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Abstract. Coastally trapped waves (CTWs) are a major cause of sub-seasonal coastal sea level variability. While they have

mostly been studied using numerical models, observational evidence is limited due to the sparse spatial coverage of the tide

gauge network and the limitations of satellite altimetry gridded maps, which arise from the interpolation of sparse along-track

data. The simultaneous operation of multiple altimetry missions, advancements in processing technologies, the advent of wide-

swath altimetry, and the development of new interpolation techniques have the potential to significantly improve the monitoring5

of CTWs. In this study, we analyze three months of sea level data from satellite altimetry to evaluate the new capabilities for

detecting sub-monthly variability, comparing the results to tide gauge data and an ocean model in Eastern Australia, an area

known for its dominance of CTWs at these time scales. The results demonstrate that in the study area, the correlation between

tide gauges and coastal daily sea level grids from satellite altimetry exceeds 0.5, even when considering time series filtered to

capture only sub-monthly variability. CTWs are generally well detected, though discrepancies remain, particularly in terms of10

amplitude, wavelength and period.

1 Introduction

Although long-term sea level variability is dominated by annual and interannual variations, it is known from in-situ data, mod-

els, and reanalysis that strong variations occur at submonthly scales, particularly in the shelf seas and coastal zones (Woodworth

et al., 2019). One of the main dynamics in these regions is coastally trapped waves (CTWs), which are forced by winds and15

propagate the energy transmitted from the atmosphere to the ocean (Hughes et al., 2019). Although these phenomena have been

reported in many regions of the world (see Aydın and Beşiktepe (2022) for a comprehensive list), a systematic observational-

based analysis is made difficult by the coarse spatial resolution of the global tide gauge network (Woodham et al., 2013).

However, the literature has mainly relied on these in-situ data and on models to study CTWs, while remotely sensed sea level

data from satellite altimeters has been used only to study large-scale phenomena at temporal scales of a month or more (Poli20

et al., 2022; Polo et al., 2008; Kemgang Ghomsi et al., 2024). The objective of this work is to provide a first assessment of

the capability of state-of-the-art sea level maps based on satellite altimetry to detect sub-monthly CTWs. As a testbed, the

Eastern Coast of Australia was chosen. This choice is justified by the fact that the region is characterized by a narrow shelf,

whose sea level variability is dominated by CTWs on timescales ranging from one day to several months (Maiwa et al., 2010).

1



Moreover, Woodham et al. (2013) has shown that model data from the Bluelink ocean forecasting system (Schiller et al., 2019)25

can effectively describe the CTWs and can be validated with the local tide gauge network.

Satellite altimetry is a remote sensing technique based on the analysis of the returned signal sent from a radar, which provides

the measurement of the distance between the satellite and the ocean surface (range) (Chelton et al., 2001). The range is then

corrected for instrumental, atmospheric, and geophysical effects and subtracted from the orbit altitude to obtain the sea level

height (Andersen and Scharroo, 2011). The data collected along the track of each satellite are then referred to a mean sea30

surface, cross-calibrated, and interpolated in the form of regularly spaced grids (Le Traon et al., 1998). Although in principle

sea level maps from satellite altimetry could provide an excellent monitoring system for CTWs, their use has been limited by

two main reasons. First, the need for spatio-temporal interpolation and the reduced data quality in the coastal zone may affect

the ability to spatially constrain the CTWs, particularly in narrow shelves. Secondly, although these grids are currently released

at a daily rate, previous literature has defined their effective temporal resolution to be about one month (Ballarotta et al., 2019).35

This points more to a worsening of the signal-to-noise ratio at higher frequencies, rather than to a complete absence of a signal.

Moreover, the effective resolution strongly depends on the number of satellites used for data collection.

In recent years and months, several innovations have occurred that could play a central role in overcoming these limitations.

There have never been so many altimeters in orbit, which means that the amount of data is significantly higher than in previous

years (The International Altimetry Team, 2021). The quality of the data in the coastal zone has been significantly improved by40

the use of new processing techniques and better geophysical corrections (Donlon et al., 2021). The successful launch of the

Surface Water and Ocean Topography (SWOT) mission means that, for the first time, two-dimensional snapshots of sea level

at an unprecedented spatial resolution can be combined with traditional one-dimensional along-track data (Fu et al., 2024).

New interpolation algorithms have been designed to exploit the potential improvements coming from these innovations (Juhl

et al., 2025; Passaro and Juhl, 2023; Ballarotta et al., 2025; Beauchamp et al., 2023). In the following sections, their impact45

and importance in opening up new possibilities for CTWs monitoring are evaluated and discussed.

The outline of the manuscript is as follows: Section 2 presents the data used in the analysis, including the study area.

Section 3 describes the methodology applied to analyze the sub-monthly CTWs. Section 4 reports the results obtained, which

are then discussed in Section 5, along with concluding remarks and future perspectives.

2 Data50

2.1 Tide Gauges

Tide gauges (TG from now on) are used in this study to compare the results obtained from other data sources. High-frequency

(hourly) data, similar to those distributed by the Global Extreme Sea Level Analysis (GESLA-3, www.gesla.org, Woodworth

et al. (2016)), are used. Since the GESLA-3 data available online end in 2022, a specific update was requested, and data

for 2023 were obtained through personal communication with Ivan Haigh (University of Southampton, UK) and Ben Hague55

(Bureau of Meteorology, Australia).
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Stations in Eastern Australia within the rectangle visible in Figure 1 were selected. Stations were retained if they ensured

a minimum spacing of 50 km between them and were at least 25 km away from a river mouth. Based on data availabil-

ity and these criteria, the following stations were used: Bermagui, Crookhaven_Heads, Port_Macquarie, Coffs_Harbour, and

Brunswick_Heads.60

To make the sea level retrievals from TGs comparable to other sources of sea level data, the following steps were performed.

Firstly, the TG data were detided using a 40-hour LOESS filter. Previous literature has shown this to be the most effective

method for reducing tidal variance for periods shorter than two days (Saraceno et al., 2008). Subsequently, the atmospheric

contribution to sea level variability was removed by applying the same correction used for altimetry data, the Dynamic Atmo-

sphere Correction from Carrère and Lyard (2003). Finally, the hourly and sub-hourly data collected by each TG were averaged65

to a daily rate to match the data rate of the altimeter product.

2.2 Ocean Model

The approach of Woodham et al. (2013) is followed, which studied CTWs in the same region using data from the Bluelink

ReANalysis (BRAN) experiment (referred to simply as BLUELINK in the following sections). The latest version, BRAN2020,

is used. It simulates the period from 1993 to 2023 using a near-global, eddy-resolving ocean model with a 10-km spatial70

resolution and daily temporal resolution. Through data assimilation, the model integrates observations of temperature, salinity,

and sea surface height (from satellite altimetry) to refine the ocean state. Details of the model and an analysis of its performance

can be found in (Chamberlain et al., 2021).

2.3 Altimetry

The altimetry data used in this study come from two distinct products:75

– CMEMS: the operational daily sea level grids distributed by the Copernicus Marine Service, based solely on nadir

altimeters.

– MIOSTSWOT+nadirs: an experimental product distributed by AVISO that integrates nadir altimetry with swath data from

the SWOT mission.

All altimetry data used are provided at a daily rate. The latest generation, named DT2024 and available since November80

2024 in the Copernicus Marine Service (CMEMS), applies for the first time a different approach compared to the optimal

interpolation adopted in previous versions (e.g., Le Traon et al. (1998); Ducet et al. (2000); Pujol et al. (2016)): the Multiscale

Inversion of Ocean Surface Topography (MIOST) technique (Ubelmann et al., 2021, 2022).

The MIOST technique solves the mapping problem by integrating all components within a reduced space and utilizing

a preconditioned conjugate gradient method (Ubelmann et al., 2021). This iterative process continuously refines the solution85

until convergence. Once the final reduced solution is obtained, it is projected back onto the full spatial grid using wavelet-based

transformations specific to each component.
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The MIOST technique is also applied to an experimental product distributed by AVISO (called MIOSTSWOT+nadirs in this

study), representing the first attempt to combine traditional Level-3 along-track sea level anomalies with the two-dimensional

Level-3 product from the SWOT mission (Dibarboure et al., 2025). Besides the integration of the swath-altimeter data, minor90

methodological differences include a different selection of the components of the wavelet-based transformations (M. Ballarotta,

personal communication).

Three months of data (from September 2023 to November 2023) are considered during the science phase of SWOT. In

this period, both CMEMS and MIOSTSWOT+nadirs blend along-track measurements from the following nadir altimeters: SAR-

AL/AltiKa, Cryosat-2, HaiYang-2B, Jason-3, Sentinel-3A, Sentinel-3B, Sentinel-6A, and SWOT nadir.95

3 Methods

3.1 Filtering

For each latitude-longitude point of all the data sources listed above, a time series is produced and stored at a daily rate, which

is referred to as unfiltered sea level. Subsequently, the time series is band-pass filtered using a Butterworth bandpass filter,

filtering out components longer than 29 days (0.15 cycles per day in frequency) and shorter than 7 days (0.035 cycles per day100

in frequency).

3.2 Lag-correlation

A correlation analysis is performed to study the consistency of the dataset with the ground truth represented by the TG data.

The computation is based on the Pearson correlation coefficient to measure the linear relationship between time series x and

y:105

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)

where xi and yi are the individual sample points of the two time series, x̄ and ȳ are the mean values of x and y, respectively,

and n is the number of observations.

To observe the along-shore coherency of intervals, the lag-correlation is also computed. In this case, the correlation is

computed between xt and a time-shifted version of yt, denoted as yt+τ , where τ represents the lag (in days):110

r(τ) =

∑n−τ
i=1 (xi − x̄)(yi+τ − ȳτ )√∑n−τ

i=1 (xi − x̄)2
√∑n−τ

i=1 (yi+τ − ȳτ )2
(2)

3.3 Hovmöller diagrams and Phase-speed computation

The average propagation speed of the CTWs can be estimated from the Hovmöller diagrams. These diagrams are obtained by

representing the temporal evolution of sea level anomalies along equally spaced points along the coastline, which are associated
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with the closest grid point of each dataset. The propagation speed of the observed contours is then computed based on the slopes115

that can be derived using image processing methods. The method based on the Radon transform, as described in De-Leon and

Paldor (2017), is followed. First, the Hovmöller diagrams are normalized to the range 0–1. The Radon transform works by

considering straight lines in the 2D field, which are rotated by an angle θ and shifted by a distance s. It is defined as:

Rf (s,θ) =

∞∫
−∞

f(scosθ− tsinθ,ssinθ+ tcosθ)dt, (3)

where Rf (s,θ) is the Radon transform of f(x,y), s is the perpendicular distance of the line from the origin, θ is the angle120

of the line relative to the ordinate, and t is a parameter along the line L, integrating over all points on that line. The transform

sums the squares of the 2D field along each straight line to quantify the energy of the features aligned at each angle:

E(θ) =

∞∫
−∞

R2
f (s,θ)ds. (4)

The best estimate of the westward propagation speed is then the tangent of the angle at which the sum of the squares reaches

its maximum:125

v = tan(θmax), (5)

where v represents the westward propagation speed.

3.4 Complex Empirical Orthogonal Functions Analysis

To determine whether CTWs represent a dominant pattern of sub-monthly coastal sea level variability, a Complex Empir-

ical Orthogonal Function (CEOF) analysis is performed using all time series of filtered sea level within the shelf domain,130

characterized by bathymetry shallower than 500 meters.

The CEOF analysis is a well-known technique to identify variability patterns in time and space and has also been used for

this purpose in previous studies of CTWs such as Woodham et al. (2013). In this analysis the data are arranged as a complex

matrix, where the real part is the original data, and the imaginary part is the Hilbert-transformed data. The coastal time series

can be represented as a matrix X, where each row corresponds to a spatial location and each column corresponds to a time135

step. An anomaly matrix X′ is then computed by subtracting the mean at each spatial location to remove the temporal trend.

To identify the dominant spatial patterns, the complex anomaly matrix using the Hilbert transform is defined:

Xc =X′ + i ·H(X′) (6)

where H(X′) is the Hilbert transform of X′, and i is the imaginary unit.
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The complex covariance matrix is computed as:140

C=
1

N
X′X′T. (7)

where N is the number of time steps. The CEOF modes are obtained by solving the eigenvalue problem:

Cek = λk ek (8)

where ek are the complex eigenvectors (the CEOF spatial modes), and λk are the eigenvalues, representing the variance

explained by each mode. Finally, the Principal Component (PC) time series describes how the CEOF modes vary over time:145

PCk = eTk X′. (9)

4 Results

4.1 1D-Validation against tide gauges

In Figure 2, an example of the time series from all data sources closest to one TG is presented, which can be qualitatively150

discussed before a quantification of the correlation is provided. The time series are shown in both their unfiltered and filtered

versions. A visual inspection of the TG data reveals oscillations with a period of approximately 10 days and amplitudes ranging

from 5 to 10 cm. The strongest one is found around day 50 and corresponds to a maximum in the SLA. For the purposes of this

section, it is assumed that the observed oscillations represent the signature of CTWs, which are known to dominate sub-monthly

variability in the study region (see Introduction). This assumption will be further examined in the following sections.155

The BLUELINK time series matches very well the TG data, capturing all the CTWs and showing a good match in terms of

phase as well. Only the peak of the strongest event is slightly underestimated. The CMEMS data fail to capture most of the

sub-monthly oscillations and underestimate the amplitude peak. The MIOSTSWOT+nadirs data show much better agreement with

the TG and BLUELINK, corresponding to at least five of the CTWs correctly observed, with amplitude and phase similar to

the BLUELINK and TG estimations. However, events that almost superimpose cannot be correctly distinguished, as clearly160

seen between days 40 and 60.

To quantify the agreement, the correlation of BLUELINK, MIOSTSWOT+nadirs, and CMEMS against each TG for the unfil-

tered and filtered time series was computed and the results are reported in Figure 3A and B. BLUELINK has the best score,

showing higher agreement with the TGs at every station for both the unfiltered and filtered time series. Notably, the correlation

coefficient is never lower than 0.7, and there is no strong sign of worse performance in the filtered version. This confirms the165

findings of Woodham et al. (2013) and allows us to use the reanalysis as a validation of the altimetry-based dataset in this
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study, in addition to the TGs, which have the obvious limitation of providing only point-wise time series at a limited number

of locations and therefore contain limited spatial information.

In the unfiltered time series, MIOSTSWOT+nadirs performs significantly better than CMEMS, with a correlation coefficient

never lower than 0.6. Most notably, while a drop in correlation is observed for both altimetry data sources when considering170

the filtered time series, a strong improvement is seen in MIOSTSWOT+nadirs compared to CMEMS. The correlation between the

filtered MIOSTSWOT+nadirs and TGs is higher than 0.5 in four out of five stations, while for CMEMS the correlation exceeds

0.5 only in one station. The largest drop in correlation between unfiltered and filtered signals in the altimetry dataset occurs in

Bermagui, the station closest to the shelf break, which in that region is located 30-40 km from the coast. The drop in correlation

at high frequencies is therefore likely due to the influence of open ocean processes in the estimation of the coastal grid points.175

Figure 3C and D presents the spectral analysis of the unfiltered and filtered time series, respectively, performed using the

Power Spectral Density (PSD) estimated with Welch’s method. For this analysis, a Hann window and a segment length of 45

data points were used, with the PSD averaged across the five selected tide gauges. The shaded areas represent the uncertainty,

computed as the standard deviation of the PSD across these gauges at each period. The tide gauges and BLUELINK exhibit

a robust energetic local maximum at around 10 days, while the energetic content of the altimetry datasets is shifted toward180

longer periods. All datasets exhibit significant energy at sub-monthly periods, although a clear characterisation is hindered by

the shortness of the time series.

4.2 2D-Validation against tide gauges

Besides their temporal signature, we expect the sub-monthly CTWs identified in the previous section to also have a spatial

signature along the shelf. The sea level oscillation caused by the CTWs can typically be observed by computing lag correlations.185

Moreover, Woodham et al. (2013) and our results give us confidence that the BLUELINK data can serve as a reference for the

altimetry dataset. Using the filtered time series, we therefore compute the correlation coefficient between each grid point and

the Bermagui TG at different lags of 0, 2, and 4 days. The results are shown in Figure 4. Bermagui is chosen because it is the

southernmost location in the domain, in order to highlight, through lag-correlation, the spatial footprint of coastally trapped

waves traveling northward. However, the same statistics have been produced for every TG station, and the corresponding190

figures can be found in the Appendix (Figures B1 to B4).

Taking BLUELINK as the reference, it is possible to observe how the correlation pattern is very well constrained within

the shelf, which is defined by the detached line showing the bathymetric contour at -500m. The locations to the north of -31

degrees S on the shelf are anticorrelated with Bermagui at Lag 0, while the same region shows correlations well above 0.5

with a lag of 4 days. In MIOSTSWOT+nadirs, the same pattern as in BLUELINK can be traced, although the average correlation195

with the TG is generally lower than in BLUELINK, and the areas of high lag-correlation are slightly more spread outside the

shelf. CMEMS also shows a similar pattern, but the level of correlation, especially at Lag 2 and Lag 4, is much lower than in

MIOSTSWOT+nadirs and therefore less distinguishable from the random patterns in the open ocean. Observing the correlations at

Lag 0, it is possible to better understand the drop in performance for Bermagui seen in Figure 3: this is due to an eddy-shaped
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Figure 1. Region of study. The parallelogram shows the region in which sea level data from reanalysis and remote sensing is acquired. The

tide gauge stations used in the work are also shown.

Figure 2. Daily sea level data from CMEMS, MIOSTSWOT+nadirs, BLUELINK and the Coffs_Harbour tide gauge. The upper plot shows the

full signals, while the lower plot is obtained by filtering out components longer than 29 days (0.15 cycles per day in frequency) and shorter

than 7 days.

uncorrelated feature that is not visible in the model and that MIOSTSWOT+nadirs and CMEMS localize on both sides of the shelf200

break.
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Figure 3. Upper panels: Correlation of CMEMS, MIOSTSWOT+nadirs and BLUELINK time series with the TG data at the closest grid point to

each in-situ station. The plot shows the correlation considering unfiltered (A) and filtered (B) time series. Lower panels: The averaged PSD

of the same time series as above in their unfiltered (C) and filtered (D) version. The shaded areas represent the standard deviation across these

gauges at each period.

4.3 Phase speed and EOF analysis

After subdividing the coastline into equally spaced points, we analyze the Hovmöller diagram of the filtered signals in the three

datasets and compute the average phase speed of the CTWs based on the Radon transform. The results are shown in Figure 5.

The pattern of the CTWs traveling anticlockwise along the Australian coastline is very clearly modeled by BLUELINK, but205

can also be recognized in MIOSTSWOT+nadirs and, partially, in CMEMS. The filtered altimetry time series in MIOSTSWOT+nadirs

are good enough that it is possible to measure exactly the same phase speed of the CTWs as in BLUELINK (4.01 m/s), while

the phase speed estimated for CMEMS is still very close (4.33 m/s). This is a striking result, considering that we are using the

time series closest to the coastline, meaning the points for which the quality of the altimetry data is supposed to be the lowest.

As the next step, we analyze the results of the CEOF analysis applied to the filtered signal. The reconstructed signals from210

the first CEOF are shown as Hovmöller diagrams in Figure 6 using the same coastal locations as previously. As expected from

previous studies, BLUELINK shows a dominant first mode 71% of the total variance) characterized by an oscillating pattern
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Figure 4. Correlation coefficient (r) of filtered CMEMS, MIOSTSWOT+nadirs and BLUELINK time series at each grid point against the filtered

TG data of the station Bermagui (black triangle). Each row corresponds to the lag correlation at day 0, 2, 4. The bathymetry contour of -500m

is shown to identify the shelf break. Locations where the correlation is not statistically significant are marked with black diagonal stripes.

typical of CTWs. A similar first mode is seen with different degrees of similarity also in MIOSTSWOT+nadirs and CMEMS,

although the degree of variance explained is less in the altimetry dataset (55% for MIOSTSWOT+nadirs, 52% for CMEMS).

The use of CEOF analysis enables the examination of the signal’s phase in both spatial and temporal dimensions. Both215

MIOSTSWOT+nadirs and BLUELINK exhibit a clear linear phase progression along the coastline (6, lower panels), characteristic

of traveling waves, whereas this pattern appears noisier in CMEMS. By analyzing the slope of the spatial phase and the corre-

sponding spatial distance, the spatial wavelength of the signal can be estimated. The mean spatial wavelength is approximately

2365 km for BLUELINK and 3142 km for MIOSTSWOT+nadirs. These values are challenging to validate: Woodham et al. (2013)

reported a mean spatial wavelength of 4000 km in the same domain for 2009 using BLUELINK, while in-situ campaigns from220

the 1980s cited in the same study reported wavelengths around 2500 km. For the purposes of this study, it is important that

10



Figure 5. Hovmöller diagrams of CMEMS, MIOSTSWOT+nadirs and BLUELINK filtered time series. Each column represents the sea level

anomaly time series at a coastal location within the parallelogram shown in Figure 1, progressing from the southwesternmost point northward

along the coast. The dotted lines correspond to the best estimate of the westward propagation speed (see Section 3.3). The x-axis represents

the distance from the southwesternmost point along the coastline.

the average spatial wavelength is within a realistic range and that the spatial phase decreases linearly in both BLUELINK and

MIOSTSWOT+nadirs. In contrast, the average wavelength of 1211 km derived from CMEMS appears unrealistic due to the irreg-

ularity of its spatial phase slope. The temporal phase of the leading mode increases linearly across all three datasets, indicating

a sinusoidal oscillation with a dominant period. The average period of the first mode is approximately 10 days for BLUELINK,225

14 days for MIOSTSWOT+nadirs, and 18 days for CMEMS.

A confirmation of this evaluation is evident in the temporal and spatial evolution of the reconstructed signal from the

first CEOF, presented in Figure 7 for three days during the strongest CTW event observed in the second half of October

2023. MIOSTSWOT+nadirs and BLUELINK exhibit a consistent pattern of anticlockwise oscillating amplitudes, although in

BLUELINK the decreasing amplitude of the CTW from onshore toward the shelf is more clearly visible. BLUELINK displays230

the highest CTW amplitudes, while these are strongly damped in CMEMS. Similar conclusions can be drawn from the filtered

signal shown in Figure C1.

5 Discussion and conclusion

While gridded sea level maps have often been used in the coastal zone for comparison with tide gauges (e.g., Wöppelmann and

Marcos (2016); Oelsmann et al. (2024)), they are usually evaluated as monthly averages or to observe annual, interannual, and235

long-term trends.

Indeed, Passaro et al. (2023) and Juhl et al. (2024) have shown in the North Sea and in the Patagonian Shelf that the coherence

between TGs and daily sea level maps consistently drops for periods below 30 days, which is in agreement with the effective

temporal resolution reported by Ballarotta et al. (2019). However, we notice a strong improvement in the correlation of the

filtered signal when using the latest version of the CMEMS product (DT2024) compared to the previous one (DT2021, Sánchez-240

Román et al. (2023)), which still used the optimal interpolation and the same altimetry missions. This can be seen in Figure A1,
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Figure 6. Upper plots: Hovmöller diagrams showing the amplitude of the reconstructed signal from the first CEOF for CMEMS,

MIOSTSWOT+nadirs and BLUELINK. Each column represents the reconstructed sea level anomaly time series at a coastal location within

the parallelogram shown in Figure 1, progressing from the southwesternmost point northward along the coast. Lower plots: Spatial (left) and

temporal (right) phase of the first CEOF.

where we show the results obtained with the same analysis but using DT2021 instead of DT2024. The enhanced capabilities in

observing sub-monthly variability are therefore a consequence of two factors: the adoption of a different interpolation scheme

based on wavelet transformation and the integration of SWOT data.

The availability of the same interpolation scheme with and without the use of wide-swath altimetry allows us to observe the245

impact that the latter is having for this particular application. This impact was recently analyzed by Ballarotta et al. (2025),

who concluded that the benefits are limited to an improvement of 10 km for the spatial resolution on average. However, their

analysis did not consider the improvements in the observation of the temporal scales, and more specifically the coastal zone.

Here, we provide the first proof that, at least for shelves wider than 40 km, the combination of the MIOST interpolation with

the integration of the wide-swath data is able to detect the CTWs in terms of average phase speed (Figure 5) and spatial pattern250

(CEOF in Figure 6), although the accuracy in terms of amplitude, wavelength and period of the CTWs is still subobptimal.

This gap in accuracy could be significantly reduced in the next few years with the launch of the Copernicus Sentinel-3

New Generation (S3-NG) Topography mission, which, according to current plans, should consist of two wide-swath altimetry

missions. This would compensate for the disparity between very high spatial resolution and relatively long repeat cycles. The

causes of the remaining gap should also be investigated, with a focus on the impact of the Dynamic Atmosphere Correction255

(DAC, Carrère and Lyard (2003)). This correction is currently applied to the along-track measurements that are then interpo-

lated into the gridded products. Besides the low-frequency static effects due to the inverse barotropic response, it is based on a
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Figure 7. Temporal and spatial evolution of the reconstructed signal from the first CEOF mode for CMEMS, MIOSTSWOT+nadirs, and

BLUELINK, shown for three selected days during the most intense CTW event observed in the second half of October 2023.

simulation of the wind-forced barotropic motions by means of the MOG2D-G ocean model for periods shorter than 20 days.

The objective of the correction is to remove the signal that would be aliased at lower frequencies on the single along-track

records due to their long repeat cycles (never shorter than 10 days). In our region of study, CTWs could also be caused by a260

direct response of the ocean surface to the changing wind field (Woodham et al., 2013), and therefore their observations could

be affected by the application of the DAC.

This study suggests that, especially with the increasing availability of MIOSTSWOT+nadirs data during the SWOT era, it is

possible to establish an altimetry-based monitoring system for CTWs using filtered time series focused on a set of grid points
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as "virtual stations." This approach would complement and strengthen studies currently based on sparse in-situ stations (when265

available) and numerical simulations. Such studies investigate how CTWs control upwelling and productivity in coastal areas,

for example, off Peru (Echevin et al., 2014) and in South West Africa (Bachèlery et al., 2020), where CTWs account for 70%

of the high-frequency variability.

Code and data availability. The complete code used to generate the statistics and plots in this work is publicly available from: https://github.

com/ne62rut/coastal_trapped_waves270

The tide gauge data are an extension of the GESLA dataset (https://www.gesla.org/). They were obtained courtesy of Ivan Haigh (National

Oceanography Centre, University of Southampton). The Bluelink Ocean Reanalysis - BRAN2020 (BLUELINK) data were downloaded from

in August 2024 from https://geonetwork.nci.org.au/. The CMEMS data is the SEALEV EL_GLO_PHY _L4_MY _008_047 downloaded

from https://marine.copernicus.eu/ downloaded first in August 2024 (Version DT2021) and then in February 2025 (Version DT2024). The

MIOSTSWOT+nadirs data is the "Experimental multimission gridded L4 sea level heights and velocities with SWOT" product available from275

https://doi.org/10.24400/527896/A01-2024.007, downloaded in July 2024.

Appendix A: 1D-Validation against tide gauges using DT2021

Appendix B: 2D-Validation against tide gauges

Appendix C: Single CTW event
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Figure A1. Correlation of CMEMS DT2021, MIOSTSWOT+nadirs and BLUELINK time series with the TG data at the closest grid point to each

in-situ station. The plot shows the correlation considering unfiltered (upper panel) and filtered (lower panel) time series. CMEMS DT2021

is the previous version of the dataset used Figure A1, which was the standard until November 2024.
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Figure B1. Correlation coefficient (r) of filtered CMEMS, MIOSTSWOT+nadirs and BLUELINK time series at each grid point against the

filtered TG data of the station Brunswick_Heads (black triangle). Each row corresponds to the lag correlation at day 0, 2, 4. The bathymetry

contour of -500m is shown to identify the shelf break.

16



Figure B2. Correlation coefficient (r) of filtered CMEMS, MIOSTSWOT+nadirs and BLUELINK time series at each grid point against the

filtered TG data of the station Coffs_Harbour ((black triangle). Each row corresponds to the lag correlation at day 0, 2, 4. The bathymetry

contour of -500m is shown to identify the shelf break.
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Figure B3. Correlation coefficient (r) of filtered CMEMS, MIOSTSWOT+nadirs and BLUELINK time series at each grid point against the

filtered TG data of the station Crookhaven_Heads (black triangle). Each row corresponds to the lag correlation at day 0, 2, 4. The bathymetry

contour of -500m is shown to identify the shelf break.
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Figure B4. Correlation coefficient (r) of filtered CMEMS, MIOSTSWOT+nadirs and BLUELINK time series at each grid point against the

filtered TG data of the station Port_Macquarie (black triangle). Each row corresponds to the lag correlation at day 0, 2, 4. The bathymetry

contour of -500m is shown to identify the shelf break.
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Figure C1. Temporal and spatial evolution of the filtered signal from CMEMS, MIOSTSWOT+nadirs, and BLUELINK, shown for three selected

days during the most intense CTW event observed in the second half of October 2023.
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