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Abstract. Nitryl chloride (CINO) is a reservoir species of chlorine atoms and nitrogen oxides, both of which play important
roles in atmospheric chemistry. To date, all ambient CINO2 observations have been obtained by chemical ionization mass
spectrometry (CIMS). In this work, Thermal Dissociation Tunable Infrared Laser Differential Absorption Spectrometer (TD-
TILDAS) is shown to be a viable method for quantifying CINO: in laboratory and field settings. This technique relies on the
thermal dissociation of CINOzto createchlorineradicals, which undergo fast reactions with hydrocarbons to produce hydrogen
chloride (HCI) thatis detectable by the TILDAS instrument. Complete quantitative conversion of CINO2 to HCI was achieved
at temperatures > 400°C, achieving 1 Hz measurement precision of 11 + 1 pptv (3¢ limits of detection of 34 + 2 pptv) during
laboratory comparisons with other CINO, detection methods. After blank- and line loss-corrections, method accuracy is
estimated to be within + 5%. Performance metrics of TD-TILDAS during ambientsampling were a 1Hz precision of 19 + 1
pptv and 3¢ limits of detection of 57 + 3 pptv), which is directly comparable to previously reported CINO: detection by
quadrupole CIMS. Thus, TD-TILDAS can provide an alternative analytical approach for a direct measurement of CINO: that
can complementexisting datasets and future studies. The quantitative nature of TD-TILDAS also makes it a potentially useful
tool for the calibration of CIMS instruments. However, interpretation of ambient data may be petentially-complicated by
potential interferences from unaccounted-for sources of thermolabile chlorine, such as CINO, chloramines, and
organochlorides.
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1 Introduction

Nitryl chloride (CINO,) is an important nighttime reservoir of two highly reactive atmospheric species: atomic Cl and NO,.
Atomic ClI radicals play multifaceted roles in oxidation chemistry throughout the boundary layer (Simpson et al., 2015),
including hydrocarbon oxidation (Atkinson et al., 2006a, and references therein), 0ozone production and destruction (Halfacre
and Simpson, 2022; Liao etal., 2014; Sarwar etal., 2012, 2014; Simonet al., 2009; Wang et al., 2016), and mercury depletion
(Driscolletal.,2013). However, the quantitative magnitude to which they affect these processes remains an open question. On
the other hand, NO, is one of the principal components of photochemical smogand the major anthropogenic precursor for
ozone production. Accounting for all sources of NO: is therefore important for accurately informing chemical and air quality
models.

The first in situ observation of ambient CINO, was reported by Osthoff et al. (2008) utilising chemical ionization
mass spectrometry (CIMS) in the polluted marine boundary layer. CIMS has since been used in a multitude of studies for
additional CINO2 observations worldwide, including North America (Jaegléetal., 2018; Lee et al., 2018a, b; Mielke etal.,
2011; Riedel etal., 2012, 2013; Thornton et al., 2010; Wagner et al., 2013; Young et al., 2012), Europe (Bannan et al., 2015;
Phillips etal., 2012; Sommarivaetal., 2018; Tan etal., 2022), Asia (Le Breton etal., 2018; Liu et al., 2017; Thametal., 2016,
2018; Wangetal., 2022,2016,2017; Xiaetal., 2020; Ye et al., 2021; Yu et al., 2020; Zhou et al., 2018), in the presence of
snow/ice (Kercher et al., 2009; McNamaraetal., 2020), and in indoor air quality studies (Moravek etal., 2022). Limits of
detection are often reported at 10° pptv under 25-30's averaging times, (Bannan et al., 2015; Kercher et al., 2009; McNamara
etal., 2020; Mielkeetal.,2011),and has been recently reportedat sub-pptv for 1 s measurements (Decker etal., 2024). Typical
observed mixing ratios range from 10— 103 pptv, with the highest levels observed in coastal polluted regions, where sources
of nitrogen oxides and Cl--rich aerosols are plentiful (Wang et al., 2019, 2021, and references therein).

While CIMS is a highly effective technique, CINO2 quantitation involves non-trivial calibration work. A laboratory
source of CINO2 may be readily generated by flowing a known amount of N2Os across a Cl--containing saltbed (or Cl2 across
NO2'-containing salt bed), butits quantitation assumes unit conversion out of the salt bed (e.g., Osthoff etal., 2008) or requires
additional equipment to observe CINO2 thermal dissociation products, such as a N2Osthermal dissociation-cavity ring down
spectrometer (TR-CRDS) (Thaler et al., 2011) or a cavity attenuated phase shift spectrometer (CAPS) (e.g., Tan etal., 2022).
Further, I-based CIMS demonstrates variable sensitivities based on the temperature and relative humidity of the ion-molecule
reactor, thereby requiringsubstantial laboratory work to develop humidity- and temperature-dependent calibration factors (Lee
etal., 2014; Robinson et al., 2022). Thus, there is an opportunity to innovate a method that can detect CINO: directly without
the need for supplemental instrumentation.

The advantages of optical methods include analyte specificity and near absolute detection, utilizing well-defined
physical absorption properties,and requiringonly infrequent calibrations or method validation procedures. Thaler etal. (2011)
previously used a TR-CRDS system {tuned-forthe-detection-ofperoxyacyl-nitrates)to detect CINO2 as NO, by absorption at
405 nmunder laboratory conditions, achieving CIMS-competitive metrics (e.g., reported 20 pptv limit of detectionfor 1 minute
averaging). Thiswas achievedby flowingsample airthrough bothan unheated reference pathway anda heated (450°C) sample
pathway, under which CINOz would thermally dissociate into Cl radicals and NO: (Reaction R1).

CINO; (g)+ heat — Cl(q) + NO2—(q) (R1)
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The difference in observed NO2 signal between the two channels provided a quantitative CINO2 measurement. However, its
use for conducting field measurements was reported to be limited, as the thermal degradation of alkyl nitrates (i.e., PAN) into
NO2 cannot be distinguished from NO originating from CINO: due to overlapping thermal dissociation profiles.

For this same thermal-dissociation setup, product chlorine radicals will react quickly (e.g., Cl radical lifetime of 0.2
s for typical CHs mixing ratios of 2 ppmv and kaos = 1 x 10-13 cm? molecule* st (Bryukov et al., 2002)) with ambient
hydrocarbons (e.g., methane) to form hydrogen chloride (HCI), which is a stable reservoir species for reactive chlorine
(Reaction R2).

ClI (g)+ RH (q)— HCI(q) + R(q) (R2)

Several optical methods for the high-frequency and precise detection of HCI have recently been reported that overcome
historical challenges with its sampling (Furlani etal., 2021; Hagen et al., 2014; Halfacre et al., 2023; Wilkerson et al., 2021),
making them attractive candidates for an alternative thermal dissociation approach for the detection of CINO.. In this work,
we demonstrate the coupling of a thermal dissociation furnace to HCI-TILDAS (TD-TILDAS) for quantitative detection of
CINOz as HCI. Compared with CIMS, TD-TILDAS is a lower time-cost method for determining CINO2 mixing ratios,

involving less experimental calibration work and simpler data processing as a direct method.

2 Methods
2.1 CINO, Generation

CINO2 was synthesized by flowing Cl2 across a nitrite-rich slurry, as described by Thaler et al. (2011) and shown by Reaction
R3.

Cl2(g) + NO2(aq) <> CINOz (g) + Cl-(aq) (R3)

However, it is believed the CINO2, once produced, may react further by dissolving into the water, hydrolyzing, and producing
nitronium and chloride ions (R4) (Frenzel et al., 1998).

CINO2(g) + H20 (I) «» CI- (ag) + NO2* (aq) (R4)

The nitronium ion can then react with NO2- to produce N20Os, which exists in equilibrium with NO2 (R5).

N204 (g) <> NOz2 (g) + NO2 (q) (R5)

As detailed by Thaleretal. (2011), this chemistry can be mitigated by minimizing the residence time of CINO2 in the reaction
vessel and, to a lesser extent, by increasing the Cl- content of the slurry to encourage the equilibrium in R4 towards CINO..
Therefore, we composed our slurry using sodium chloride (>99.5% pure, BioXtra, Sigma Aldrich product no S7653-5KG,
USA) and sodium nitrite (99%, extra pure, Acros Organics Code 196620010, Belgium) at a mole ratio of 100:1 CI:NOz,
wetting with 1 8MQ deionized water (Millipore). The slurry was housed in ~10 cm of 1.25 cm diameter PFA tubing. Varied
flow rates (0.5-5 mL min-t) of 10 ppmv Cl2 (diluted in nitrogen, BOC product no. 150916-AV-B, United Kingdom) were
injected into a dilution flow (ranging from 200-2499.5 mL min-t) of NOx-scrubbed compressed air (using trap composed of
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50% Sofnofil (Molecular Products Ltd., Essex, United Kingdom) and 50% activated carbon) that was subsequently passed
overtheslurry,generating CINOz. A portion of the dilutionflowwas directed into a bubbler containing 1 8MQ deionized water
prior to entering the slurry to maintain a humid environment and prevent the slurry from drying out. A schematic diagram of
this setup is presented in Fig. 1a.

2.2 TD-TILDAS

The TILDAS instrument and operation technique have beenwell-described previously (McManus etal., 2011, 2015). HCI-
TILDAS was developed by Aerodyne Research, Inc. and characterized by Halfacre et al. (2023). Briefly, air is sampled at 3.0
L min-tthrough a heated (50°C) quartz “inertial inlet,” which is a type of virtual impactor used to remove particles >300 nm
from the sample matrix. Sample air continues its flow through 3 m of heated (50 °C) tubing into the Herriott cell (204 m
pathlength) inside the TILDAS. HCI is then detected via a mid-IR inter-band cascade laser that probes the strong R(1) H35Cl
absorption line at 2925.89645 cm within the (1-0) rovibrational absorption band (Guelachvili et al., 1981).

Nitryl chloride was converted to HCI for detection by TILDAS via thermal dissociation and the subsequent reaction of Cl
radicals with hydrocarbons, namely methane (Reactions R1-R2) (Thaler et al., 2011). While modelling results predicted

ambient mixing ratios of methane (=2 ppmv) are sufficient for achieving unit conversion of 1 ppbv CINO; to HCI (Sect. 3.1),

Fthe sample flow was additionally spiked with propane (BOC Limited, productno. 34-A) -to a mixing ratio of 5 ppmv to both
ensure reaction completeness and outcompete Cl wall losses, as the rate constant for the reaction between Cl and propane is 3

orders of magnitude faster than with methane (Atkinson etal., 2006a). Next, the sample was directedto a 90 cm length of
quartz tubing (9.5mm OD, 7.5 mm ID) housed within a furnace (Carbolite Gero TS1 12/60/450) upstream of the inertial inlet.
Sixty centimetres of thistubing is held within the heated region of the furnace, resulting in a residence time of ~500 ms under

a flowrate of 3 L mint, The internal temperature of the furnace is monitored using the furnace’s inbuilt temperature sensors

and logged using the furnace software. To mitigate HCI surface interactions after CINO2-conversion, perfluorobutane-1-

sulfonic acid (PFBS; Merck, product no. 562629, United Kingdom) vapor was introduced just after the furnace to actively
passivate tubing and inlet surfaces, #nprove-improving HCI transmission to the TILDAS inlet by 1) displacing HCI sorbed to

surfaces and 2) increasing the non-polar character of surfaces by presenting a fluorinated chain to passing analytes (Halfacre

etal., 2023; Rosciolietal., 2016). As detailed by Halfacre et al. (2023), a flow (50-75 mL min-1) of oxygen-free nitrogen was
flowed into the headspace of a Teflon bubbler containing 5 g of PFBS, thereby flushing the PFBS vapor into the sample line.
A schematic diagram of this setup is presented in Fig. 1b.

The major sources of uncertainty with using TD-TILDAS to detect CINO; include the degree of CINO2 conversion
to HCI, instrument noise, background drifts, and potential line losses of HCI. Confirmation of the unit conversion of CINO; to
HCI was confirmed by modelling and laboratory experiments (see Sects. 3.1 and 3.2). Instrument noise and background drifts
were assessed regularly fromblanks. For laboratory experiments, blanks were performed by sampling the CINO: standard
(Sect. 2.1) diluted in NOx-scrubbed compressed air through the unheated furnace. This dilution air was generated using an air
compressor and dehumidifying system (dew point approximately —60 °C, absolute water vapor concentration ~ 0.01%). To
vary sample humidity, carrier gas flow was split such that varied amounts were passed through a bubbler containing deionized
water. Concerning line losses of HCI, the only source of HCI will be from CINO2 conversion during laboratory experiments,
and therefore line losses were assessed between the furnace and the inertial inlet. As detailed in Fig. 1b, 30 mL min-! of flow
from a homemade HCI permeation source (Furlani et al., 2021; Halfacre etal., 2023) was injected alternatingly before the
furnace and just before the inertial inletto determine loss of HCI over this region. So long as unitconversion of CINOz to HCI
can be confirmed and blank/ line losses are corrected, this method will be as accurate as the TILDAS is for detecting HCI,



which was previously found to be within the 5% tolerance of a commercial HCI cylinder with a certified concentration
(Halfacre et al., 2023).

For ambient sampling (Fig. 1c), an additional 5m of 1.25 cm OD PTFA Teflon was added before the tee that splits
the CIMS and TILDAS flow paths to sample outside air. A5 pum PFA Teflon filter was also installed to collect particulates,
reducing the potential for HCI displacement through thermodynamic partitioning of particulate Cl- that would otherwise enter
the heated furnace (Huffmanetal., 2009). This Teflon filter was not found to affect the observed mixing ratio of our CINO,

standard in measurement comparisons with and without the filter. However, the collection of particulates on the filter could

enable heterogenous chemistry with passing N2Os plumes that may produce corresponding CINO; plumes that arenot reflective

of ambient chemistry, and so frequent replacement of these filters is necessary (e.q., daily). Blank air was generated by

pumpingambient air through a 50% activated carbon / 50% Sofnofil scrubber, which was found to effectively remove CINO:
fromthe sample stream. The pump (KNF model N035.1.2AN.18) was able to overblow the sample inlet at a flow rate of ~25
L min-1, This approach is favoured over the use of synthetic cylinder air as significant changes in sample humidity can result
in release of HCI from surfaces (Halfacre et al., 2023). Blanks were performed for 10 minutes every 30 minutes to ensure the
instrument had enough time to respond and adjust to a stable background value. Additionally, ambient measurements will
include HCI, which would act as an interference for CINO: observations. To obviate this, a denuder (coating of 2% Na.COs
and 2% glycerol dissolved in 50% water and 50% methanol) was installed before the furnace to selectively remove acidic
gases (e.g., HCI, HNOs) that may influence quantitation. Using the denuder for this purpose was \While-effective forthis

purposefound to be effective for at least one-week periods, after which it was generally replaced to avoid coating exhaustion.

the-The denuder was also found to affect CINO2 throughput on shorter term timescales (e.g., daily); with a freshly coated
denuder causingas much as 55% loss of the CINO: standard mixing ratio.- This was determined by calculating the percent
difference when sampling the CINO; standard both through and bypassing the denuder. As-suchBecause CINO, additions
duringambientsampling will always be added through the denuder, it was important that; the CINOz standard (Sect. 2.1) was

sampled in dry air before and after overnight experiments to quantify estimate how this loss precess-evolved over the course
of an experimentsuch that data could be corrected using the percent difference term. -Periodic additions of HCI standard were

also performed to assess line losses of HCI after conversion in the furnace. In contrast to the laboratory experiment

configuration, permeation source HCl in blank airwas only injected just downstream of the furnace mid-experiment to reduce

exposure of unpassivated sampling surfaces to HCI. Losses were assessed by comparing this observed HCI injection value to

pre-and post-experiment injections over dry compressed air. Injections of HCl and CINO: standards was controlled using 3-
way Teflon solenoid valves (MasterFlex Model no. 01540-18, Cole Parmer, United Kingdom).
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Figure 1 Experimental schematic diagrams for (a) generating CINO,, b) laboratory comparison measurements between CIMS,
TILDAS, and CAPS NOy, and (bc) calibration/field sampling between CIMS and TILDAS. Note that “NO” stands for “normally
open” and “NC” stands for “normally closed” in reference to solenoid valves that control the flow direction for these items._For (c),
the approximate distance between point (i) and (ii) is 5 m, from (ii) to (iii-a) is 1.5 m, and from ii to (iii-b) is 2 m.
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2.3 Supporting Instrumentation

To confirm the efficacy of TD-TILDAS as a valid quantitative method for CINO: detection, testing was performed
simultaneously with a Cavity Attenuated Phase Shift (CAPS) NO2 instrument (Sect. 2.3.1) and Time of Flight-Chemical
lonization Mass Spectrometer (Sect. 2.3.2), both of which have previously reported as CINO: detection methods.

2.3.1 Cavity Attenuated Phase Shift (CAPS) NO,

CINOz mixingratios observedby the TILDAS were confirmed viasimultaneousdetection of the NO2 product of CINO2 thermal
dissociation usinga commercial Cavity Attenuated Phase Shift NO, detector (Teledyne T500U CAPS). Briefly, emission from
a LED (emission centred around 425 nm) is reflected across two spherical mirrors and absorbed by NO: in the optical cell.
This difference in light is detected by a photodiode and quantified based on its absorbance via the Beer-Lambert Law. The
instrument was calibrated using gas-phase titration of NO by Os to produce varied concentrations of NO2. A 1ppm NO in
nitrogen cylinder (certified 982 ppb, NPL) was used to verify the concentration of NO in a 25ppm NO in nitrogen working
standard (BOC). A multigas blender (Environics S6100) was usedto generate arange of Os concentrations (range 0-130 ppbv)
for titrating some of the NO (NO in excess, 200 ppbv) into NO2, and the decrease in the NO concentrations was measured
using a calibrated NOx instrument (Teledyne API Chemiluminescence T200). The NOz introduced to the CAPS instrument is
thus the sum of the drop of NO from the added ozone and the NO2 already presentin the working standard. The T200 NOx
instrument was also used to measure ambient air alongside the CAPS (range 0-25 ppbv), and these data are presented in Fig.

Al. Additionally, the Teledyne T500U includes an internal drying assembly and has a manufacturer recommended humidity

range of 0 — 95%.

2.3.2 Time of Flight Chemical lonisation Mass Spectrometry (CIMS)

CINO:; was additionally detected using a VOCUS high-resolution chemical ionization time-of-flight CIMS (Tofwerk,
Switzerland) with a VOCUS AIM reactor and using iodide (I') as a reagent ion gas. A complete description of this instrument
and its operational principles are described in detail by Riva et al. (2024). Briefly, sample gas is drawn into the sampling inlet
and pulled through a critical orifice (0.475 mm) and PFA Teflon sample flow guide into a conical ion-molecule reactor (IMR)
at a flow rate of 1.8 L min-1. The IMR was held at a constant pressure of 50 mbar using a vacuum pump (IDP3, Agilent
Technologies) and temperature controlled to 50 °C. The reagent ion source was a permeation tube containing trace amounts of
CHsl dissolved in benzene (Tofwerk). Ultra-high purity, oxygen-free N2 gas (generated by flowing compressed air through
gas with a commercial N2 generator, Infinity NM32L, Peak Scientific Instruments, UK) is continually flowed over the
permeation tube to flush the gaseous CHzl/benzene mixture into a compact vacuum ultraviolet ion source (VUV). Within the
VUV, UV light emitted from a Kr lamp (116.486 nm and 123.582 nm) is absorbed by benzene, generating low energy
photoelectrons that can react with CHasl to produce I- (Ji et al., 2020). The I- reacts with analytes for approximately 30 ms
before being drawn through another critical orifice where the sample travels through four differentially pumped chambers
before reaching the drift region of the ToF-CIMS. lons in the ToF chamber are extracted and converted into mass spectra via
an MCP detector with a preamplifier over a mass range of 7-510 Th. The extracted packets are averaged over a period of 1
second and the resolution of the instrument is = 5000. Data was collected at a rate of 1 Hz. Data averaging, mass calibration,
peak assignment, peak fitting and peak integration are all performed using the software package Tofware (version 4.0.0,
TOFWERK) used in Igor Pro 9 software (Wavemetrics). Peak fitting focused on I3SCINO," (m/z 207.8668) and I3¥CINO," (m/z
209.8638), and isotope abundances were manually confirmed to be ~1:0.32, based on the natural abundance of chlorine
isotopes. CIMS signals were normalized against the sum of the total number of reagentions, which isequivalentto I+ I(H20)-
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. Additionally, as the CIMS sensitivity to CINO2 varies with humidity in the ion-molecule reactor region, we define an
additional term equal to ratio of the iodide water cluster (I(H20)) to the reagent ion sum (I + I[(H20)"), hereafter referred to as
the lodide Water Ratio (IWR). Instrument backgrounds were assessed using air scrubbed of CINO2, as described in Sect. 2.2.
2.4 Data Analysis

Data analysis was conducted using the R language for statistical computing (R Core Team, 2021). Linear regressions were
calculated using the York method (Cantrell, 2008) when possible so as to incorporate uncertainties in compared variables.
2.5 Chemical Modelling

The 0-D box model Kintecus (lanni, 2003, 2022) was used to explore the gas phase chemistry occurring in the heated furnace

to predict the timescales for-of the thermal-dissociation of CINOz and the subsequent formation of HCI after reaction with
hydrocarbons (Reaction R2),). aswellas The only hydrocarbon included in these model experiments was methane. The model

was also used to identify potential interferents that could prevent unit conversion of CINO2 to HCI. -The results of the model

were used to guide the experimental set-up. The modelled species, reaction list, tested interferents (including CINO and

alkenes), and initial concentrations are included in the Appendix (Tables A1-A3). Reaction kinetics were sourced from the
NIST Chemical Kinetics Database and IUPAC Evaluated Kinetic Datawebsites (Manion etal.,2015; Wallington etal., 2021),
and primary literature referencesare listed next to each reaction. No chemical species were held constantor were otherwise

constrained outside of initial concentrations. The model integration time was set to 1 ms, and the entire simulation was set to

last 150 ms. The model initiated with a temperature of 25 °C (held for 10 ms) before increasing to 450 °C over the course of
22 ms. The temperature was held at 450 °C for 40 ms, before gradually decaying back to 25 °C over 70 ms.

3 Results & Discussion
3.1 Modelling TD Chemistry

Box model simulations predicted the rapid, virtually unit conversion of CINO2to HCI after increasing temperature to 450 °C
(Fig. 2) under the model conditions outlined in Tables A1-A3. Ninety percent conversion was calculated to occur within 23

ms from a starting CINO2 concentration of 2.46 x 102 molecules cm- (1 ppbv at 25 °C), and ambient mixing ratios of methane
(i.e., 2 ppmv at 25°C) were found to be sufficient for facilitating this chemistry. While Cl-mediated hydrocarbon oxidation
was shown to produce a modest enhancement of hydroxyl radical concentrations (Fig. 2b), it was not enough to compete
meaningfully with CI to mitigate or retard Reaction R1. Similarly, an initial Os concentration of 9.84 x 101X moleculescm?
(40 ppbv at 25°C) did not significantly inhibit the desired chemistry by the direct reaction of Os with Cl radicals.
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Figure 2: Chemical modelling results of the thermal dissociation of CINO; and its subsequent conversionto HCI.
Panel A presents results on a linear y-axis, while Panel B features the same data on a logarithmic y-axis._Note that
ethene, propene, and isoprene are off-scale in Panel A (1.23 x 1022 molecules cm™ / ~50 ppbv) to better display the

relationships between CINO,, HCI, and NO,, and are shown to remain constant in Panel B.

Concerningpotential interferents, Cl can add to doublebonds found on alkenes without producing HCI. Reactions with ethene,
propene, and isoprene were included in the model at 1.23 x 1022 molecules cm3 (50 ppbv at 25° C) each and were found to

produce approximately 1 x 108 molecules cm-3 of non-HCl product, which is 4 orders of magnitude less than the HCI converted

from CINO». As these mixing ratios of alkenes are larger than those typically found in real world environments (e.g.,
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Budisulistiorini etal., 2015; Hellén et al., 2024; Tripathi etal., 2021), it is therefore unlikely alkenes will cause meaningful

interference for CINO; quantification.

CINO: was predicted to be the only known seurce-efinorganic chlorine reservoir to thermally dissociate at 450 °C.
This is consistent with the relative bond dissociation energies found for CINO2 (142 kJ mol*) relative to the various other
forms of inorganic chlorine simulated (CI-NOz < CI-Cl < CI-O< CI-R < CI-H) (Darwent, 1970). %@' Production of other

resulting HCI and is therefore not believed to influence HCI production, Even so, there remain potential inorganic chlorine

speciesthat may still act as interferents in this method. Nitrosyl chloride (CINO) hasbeen previously predicted by modelling

to exist at ppbv-level mixingratios in polluted marine environments and could be an efficient Cl-atom source (Raff et al.,

2009). Indeed, 1 ppbv (2.46 x 101° molecules cm-3) of CINO was found to partially thermally dissociate in our Kintecus model

(bond dissociation energy of 159 kJ molt) and generate additional HCI, as well as NO that was gradually converted to NO,

(Fig. A2). On the addition of heat, CINO decreased by 40% while HCl increased by an equivalent amount (in addition to the

2.46 x 109 molecules cm-3generated by CINO, thermal dissociation). While we are unaware of any field measurements that

have confirmed the presence of CINO in the boundary layer to date, it appears likely this method would be sensitive to

interference from CINO if/where its presence is confirmed.

Additionally, Oone
notable class of compounds that could not be simulated were chloramines, which have recently received increased attention as

relevant daytime sources of Clatoms (A. Angeluccietal.,2023; Wangetal.,2023). Their largest known anthropogenic sources
include water disinfection processes, swimming pools, and cleaning products. Trichloramine, dichloramine, and
monochloramine have reported bond dissociation energies of 381, 280, 251 kJ mol-1, respectively (Darwent, 1970) (CINO,
bond dissociation energy = 142 kJ mol!), and so would not be expected to produce free Cl radicals in the temperature range

simulated herein if its thermochemistry is consistent with the above bond dissociation energy trend. However, to the authors’
knowledge no information is available regarding its-their thermal stability in the gas phase at atmospherically relevant
conditions, and this potential source of positive interference for our proposed method cannot be discounted via the model at
this time._Similarly, prevalent organochlorides, such as methyl chloride (CHsCl), dichloromethane (CH»Cl), chloroform

(CHCIs), and carbon tetrachloride (CCls) could cause positive interference if they dissociate and produce CI atoms in the

furnace (World Meteorological Organization, 2022). Global average mixing ratios for CHzCl, CH.Cl2, CHCI3, and CCls were

~ 550 pptv, ~40 pptv, 9 pptv, and 77 pptv, respectively, during 2020. Appropriate thermal dissociation Kinetic parameters

could notbe sourced for the conditions used herein (i.e, temperatures <450 °C), and so these compounds could not be properly

simulated by the Kintecus model. Similarly to the chloramines, the bond dissociation energies are much higher than other
compounds simulated (339, 310, 346, 293 kJ mol* for CHsCl, CH>Cl,, CHCIs, and CCla, respectively (Darwent, 1970;
Weissman and Benson, 1983)).

3.2 Laboratory Characterization of TD-TILDAS

For laboratory characterization, a stable source of CINO2 was generated (Sect. 2.1) for assessing TD-TILDAS
performance in comparison with other established CINO2 sampling techniques, including CAPS NO2 and CIMS (Sect. 2.3).
One key change between model simulations and this experimental setup is the inclusion of propane to the sample stream
(estimated mixing ratio of 5 ppmv within the heated section of sample configuration). While the model predicted the pertinent
chemistry will occur in ~23 ms usingonly ambient methane as the hydrocarbon (Sect. 3.1) and the residence time in the heated
furnace is ~500 ms, adding propane ensures complete conversion of CINOz to HCI and ensures wall losses are negligible, as
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Clradicalsreactwith propane approximately 3 orders of magnitude faster than with methane (Atkinson etal., 2006a). The fact
that no additional HCI signal was observed on addition of propane at varying levels (not shown) supports our calculations that
unit conversion is achieved and competitive loss of Cl radicals to walls is negligible.

A schematic diagram of these experiments is shown in Fig. 1a. Figure 3 represents a typical comparison experiment
in which CINO2 was sampled by all three instruments simultaneously. First, CINO2 was introduced into the flow stream with
the furnace unheated, yielding a positive CIMS signal for ICINOz- (~1100 ncps for the example in Fig. 3), while TILDAS HCI
and CAPS NO2 mixing ratios remained at background levels. As the furnace temperature approached 450 °C, Reactions R1-
R2 beganto occur.HCland NO2 mixingratios rose, plateauingat similar values (~2.2 ppbv in Fig. 3) while ICINO2" decreased
tothe instrumentbaseline, implyingboth Reactions R1-R2proceeded to completion. Signals returned to their original positions
once the furnace was allowed to cool back to room temperature (e.g., from 16:45in Fig. 3). Note that HCI signal spike during
the furnace’s temperature ramp was seen consistently across experiments, and was most likely caused by a shift in HCI
molecule partitioning between the surface of the quartz tubing toward the gas phase (Halfacre et al., 2023). Allan-Werle
deviation calculations demonstrate favourable performance metrics for TILDAS while sampling CINO2, with 1 Hz precision
of 11.8 pptv, and as good as 1.2 pptv with an integration time of 96 seconds (Fig. 4).

A summary of comparison experiments across varied humidities is presented in Fig. 5. The changes in HCI as
observed by TILDAS correlated strongly with the changes in NOz observed by the CAPS instrument (Pearson correlation
coefficients 0f0.999, 0.997, and 0.987 for relative humidities of 11%, 44%, and 66%, respectively). However, the slopes were
consistently lessthanunity (0.95+0.01,0.93+0.02,and 0.91+ 0.02 at 11%, 44%, and 66%, respectively), indicating observed
HCI mixing ratios were less than corresponding NO, mixing ratios. One potential explanation for this could be loss of Cl
radicals less-in the furnace, but we do not believe this to be the case (as detailed above). While physical losses of HCI to
samplinglines would not be unexpected as HCl has a high affinity for sorbing to physical surfaces, experiments were designed
to minimize these interactions, and line loss experiments were performed to quantify any losses observed at tested humidities.
Experimentally, a small flow (50-75 mL min-t) of PFBS vapour was injected into the TILDAS sampling line downstream of
the furnace to reduce HCI affinity for surfaces (Sect. 2.2) (Note that PFBS was not introduced to the entirety of the flow path
to avoid sampling of PFBS by other instruments. Additionally, there is evidence that PFBS degrades at temperatures above
400°C (Xiao et al., 2020), and so its ultimately efficacy and reproducibility within the furnace system would be uncertain).
Further, the high operating temperature of the furnace would also be expected to minimize HCI-wall interactions within the
quartz tubing. Indeed, no lines losses were found at 11% relative humidity between when the HCI permeation source standard
was injected into the sampling line before the heated furnace (2.95+0.02 ppbv) and when HCI was injected just before the

inertial inlet (accounting for dilution factors) (2.95+ 0.02 ppbv), consistent with Halfacre et al. (2023). Similar results were
found at 44% relative humidity (pre-furnace value 0f2.68+0.03 ppbv vs 2.66 +0.03 ppbv when HCI was introduced at inlet),
and real HCI loss was quantified at 66% relative humidity (pre-furace value of 1.87 +0.03 ppbv vs 1.97 £ 0.03 ppbv when
HCl introducedatinlet). Havingaccountedfor these linelosses, ANOVA calculations found no significant differencesbetween
these three slopes as presented in Fig. 3 (F(2,19) = 0.10, p = 0.902), indicating consistent performance between TILDAS and
CAPS for detecting CINO2. However, it does not appear to explain the deviation from unity, which will be discussed below.

As discussed in Sect. 2.1, chemistry may occur withinthe slurry to produce N2Os, which can easily degrade at room
temperature to produce two NO2 molecules. If the N2O4 output from the NO2°/CI- slurry is constant over the timescale of an
experiment (< 1 hr), it would be expected this additional NO is readily accounted for during blank subtraction calculations.
While we believethis is largely true for the experiments presented above, discrepancies in CINO; signals were observed as
theslurry aged (>~3 weeks), with CAPS-observed NO2 mixingratios growingin significantexcess of TILDAS-observed HCI
mixing ratios (Fig. A32). Separate applications of TILDAS- and CAPS-based calibration factors (using data from Fig. 5) to
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concurrent CIMS CINO;z observations show closer resemblance to the TILDAS-observed mixing ratios (Fig. A23), suggesting
additional chemistry may be occurring within the salt bed that produces stable reservoirs of NOz that thermally dissociate in
the furnace to produce undesired NO2. This NO: artefact servesas a likely explanation for the sub-unity slopes presented in
Fig. 5, as it would positively bias the CAPS measurements but not the TILDAS, which is only sensitive to HCI. Thaler et al.
(2011) present in great detail strategies for minimizing N2O4 production in their study by minimizing the residence time in
their CINO2 generator (0.3 s herein) and adjusting the molar ratio of CI-:NO>- of their salt bed (100:1 herein), but were

ultimately unable to completely eliminate it; while we found these strategies helpful for reducing the overall NO2 background

as measured by CAPS, we found they were unsuccessful in eliminating the artefact when sample gas was passed through the

heated furnace. We are not aware of such chemistry being addressed in the literature for this CINO2 generation method and do

not propose potential reactions as it is outside the scope of this paper.
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Figure 3: a) Time series demonstrating the reversible thermal conversion of CINO; to NO; (red trace, CAPS) and HCI (blue trace,
TILDAS), as evidenced by changes in CIMS-observed ICINO; (black). Gaps in CIMS data are from internal CIMS tests not
pertinent to this work.

Both HCI and NO2 mixing ratios independently correlated strongly with the CIMS measurement of ICINO2" (Fig. 5b,
c), and the I- CIMS sensitivity for ICINO," was found to vary strongly with humidity, as previously reported (Kercher etal.,
2009; Mielke etal., 2011). The weakest Pearson correlation coefficient was for NO2 and ICINO, at 66% relative humidity (r
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356  =0.988), virtually matching that of NO2- and HCI at the same humidity. Due to the uncertainty / unreliability of the NO2 as it
357  relates to CINOz quantitation, we do not further consider the relationship between CAPS and CIMS.
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Figure 4: Allan-Werle plot for TD-TILDAS during addition of CINO, standard into the sample line.
The Allan minimum is indicated by the dotted red lines.
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Figure 5 — Comparison curves of a) TILDAS vs CAPS, b) CIMS vs TILDAS, and c¢) CIMS vs CAPS for injections of varied mixing
ratiosof CINO, across different relative humidities. Regressionsinvolving TILDASdata have been corrected for line losses observed
at 66% relative humidity.

The linear equations from Fig. 5a present significant intercepts that suggesta source of positive error for the TILDAS, and the
similarity of these intercepts suggest a relatively constant/consistent source (values are statistically the same F(4,19) = 0.624,
p = 0.546 per ANOVA). For these experiments, TILDAS blanks were obtained by sampling slurry air flowed through an
unheated furnace; in this scenario, Reactions R1-R2 are unable to occur, and therefore any signal observed by TILDAS could
be considered background. It is possible that a small amount of HCI formsin the slurry system from the aqueous disproportion
reaction between Cl, and H20. When the furnace is unheated, some amount of HCI interaction with the quartz tubing is
expected given there is no PFBS flow through this portion of the plumbing, biasing this blank measurement low. Then, once
the furnace is heated to 450 °C, this HCl will be liberated fromthe quartz tubing, possibly thenbiasing the heated measurement
high. This is supported by the presence of a peak in observed HCl as the furnace reheats (e.g., as in the second temperature
ramp in Fig. 3), as some of the HCI sorbed to the furnace tube walls under room temperature is forced into the gas phase. The
statistical similarity in intercepts implies this effect is constant across these experiments, leading to a consistent offset. While
an ideal blank would sample the gas downstream of the slurry while selectively scrubbing CINOz, this was not practical to
achieve without simultaneously scrubbing HCI. Therefore, we propose the y-intercept in these cases is a good estimate of the

systematic error present in these comparison experiments.

3.3 Applicability as Field Instrument

The applicability of TD-TILDAS as a field method for CINO2 detection was tested by sampling ambient air from outside the
Wolfson Atmospheric Chemistry Laboratory building on the University of York campus (York, United Kingdom) from the
morning of 13 January 2025 (Fig. 6). Compared with the laboratory-based configuration described in Sect. 3.2, ambient air
will containvaried amounts of HCI that would interfere with accurate quantification of CINO2 via the TILDAS method. To
address this, a base-coated denuder (Sect. 2.2) was installed in the HCI sampling line. CINO2 throughput was found to be
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hindered when flowed through the denuder butincreased over the course of the observation period (pre-experiment estimation
of 55% loss_on 10 January vs 31% measured directly after the experiment on 13 January). This loss was accounted for by
applying a time-varying, linearly interpolated correction factor for the denuder. In addition, line losses affecting HCI between
the heated furnace and TILDAS inlet were estimated as 2.7%, which was added back into the TILDAS measurements. CIMS
observations of ICINO2- were calibrated against TD-TILDAS using a mid-experiment CINO: addition, yielding a sensitivity
factor of 1982 ncps ppb-t (measured with a corresponding IWR of 42%). We note that this factor is ~35% greater than the
value of 1450 ncps ppbv aspresented in Fig. 5b fora comparable IWR (44%); this is likely due to the replacement of the
reagent ion permeation source, repair of reagent ion source heaters, and change in_the overall sampling ~CHMS-inlet
configuration between the experiments from Sect. 3.2 and this section (as illustrated by Fig. 1). Application of this sensitivity
factor across this measurement period can be justified as the IWR was found to be stable (38 +2%). Limits of detection, based

on instrument blanks, were found to average 10 +5 pptv for TD-TILDAS and 1 + 1 pptv for CIMS (using 60 second data
averaging).

As seen in Fig. 6a, TILDAS- and CIMS-observed CINO, demonstrate very good agreement for these ambient
observations in both signal magnitude and structure. This is quantitatively supported by regression calculations during this
period thatyield aslope of 0.97 + 0.01 (Fig. 6b), which is well within the averaged combined uncertainty for this period of
9%. While the sub-unity slope could indicate small losses on the TILDAS method, pre- and post-experimental losses were
tested and corrected for as detailed above, and so this is not believed to be a large source of error in this case. It is otherwise
not unexpected that this slope is found to deviate from unity given the uncertainty in the application of a single-point CIMS
sensitivity factor. Nevertheless, thisagreement gives us confidence thatit is appropriate for these measurements and provides
proof-of-concept for this TILDAS method.
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Figure 6 —a) Time series comparison of TILDAS and CIMS observations of CINO,. b) Scatter plot of data shown in panel (a). The
error shading in (a) and bars in (b) represent the standard deviation of the 60 s averaged measurements.

Additional sources of measurement uncertainty include unaccounted-for thermolabile chlorine reservoirs that could
cause positive interference in the TILDAS-method. As stated above, the TD-TILDAS method functions on the assumption
that CINO: is the only major inerganic-chlorine source that thermally dissociates at 450 °C. As shown by the model, CINO

may be a potential source of interference if present (Fig. A2), whileHowever- relevantthermochemistry information is-was

unavailable for organochlorides and chloramines, which therefore cannot be ruled out as possible interferences by modeling.
Indeed, while CIMS signals of CINO and chloramines did not rise above their baselines during the period shown in Fig. 6, a



432

433
434
435
436
437
438
439
440
ha1
n42
n43
a4
n45
na6
na7
148
n49
150
n51
152

16

separate measurement period demonstrates multiple occurrences where signal increases in iodide-tri- and di-chloramine
adducts (INCls-, INHCI2") correspond with TILDAS-observed signal increases (Fig. A43). This is most dramaticat ~08:15,
where ~115 ncps of INCls- and 18 ncps of IHNCI2- corresponds withan increase of 100 pptv in the TILDAS signal. While
these chloramine observations cannot be quantified at this time, trichloramine and dichloramine has previously been detected

in downtown Toronto at < 0.104 ppb and < 8 ppbv, respectively (Wang et al., 2023), suggesting a combined 100 pptv

interference contribution from these compounds is realistic. Synthesisand calibration of chloramine standards is a non-trivial

task (Wangetal., 2023), and so further experimentsare required to investigate 1) to what extent the chloramine signals can be
quantified by TILDAS and 2) if the chloramine signal can be dissected from the CINO: signal through temperature scans. The
results of such experiments may therefore allow this method to be extended for the quantification of both chloramines and
CINO..

While organochlorides (e.q., CHsCl, CH,Cl2, CHCIs, and CCl4) were not explicitly measured during the period in

Fig. 6, it would be expected that their potential interference in the TILDAS signal (if they dissociate in the furnace) would

present as a slow varying background signal that appears as an offset above a blank, given the ubiquity of these compounds

and relatively long tropospheric lifetimes for CHsCl, CH,Cl2, CHCI3, and CCl4 of 1 year, 6 months, 6 months, and 124 years,

respectively (World Meteorological Organization, 2022). Such an offset, if present, could be quantified during daytime

measurements (ie, when no CINO» will be present in the boundary layer) and readily subtracted from nighttime measurements

if necessary. However, the agreement between TILDAS and CIMS measurements as presented in Fig. 6 suggests this

interference is not present, providing some evidence that these organochlorides are not dissociating in the furnace.

Conclusions

This work demonstrates the viability of TD-TILDAS as an independent CINO: detection method at performance metrics
comparable to quadrupole CIMS, which are more than adequate for commonly observed mixing ratios in the boundary layer.
While modern CIMS instruments can achieve lower limits of detection and higher precision, the major advantage of TD-
TILDAS over CIMS is that it does not require external CINO; calibration experiments, as this work demonstrates the unity
conversion of CINO: to HCl that is subsequently detected based on well-understood spectroscopic principles. The TD method
describedhere can thus be used effectively in laboratory settings to measure CINOz in related experiments, or even to calibrate
CIMS for CINOzdirectly without needing to make assumptions regarding Cl2 conversion on salt slurries. Additionally, use of
a denuder allows this method to be readily applied to other HCI optical instruments, such as those based on CRDS.

As a field method, TD-TILDAS demonstrated excellentagreement with a co-located CIMS for CINOz detection. The
method is reliant on accurate and reqular characterization of CINO> throughput through the denuder, which was found to

increase across four days of sampling. Longer-term measurement campaigns would benefit from at least weekly denuder

replacements to ensure acidic gases are consistently scrubbed anddo not interfere with CINO2 observations. However, the TD-

TILDAS method appears susceptible to positive interference, potentially resulting from-_chloramines, or other unaccounted-
for thermolysable chlorine compounds. Care should thus be taken should this method be deployed where large amounts of

chloramines are known to be present, such as swimming pools or near water treatment facilities. More work is- still required

to confirm and quantify the response of this method to chloramine and organochloridess, and if so, identify an appropriate
method to mitigate this potential interference. While modelling additionally suggests CINO as an interferent, its presence in

the boundary layer is yet to be confirmed through in situ observations. In any case, careful temperature ramps (e.g., Day et al.,

2002) performed with the furnace in environments where unknown interferences may be a concernwould likely reveal the

purity of the CINO» signal observed. Experimental adjustmentscould be furthermade for the TILDAS to alternate its sampling
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between a heated channel (as described in this paper) for CINO2 detection and an unheated pathway that allows for the
additional detection of HCI. Doing so would require careful characterization of physical HCI losses inherent to both sampling
pathways, as well as consideration of the likely hysteresis in detected HCI mixing ratios resulting from changes to the sampled
air temperature that would affect the partitioning of HCI between surfaces and the gas phase.
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459  Appendix A

460 Table Al - Bimolecular reactions and parameters used for the modelling described in Sect. 2.5. Reactions follow the rate expression
461 k(T) = A (T/298)" e’E4RT (Burkholder et al., 2015)

Ea (kJ mol
Reaction A n 1 Reference
(Baulch et
CINO2 + M ==> Cl + NO> 9.13 x 1010 0 106 al.,, 1981)
(Baulch et
Cl+ Cl==>Cl2 6.15 x 1034 0 -7.53 al., 1981)
(Anderson
and Fahey,
M + CIONO2 ==> NO: + CIO 2.76 x 10 0 94.78 1990)
(Bryukov et
CH4 + Cl ==> CHs + HCI 8.24 x 1013 2.49 5.06 al., 2002)
(Baulch et
HCI + OH ==> H,0 + Cl 3.74 x 1012 0 4.27 al., 1981)
(Baulch et
HCl+ M ==>H + Cl 7.31x 101t 0 342 al., 1981)
(Baulch et
CHs + HCI ==> CH4 + CI 3.89 x 1018 0 9.64 al., 1981)
(Srinivasan
CHs + NO2 ==> CH30 + NO 3.44x 101 0 0 et al., 2005)
(Heimerl
and Coffee,
Os+M==>0+0; 7.6x10" 0 93.12 1979)
(Baulch et
CHz + O ==>CH.0 + H 2.26 x 101t 0 0 al., 1992)
(Mahmud
HCl + O ==>OH + CI 7.07 x 1014 2.87 14.72 et al., 1990)
(Srinivasan
OH + CH4 ==> CHs3 + H20 4.16 x 1013 2.18 10.24 et al., 2005)
(Baulch et
Cl+ M==>Cl +Cl 3.85x 10 0 196 al., 1981)
(Baulch et
Cl + Cl ==> Cl» 6.15 x 1034 0 -7.53 al., 1981)
(Baulch et
Clo+O==>CIO+Cl 4.17x 102 0 11.39 al., 1981)
(Baulch et
Cl + H ==> HCl + Cl 1.43x 107 0 4.91 al., 1981)
(Atkinson
Cl + OH ==> HOCI + CI 3.60x 1022 0 9.98 etal.,, 2007)
2.19 x 1010 0 131 (Baulch et
CHs + O, ==> CH30 + O al., 1992)
(Atkinson
ClO+0==>0;+Cl 2.50 x 101t 0 -0.91 etal., 2007)
(Atkinson
OH + CIO ==> HO2 + Cl 6.86 x 1012 0 -2.49 etal., 2007)
(Atkinson
OH + CIO ==> HCI + 02 4.38 x 1013 0 -2.49 etal., 2007)
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(Atkinson
CH30O + NO ==> CH»0 + HNO 4.00 x 1012 -0.7 0 etal., 1992)
(Atkinson
CH30 + Oz ==> CH20 + HO2 7.20 x 104 0 8.98 etal., 1992)
(Atkinson
HOCI + O ==> OH + CIO 1.70 x 1013 0 0 etal., 2007)
(Atkinson
CICO + M ==> CO + Cl 4.10 x 1010 0 24.6 etal., 2007)
(Atkinson
O3 + NO ==> 02 + NO2 1.40 x 1012 0 10.9 etal., 2004)
(Atkinson
etal.,
CHs02 + NO ==> CH30 + NO; 2.30 x 1012 0 -2.99 2006b)
(Atkinson
HO2 + NO ==> NO2 + OH 3.6 x 1012 0 -2.24 etal., 2004)
(Atkinson
CH20 + Cl ==> HCI + HCO 8.20 x 101t 0 0.28 etal., 1992)
(Baulch et
CH20 + OH ==> HCO + H.0 4.73 x 1012 1.18 -1.87 al., 1992)
(Atkinson
CH302 + HO2 ==> CH3z00H + O 3.80 x 1013 0 -6.49 etal., 1992)
(Baulch et
CH300H ==> CHz0 + OH 6.00 x 104 0 177 al., 1994)
(Atkinson
etal.,
HCO + O2 ==> CO + HO> 5.20 x 1012 0 0 2006b)
(Baulch et
CO+0OH==>C0O2+H 5.40 x 1014 1.5 -2.08 al., 1992)
(Atkinson
Cl + HO, ==> HCI + O> 1.80 x 1011 0 -1.41 etal., 1992)
(Atkinson
Cl + HO2 ==> CIO + OH 6.30 x 101t 0 4.74 etal., 2007)
(Atkinson
Cl+03==>ClO+ 02 2.80 x 101t 0 2.08 etal., 2007)
(Atkinson
CO + Cl ==> CICO 1.33 x 1033 -3.8 0.00 etal., 2007)
(Atkinson
OH + HOCI ==> H20 + CIO 5.00 x 1013 0 0 etal., 2007)
(Atkinson
ClO + HO2 ==> HOCI + O2 2.20 x 1012 0 -2.8 etal., 2007)
(Atkinson
ClIO+ ClO==>Cl, + O 1.00 x 1012 0 13.22 etal., 2007)
ClO + CIO ==> OCIO + ClI (Atkinson et
3.50 x 1022 0 11.39 al., 2007)
(Atkinson et
CIlO + CIO ==> CIOO + Cl 3.00 x 101t 0 20.37 al., 2007)
(Atkinson et
CIO + NO ==> Cl + NO2 6.20 x 1022 0 -2.45 al., 2007)
(Baulch et
CH»0 + O ==> HCO + OH 1.78 x 1011 0.57 11.56 al., 1992)
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463

OH + NO; ==> HNO3

2.70 x 101t

(Troe, 2012)

CHsClI + OH ==> CHCI + H,0

1.40E-12

1.6

8.65

(Cohen and
Westberg,
1991)

CHsCl + H ==> CHs + HCI

6.14E-11

38.9

(Westenber
g and
deHaas,
1975)

CH3Cl + CHs ==> CHa + CHCI

2.09E-12

48.6

(Macken
and
Sidebottom,
1979)

CHsCl + Cl ==> CH)CI + HCI

3.30E-11

10.39

(Atkinson et
al., 2008)

CHCIz + Cl ==> CCl3 + HCI

4.90E-12

10.31

(Atkinson et
al., 2008)

Cl + CsHs ==> Products

2.70E-10

o

(Atkinson et
al., 2006b)

Cl + CsHg ==> Products

4.30E-10

(Orlando et
al., 2003)

CINO + M ==>Cl + NO

2.16E-09

134

(Baulch et
al., 1981)
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464 Table A2 — Termolecular reactions and parameters used for the modelling described in Sect. 2.5. The effective rate constant is
465 calculated by combing the low- and high-pressure limit expressions into the following formula: ke(T,[M])=

keo(Mko(DIM] | o < (1+[l0gso (L)1
466 {k«,(r)wmw]} 0.6 o

Reaction Low-Pressure Limit ko = ko?%8(T/298)" | High Pressure Limit k- = k.298(T/298)" | Reference
ko298 n K.,298 m
1.8x 103t 2 1.1x 1010 1 (Burkholder et al.,
Cl + NO2 + M 2015)
==>CINO2+ M
4.1x103 3.6 1.2x 1012 -1.1 (Burkholder et al.,
CHs + O2 + M 2015)
==> CH302+ M
1.6 x10%® 33 3.1x101° 1 (Burkholder et al.,
Cl + CHs + M 2015)
==> Products
467
468

469
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70 Table A3 - Initial concentrations for specified species simulated in model, and listed mixing ratios are based on a temperature of 20
71 °C. Potential interferents were tested in separate model runs according to the groupings on each line below, and were otherwise

72 initiated with a concentration of 0 molecules cm®. All other compounds were initialised with a concentration of 0 molecules cm?.
Species Initial Concentration (molecules cm3)
CINO2 2.46 x 1010 (1 ppbv)

[\ 1.92 x 10%° (78%)

02 5.17 x 10° (21%)

CHs 4.92 x 1013 (2000 ppmvppbv)
OH 1x 108

O3 9.84 x 10 (40 ppbv)
Potential Interferents

CINO 2.46 x 10'° (1 ppbv

Ethene, Propene, Isoprene 1.23 x 102 (50 ppbv

73
474
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91 Figure A34 —Field data showing apparent coincident signal increases TILDAS-observed CINO, with CIMS-observed chloramines,

92 ICINO;, and ICHCI; (uncalibrated). [Formatted: Superscript
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