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Abstract 16 

North Africa, the largest and most active dust source region globally, plays a critical 17 

role in the Earth's environment by dispersing dust over remote areas, especially in terms 18 

of circum-global transport that occurred many times since the 21st century. As a key 19 

indicator of the thermodynamic structure and dynamical circulation of the troposphere, 20 

the land-sea thermal contrast (LSC) could influence the variability of dust and 21 

subsequent large-scale propagation, but the extent of such influence is still unknown. 22 

This study reveals that around the late 1990s, the influence of pre-winter LSC on the 23 

spring dust transport pathway is reversed in North Africa, which is attributed to the 24 

bridging effect of the North Atlantic Oscillation (NAO). Before 2000, the warm land-25 
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cold ocean (+WLCO) pattern in pre-winter is typically associated with the NAO+ mode, 26 

and the anomalous northeasterly and zonal circulation in the following spring facilitate 27 

the westward transport of dust from the lower troposphere in West North Africa towards 28 

the Atlantic. After 2000, the reversed zonal temperature pattern (−WLCO) leads to the 29 

NAO− mode and enhances mid-latitude westerlies in winter, which persists into the 30 

next spring. Under conditions of unusually dry soil and strong dry convection, dust is 31 

mixed into the mid-to-upper troposphere and subsequently transported eastward 32 

globally, affecting regions including West Asia, northern China, the Pacific, and 33 

southeastern North America after 2000. This study underscores the critical role of sea-34 

land-atmosphere interaction in circum-global dust propagation and offers new 35 

perspectives for investigating dust changes mechanism in the context of climate change. 36 

1 Introduction 37 

North Africa is one of the major sources of dust in the world (Engelstaedter et al., 38 

2006; Huneeus et al., 2011), and the long-range transport of dust has profound impacts 39 

on Atlantic hurricanes (Sun et al., 2008; Rousseau-Rizzi and Emanuel, 2022), global 40 

climate change (Westphal et al., 1987; Sassen et al., 2003; Kok et al., 2023), the carbon 41 

cycle (Keith et al., 2006; Swap et al., 1992; Guieu et al., 2002), and human health 42 

(Mallone et al., 2011; Brauer et al., 2012; Wang et al., 2020).  43 

Under the amplified influence of global warming, North African dust activity has 44 

experienced significant modifications in recent decades. Pronounced alterations in 45 

large-scale atmospheric circulations, particularly the Hadley circulation and mid-46 

latitude westerlies (Feng et al., 2018; Cheng et al., 2022; Toggweiler, 2009; Abell et al., 47 

2021), have fundamentally reshaped dust transport patterns. Observational records 48 

from 1980 to 2020 reveal divergent trends in regional dust export: a decreasing flux 49 

toward the Atlantic (−0.29 ± 0.16% decade⁻¹) contrasted by increasing Mediterranean 50 

transport (0.24 ± 0.18% decade⁻¹), which potentially associated with the Hadley cell's 51 

expansion (Adame et al., 2022). Correspondingly, emerging evidence points to 52 
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increased frequency of extreme transcontinental dust events, exemplified by the June 53 

2020 “Godzilla” dust storm that transported 24 ± 3.2 Tg of Saharan material circum-54 

globally through an “express lane”—mid-latitude westerly wind (Bi et al., 2024; Francis 55 

et al., 2020; Asutosh et al., 2022). The dominant factors of significant decadal changes 56 

in the propagation of dust in North Africa deserve further exploration. 57 

Global warming has exhibited significant temporal and spatial heterogeneity. The 58 

warming trend accelerated until the late 1990s, followed by a period of apparent 59 

stagnation (Fyfe et al., 2013). This warming pattern has been particularly evident in 60 

terrestrial regions compared to oceanic areas, known as terrestrial amplification (Seltzer 61 

et al., 2023; Sutton et al., 2007; Byrne and O’Gorman, 2018). The TA effect alters the 62 

magnitude of the land-sea thermal contrast (LSC) (Joshi et al., 2008; Byrne and 63 

O’Gorman, 2013), which plays a critical role in regulating the climate system's energy 64 

balance and redistribution, thereby altering the planetary wave patterns throughout the 65 

entire troposphere (Held and Ting, 1990; Garfinkel et al., 2020). For instance, the strong 66 

land-sea temperature gradient between the eastern coasts of Asia and North America 67 

are prominent sources of baroclinicity, triggering eastward-extending storm tracks, 68 

which in turn, energetically support the jet streams (Hoskins et al., 1990; Brayshaw et 69 

al., 2009). As global warming intensifies, changes in the LSC have substantially 70 

influenced key climate patterns, such as the intensity of monsoon systems (Torres-71 

Alavez et al., 2014; Tao et al., 2016; Roxy et al., 2015), the frequency of tropical and 72 

Arctic cyclones (Tang et al., 2019; Day et al., 2018), and perturbations in the westerly 73 

belt (He et al., 2014, 2018; Portal et al., et al., 2022), all of which could exacerbate the 74 

frequency of extreme weather events. 75 

In fact, midlatitude LSC plays a crucial role in interannual to interdecadal 76 

atmospheric variability, potentially influencing North African dust transport pathways, 77 

particularly circum-global circulation processes. According to the thermal-equilibration 78 

theory, the asymmetry of the zonal surface temperature pattern can induce a global-79 

scale wave-like thermal structure, thereby triggering a resonance between the mid-80 
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latitude circulation and temperature structure, or a zonal flow pattern (Marshall and SO, 81 

1990; Mitchell and Derome, 1983). LSC variations, exemplified by the winter cold 82 

ocean-warm land (COWL) pattern, are often closely linked to the North Atlantic 83 

Oscillation (NAO) through tropospheric planetary wave modulation (Molteni et al., 84 

2011). The alternating phases of the NAO significantly affect the emission and 85 

propagation of Saharan dust. Especially, during the NAO+ (NAO−) phase, dust is 86 

typically transported westward (eastward) into the tropical Atlantic (eastern 87 

Mediterranean) by northeasterly (southwesterly) winds (Moulin et al., 1997; Chiapello 88 

et al., 1997; Ginoux et al., 2004; Riemer et al., 2006; Doherty et al., 2008; Kaskaoutis 89 

et al., 2019; Dai et al., 2022). Subsequently, the dominant easterly transport of mineral 90 

dust is further enhanced by the westerly jet stream, facilitating circum-global dust 91 

dispersion and significantly influencing downstream regions such as Asia (Pu et al., 92 

2016; Liu et al.,2022; Awad et al., 2014). 93 

Reanalyzed data and models results have demonstrated that the LSC have induced 94 

significant modifications in planetary-scale atmospheric wave patterns (He et al., 2014, 95 

2018), with the dominant airflow and dust transport pathways in North Africa being 96 

affected. However, has the LSC affected the decadal variation of dust in North Africa? 97 

And what is its impact mechanism? These issues have not been answered yet. We find 98 

that a regime shift in dust transport dynamics around the late 1990s. During the pre-99 

2000 epoch, the COWL pattern, driven by land warming in pre-winter, is shown to 100 

affect the westward transport path of North Africa dust during the subsequent spring. 101 

After this period, reversed zonal temperature pattern (warm ocean and cold land, 102 

WOCL) continues to enhance the eastward dust transport, facilitating circum-global 103 

dispersion as far as southeastern North America. In addition, the mechanisms 104 

underlying the trans-seasonal effects of this large-scale dynamical precursor signal and 105 

its transport have been thoroughly elucidated. 106 
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2 Methods and data 107 

2.1 Methods 108 

2.1.1 SVD of extratropical SAT and North African dust  109 

Surface thermal modes have a significant impact on the alternation of the two 110 

possible dynamic equilibria (wave or band components), which may affect North 111 

African dust activity. The Singular Value Decomposition (SVD) analysis was 112 

conducted to initially explore the relationship by examining the covariance matrices of 113 

springtime North African dust concentration and pre-winter extratropical temperatures. 114 

2.1.2 The land–sea contrasts (LSC) index 115 

Firstly, the anomaly pattern associated with the 'traditional', empirically based 116 

northern extratropical low-frequency variability is presented. This is characterized by 117 

an EOF associated with the second principal component of the 500 hPa height (Z500) 118 

anomaly in the northern hemisphere extratropic (20–80°N), which displays a 119 

pronounced zonal asymmetry (Fig. 1). Molteni et al. (2011) defined the land-sea 120 

contrast as the bandwave-2 component of the net surface heat flux, averaged over four 121 

sectors of 90° longitude each. Given that the latent heat is approximately zero during 122 

the winter months, it is sufficient to consider the difference in sensible heat between the 123 

land and ocean surfaces. Therefore, referring to the approach of He et al. (2014), LSC 124 

index (LSCI) can thus be expressed in a straightforward manner as the land-ocean 125 

contrast of the SAT anomaly in the critical zone (east coast of North America and east 126 

coast of East Asia) with the following equation: 127 

𝐿𝑆𝐶𝐼 ൌ ሺ𝑆𝐴𝑇௔௡௢௠஺ െ 𝑆𝐴𝑇௔௡௢௠஻ሻ ൅ ሺ𝑆𝐴𝑇௔௡௢௠஼ െ 𝑆𝐴𝑇௔௡௢௠஽ሻ       ሺ1ሻ 128 
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 129 

Fig. 1: The second EOF of DJF mean 500 hPa geopotential height (Z500) during 1980–2023, with reference to He 130 
et al. (2014). The regions A, B, C and D represent the East Asian (40°N–60°N；80°E–120°E), Pacific (40°N–60°N；131 
170°E–150°W), North American (40°N–60°N；130°W–100°W) and Greenland seas (57.5°N–77.5°N；70°W–132 

40°W), respectively. 133 

The heat capacity of the land is considerably less than that of the oceans, resulting 134 

in a significantly greater warming of the continents during winter compared to the 135 

oceans under global warming. Consequently, a positive LSC value indicates a warmer 136 

climate with a reduced temperature gradient between land and sea. During the winter 137 

months, the anomalous warming of the land results in a shift from a negative to a 138 

positive LSC signifying a reduction in the temperature disparity between the land and 139 

the sea. 140 

2.1.3 Selection of years for composite analysis in the two periods 141 

In accordance with established climatological standards, normal values are 142 

typically calculated for a minimum of 30 consecutive years in order to obtain a 143 

meaningful mean. As our study is concerned with inter-decadal climate change, an 144 

analysis of shorter periods may yield different trends than those observed for longer 145 
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climatic periods. However, given that the MERRA-2 dust data only commence in 1980, 146 

a compromise was reached. This period division captures a clear climatological 147 

discontinuity, as evidenced by the sliding t-test showing maximum statistical 148 

significance (p<0.05) for regime shifts centered on 2000 (Fig. 1S), thus objectively 149 

delineating the two study periods (1980-2000 and 2001-2023).  150 

Further investigation into the LSC-related dust transport characteristics in North 151 

Africa during these two periods is conducted through composite analyses. The onefold 152 

standard deviation of the standardized LSCI serve as thresholds for selection, with the 153 

year’s corresponding to the positive and negative phases of the LSC (Table 1). Note 154 

that the composite analysis for the first period uses high value years (LSCI > 1) minus 155 

low value years (LSCI < −1), whereas the second period uses low value years (LSCI < 156 

−1) minus high value years (LSCI > 1) minus low value years, which is related to the 157 

interdecadal shift in the relationship between the winter LSC and spring dust in North 158 

Africa. The significance test is based on the two-sided Student’s t-test.  159 

Table 1. List of Year selection for composite analysis in this study. 160 

 First period 

(1980-2000) 

 Second period 

(2001-2023) 

 

LSCI>1 

1983  

LSC>1 

 

2002 

1987 2015 

1989 2016 

1993  

  

 

LSC<−1 

 

1980  

LSC<−1 

 

2010 

1982 2011 

1985 2013 

1996 2021 

 161 

2.2 Data 162 
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The monthly SAT used to calculate the LSC index are derived from the Met Office 163 

Hadley Centre's observational dataset HadCRUT5. This is one of the main datasets used 164 

to monitor global and regional surface temperature variations and trends. In order to 165 

obtain the longest possible dust sequence for study of relevant inter-decadal variability, 166 

the MERRA-2 dust data are selected here. The MERRA-2 dataset is a reanalysis 167 

product developed using the Goddard Earth Observing System of Systems (GEOS-168 

5.12.4) atmospheric model, which simulates global aerosol properties using the 169 

radiatively coupled Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) 170 

model. MERRA-2 directly assimilates the aerosol optical depths derived from 171 

AERONET and MISR. MERRA-2 directly assimilates aerosol optical depths derived 172 

from the AERONET and MISR instruments, as well as bias-corrected dust 173 

concentrations and aerosol data from the Advanced Very High-Resolution Radiometer 174 

(AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. 175 

In the present study, monthly dust properties are considered, namely dust column mass 176 

density and meteorological and land conditions related to dust activities, including 177 

Z500, U200, UV500, PV, UV10, T2M, SM, etc., at a spatial resolution of 0.625° × 0.5°. 178 

In order to investigate the impact of LSC on dust transport in North Africa, a 179 

comparison is made between historical simulations (1980−2014) from the 14 180 

participating Coupled Model Intercomparison Project Phase 6 (CMIP6) models that 181 

contain both dust and meteorological information. The selected models are detailed in 182 

Table S1. Monthly outputs from CMIP6 are employed to examine the response of dust 183 

aerosols and upper zonal winds to the land-sea contrast in the model since the 1980s. 184 

3 Result 185 

3.1 Interdecadal LSC signal in pre-winter leads to change of the circum-global 186 

transport path of North Africa in the following spring 187 

Utilizing the SVD analysis (see “Methods”), coherence is observed between pre-188 

winter extratropical surface air temperature (SAT) in the Northern Hemisphere (NH) 189 
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and spring dust mass column density (hereafter referred to as DUST) in North Africa. 190 

The first mode explains 43.15% of the total variance, and substantial correlation of R = 191 

0.64 (11-year filtered correlation, R = 0.86) is demonstrated by the time series of the 192 

two variables (PC1-DUST and PC1-SAT). The spatial pattern of DUST field is revealed 193 

to follow a zonal tri-pole mode (Fig. 2a), with an interdecadal abrupt change around 194 

2000 (Fig. 2c). The interdecadal variability characteristics of regional dust activity is 195 

consistent with previous research findings (Shi et al.,2021; Liu et al., 2023). On the 196 

other hand, the extratropical SAT field highlights the thermal contrast, with an opposite 197 

signal between Asia (Siberia) and the eastern Pacific, and an even greater thermal 198 

contrast between North America and the Greenland Sea (Fig. 2b). This spatial 199 

temperature pattern, called as the COWL, has also been found in previous studies 200 

(Wallace et al., 1996; Wu et al., 2004; He et al., 2014). Based on the east coast of North 201 

America and east coast of East Asia, LSCI is defined (see “Methods”), which shows a 202 

significant correlation of 0.86 with the PC1-SAT. The interannual variation of the LSCI 203 

(Fig. 2d) is consistent with the two phases of warming (warming acceleration and 204 

warming stagnation). The subsequent study will use this index to further analyze 205 

decadal variability. 206 

The correlation between the pre-winter LSCI and the following spring PC1-DUST 207 

exhibits a stepwise change over time, with a stable and significant relationship between 208 

the two variables emerging after the late 1990s (Fig. 2e). The dust-LSC correlation 209 

remains statistically significant regardless of window length selection (Fig. 2e), with 210 

particularly stable associations emerging after 2000. The sliding t-test for PC1-DUST 211 

indicates a significant abrupt change in dust in the year 2000 (Fig. S1). To further 212 

analyze the decadal impact of LSC on North African dust, we examine the regression 213 

spatial field of spring dust with respect to the pre-winter LSCI during the two periods 214 

(1980−2000 and 2001−2023; see “Methods”). Prior to 2000, significant positive 215 

regression coefficients are found in a small region of West Africa, while the relationship 216 

in the central region is not significant (Fig. 2f). After 2000, distinct negative regression 217 

coefficients are observed in the central region (Fig. 2g). 218 
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 219 

Fig. 2: The relationship between pre-winter land-Sea thermal contrasts (LSC) and spring North African dust. The 220 
SVD first mode between detrended spring (MAM) MERRA-2 dust mass column density (DUST) in North Africa 221 
(a) and pre-winter (DJF) surface air temperature (SAT) (b) from 1980 to 2023. (c) Time series (solid) and low-pass 222 
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filtered (dashed) SVD first mode coefficients of the DUST (left, black line) and the extratropical SAT (right, red 223 
line). (d) LSC index time series and its corresponding low-pass filter (black dashed line), unit: K. (e) The sliding 224 
correlations between DJF LSC index and PC1-dust index under different moving windows (15, 17, 21, 23 years). 225 
The regression patterns of detrended DUST onto LSCI (standardization) during (f) 1980−2000 and (g) 2001−2023 226 
(shading; 10-5kg/m2). The dashed lines and dots indicate that the correlation coefficients pass the 90% confidence 227 
test. 228 

In composite analysis, when warming in North America and East Asia alongside 229 

cooling along their eastern coasts (Fig. S2a), i.e., the LSC positive phase, positive dust 230 

anomalies over West Africa predominantly follow westward trajectories to the Atlantic 231 

Ocean during 1980-2000 (Fig. 3a). This westward transport pattern aligns with 232 

observations by Evan et al., who documented peak Atlantic dust export in the 1980s 233 

followed by a marked post-2000 decline (Evan et al., 2016). After 2000, dust related to 234 

negative LSC phase exhibit preferential eastward transport to West Asia and northern 235 

China via the eastern Mediterranean, consistent with the intensification of eastward 236 

pathways since 1980 reported by Adame et al. (2022). Notably, a March 2003 North 237 

African dust event traversed continental scales, depositing 50% of Japan's dust load 238 

within a week (Tanaka et al., 2005). Moreover, unlike the westward pathway, LSC-239 

linked dust can be transported eastward across the North Pacific along a considerably 240 

longer path, reaching the southeastern region of North America in the second period 241 

(Fig. 3b and 3j).  The regression analysis of dust aerosol optical depth (DOD) onto LSC 242 

reveals that 43% (6 out of 14) of CMIP6 models reproduce the observed significant 243 

spatial correlations (p < 0.1) between LSC and dust variability. Notably, a robust 244 

positive LSC-DOD relationship persists along the Atlantic coast of West Africa (Fig. 245 

S2a), while significant negative correlations emerge post-1990s over North Africa, 246 

mid-latitude Asia, and southern North America (Fig. S3b). This multi-model consensus, 247 

despite CMIP6's known dust biases, underscores the interdecadal variability in dust 248 

distribution patterns associated with LSC. 249 

During the first period, Atlantic-bound dust transport predominantly occur within 250 

the low-to-mid troposphere (850−500 hPa) (Fig. 3c,3e), as evidenced by vertical cross-251 

sections of dust mixing ratios (DMR) in Saharan (Fig. 3i). The second period reveals 252 



12 
 

an elevated dust layer extending to 10 km altitude (Fig. 3i) demonstrating sustained 253 

eastward transport—a pattern attributable to springtime North African dust emissions 254 

according to satellite-derived analyses (Yang et al., 2022). Significant positive DMR 255 

anomalies are observed at 500 hPa across nearly the entire zonal belt at mid-latitudes 256 

(Fig. 3f), consistent with the findings of Uno et al. (2009). Their CALIOP observations 257 

and transport model simulations suggest that circum-global dust trajectories persist in 258 

upper-troposphere for multiple revolutions before deposition. Notably, our analysis 259 

identifies stronger DMR anomalies at 500 hPa than at 850 hPa over the North Pacific 260 

(Fig. 3d,3f), highlighting mid-tropospheric dominance in trans-Pacific dust transport. 261 
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 262 

Fig. 3: Changes in spring dust transport pathway and transport height in North Africa associated with pre-winter 263 

LSC of composite analysis during the two periods. Composite analysis of the DUST anomalies (shading; 10-264 
5kg/m2) and dust column uv-wind mass flux anomalies (vectors; 10-5kg/ms) in (a) 1980-2000 (positive LSC minus 265 
negative LSC) and (b) 2001-2023 (negative LSC minus positive LSC), respectively. (a) Vertical structure of dust 266 
mixing ratios anomalies at the North African sand source (5°N−30°N; 18°W−30°E). Spatial characteristics of dust 267 
mixing ratios (DMR) anomalies (shading; 10-8kg/kg) at (c) 850hPa, (e) 500hPa, and (g) 200hPa in 1980−2000 for 268 
representative layers. (d) 850hPa, (f) 500hPa, and (h) 850hPa, are for 2001−2023. (i) Vertical structure of DMR 269 
anomalies at the North African sand source (5°N−30°N; 18°W−30°E) during the two periods.  (j) The regional 270 
average of the DUST anomalies in five subregions (West Asia (35°N−40°N; 32°E−60°E), Northern China 271 
(34°N−40°N; 95°E−120°E), Mid-latitude Pacific (35°N−50°N; 180°W−150°W.) and Southeastern North America 272 
(25°N−40°N; 108°W−83°E). The dashed dots and vectors indicate that the anomalies pass the 90% confidence test. 273 
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3.2 Mechanisms for the interdecadal shifts of impact of LSC on dust transport 274 

path  275 

During the first period, the composite geopotential height anomalies at 500 hPa 276 

(Z500) are presented in Fig. 4a and 4c, illustrating the differences between the LSC 277 

positive and negative phases. During the pre-winter period, a general positive anomaly 278 

in Z500 is observed over the NH mid-latitudes, including North America, Eurasia, and 279 

the Atlantic Ocean, while a negative anomaly is evident in higher latitudes (Fig. 4a). 280 

The NAO+ mode is observed in the extratropical Atlantic region, accompanied by PV 281 

anomalies (Fig. 4a, 4g), which typically facilitate downstream Rossby wave breaking, 282 

as reported in previous studies (He et al., 2014; Molteni et al., 2011). In the following 283 

spring, the anomalous anticyclone over northwestern North Africa, triggered by the 284 

winter NAO+ mode, drives anomalous northeasterly winds, transporting dust from the 285 

Sahara Desert to the Atlantic (Fig. 4c, 4h). The 10 m anomalous easterly wind 286 

probability in the tropical Atlantic is significantly higher in the 1980-2000 LSC positive 287 

phase compared to the 2000-2023 LSC negative phase (Fig. 4h, the short red line 288 

represents p < 0.1 in positive LSC). Long-duration, widespread dusty events are 289 

frequently associated with explosive anticyclones situated to the rear of the northern 290 

Sahara Desert (Knippertz et al., 2012). In addition, during positive LSC phase, 291 

weakened and poleward mid-latitude westerlies further amplify terrestrial warming 292 

through a positive feedback mechanism (He et al., 2014), which also enhances dust 293 

activity. 294 

From 2001 to 2023, the Z500 field pattern is completely opposite to that of the first 295 

phase (Fig. 4b), which is considered as the expected outcome of WOCL mode during 296 

winter. However, the lag effect of the pre-winter LSC signal in the subsequent spring 297 

differs from that in the first phase, likely due to interdecadal variability of heat retention 298 

in the ocean memory (Pan et al., 2005; Yu et al., 2024; Khatri et al., 2024; Han and Wu, 299 

2025). Specifically, the strengthening of the tri-polar pattern of sea surface temperatures 300 

anomaly (SSTA) from DJF to MAM (Fig. S4b, S4d) leads to the maintenance of the 301 
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NAO− pattern into the spring (Fig. 4d, 4g). The anomalous cyclonic circulation in the 302 

Atlantic strengthens the southwesterly (Fig. 4d and 4i), which direct dust plumes toward 303 

the Eurasian border region. For example, the NAO− phase in March 2018 caused 304 

surface dust concentrations in the eastern Mediterranean to be approximately 200 µg/m³ 305 

higher than the climatological value, due to strong southwesterly (Kaskaoutis et al., 306 

2019). The prevailing stronger westerlies continue to transport dust eastward (Fig. 4f 307 

and Fig. S3d and S5). Meanwhile, under the effect of downward momentum, the 308 

probability of westerlies near the surface in these regions increases (Fig. 4i−4l, the short 309 

blue line represents p < 0.1 in negative LSC), leading to dust deposition in northern 310 

China, the Pacific, and the southeastern United States. 311 
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 312 

Fig. 4: Atmospheric anomalies in spring associated with pre-winter LSC of composite analysis during the two 313 
periods. Composite (a) pre-DJF 500 hPa geopotential height (Z500) anomalies (shading; gpm) with 320K potential 314 
vorticity (PV320) anomalies (green contours, only absolute values >0.3 are shown, solid lines represent positive, 315 
dashed lines represent negative; PVU), (c) MAM Z500 anomalies (shading; gpm) with PV320 and 500hPa horizontal 316 
wind (UV500) anomalies (vectors; m/s), and (e) 200hPa U-wind (U200) anomalies (shading; m/s) for 1980−2000 317 
(positive LSC minus negative LSC). Composite (b) pre-DJF Z500 with PV320, (d) MAM500 with PV320 and 318 
UV500, and (f) U200, are for 2001−2023 (negative LSC minus positive LSC). (g) The pre-DJF LSC is associated 319 
with a 21-year sliding correlation with the NAO over the same period (black line) and in the following spring (red 320 
line). The significance at the 90% (gray) levels is shown by the dashed line. Histogram of surface wind directions at 321 
all grid points within (h) the Tropical Atlantic during positive LSC (white bars) and during negative LSC (blue bars) 322 
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in 1980-2000. For surface wind directions, “NE'', “SE'', “SW'', and “NW” indicate north-easterlies, south-easterlies, 323 
south-westerlies, and north-westerlies, respectively. (i), (j), (k), and (l) represent the West Asia, northern China, mid-324 
latitude Pacific, and southeastern North America in 2001-2023, respectively. The boxes are filled in red and blue 325 
when positive LSC and negative LSC are statistically significant pass the 90% confidence test. The dashed dots 326 
indicate that the anomalies pass the 90% confidence test. 327 

The composite analysis from 1980 to 2000 shows that anomalous northeasterly 328 

winds (maximum anomaly 1.4m/s, Fig. 4c) lead to significant positive anomalies wind 329 

speed in the western and central regions of North Africa (Fig. 5a), which align with the 330 

spatial distribution of the second empirical orthogonal function (EOF) of 10m wind 331 

speed (Evan et al., 2016). This wind speed anomaly facilitates dust emission south of 332 

20°N (Fig. 5e), explaining 58% of the variation in westward dust transport across North 333 

Africa (Evan et al., 2016). In contrast, soil conditions exert a smaller influence on dust 334 

emission (Fig. 5b). The cold northeasterly cool the eastern region, triggering anomalous 335 

zonal temperature gradients (Fig. 5c) and alterations in zonal circulation patterns (Fig. 336 

5d). These changes further amplify the vertical uplift of dust, carrying it into the mid-337 

lower troposphere of the Atlantic. Additionally, radiative heating effects in the source 338 

regions strengthen the upward motion of dust (Carlson et al., 1980). 339 

From 2000 to 2023, anomalous southwesterly winds cause significant warming in 340 

the northwestern part of North Africa, with maximum anomalies capable of exceeding 341 

4 K (Fig. 5h). This is due to the weakening of the subtropical high (Fig. 4d), which 342 

triggers strong westerly warm advection and enhances vertical mixing in the 343 

atmospheric boundary layer under the NAO− phase (Zhou et al., 2024). The warming 344 

of the surface has two major impacts. First, the LSC-induced soil moisture deficit, 345 

quantified through composite analysis in Fig. 5g (peak anomalies of 0.03 m³/m³ in 25-346 

30°N), significantly reduces soil cohesion, promoting dust emissions north of 25°N (Fig. 347 

5j). Second, the intensified meridional temperature gradient (Fig. 5h) generates 348 

anomalous circulation patterns, with pronounced upward motion extending to 200 hPa 349 

(Fig. 5i), creating favorable conditions for long-range dust transport 350 
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Fig. 5: Local meteorological conditions and dust emissions during spring in North Africa associated with pre-winter 352 

LSC of composite analysis during the two periods. The composite (positive LSC minus negative LSC) (a) 10m-353 
wind speed (UV10) anomalies (shading; m/s), (b) soil moisture (SM) anomalies (shading; 10-2m3/m3), (c) Two-meter 354 
temperature (T2M) anomalies (shading; K), (d) mean cross sections of zonal circulation (vectors; V-wind for m/s 355 
and vertical velocity for Pa/s) anomalies (latitude averaged over 10°N–20°N), and (e)dust emissions anomalies 356 
(shading; 10-10kgm-2s-2) in 1980−2000. (g-j) then for the composite (negative LSC minus positive LSC) 2000−2023, 357 
where (g) represents the meridional profile averaged over longitudes 20°W-10°E. The shading in (d) and (i) 358 
represents the magnitude of the vertical velocity, which is multiplied by a factor of −150 to enhance the visual 359 
interpretation of wind vectors. The dashed dots indicate that the anomalies pass the 90% confidence test. 360 

4 Conclusions and discussions 361 

This study primarily reveals that the dust transport pathway from North Africa in 362 

the subsequent spring, influenced by the preceding winter LSC, shifted from a 363 

westward to a long-range eastward trajectory in the late 1990s. The schematic in Fig. 6 364 

outlines the dynamical processes, ranging from large-scale to local-scale, that control 365 

dust emission, uplift, and subsequent transport. The 1980−2000 LSC+ phase (Fig.6a) 366 

amplifies zonal temperature gradients between warming Eurasian/North American 367 

continents and cooling oceanic basins, driving the NAO+ mode that establishes 368 

intensified anticyclonic systems over northeastern North Africa. These synoptic 369 

configurations generate anomalous northeasterlies that enhance both dust emission and 370 

westward Atlantic transport, corroborated by the dominance of wind-driven emission 371 

mechanisms (Evan et al., 2016). Post-2000, the reversed LSC− phase (Fig. 6b) promotes 372 

NAO− persistence into spring, with anomalous southwesterly advection inducing 373 

Saharan soil desiccation and convective uplift. Midlatitude westerly intensification 374 

enables circum-global dust transport extending to southeastern North America. Overall, 375 

the variation in the LSC-related dust transport directions along the westward and 376 

eastward pathways is closely related to the climatic variability determined by the phases 377 

of the NAO. The significant role of the second dry period on dust emissions, similar to 378 

the findings for the Gobi dust event (Zhu et al., 2024), highlights the significant 379 

influence of regional drought on dust emissions in the context of global warming, 380 

particularly as a consequence of intense heatwaves. 381 
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 382 

Fig. 6: A schematic diagram summarizing the sprint dust activity in North African associated with pre-winter LSC 383 
over two periods including dust emission, uplift, transport and deposition. (a) associated with LSC+ in 1980−2000; 384 
(b) associated with LSC- in 2000−2023. Here, only the two periods related to positively anomalous dust in North 385 
Africa are shown, where dust activity is suppressed when the sign of the LSC in both periods is opposite to that of 386 
the schematic diagram. Normalized Difference Vegetation Index (NDVI) values for the bottom graph are from 387 
GIMMS ndvi3g (1982−2022). 388 

This study is based on statistical and dynamical diagnostics, with its results can be 389 

validated through some other numerical simulations of land-ocean contrasts. Previous 390 

research in idealized atmospheric circulation simulations has demonstrated that 391 

continental warming (LSC+) induces planetary wave modes, with a dipole resembling 392 

NAO emerging as the dominant regional feature (Molteni et al., 2011). This is 393 

accompanied by anomalous dispersion of the tropospheric Eliason-Parma fluxes in the 394 

mid-latitudes, which reduces the net meridional vortex heat flux into the stratosphere 395 

and weakens the westerlies (Portal et al., 2022). This, in turn, supports the conclusions 396 

of this paper regarding the eastward transport paths of the second LSC− phase. 397 

Additionally, the critical role of NAO-modulated land-atmosphere interactions receive 398 

further validation from Sahelian climate studies, where vegetation-precipitation 399 

feedbacks amplify dust emission sensitivity to circulation anomalies (Lu et al., 2005; 400 

Folland et al., 1986). Our findings align with Global Ozone Chemistry Aerosol 401 
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Radiation and Transport (GOCART) model simulations that quantitatively link NAO 402 

phases to North Atlantic dust load variability (Ginoux et al., 2004), though they extend 403 

this paradigm by revealing LSC effects on transcontinental transport efficiency. The use 404 

of only r1i1p1f1 ensemble members in our CMIP6 analysis prevents evaluation of intra-405 

model variability, suggesting the need for future work with multi-member ensembles. 406 

Moreover, the global signal response is primarily driven by Asian warming, across the 407 

zonal boundary region (Portal et al., 2022). This highlights the need for further 408 

investigation into the impact of subregional LSC variations on dust transport. 409 

This study elucidates a novel mechanism whereby pre-winter LSC modulates spring 410 

dust transport via NAO phase shifts, providing a reference for improving the ability of 411 

sand and dust forecasting.  The established LSC–NAO–dust pathway provides an 412 

operational framework to improve seasonal forecasts through winter LSC indicators 413 

and refine impact assessments via phase-dependent evaluation (pre-/post-2000 414 

regimes). Particularly for downwind regions like West Asia and North America that are 415 

now experiencing intensified dust impacts under the new transport paradigm. These 416 

findings have immediate applications for transcontinental dust early warning systems, 417 

climate model parameterizations, and management of dust-sensitive sectors like 418 

aviation and renewable energy. However, the considerable nonlinearity inherent in 419 

these dynamics, particularly through complex LSC–NAO interactions (Molteni et al., 420 

2011), atmospheric blocking linkages (Athanasiadis et al., 2020; Croci-Maspoli et al., 421 

2007), and jet stream variability (He et al., 2014; Portal et al., 2022), introduces 422 

important uncertainties regarding future dust activity under changing climate 423 

conditions. High sensitivity to the land-ocean boundary response and to scenarios of 424 

future CO2 concentration pathways has been demonstrated in changes to climate 425 

patterns (Kamae et al., 2014). Although it has been predicted in many studies that the 426 

overall trend of global and regional dust may decrease in the future (Evan et al., 2016; 427 

Shao et al., 2013; An et al., 2018; Yang et al., 2020), the long-range transport of dust 428 

and its impacts on climate under the modulation of LSC and its associated nonlinear 429 

dynamical mechanisms remain a critical area requiring further urgent research. 430 
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