1 Physiological responses to ultra-high CO₂ levels in an evergreen tree species

- 2 Ben-El Levy¹, Yedidya Ben-Eliyahu¹, Yaniv-Brian Grunstein¹, Itay Halevy², Tamir Klein¹
- 4 Department of Plant and Environmental Sciences, Weizmann Institute of Science
- 5 ² Department of Earth and Planetary Sciences, Weizmann Institute of Science

Supplementary Information

Supplementary Figures

Net assimilation [μ mol m⁻² s⁻¹] -2 -4 Photosynthetically active radiation [µmol m⁻² s⁻¹]

Fig. S1. Light response curve of *Psidium cattleyanum*. Plants were exposed to increasing light levels and their net assimilation rate was measured. Error bars represent standard errors

(n = 6).

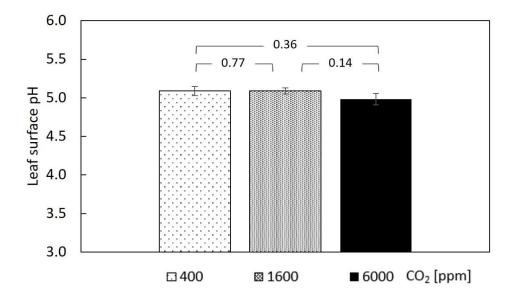


Fig. S2 Leaf surface pH is similar under different CO₂ concentrations. Data points are means of 10 guava saplings subjected to different CO₂ concentrations. Error bars represent standard errors. P-values are from paired t-tests.