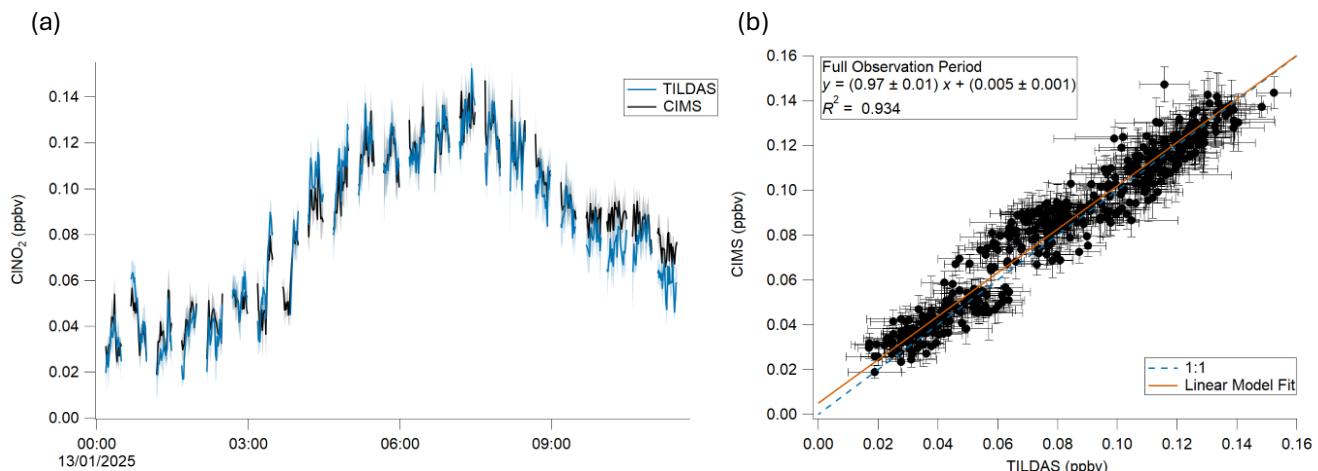
355

Figure 4: Allan-Werle plot for TD-TILDAS during addition of ClNO_2 standard into the sample line.
The Allan minimum is indicated by the dotted red lines.

356

357

358 **Figure 5 – Comparison curves of a) TILDAS vs CAPS, b) CIMS vs TILDAS, and c) CIMS vs CAPS for injections of varied mixing**
 359 **ratios of ClNO_2 across different relative humidities. Regressions involving TILDAS data have been corrected for line losses observed**
 360 **at 66% relative humidity.**


361 The linear equations from Fig. 5a present significant intercepts that suggest a source of positive error for the TILDAS, and the
 362 similarity of these intercepts suggest a relatively constant/consistent source (values are statistically the same $F(4,19) = 0.624$,
 363 $p = 0.546$ per ANOVA). For these experiments, TILDAS blanks were obtained by sampling slurry air flowed through an
 364 unheated furnace; in this scenario, Reactions R1-R2 are unable to occur, and therefore any signal observed by TILDAS could
 365 be considered background. It is possible that a small amount of HCl forms in the slurry system from the aqueous disproportion
 366 reaction between Cl_2 and H_2O . When the furnace is unheated, some amount of HCl interaction with the quartz tubing is
 367 expected given there is no PFBS flow through this portion of the plumbing, biasing this blank measurement low. Then, once
 368 the furnace is heated to 450 °C, this HCl will be liberated from the quartz tubing, possibly then biasing the heated measurement
 369 high. This is supported by the presence of a peak in observed HCl as the furnace reheats (e.g., as in the second temperature
 370 ramp in Fig. 3), as some of the HCl sorbed to the furnace tube walls under room temperature is forced into the gas phase. The
 371 statistical similarity in intercepts implies this effect is constant across these experiments, leading to a consistent offset. While
 372 an ideal blank would sample the gas downstream of the slurry while selectively scrubbing ClNO_2 , this was not practical to
 373 achieve without simultaneously scrubbing HCl. Therefore, we propose the y-intercept in these cases is a good estimate of the
 374 systematic error present in these comparison experiments.

375 **3.3 Applicability as Field Instrument**

376 The applicability of TD-TILDAS as a field method for ClNO_2 detection was tested by sampling ambient air from outside the
 377 Wolfson Atmospheric Chemistry Laboratory building on the University of York campus (York, United Kingdom) from the
 378 morning of 13 January 2025 (Fig. 6). Compared with the laboratory-based configuration described in Sect. 3.2, ambient air
 379 will contain varied amounts of HCl that would interfere with accurate quantification of ClNO_2 via the TILDAS method. To
 380 address this, a base-coated denuder (Sect. 2.2) was installed in the HCl sampling line. ClNO_2 throughput was found to be
 381 hindered when flowed through the denuder but increased over the course of the observation period (pre-experiment estimation
 382 of 55% loss on 10 January vs 31% measured directly after the experiment on 13 January). This loss was accounted for by
 383 applying a time-varying, linearly interpolated correction factor for the denuder. In addition, line losses affecting HCl between
 384 the heated furnace and TILDAS inlet were estimated as 2.7%, which was added back into the TILDAS measurements. CIMS
 385 observations of ClClNO_2^- were calibrated against TD-TILDAS using a mid-experiment ClNO_2 addition, yielding a sensitivity
 386 factor of 1982 ncps ppb^{-1} (measured with a corresponding IWR of 42%). We note that this factor is ~35% greater than the
 387 value of 1450 ncps ppbv^{-1} as presented in Fig. 5b for a comparable IWR (44%); this is likely due to the replacement of the
 388 reagent ion permeation source, repair of reagent ion source heaters, and change in the overall sampling configuration between
 389 the experiments from Sect. 3.2 and this section (as illustrated by Fig. 1). Application of this sensitivity factor across this
 390 measurement period can be justified as the IWR was found to be stable ($38 \pm 2\%$). Limits of detection, based on instrument
 391 blanks, were found to average 10 ± 5 pptv for TD-TILDAS and 1 ± 1 pptv for CIMS (using 60 second data averaging).

392 As seen in Fig. 6a, TILDAS- and CIMS-observed ClNO_2 demonstrate very good agreement for these ambient
 393 observations in both signal magnitude and structure. This is quantitatively supported by regression calculations during this
 394 period that yield a slope of 0.97 ± 0.01 (Fig. 6b), which is well within the averaged combined uncertainty for this period of
 395 9%. While the sub-unity slope could indicate small losses on the TILDAS method, pre- and post-experimental losses were
 396 tested and corrected for as detailed above, and so this is not believed to be a large source of error in this case. It is otherwise
 397 not unexpected that this slope is found to deviate from unity given the uncertainty in the application of a single-point CIMS

398 sensitivity factor. Nevertheless, this agreement gives us confidence that it is appropriate for these measurements and provides
 399 proof-of-concept for this TILDAS method.
 400

401
 402 **Figure 6 – a) Time series comparison of TILDAS and CIMS observations of CINO₂. b) Scatter plot of data shown in panel (a). The**
 403 **error shading in (a) and bars in (b) represent the standard deviation of the 60 s averaged measurements.**

404 Additional sources of measurement uncertainty include unaccounted-for thermolabile chlorine reservoirs that could
 405 cause positive interference in the TILDAS-method. As stated above, the TD-TILDAS method functions on the assumption
 406 that CINO₂ is the only major chlorine source that thermally dissociates at 450 °C. As shown by the model, ClNO may be a
 407 potential source of interference if present (Fig. A2), while relevant thermochemistry information was unavailable for
 408 organochlorides and chloramines, which therefore cannot be ruled out as possible interferences by modelling. Indeed, while
 409 CIMS signals of ClNO and chloramines did not rise above their baselines during the period shown in Fig. 6, a separate
 410 measurement period demonstrates multiple occurrences where signal increases in iodide-tri- and di-chloramine adducts (INCl₃⁻,
 411 INHCl₂⁻) correspond with TILDAS-observed signal increases (Fig. A4). This is most dramatic at ~08:15, where ~115 ncps
 412 of INCl₃⁻ and 18 ncps of IHNCl₂⁻ corresponds with an increase of 100 pptv in the TILDAS signal. While these chloramine
 413 observations cannot be quantified at this time, trichloramine and dichloramine has previously been detected in downtown
 414 Toronto at ≤ 0.104 ppb and ≤ 8 ppbv, respectively (Wang et al., 2023), suggesting a combined 100 pptv interference
 415 contribution from these compounds is realistic. Synthesis and calibration of chloramine standards is a non-trivial task (Wang
 416 et al., 2023), and so further experiments are required to investigate 1) to what extent the chloramine signals can be quantified
 417 by TILDAS and 2) if the chloramine signal can be dissected from the CINO₂ signal through temperature scans. The results of
 418 such experiments may therefore allow this method to be extended for the quantification of both chloramines and CINO₂.

419 While organochlorides (e.g., CH₃Cl, CH₂Cl₂, CHCl₃, and CCl₄) were not explicitly measured during the period in
 420 Fig. 6, it would be expected that their potential interference in the TILDAS signal (if they dissociate in the furnace) would
 421 present as a slow varying background signal that appears as an offset above a blank, given the ubiquity of these compounds
 422 and relatively long tropospheric lifetimes for CH₃Cl, CH₂Cl₂, CHCl₃, and CCl₄ of 1 year, 6 months, 6 months, and 124 years,
 423 respectively (World Meteorological Organization, 2022). Such an offset, if present, could be quantified during daytime
 424 measurements (ie, when no CINO₂ will be present in the boundary layer) and readily subtracted from nighttime measurements
 425 if necessary. However, the agreement between TILDAS and CIMS measurements as presented in Fig. 6 suggests this
 426 interference is not present, providing some evidence that these organochlorides are not dissociating in the furnace.

427 **Conclusions**

428 This work demonstrates the viability of TD-TILDAS as an independent ClNO_2 detection method at performance metrics
429 comparable to quadrupole CIMS, which are more than adequate for commonly observed mixing ratios in the boundary layer.
430 While modern CIMS instruments can achieve lower limits of detection and higher precision, the major advantage of TD-
431 TILDAS over CIMS is that it does not require external ClNO_2 calibration experiments, as this work demonstrates the unity
432 conversion of ClNO_2 to HCl that is subsequently detected based on well-understood spectroscopic principles. The TD method
433 described here can thus be used effectively in laboratory settings to measure ClNO_2 in related experiments, or even to calibrate
434 CIMS for ClNO_2 directly without needing to make assumptions regarding Cl_2 conversion on salt slurries. Additionally, use of
435 a denuder allows this method to be readily applied to other HCl optical instruments, such as those based on CRDS.

436 As a field method, TD-TILDAS demonstrated excellent agreement with a co-located CIMS for ClNO_2 detection. The
437 method is reliant on accurate and regular characterization of ClNO_2 throughput through the denuder, which was found to
438 increase across four days of sampling. Longer-term measurement campaigns would benefit from at least weekly denuder
439 replacements to ensure acidic gases are consistently scrubbed and do not interfere with ClNO_2 observations. However, the TD-
440 TILDAS method appears susceptible to positive interference, potentially resulting from chloramines, or other unaccounted-
441 for thermolysable chlorine compounds. Care should thus be taken should this method be deployed where large amounts of
442 chloramines are known to be present, such as swimming pools or near water treatment facilities. More work is still required to
443 confirm and quantify the response of this method to chloramine and organochlorides, and if so, identify an appropriate method
444 to mitigate this potential interference. While modelling additionally suggests ClNO as an interferent, its presence in the
445 boundary layer is yet to be confirmed through in situ observations. In any case, careful temperature ramps (e.g., Day et al.,
446 2002) performed with the furnace in environments where unknown interferences may be a concern would likely reveal the
447 purity of the ClNO_2 signal observed. Experimental adjustments could be further made for the TILDAS to alternate its sampling
448 between a heated channel (as described in this paper) for ClNO_2 detection and an unheated pathway that allows for the
449 additional detection of HCl. Doing so would require careful characterization of physical HCl losses inherent to both sampling
450 pathways, as well as consideration of the likely hysteresis in detected HCl mixing ratios resulting from changes to the sampled
451 air temperature that would affect the partitioning of HCl between surfaces and the gas phase.

452

453

454 **Appendix A**455 **Table A1 – Bimolecular reactions and parameters used for the modelling described in Sect. 2.5. Reactions follow the rate expression**
456 $k(T) = A (T/298)^n e^{-E_a/RT}$ (Burkholder et al., 2015)

Reaction	A	n	Ea (kJ mol ⁻¹)	Reference
$\text{ClNO}_2 + \text{M} \rightleftharpoons \text{Cl} + \text{NO}_2$	9.13×10^{-10}	0	106	(Baulch et al., 1981)
$\text{Cl} + \text{Cl} \rightleftharpoons \text{Cl}_2$	6.15×10^{-34}	0	-7.53	(Baulch et al., 1981)
$\text{M} + \text{ClONO}_2 \rightleftharpoons \text{NO}_2 + \text{ClO}$	2.76×10^{-5}	0	94.78	(Anderson and Fahey, 1990)
$\text{CH}_4 + \text{Cl} \rightleftharpoons \text{CH}_3 + \text{HCl}$	8.24×10^{-13}	2.49	5.06	(Bryukov et al., 2002)
$\text{HCl} + \text{OH} \rightleftharpoons \text{H}_2\text{O} + \text{Cl}$	3.74×10^{-12}	0	4.27	(Baulch et al., 1981)
$\text{HCl} + \text{M} \rightleftharpoons \text{H} + \text{Cl}$	7.31×10^{-11}	0	342	(Baulch et al., 1981)
$\text{CH}_3 + \text{HCl} \rightleftharpoons \text{CH}_4 + \text{Cl}$	3.89×10^{-13}	0	9.64	(Baulch et al., 1981)
$\text{CH}_3 + \text{NO}_2 \rightleftharpoons \text{CH}_3\text{O} + \text{NO}$	3.44×10^{-11}	0	0	(Srinivasan et al., 2005)
$\text{O}_3 + \text{M} \rightleftharpoons \text{O} + \text{O}_2$	7.6×10^{-10}	0	93.12	(Heimerl and Coffee, 1979)
$\text{CH}_3 + \text{O} \rightleftharpoons \text{CH}_2\text{O} + \text{H}$	2.26×10^{-11}	0	0	(Baulch et al., 1992)
$\text{HCl} + \text{O} \rightleftharpoons \text{OH} + \text{Cl}$	7.07×10^{-14}	2.87	14.72	(Mahmud et al., 1990)
$\text{OH} + \text{CH}_4 \rightleftharpoons \text{CH}_3 + \text{H}_2\text{O}$	4.16×10^{-13}	2.18	10.24	(Srinivasan et al., 2005)
$\text{Cl}_2 + \text{M} \rightleftharpoons \text{Cl} + \text{Cl}$	3.85×10^{-11}	0	196	(Baulch et al., 1981)
$\text{Cl} + \text{Cl} \rightleftharpoons \text{Cl}_2$	6.15×10^{-34}	0	-7.53	(Baulch et al., 1981)
$\text{Cl}_2 + \text{O} \rightleftharpoons \text{ClO} + \text{Cl}$	4.17×10^{-12}	0	11.39	(Baulch et al., 1981)
$\text{Cl}_2 + \text{H} \rightleftharpoons \text{HCl} + \text{Cl}$	1.43×10^{-10}	0	4.91	(Baulch et al., 1981)
$\text{Cl}_2 + \text{OH} \rightleftharpoons \text{HOCl} + \text{Cl}$	3.60×10^{-12}	0	9.98	(Atkinson et al., 2007)
$\text{CH}_3 + \text{O}_2 \rightleftharpoons \text{CH}_3\text{O} + \text{O}$	2.19×10^{-10}	0	131	(Baulch et al., 1992)
$\text{ClO} + \text{O} \rightleftharpoons \text{O}_2 + \text{Cl}$	2.50×10^{-11}	0	-0.91	(Atkinson et al., 2007)
$\text{OH} + \text{ClO} \rightleftharpoons \text{HO}_2 + \text{Cl}$	6.86×10^{-12}	0	-2.49	(Atkinson et al., 2007)
$\text{OH} + \text{ClO} \rightleftharpoons \text{HCl} + \text{O}_2$	4.38×10^{-13}	0	-2.49	(Atkinson et al., 2007)

CH ₃ O + NO ==> CH ₂ O + HNO	4.00 x 10 ⁻¹²	-0.7	0	(Atkinson et al., 1992)
CH ₃ O + O ₂ ==> CH ₂ O + HO ₂	7.20 x 10 ⁻¹⁴	0	8.98	(Atkinson et al., 1992)
HOCl + O ==> OH + ClO	1.70 x 10 ⁻¹³	0	0	(Atkinson et al., 2007)
CICO + M ==> CO + Cl	4.10 x 10 ⁻¹⁰	0	24.6	(Atkinson et al., 2007)
O ₃ + NO ==> O ₂ + NO ₂	1.40 x 10 ⁻¹²	0	10.9	(Atkinson et al., 2004)
CH ₃ O ₂ + NO ==> CH ₃ O + NO ₂	2.30 x 10 ⁻¹²	0	-2.99	(Atkinson et al., 2006b)
HO ₂ + NO ==> NO ₂ + OH	3.6 x 10 ⁻¹²	0	-2.24	(Atkinson et al., 2004)
CH ₂ O + Cl ==> HCl + HCO	8.20 x 10 ⁻¹¹	0	0.28	(Atkinson et al., 1992)
CH ₂ O + OH ==> HCO + H ₂ O	4.73 x 10 ⁻¹²	1.18	-1.87	(Baulch et al., 1992)
CH ₃ O ₂ + HO ₂ ==> CH ₃ OOH + O ₂	3.80 x 10 ⁻¹³	0	-6.49	(Atkinson et al., 1992)
CH ₃ OOH ==> CH ₃ O + OH	6.00 x 10 ¹⁴	0	177	(Baulch et al., 1994)
HCO + O ₂ ==> CO + HO ₂	5.20 x 10 ⁻¹²	0	0	(Atkinson et al., 2006b)
CO + OH ==> CO ₂ + H	5.40 x 10 ⁻¹⁴	1.5	-2.08	(Baulch et al., 1992)
Cl + HO ₂ ==> HCl + O ₂	1.80 x 10 ⁻¹¹	0	-1.41	(Atkinson et al., 1992)
Cl + HO ₂ ==> ClO + OH	6.30 x 10 ⁻¹¹	0	4.74	(Atkinson et al., 2007)
Cl + O ₃ ==> ClO + O ₂	2.80 x 10 ⁻¹¹	0	2.08	(Atkinson et al., 2007)
CO + Cl ==> CICO	1.33 x 10 ⁻³³	-3.8	0.00	(Atkinson et al., 2007)
OH + HOCl ==> H ₂ O + ClO	5.00 x 10 ⁻¹³	0	0	(Atkinson et al., 2007)
ClO + HO ₂ ==> HOCl + O ₂	2.20 x 10 ⁻¹²	0	-2.8	(Atkinson et al., 2007)
ClO + ClO ==> Cl ₂ + O ₂	1.00 x 10 ⁻¹²	0	13.22	(Atkinson et al., 2007)
ClO + ClO ==> OCIO + Cl	3.50 x 10 ⁻¹³	0	11.39	(Atkinson et al., 2007)
ClO + ClO ==> ClOO + Cl	3.00 x 10 ⁻¹¹	0	20.37	(Atkinson et al., 2007)
ClO + NO ==> Cl + NO ₂	6.20 x 10 ⁻¹²	0	-2.45	(Atkinson et al., 2007)
CH ₂ O + O ==> HCO + OH	1.78 x 10 ⁻¹¹	0.57	11.56	(Baulch et al., 1992)

$\text{OH} + \text{NO}_2 \rightleftharpoons \text{HNO}_3$	2.70×10^{-11}	0	0	(Troe, 2012)
$\text{CH}_3\text{Cl} + \text{OH} \rightleftharpoons \text{CH}_2\text{Cl} + \text{H}_2\text{O}$	$1.40\text{E-}12$	1.6	8.65	(Cohen and Westberg, 1991)
$\text{CH}_3\text{Cl} + \text{H} \rightleftharpoons \text{CH}_3 + \text{HCl}$	$6.14\text{E-}11$	0	38.9	(Westenberg and deHaas, 1975)
$\text{CH}_3\text{Cl} + \text{CH}_3 \rightleftharpoons \text{CH}_4 + \text{CH}_2\text{Cl}$	$2.09\text{E-}12$	0	48.6	(Macken and Sidebottom, 1979)
$\text{CH}_3\text{Cl} + \text{Cl} \rightleftharpoons \text{CH}_2\text{Cl} + \text{HCl}$	$3.30\text{E-}11$	0	10.39	(Atkinson et al., 2008)
$\text{CHCl}_3 + \text{Cl} \rightleftharpoons \text{CCl}_3 + \text{HCl}$	$4.90\text{E-}12$	0	10.31	(Atkinson et al., 2008)
$\text{Cl} + \text{C}_3\text{H}_6 \rightleftharpoons \text{Products}$	$2.70\text{E-}10$	0	0	(Atkinson et al., 2006b)
$\text{Cl} + \text{C}_5\text{H}_8 \rightleftharpoons \text{Products}$	$4.30\text{E-}10$	0	0	(Orlando et al., 2003)
$\text{ClNO} + \text{M} \rightleftharpoons \text{Cl} + \text{NO}$	$2.16\text{E-}09$	0	134	(Baulch et al., 1981)

457

458

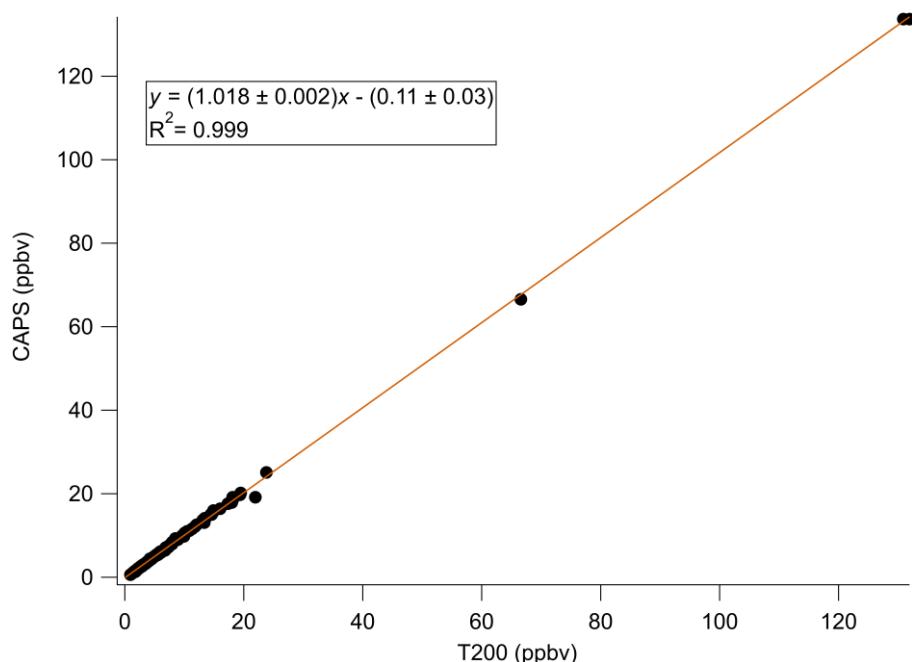
459 **Table A2 – Termolecular reactions and parameters used for the modelling described in Sect. 2.5. The effective rate constant is**
 460 **calculated by combining the low- and high-pressure limit expressions into the following formula: $k_f(T, [M]) =$**
 461
$$\left\{ \frac{k_\infty(T)k_0(T)[M]}{k_\infty(T)+k_0(T)[M]} \right\} 0.6^{\{1+\log_{10}(\frac{k_0(T)[M]}{k_\infty(T)})^2\}^{-1}}$$

Reaction	Low-Pressure Limit $k_0 = k_0^{298}(T/298)^{-n}$		High Pressure Limit $k_\infty = k_\infty^{298}(T/298)^{-m}$		Reference
<chem>Cl + NO2 + M ==> ClNO2 + M</chem>	k_0^{298}	n	k_∞^{298}	m	
<chem>CH3 + O2 + M ==> CH3O2 + M</chem>	1.8×10^{-31}	2	1.1×10^{-10}	1	(Burkholder et al., 2015)
<chem>Cl + C2H4 + M ==> Products</chem>	4.1×10^{-31}	3.6	1.2×10^{-12}	-1.1	(Burkholder et al., 2015)
	1.6×10^{-29}	3.3	3.1×10^{-10}	1	(Burkholder et al., 2015)

462

463

464

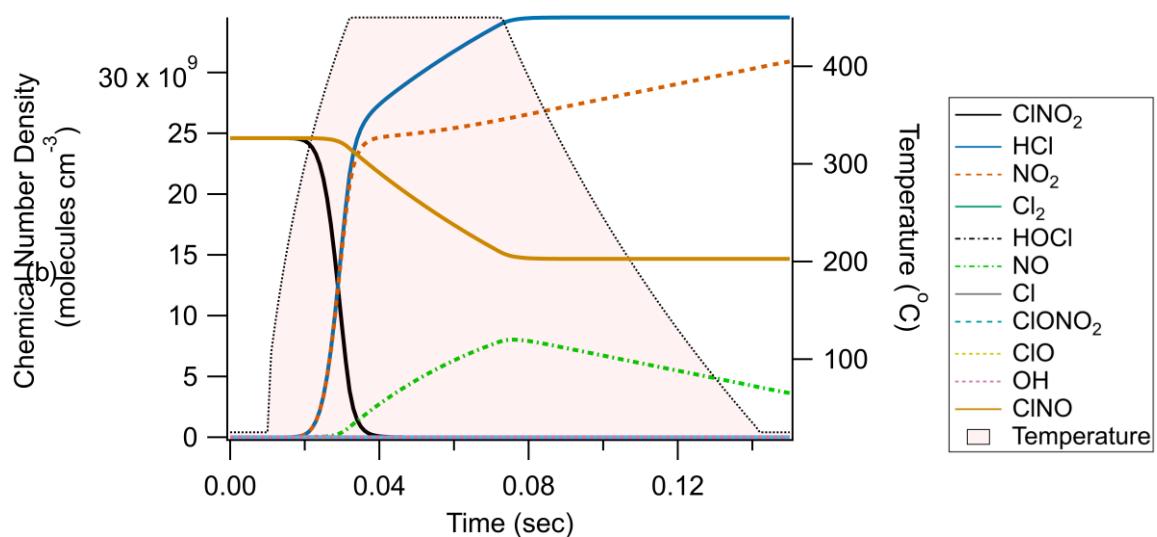

465 **Table A3 – Initial concentrations for specified species simulated in model, and listed mixing ratios are based on a temperature of 20**
 466 **°C. Potential interferents were tested in separate model runs according to the groupings on each line below, and were otherwise**
 467 **initiated with a concentration of 0 molecules cm⁻³. All other compounds were initialised with a concentration of 0 molecules cm⁻³.**

Species	Initial Concentration (molecules cm ⁻³)
ClNO ₂	2.46 x 10 ¹⁰ (1 ppbv)
N ₂	1.92 x 10 ¹⁹ (78%)
O ₂	5.17 x 10 ¹⁹ (21%)
CH ₄	4.92 x 10 ¹³ (2000 ppbv)
OH	1 x 10 ⁶
O ₃	9.84 x 10 ¹¹ (40 ppbv)
Potential Interferents	
ClNO	2.46 x 10 ¹⁰ (1 ppbv)
Ethene, Propene, Isoprene	1.23 x 10 ¹² (50 ppbv)

468

469

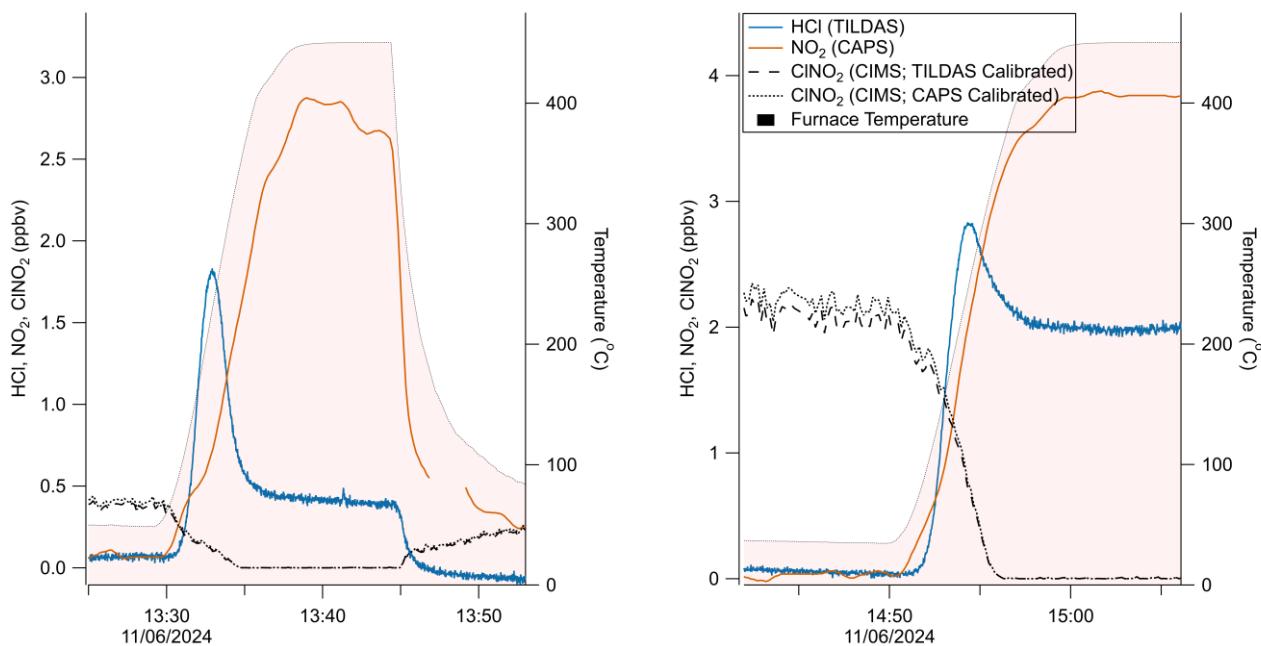
470


471

472 **Figure A1 – Laboratory calibration curve for CAPS NO₂**

473

474


(a)

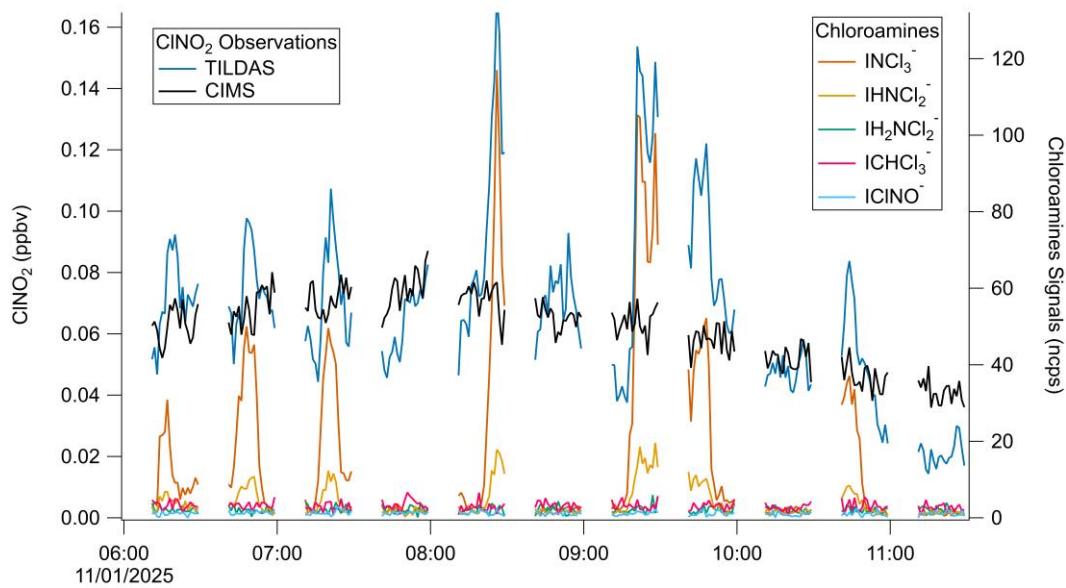
475
476 **Figure A2: Modelled effects of 2.46×10^{10} (1 ppbv at 20°C) of ClNO.**

477

478

479

480


481

482

Figure A3 – a) Comparison plot of CINO₂ observations with an apparent excess of NO₂ formed after aging/processing of the same slurry used for generating Fig. 3-4. (b) Additional comparison using a freshly made slurry. CIMS signal was calibrated using humidity-dependent calibration factors as presented in Fig. 5.

483

484

485

486 **Figure A4 –Field data showing apparent coincident signal increases TILDAS-observed CINO₂ with CIMS-observed chloramines,**
 487 **IClNO⁻, and ICHCl₃⁻ (uncalibrated).**

488

489 **Code availability**

490 Code used for this analysis is available from the corresponding author on request.

491 **Data availability**

492 Data are available from the corresponding author on request.

493 **Author contribution**494 PRV, MAR, SSB designed and performed proof-of-concept experiments to demonstrate potential of the method.
495 SCH, HRR, CD, TIY designed, built, and tested the HCl TILDAS at Aerodyne Research, Inc. SCH, HRR, CD, TIY, and PME
496 designed initial laboratory experiments.
497 JWH and PME designed laboratory and field experiments, and JWH conducted laboratory and field experiments presented in
498 this work.
499 LM, MDS, LJC provided support for laboratory use of CIMS. EM, TJB, HC provided support for field CIMS observations.
500 JWH prepared the manuscript, and all authors reviewed the manuscript.

501

502 **Competing interests**

503 The authors declare that they have no conflicts of interest.

504 **Acknowledgements**505 The authors would also like to thank Abigail Mortimer for her glassblowing services, Stephen Andrews and Stuart Young for
506 assistance with creating custom furnaces. Additionally, the authors thank William Drysdale and Katie Read for assistance with
507 calibrating and using the York CAPS instrument. Further, the authors thank Michael Agnese and Michael Moore for TILDAS
508 technical support.

509

510 **Financial Support**

511 This research has been supported by the European Research Council (H2020, grant no. ERC-StG 802685).

512 **References**513 A. Angelucci, A., R. Crilley, L., Richardson, R., E. Valkenburg, T. S., S. Monks, P., M. Roberts, J., Sommariva, R., and
514 C. VandenBoer, T.: Elevated levels of chloramines and chlorine detected near an indoor sports complex, Environmental
515 Science: Processes & Impacts, 25, 304–313, <https://doi.org/10.1039/D2EM00411A>, 2023.
516 Anderson, L. and Fahey, D.: Studies with nitryl hypochlorite: Thermal dissociation rate and catalytic conversion to nitric oxide
517 using an NO/O₃ chemiluminescence detector, Journal of Physical Chemistry, 94, 644–652, 1990.

518 Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A., and Troe, J.: Evaluated Kinetic and Photochemical
 519 Data for Atmospheric Chemistry: Supplement IV. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric
 520 Chemistry, *Journal of Physical and Chemical Reference Data*, 21, 1125, <https://doi.org/10.1063/1.555918>, 1992.

521 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe,
 522 J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of O_x , HO_x , NO_x and
 523 SO_x species, *Atmospheric Chemistry and Physics*, 4, 1461–1738, <https://doi.org/10.5194/acp-4-1461-2004>, 2004.

524 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J.,
 525 and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase
 526 reactions of organic species, *Atmospheric Chemistry and Physics*, 6, 3625–4055, <https://doi.org/10.5194/acp-6-3625-2006>,
 527 2006a.

528 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J.,
 529 and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase
 530 reactions of organic species, *Atmospheric Chemistry and Physics*, 6, 3625–4055, <https://doi.org/10.5194/acp-6-3625-2006>,
 531 2006b.

532 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe,
 533 J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic
 534 halogens, *Atmospheric Chemistry and Physics*, 7, 981–1191, <https://doi.org/10.5194/acp-7-981-2007>, 2007.

535 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J.,
 536 and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions
 537 of organic halogen species, *Atmospheric Chemistry and Physics*, 8, 4141–4496, <https://doi.org/10.5194/acp-8-4141-2008>,
 538 2008.

539 Bannan, T. J., Booth, A. M., Bacak, A., Muller, J. B. A., Leather, K. E., Le Breton, M., Jones, B., Young, D., Coe, H., Allan,
 540 J., Visser, S., Slowik, J. G., Furger, M., Prévôt, A. S. H., Lee, J., Dunmore, R. E., Hopkins, J. R., Hamilton, J. F., Lewis, A.
 541 C., Whalley, L. K., Sharp, T., Stone, D., Heard, D. E., Fleming, Z. L., Leigh, R., Shallcross, D. E., and Percival, C. J.: The
 542 first UK measurements of nitryl chloride using a chemical ionization mass spectrometer in central London in the summer of
 543 2012, and an investigation of the role of Cl atom oxidation, *Journal of Geophysical Research: Atmospheres*, 120, 5638–5657,
 544 <https://doi.org/10.1002/2014JD022629>, 2015.

545 Baulch, D. L., Duxbury, J., Grant, S., and Montague, D. C.: Evaluated kinetic data for high temperature reactions. Volume 4.
 546 Homogeneous gas phase reactions of halogen- and cyanide- containing species, *J. Phys. Chem. Ref. Data*, 10, 1–721, 1981.

547 Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Frank, P., Just, Th., Kerr, J. A., Pilling, M. J., Troe, J., Walker, R. W., and
 548 Warnatz, J.: Evaluated Kinetic Data for Combustion Modelling, *Journal of Physical and Chemical Reference Data*, 21, 411,
 549 <https://doi.org/10.1063/1.555908>, 1992.

550 Baulch, D. L., Cobos, C. J., Cox, R. A., Frank, P., Hayman, G., Just, Th., Kerr, J. A., Murrells, T., Pilling, M. J., Troe, J.,
 551 Walker, R. W., and Warnatz, J.: Evaluated Kinetic Data for Combustion Modeling. Supplement I, *Journal of Physical and
 552 Chemical Reference Data*, 23, 847–848, <https://doi.org/10.1063/1.555953>, 1994.

553 Bryukov, M. G., Slagle, I. R., and Knyazev, V. D.: Kinetics of Reactions of Cl Atoms with Methane and Chlorinated Methanes,
 554 *J. Phys. Chem. A*, 106, 10532–10542, <https://doi.org/10.1021/jp0257909>, 2002.

555 Budisulistiorini, S. H., Li, X., Bairai, S. T., Renfro, J., Liu, Y., Liu, Y. J., McKinney, K. A., Martin, S. T., McNeill, V. F., Pye,
 556 H. O. T., Nenes, A., Neff, M. E., Stone, E. A., Mueller, S., Knote, C., Shaw, S. L., Zhang, Z., Gold, A., and Surratt, J. D.:
 557 Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013
 558 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site, *Atmospheric Chemistry and Physics*,
 559 15, 8871–8888, <https://doi.org/10.5194/acp-15-8871-2015>, 2015.

560 Burkholder, J. B., Sander, S. P., Abbott, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D.
 561 M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL
 562 Publication 15-10., Jet Propulsion Laboratory, Pasadena, 2015.

563 Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric
 564 chemistry problems, *Atmospheric Chemistry and Physics*, 8, 5477–5487, <https://doi.org/10.5194/acp-8-5477-2008>, 2008.

565 Cohen, N. and Westberg, K. R.: Chemical Kinetic Data Sheets for High-Temperature Reactions. Part II, Journal of Physical
566 and Chemical Reference Data, 20, 1211–1311, <https://doi.org/10.1063/1.555901>, 1991.

567 Darwent, B. B.: Bond Dissociation Energies in Simple Molecules, U.S. National Bureau of Standards, 1970.

568 Day, D. A., Wooldridge, P. J., Dillon, M. B., Thornton, J. A., and Cohen, R. C.: A thermal dissociation laser-induced
569 fluorescence instrument for in situ detection of NO₂, peroxy nitrates, alkyl nitrates, and HNO₃, Journal of Geophysical
570 Research: Atmospheres, 107, ACH 4-1-ACH 4-14, <https://doi.org/10.1029/2001JD000779>, 2002.

571 Decker, Z. C. J., Novak, G. A., Aikin, K., Veres, P. R., Neuman, J. A., Bourgeois, I., Bui, T. P., Campuzano-Jost, P., Coggon,
572 M. M., Day, D. A., DiGangi, J. P., Diskin, G. S., Dollner, M., Franchin, A., Fredrickson, C. D., Froyd, K. D., Gkatzelis, G. I.,
573 Guo, H., Hall, S. R., Halliday, H., Hayden, K., Holmes, C. D., Jimenez, J. L., Kupc, A., Lindaas, J., Middlebrook, A. M.,
574 Moore, R. H., Nault, B. A., Nowak, J. B., Pagonis, D., Palm, B. B., Peischl, J., Piel, F. M., Rickly, P. S., Robinson, M. A.,
575 Rollins, A. W., Ryerson, T. B., Schill, G. P., Sekimoto, K., Thompson, C. R., Thornhill, K. L., Thornton, J. A., Ullmann, K.,
576 Warneke, C., Washenfelder, R. A., Weinzierl, B., Wiggins, E. B., Williamson, C. J., Winstead, E. L., Wisthaler, A., Womack,
577 C. C., and Brown, S. S.: Airborne Observations Constrain Heterogeneous Nitrogen and Halogen Chemistry on Tropospheric
578 and Stratospheric Biomass Burning Aerosol, Geophysical Research Letters, 51, e2023GL107273,
579 <https://doi.org/10.1029/2023GL107273>, 2024.

580 Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.: Mercury as a Global Pollutant: Sources, Pathways,
581 and Effects, Environ. Sci. Technol., 47, 4967–4983, <https://doi.org/10.1021/es305071v>, 2013.

582 Frenzel, A., Scheer, V., Sikorski, R., George, Ch., Behnke, W., and Zetzsch, C.: Heterogeneous Interconversion Reactions of
583 BrNO₂, ClNO₂, Br₂, and Cl₂, J. Phys. Chem. A, 102, 1329–1337, <https://doi.org/10.1021/jp973044b>, 1998.

584 Furlani, T. C., Veres, P. R., Dawe, K. E. R., Neuman, J. A., Brown, S. S., VandenBoer, T. C., and Young, C. J.: Validation of
585 a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride, Atmospheric Measurement
586 Techniques, 14, 5859–5871, <https://doi.org/10.5194/amt-14-5859-2021>, 2021.

587 Guelachvili, G., Niay, P., and Bernage, P.: Infrared bands of HCl and DCl by Fourier transform spectroscopy: Dunham
588 coefficients for HCl, DCl, and TCl, Journal of Molecular Spectroscopy, 85, 271–281, [https://doi.org/10.1016/0022-2852\(81\)90200-9](https://doi.org/10.1016/0022-2852(81)90200-9), 1981.

590 Hagen, C. L., Lee, B. C., Franka, I. S., Rath, J. L., VandenBoer, T. C., Roberts, J. M., Brown, S. S., and Yalin, A. P.: Cavity
591 ring-down spectroscopy sensor for detection of hydrogen chloride, Atmospheric Measurement Techniques, 7, 345–357,
592 <https://doi.org/10.5194/amt-7-345-2014>, 2014.

593 Halfacre, J. W. and Simpson, W. R.: Polar Tropospheric Ozone Depletion Events, in: Chemistry in the Cryosphere, vol.
594 Volume 3, WORLD SCIENTIFIC, 411–452, https://doi.org/10.1142/9789811230134_0008, 2022.

595 Halfacre, J. W., Stewart, J., Herndon, S. C., Roscioli, J. R., Dyroff, C., Yacovitch, T. I., Flynn, M., Andrews, S. J., Brown, S.
596 S., Veres, P. R., and Edwards, P. M.: Using tunable infrared laser direct absorption spectroscopy for ambient hydrogen chloride
597 detection: HCl-TILDAS, Atmospheric Measurement Techniques, 16, 1407–1429, <https://doi.org/10.5194/amt-16-1407-2023>,
598 2023.

599 Heimerl, J. M. and Coffee, T. P.: The unimolecular ozone decomposition reaction, Combustion and Flame, 35, 117–123,
600 [https://doi.org/10.1016/0010-2180\(79\)90015-4](https://doi.org/10.1016/0010-2180(79)90015-4), 1979.

601 Hellén, H., Kouznetsov, R., Kraft, K., Seppälä, J., Vestenius, M., Jalkanen, J.-P., Laakso, L., and Hakola, H.: Shipping and
602 algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol
603 on Utö Island in the Baltic Sea, Atmospheric Chemistry and Physics, 24, 4717–4731, <https://doi.org/10.5194/acp-24-4717-2024>, 2024.

605 Huffman, J. A., Docherty, K. S., Aiken, A. C., Cubison, M. J., Ulbrich, I. M., DeCarlo, P. F., Sueper, D., Jayne, J. T., Worsnop,
606 D. R., Ziemann, P. J., and Jimenez, J. L.: Chemically-resolved aerosol volatility measurements from two megacity field studies,
607 Atmos. Chem. Phys., 9, 7161–7182, <https://doi.org/10.5194/acp-9-7161-2009>, 2009.

608 Ianni, J. C.: - A comparison of the Bader-Deuflhard and the Cash-Karp Runge-Kutta integrators for the GRI-MECH 3.0 model
609 based on the chemical kinetics code Kintecus, in: Computational Fluid and Solid Mechanics 2003, edited by: Bathe, K. J.,
610 Elsevier Science Ltd, Oxford, 1368–1372, <https://doi.org/10.1016/B978-008044046-0.50335-3>, 2003.

611 Ianni, J. C.: *Kintecus*, 2022.

612 Jaeglé, L., Shah, V., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B. H., McDuffie, E. E., Fibiger, D., Brown, S. S., Veres, P.,
 613 Sparks, T. L., Ebbin, C. J., Wooldridge, P. J., Kenagy, H. S., Cohen, R. C., Weinheimer, A. J., Campos, T. L., Montzka, D.
 614 D., Digangi, J. P., Wolfe, G. M., Hanisco, T., Schroder, J. C., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Sullivan, A. P.,
 615 Guo, H., and Weber, R. J.: Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States
 616 During the WINTER Aircraft Campaign, *Journal of Geophysical Research: Atmospheres*, 123, 12,368–12,393,
 617 <https://doi.org/10.1029/2018JD029133>, 2018.

618 Ji, Y., Huey, L. G., Tanner, D. J., Lee, Y. R., Veres, P. R., Neuman, J. A., Wang, Y., and Wang, X.: A vacuum ultraviolet ion
 619 source (VUV-IS) for iodide–chemical ionization mass spectrometry: a substitute for radioactive ion sources, *Atmospheric*
 620 *Measurement Techniques*, 13, 3683–3696, <https://doi.org/10.5194/amt-13-3683-2020>, 2020.

621 Kercher, J. P., Riedel, T. P., and Thornton, J. A.: Chlorine activation by N_2O_5 : simultaneous, in situ detection of ClNO_2 and
 622 N_2O_5 by chemical ionization mass spectrometry, *Atmospheric Measurement Techniques*, 2, 193–204,
 623 <https://doi.org/10.5194/amt-2-193-2009>, 2009.

624 Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang, Y., Shang, D., Wang,
 625 H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J., Shallcross, D. E., Lu, K., Guo, S., Hu, M., and
 626 Hallquist, M.: Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO_2 and
 627 subsequent gas- and particle-phase $\text{Cl}-\text{VOC}$ production, *Atmospheric Chemistry and Physics*, 18, 13013–13030,
 628 <https://doi.org/10.5194/acp-18-13013-2018>, 2018.

629 Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurtén, T., Worsnop, D. R., and Thornton, J. A.: An Iodide-Adduct High-
 630 Resolution Time-of-Flight Chemical-Ionization Mass Spectrometer: Application to Atmospheric Inorganic and Organic
 631 Compounds, *Environ. Sci. Technol.*, 48, 6309–6317, <https://doi.org/10.1021/es500362a>, 2014.

632 Lee, B. H., Lopez-Hilfiker, F. D., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., McDuffie, E. E., Fibiger, D. L., Veres,
 633 P. R., Brown, S. S., Campos, T. L., Weinheimer, A. J., Flocke, F. F., Norris, G., O’Mara, K., Green, J. R., Fiddler, M. N.,
 634 Bililign, S., Shah, V., Jaeglé, L., and Thornton, J. A.: Airborne Observations of Reactive Inorganic Chlorine and Bromine
 635 Species in the Exhaust of Coal-Fired Power Plants, *Journal of Geophysical Research: Atmospheres*, 123, 11,225–11,237,
 636 <https://doi.org/10.1029/2018JD029284>, 2018a.

637 Lee, B. H., Lopez-Hilfiker, F. D., Veres, P. R., McDuffie, E. E., Fibiger, D. L., Sparks, T. L., Ebbin, C. J., Green, J. R.,
 638 Schroder, J. C., Campuzano-Jost, P., Iyer, S., D’Ambro, E. L., Schobesberger, S., Brown, S. S., Wooldridge, P. J., Cohen, R.
 639 C., Fiddler, M. N., Bililign, S., Jimenez, J. L., Kurtén, T., Weinheimer, A. J., Jaegle, L., and Thornton, J. A.: Flight Deployment
 640 of a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen
 641 Oxide Species, *Journal of Geophysical Research: Atmospheres*, 123, 7670–7686, <https://doi.org/10.1029/2017JD028082>,
 642 2018b.

643 Liao, J., Huey, L. G., Liu, Z., Tanner, D. J., Cantrell, C. A., Orlando, J. J., Flocke, F. M., Shepson, P. B., Weinheimer, A. J.,
 644 Hall, S. R., Ullmann, K., Beine, H. J., Wang, Y., Ingall, E. D., Stephens, C. R., Hornbrook, R. S., Apel, E. C., Riemer, D.,
 645 Fried, A., Mauldin Iii, R. L., Smith, J. N., Staebler, R. M., Neuman, J. A., and Nowak, J. B.: High levels of molecular chlorine
 646 in the Arctic atmosphere, *Nature Geosci*, 7, 91–94, <https://doi.org/10.1038/ngeo2046>, 2014.

647 Liu, X., Qu, H., Huey, L. G., Wang, Y., Sjostedt, S., Zeng, L., Lu, K., Wu, Y., Hu, M., Shao, M., Zhu, T., and Zhang, Y.: High
 648 Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain, *Environ. Sci. Technol.*,
 649 51, 9588–9595, <https://doi.org/10.1021/acs.est.7b03039>, 2017.

650 Macken, K. V. and Sidebottom, H. W.: The reactions of methyl radicals with chloromethanes, *International Journal of*
 651 *Chemical Kinetics*, 11, 511–527, <https://doi.org/10.1002/kin.550110505>, 1979.

652 Mahmud, K., Kim, J. S., and Fontijn, A.: A high-temperature photochemical kinetics study of the oxygen atom+ hydrogen
 653 chloride reaction from 350 to 1480 K, *Journal of Physical Chemistry*, 94, 2994–2998, 1990.

654 Manion, J. A., Huie, R. E., Levin, R. D., Burgess Jr., D. R., Orkin, V. L., Tsang, W., McGivern, W. S., Hudgens, J. W.,
 655 Knyazev, V. D., Atkinson, D. B., Chai, E., Tereza, A. M., Lin, C.-Y., Allison, T. C., Mallard, W. G., Westley, F., Herron, J.
 656 T., Hampson, R. F., and Frizzell, D. H.: NIST Chemical Kinetics Database (NIST Standard Reference Database 17, Version
 657 7.0 (Web Version), Release 1.6.8, Data version 2015.09), 2015.

658 McManus, J. B., Zahniser, M. S., and Nelson, D. D.: Dual quantum cascade laser trace gas instrument with astigmatic Herriott
 659 cell at high pass number, *Appl. Opt.*, 50, A74, <https://doi.org/10.1364/AO.50.000A74>, 2011.

660 McManus, J. B., Zahniser, M. S., Nelson, D. D., Shorter, J. H., Herndon, S. C., Jervis, D., Agnese, M., McGovern, R.,
 661 Yacovitch, T. I., and Roscioli, J. R.: Recent progress in laser-based trace gas instruments: performance and noise analysis,
 662 *Appl. Phys. B*, 119, 203–218, <https://doi.org/10.1007/s00340-015-6033-0>, 2015.

663 McNamara, S. M., Kolesar, K. R., Wang, S., Kirpes, R. M., May, N. W., Gunsch, M. J., Cook, R. D., Fuentes, J. D., Hornbrook,
 664 R. S., Apel, E. C., China, S., Laskin, A., and Pratt, K. A.: Observation of Road Salt Aerosol Driving Inland Wintertime
 665 Atmospheric Chlorine Chemistry, *ACS Cent. Sci.*, 6, 684–694, <https://doi.org/10.1021/acscentsci.9b00994>, 2020.

666 Mielke, L. H., Furgeson, A., and Osthoff, H. D.: Observation of ClNO_2 in a Mid-Continental Urban Environment, *Environ.*
 667 *Sci. Technol.*, 45, 8889–8896, <https://doi.org/10.1021/es201955u>, 2011.

668 Moravek, A., VandenBoer, T. C., Finewax, Z., Pagonis, D., Nault, B. A., Brown, W. L., Day, D. A., Handschy, A. V., Stark,
 669 H., Ziemann, P., Jimenez, J. L., de Gouw, J. A., and Young, C. J.: Reactive Chlorine Emissions from Cleaning and Reactive
 670 Nitrogen Chemistry in an Indoor Athletic Facility, *Environ. Sci. Technol.*, 56, 15408–15416,
 671 <https://doi.org/10.1021/acs.est.2c04622>, 2022.

672 Orlando, J. J., Tyndall, G. S., Apel, E. C., Riemer, D. D., and Paulson, S. E.: Rate coefficients and mechanisms of the reaction
 673 of Cl -atoms with a series of unsaturated hydrocarbons under atmospheric conditions, *International Journal of Chemical*
 674 *Kinetics*, 35, 334–353, <https://doi.org/10.1002/kin.10135>, 2003.

675 Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D.,
 676 Quinn, P. K., Dibb, J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J., Fehsenfeld, F. C., and Brown, S. S.: High
 677 levels of nitryl chloride in the polluted subtropical marine boundary layer, *Nature Geoscience*, 1, 324–328,
 678 <https://doi.org/10.1038/ngeo177>, 2008.

679 Phillips, G. J., Tang, M. J., Thieser, J., Brickwedde, B., Schuster, G., Bohn, B., Lelieveld, J., and Crowley, J. N.: Significant
 680 concentrations of nitryl chloride observed in rural continental Europe associated with the influence of sea salt chloride and
 681 anthropogenic emissions, *Geophysical Research Letters*, 39, <https://doi.org/10.1029/2012GL051912>, 2012.

682 R Core Team: R: A language and environment for statistical computing., 2021.

683 Raff, J. D., Njegic, B., Chang, W. L., Gordon, M. S., Dabdub, D., Gerber, R. B., and Finlayson-Pitts, B. J.: Chlorine activation
 684 indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride, *Proceedings of the National*
 685 *Academy of Sciences*, 106, 13647–13654, <https://doi.org/10.1073/pnas.0904195106>, 2009.

686 Riedel, T. P., Bertram, T. H., Crisp, T. A., Williams, E. J., Lerner, B. M., Vlasenko, A., Li, S.-M., Gilman, J., de Gouw, J.,
 687 Bon, D. M., Wagner, N. L., Brown, S. S., and Thornton, J. A.: Nitryl Chloride and Molecular Chlorine in the Coastal Marine
 688 Boundary Layer, *Environ. Sci. Technol.*, 46, 10463–10470, <https://doi.org/10.1021/es204632r>, 2012.

689 Riedel, T. P., Wagner, N. L., Dubé, W. P., Middlebrook, A. M., Young, C. J., Öztürk, F., Bahreini, R., VandenBoer, T. C.,
 690 Wolfe, D. E., Williams, E. J., Roberts, J. M., Brown, S. S., and Thornton, J. A.: Chlorine activation within urban or power
 691 plant plumes: Vertically resolved ClNO_2 and Cl_2 measurements from a tall tower in a polluted continental setting, *Journal of*
 692 *Geophysical Research: Atmospheres*, 118, 8702–8715, <https://doi.org/10.1002/jgrd.50637>, 2013.

693 Riva, M., Pospisilova, V., Frege, C., Perrier, S., Bansal, P., Jorga, S., Sturm, P., Thornton, J. A., Rohner, U., and Lopez-
 694 Hilfiker, F.: Evaluation of a reduced-pressure chemical ion reactor utilizing adduct ionization for the detection of gaseous
 695 organic and inorganic species, *Atmospheric Measurement Techniques*, 17, 5887–5901, <https://doi.org/10.5194/amt-17-5887-2024>, 2024.

696 Robinson, M. A., Neuman, J. A., Huey, L. G., Roberts, J. M., Brown, S. S., and Veres, P. R.: Temperature-dependent sensitivity
 697 of iodide chemical ionization mass spectrometers, *Atmospheric Measurement Techniques*, 15, 4295–4305,
 698 <https://doi.org/10.5194/amt-15-4295-2022>, 2022.

699 Roscioli, J. R., Zahniser, M. S., Nelson, D. D., Herndon, S. C., and Kolb, C. E.: New Approaches to Measuring Sticky
 700 Molecules: Improvement of Instrumental Response Times Using Active Passivation, *J. Phys. Chem. A*, 120, 1347–1357,
 701 <https://doi.org/10.1021/acs.jpca.5b04395>, 2016.

703 Sarwar, G., Simon, H., Bhave, P., and Yarwood, G.: Examining the impact of heterogeneous nitryl chloride production on air
 704 quality across the United States, *Atmospheric Chemistry and Physics*, 12, 6455–6473, <https://doi.org/10.5194/acp-12-6455-2012>, 2012.

706 Sarwar, G., Simon, H., Xing, J., and Mathur, R.: Importance of tropospheric ClNO₂ chemistry across the Northern
 707 Hemisphere, *Geophysical Research Letters*, 41, 4050–4058, <https://doi.org/10.1002/2014GL059962>, 2014.

708 Simon, H., Kimura, Y., McGaughey, G., Allen, D. T., Brown, S. S., Osthoff, H. D., Roberts, J. M., Byun, D., and Lee, D.:
 709 Modeling the impact of ClNO₂ on ozone formation in the Houston area, *J. Geophys. Res.*, 114, D00F03,
 710 <https://doi.org/10.1029/2008JD010732>, 2009.

711 Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and von Glasow, R.: Tropospheric Halogen Chemistry:
 712 Sources, Cycling, and Impacts, *Chem. Rev.*, 115, 4035–4062, <https://doi.org/10.1021/cr5006638>, 2015.

713 Sommariva, R., Hollis, L. D. J., Sherwen, T., Baker, A. R., Ball, S. M., Bandy, B. J., Bell, T. G., Chowdhury, M. N., Cordell,
 714 R. L., Evans, M. J., Lee, J. D., Reed, C., Reeves, C. E., Roberts, J. M., Yang, M., and Monks, P. S.: Seasonal and geographical
 715 variability of nitryl chloride and its precursors in Northern Europe, *Atmospheric Science Letters*, 19, e844,
 716 <https://doi.org/10.1002/asl.844>, 2018.

717 Srinivasan, N. K., Su, M.-C., Sutherland, J. W., and Michael, J. V.: Reflected Shock Tube Studies of High-Temperature Rate
 718 Constants for OH + CH₄ → CH₃ + H₂O and CH₃ + NO₂ → CH₃O + NO, *J. Phys. Chem. A*, 109, 1857–1863,
 719 <https://doi.org/10.1021/jp040679j>, 2005.

720 Tan, Z., Fuchs, H., Hofzumahaus, A., Bloss, W. J., Bohn, B., Cho, C., Hohaus, T., Holland, F., Lakshmis, C., Liu, L., Monks,
 721 P. S., Novelli, A., Niether, D., Rohrer, F., Tillmann, R., Valkenburg, T. S. E., Vardhan, V., Kiendler-Scharr, A., Wahner, A.,
 722 and Sommariva, R.: Seasonal variation in nitryl chloride and its relation to gas-phase precursors during the JULIAC campaign
 723 in Germany, *Atmospheric Chemistry and Physics*, 22, 13137–13152, <https://doi.org/10.5194/acp-22-13137-2022>, 2022.

724 Thaler, R. D., Mielke, L. H., and Osthoff, H. D.: Quantification of Nitryl Chloride at Part Per Trillion Mixing Ratios by
 725 Thermal Dissociation Cavity Ring-Down Spectroscopy, *Anal. Chem.*, 83, 2761–2766, <https://doi.org/10.1021/ac200055z>,
 726 2011.

727 Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N., Bohn, B., Li, X., Kecorius, S., Größ,
 728 J., Shao, M., Wiedensohler, A., Zhang, Y., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning:
 729 investigations of the causes and impacts on ozone production in a polluted region of northern China, *Atmospheric Chemistry
 730 and Physics*, 16, 14959–14977, <https://doi.org/10.5194/acp-16-14959-2016>, 2016.

731 Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius, S., Wiedensohler, A., Zhang, Y., and
 732 Wang, T.: Heterogeneous N₂O₅ uptake coefficient and production yield of ClNO₂ in polluted northern China: roles of aerosol
 733 water content and chemical composition, *Atmospheric Chemistry and Physics*, 18, 13155–13171, <https://doi.org/10.5194/acp-18-13155-2018>, 2018.

735 Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S., Dubé, W. P., Wolfe, G. M., Quinn, P.
 736 K., Middlebrook, A. M., Alexander, B., and Brown, S. S.: A large atomic chlorine source inferred from mid-continental
 737 reactive nitrogen chemistry, *Nature*, 464, 271–274, <https://doi.org/10.1038/nature08905>, 2010.

738 Tripathi, N., Sahu, L. K., Patel, K., Kumar, A., and Yadav, R.: Ambient air characteristics of biogenic volatile organic
 739 compounds at a tropical evergreen forest site in Central Western Ghats of India, *J. Atmos. Chem.*, 78, 139–159,
 740 <https://doi.org/10.1007/s10874-021-09415-y>, 2021.

741 Troe, J.: Refined Representation of Falloff Curves for the Reaction HO + NO₂ + N₂ → (HONO₂, HOONO) + N₂, *J. Phys.
 742 Chem. A*, 116, 6387–6393, <https://doi.org/10.1021/jp212095n>, 2012.

743 Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dubé, W. P., Kim, S., Middlebrook, A. M., Öztürk, F.,
 744 Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N₂O₅
 745 uptake coefficients and nocturnal NO₂ removal rates determined from ambient wintertime measurements, *Journal of
 746 Geophysical Research: Atmospheres*, 118, 9331–9350, <https://doi.org/10.1002/jgrd.50653>, 2013.

747 Wallington, T., Ammann, M., Cox, R. A., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Mellouki, A. W., and
 748 Troe, J.: Evaluated Kinetic Data for Atmospheric Chemistry, 2021.

749 Wang, C., Liggio, J., Wentzell, J. J. B., Jorga, S., Folkerson, A., and Abbatt, J. P. D.: Chloramines as an important
 750 photochemical source of chlorine atoms in the urban atmosphere, *Proceedings of the National Academy of Sciences*, 120,
 751 e2220889120, <https://doi.org/10.1073/pnas.2220889120>, 2023.

752 Wang, H., Yuan, B., Zheng, E., Zhang, X., Wang, J., Lu, K., Ye, C., Yang, L., Huang, S., Hu, W., Yang, S., Peng, Y., Qi, J.,
 753 Wang, S., He, X., Chen, Y., Li, T., Wang, W., Huangfu, Y., Li, X., Cai, M., Wang, X., and Shao, M.: Formation and impacts
 754 of nitryl chloride in Pearl River Delta, *Atmospheric Chemistry and Physics*, 22, 14837–14858, <https://doi.org/10.5194/acp-22-14837-2022>, 2022.

756 Wang, T., Tham, Y. J., Xue, L., Li, Q., Zha, Q., Wang, Z., Poon, S. C. N., Dubé, W. P., Blake, D. R., Louie, P. K. K., Luk, C.
 757 W. Y., Tsui, W., and Brown, S. S.: Observations of nitryl chloride and modeling its source and effect on ozone in the planetary
 758 boundary layer of southern China: CINO_2 IN PBL OF CHINA, *J. Geophys. Res. Atmos.*, 121, 2476–2489,
 759 <https://doi.org/10.1002/2015JD024556>, 2016.

760 Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee, B.
 761 H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., and Liao, H.: The role of chlorine in global tropospheric
 762 chemistry, *Atmospheric Chemistry and Physics*, 19, 3981–4003, <https://doi.org/10.5194/acp-19-3981-2019>, 2019.

763 Wang, X., Jacob, D. J., Downs, W., Zhai, S., Zhu, L., Shah, V., Holmes, C. D., Sherwen, T., Alexander, B., Evans, M. J.,
 764 Eastham, S. D., Neuman, J. A., Veres, P. R., Koenig, T. K., Volkamer, R., Huey, L. G., Bannan, T. J., Percival, C. J., Lee, B.
 765 H., and Thornton, J. A.: Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants, *Atmospheric Chemistry
 766 and Physics*, 21, 13973–13996, <https://doi.org/10.5194/acp-21-13973-2021>, 2021.

767 Wang, Z., Wang, W., Tham, Y. J., Li, Q., Wang, H., Wen, L., Wang, X., and Wang, T.: Fast heterogeneous N_2O_5 uptake and
 768 CINO_2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain,
 769 *Atmospheric Chemistry and Physics*, 17, 12361–12378, <https://doi.org/10.5194/acp-17-12361-2017>, 2017.

770 Weissman, M. and Benson, S. W.: Heat of formation of the CHCl_2 radical. Bond dissociation energies in chloromethanes and
 771 chloroethanes, *J. Phys. Chem.*, 87, 243–244, <https://doi.org/10.1021/j100225a014>, 1983.

772 Westenberg, A. A. and deHaas, N.: Rates of $\text{H}+\text{CH}_3\text{X}$ reactions, *The Journal of Chemical Physics*, 62, 3321–3325,
 773 <https://doi.org/10.1063/1.430925>, 1975.

774 Wilkerson, J., Sayres, D. S., Smith, J. B., Allen, N., Rivero, M., Greenberg, M., Martin, T., and Anderson, J. G.: In situ
 775 observations of stratospheric HCl using three-mirror integrated cavity output spectroscopy, *Atmospheric Measurement
 776 Techniques Discussions*, 1–38, <https://doi.org/10.5194/amt-2021-6>, 2021.

777 World Meteorological Organization: *Scientific Assessment of Ozone Depletion: 2022*, WMO, Geneva, 2022.

778 Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y., Xu, Z., Wang, Z., Xu, Z., Nie, W., Ding, A., and Wang, T.: Significant production of CINO_2 and possible source of Cl_2 from N_2O_5 uptake at a suburban site in eastern China, *Atmospheric
 779 Chemistry and Physics*, 20, 6147–6158, <https://doi.org/10.5194/acp-20-6147-2020>, 2020.

781 Xiao, F., Sasi, P. C., Yao, B., Kubátová, A., Golovko, S. A., Golovko, M. Y., and Soli, D.: Thermal Stability and
 782 Decomposition of Perfluoroalkyl Substances on Spent Granular Activated Carbon, *Environ. Sci. Technol. Lett.*, 7, 343–350,
 783 <https://doi.org/10.1021/acs.estlett.0c00114>, 2020.

784 Ye, C., Yuan, B., Lin, Y., Wang, Z., Hu, W., Li, T., Chen, W., Wu, C., Wang, C., Huang, S., Qi, J., Wang, B., Wang, C., Song,
 785 W., Wang, X., Zheng, E., Krechmer, J. E., Ye, P., Zhang, Z., Wang, X., Worsnop, D. R., and Shao, M.: Chemical
 786 characterization of oxygenated organic compounds in the gas phase and particle phase using iodide CIMS with FIGAERO in
 787 urban air, *Atmospheric Chemistry and Physics*, 21, 8455–8478, <https://doi.org/10.5194/acp-21-8455-2021>, 2021.

788 Young, C. J., Washenfelder, R. A., Roberts, J. M., Mielke, L. H., Osthoff, H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P.
 789 R., Cochran, A. K., VandenBoer, T. C., Flynn, J., Grossberg, N., Haman, C. L., Lefer, B., Stark, H., Graus, M., de Gouw, J.,
 790 Gilman, J. B., Kuster, W. C., and Brown, S. S.: Vertically Resolved Measurements of Nighttime Radical Reservoirs in Los
 791 Angeles and Their Contribution to the Urban Radical Budget, *Environ. Sci. Technol.*, 46, 10965–10973,
 792 <https://doi.org/10.1021/es302206a>, 2012.

793 Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W., Tham, Y. J., Chen, T., Zheng, P., Li, H., Shan, Y., Wang, X., Xue, L., Zhou, Y.,
 794 Yue, D., Ou, Y., Gao, J., Lu, K., Brown, S. S., Zhang, Y., and Wang, T.: Heterogeneous N_2O_5 reactions on atmospheric

795 aerosols at four Chinese sites: improving model representation of uptake parameters, *Atmospheric Chemistry and Physics*, 20,
796 4367–4378, <https://doi.org/10.5194/acp-20-4367-2020>, 2020.

797 Zhou, W., Zhao, J., Ouyang, B., Mehra, A., Xu, W., Wang, Y., Bannan, T. J., Worrall, S. D., Priestley, M., Bacak, A., Chen,
798 Q., Xie, C., Wang, Q., Wang, J., Du, W., Zhang, Y., Ge, X., Ye, P., Lee, J. D., Fu, P., Wang, Z., Worsnop, D., Jones, R.,
799 Percival, C. J., Coe, H., and Sun, Y.: Production of N_2O_5 and ClNO_2 in summer in urban Beijing, China, *Atmospheric*
800 *Chemistry and Physics*, 18, 11581–11597, <https://doi.org/10.5194/acp-18-11581-2018>, 2018.

801