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Abstract. Accurate large-scale hydrological predictions are essential for water resource planning. However, many land surface 10 

models encounter difficulties in capturing streamflow timing and magnitudes, particularly in large catchments and when 

calibrated across broad regions and multiple hydrological variables. In this study, two Long Short-Term Memory (LSTM)-

based approaches are assessed to enhance streamflow predictions across Australia: (i) LSTM-C, a standalone rainfall–runoff 

LSTM that relies solely on precipitation and potential evapotranspiration as inputs, and (ii) LSTM-QC, a rainfall–runoff LSTM 

that incorporates runoff outputs from the Australian Water Resources Assessment–Landscape model (AWRA-L), which can 15 

also be interpreted as a post-processor for AWRA-L. These approaches are tested in 218 minimally impacted catchments from 

the CAMELS-AUS dataset under three cross-validation strategies—temporally out-of-sample, spatially out-of-sample, and 

spatiotemporal out-of-sample—to evaluate their robustness for historical reconstructions, predictions in ungauged basins, and 

a proxy for climate-projection scenarios. The results indicate that both LSTM-QC and LSTM-C consistently outperform 

AWRA-L runoff across nearly all catchments and exceed the predictive skill of a widely used conceptual model (GR4J) in 20 

most basins. Under a temporally out-of-sample framework, LSTM-QC demonstrates a performance advantage over LSTM-C 

by leveraging information embedded in AWRA-L, particularly when fine-tuned to local catchment observed data. This 

advantage is primarily attributed to the LSTM’s ability to correct systematic biases in AWRA-L and enhance channel-routing 

signals. However, under spatial and spatiotemporal cross-validation LSTM-C performs comparably well, suggesting that a 

purely data-driven approach can generalize effectively to ungauged or future conditions without reliance on AWRA-L. 25 

1 Introduction 

Traditionally, land surface models have been used to simulate key hydrological variables such as runoff, soil moisture, and 

evaporation across very large regions – often at continental scale. The widespread spatial coverage of these model predictions 

often trades off against accuracy: many land surface models face challenges in accurately capturing observed streamflow 

dynamics, particularly in large catchments, where they often perform worse than simple calibrated conceptual streamflow 30 
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models. The Bureau of Meteorology’s (the Bureau’s) AWRA-L (Australian Water Resources Assessment – Landscape; Shokri 

et al., 2018; Frost & Shokri, 2021; Sharples et al., 2024), for instance, provides gridded hydrological outputs across the 

continent, but can perform poorly in simulating streamflow in comparison with calibrated conceptual rainfall-runoff (CRR) 

models (Frost et al., 2021). AWRA-L underpins the Australian Bureau of Meteorology's Australian Water Outlook service 

(https://awo.bom.gov.au) that provides historical simulations (from 1911 until yesterday), seasonal forecasts, and long-range 35 

projections under climate change scenarios for a wide range of applications (e.g. antecedent conditions and seasonal outlooks 

for flood/fire risk, long term water availability assessment). Improving its predictions is thus likely to have significant benefits 

for Australian water managers and citizens. It is worth noting that while many land surface models were originally developed 

to provide boundary conditions for Earth system models rather than for direct streamflow prediction, AWRA-L was 

specifically designed for water balance estimation and runoff prediction across Australia, with an emphasis on hydrological 40 

applications rather than atmospheric coupling, and calibrated to streamflow observations. 

There are two main causes for AWRA-L’s underperformance in relation to CRRs. First, AWRA-L is calibrated to multiple 

streamflow gauges, remotely sensed soil moisture, Evapotranspiration (ET) and Terrestrial Water Storage from Gravity 

Recovery and Climate Experiment (GRACE), with calibration carried out jointly for all gauges to a single objective for the 

entire continent (Frost et al., 2021). The focus of this approach is on overall water balance, rather than one single component 45 

of the water balance (e.g. streamflow) and heterogeneity of the landscape means that individual site performance is not targeted. 

This means that streamflow simulation performance at any given gauge trades off against 1) overall performance at gauges 

across Australia and 2) performance at simulating variables other than streamflow. Second, AWRA-L does not attempt to 

simulate channel routing processes (e.g. routing delay, transmission losses); streamflow is simulated at a given point by 

accumulating gridded runoff within a catchment area (it is noted that routing and losses and interactions with dams for water 50 

accounting purposes is simulated by a separate model, so AWRA-L was not designed to incorporate these processes). This 

means that the timing of streamflow peaks and recessions can disagree with observations, particularly in larger catchments. In 

addition, the sometimes-imperfect representation of hydrological processes in AWRA-L (and any model) reduces confidence 

in its streamflow predictions.  AWRA-L also does not explicitly simulate lakes or large reservoirs. While the catchments used 

in this study are not impacted by major reservoirs and were nominally selected to avoid the impact of farm dams (see Zhang 55 

et al, 2013), small farm dams are widespread across many agricultural regions of Australia. These can significantly alter runoff 

and storage patterns, particularly during dry years, by reducing downstream flows. Although farm dams are not directly 

represented in AWRA-L, their effects are likely partially captured through calibration where observational data are available 

and farm dams were present. Recent studies have highlighted the growing regional impact of farm dams on water availability 

under climate change (Malerba et al., 2021; Peña-Arancibia et al., 2023). 60 

AWRA-L’s lack of channel routing is common to several gridded land surface models, and accordingly past studies have 

highlighted the importance of improving streamflow routing, and/or adding processing methods to incorporate this process in 

these models. Wu et al. (2014) developed a coupled land surface and routing model that leverages real-time satellite-based 

precipitation data for global flood estimation. Their findings underscore the need to augment land surface models modeling 
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approaches to improve flood prediction accuracy. Similarly, Li et al. (2013) introduced a physically based runoff-routing 65 

model, demonstrating its effectiveness in simulating hydrological processes within land surface and Earth system models. 

Yassin et al. (2019) presented methods for improved representation of reservoir operations within hydrological models, 

advocating for improved parameterization methods. Yamazaki et al., (2011) introduced the CaMa-Flood model, which 

enhances floodplain representation by incorporating subgrid-scale topographic parameters. Their work demonstrates the 

importance of considering floodplain inundation dynamics in river routing models. These findings collectively indicate that 70 

enhanced routing techniques are important to improve simulations of streamflow dynamics in land surface models across a 

range of catchment sizes and characteristics. 

Apart from physically based approaches for representing routing, several methods have been developed applying machine 

learning to estimate streamflow. For instance, Nagesh Kumar et al. (2004) used a feedforward Artificial Neural Network to 

estimate monthly flow time series of a single river. Recent advances in deep learning, particularly in Long Short-Term Memory 75 

(LSTM) networks, offer promising alternatives to traditional hydrological models. LSTMs are designed to model sequential 

data, making them well-suited for hydrological systems. When trained on observed data LSTMs have shown significant 

potential for streamflow prediction by directly learning from data rather than relying on predefined physical processes (Kratzert 

et al., 2018, 2019; Nearing et al., 2021). LSTMs have demonstrated significant potential both as standalone hydrological 

models and as post-processors to land surface models, where they improve streamflow routing and prediction. LSTMs offer 80 

at least two key advantages over conceptual rainfall-runoff or routing models. The first is their ability to accept novel 

predictors, allowing the easy incorporation of static and dynamic predictors without a fixed perspective on how they contribute 

to the representation of the hydrological process, potentially providing additional information to improve predictions. The 

second is their ability to ‘learn’ hydrological theory, when trained on a sufficiently large cohort of catchments (Nearing et al., 

2021; Kratzert et al., 2024). A third advantage is that they are not constrained by physical laws such as mass balance, which 85 

allows them to implicitly correct biases in the input data. In contrast, in land surface models, uncertainty in the inputs typically 

propagates directly to the outputs. 

LSTM models have been shown to be effective as post-processors of streamflow predictions from land surface models and 

other hydrological models. We will refer to these as hybrid approaches following Slater et al., (2023). Frame et al. (2021) 

demonstrated that LSTMs, when used as a post-processing technique on the U.S. National Water Model, markedly improved 90 

predictions. Also in the U.S., Konapala et al. (2020) showed that hybrid models that combine physically based model outputs 

with LSTMs can significantly enhance streamflow simulation capabilities across a range of catchments. Yu et al. (2024) 

implemented a hybrid approach, applied over the Great Lakes region of North America, called the Spatially Recursive (SR) 

model, which integrates a lumped LSTM network with a physics-based hydrological routing simulation. They demonstrated 

enhanced streamflow prediction capabilities. This approach outperformed standalone lumped LSTM models, especially for 95 

large basins and ungauged basins, by considering spatial heterogeneity at finer resolutions. Interestingly, LSTM models have 

also been successfully applied in cascade configurations, where multiple LSTM models are stacked in sequential layers, with 

the outputs of one layer serving as inputs to the next. This approach is particularly useful for medium-range streamflow 
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forecasts, as it allows the model to first predict intermediate variables, such as precipitation, which are then used to refine the 

final streamflow predictionClick or tap here to enter text.Click or tap here to enter text.. 100 

While hybrid approaches improve streamflow predictions from land surface models, the combination of land surface model 

and LSTM may not outperform a standalone LSTM. For example, Frame et al. (2021) found that using a standalone LSTM 

produced more accurate predictions in ungauged basins than a hybrid land surface model-LSTM. It thus remains an open 

question as to which land surface model-LSTM hybrids are worthwhile, and which would be better replaced with LSTM-only 

models. The value of hybrid approaches may depend on the application context. For example, hybrid models may be 105 

particularly valuable for climate change scenario analysis, where maintaining physical consistency with land surface model 

outputs is important. Conversely, standalone LSTM models may be more advantageous for applications such as prediction in 

ungauged basins, where maximizing data-driven performance is the priority. In addition, in cases where LSTMs improve 

predictions from land surface model, the source of the improvements may be interpreted as the information content provided 

by the land surface model. Land surface models often exhibit two main deficiencies: routing errors and systematic biases in 110 

specific catchments. Routing errors primarily affect the timing and shape of the hydrograph, while systematic biases reflect 

consistent over- or underestimation of flow magnitude, regardless of timing. By comparing hybrid models trained with short 

input sequences (i.e. one time step) to those trained with longer sequences, we can distinguish the type of information AWRA-

L contributes. Short sequence lengths limit the LSTM’s ability to correct routing errors, meaning improvements in this case 

are more likely due to information related to bias correction.  115 

The major aim of this study is to assess the performance of streamflow predictions from an AWRA-LSTM hybrid, which has 

never been previously assessed. We use both static attributes (e.g. fixed catchment characteristics such as catchment area) and 

dynamical predictors (streamflow predictions from AWRA-L, precipitation, potential evaporation) to construct the AWRA-

LSTM hybrid. Different approaches have been previously adopted to establish hybrid land surface model and LSTMs (e.g. 

Frame et al., 2021; Lima et al., 2024; Tang et al., 2023). We therefore investigate how best to implement the AWRA-LSTM 120 

hybrid by refining the method we use to apply the LSTM, including the choice of dynamic and static predictors. Once the 

model is developed, we are able to diagnose the relative contributions of bias-correction and routing improvements. A 

secondary aim of this study is to establish the performance of LSTMs both as a post-processor for AWRA-L and as a standalone 

hydrological model in Australia. While we expect previous findings from other studies to be replicated – e.g. that standalone 

LSTMs will generally outperform conceptual rainfall-runoff models for predictions in ungauged basins (Kratzert et al., 2019) 125 

– replicating these findings in Australia is an important precursor to the adoption of LSTMs for a broad range of uses here.  

To rigorously test our findings, we test performance in 218 catchments from the CAMELS-Aus dataset (Fowler et al., 2021). 

We evaluate the performance of the model using spatial and temporal out-of-sample cross-validation to assess its generalization 

capability. The cross-validation experiments test LSTM post-processed AWRA-L predictions for three applications: 

• Predictions in ungauged basins. AWRA-L is regularly applied for continental scale water accounting and water 130 

forecasting, including in ungauged basins.  
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• Predictions in gauged basins for periods outside the gauge record. A key application of AWRA-L is to assess long-

term trends in the historical hydrological function of Australian catchments (e.g. Ho et al., 2023; Wasko & Nathan, 

2019). 

• Predictions in ungauged basins for periods outside of gauged records. AWRA-L is used to generate long-range climate 135 

projections, including in ungauged basins, and this cross-validation strategy serves as a proxy for testing climate 

projection capabilities. 

In each experiment, AWRA-LSTM predictions are compared with the unprocessed accumulated runoff from AWRA-L and a 

high-performing conceptual rainfall-runoff model in GR4J which has been extensively applied and evaluated in the Australian 

context. Coron et al., (2012) provide a comprehensive evaluation of GR4J performance across 216 Australian catchments 140 

under diverse climate conditions. Hapuarachchi et al., (2022) describe the use of GR4J as part of the operational ensemble 

streamflow forecasting system for Australia. Zheng et al., (2024)further demonstrate the application of GR4J in projecting 

future streamflow under various climate change scenarios for Australia.  

This study aims to contribute to these ongoing questions by evaluating the performance of an AWRA-LSTM hybrid, assessing 

its strengths and limitations as both a diagnostic tool and a predictive model, particularly for Australian hydrological contexts. 145 

Additionally, by exploring these dynamics, we aim to inform the broader application of hybrid and standalone models, guiding 

future hydrological modeling efforts. 

2 Methods 

2.1 Data 

2.1.1 AWRA-L predictions 150 

AWRA-L runs on a daily time step on a 0.05° grid, with national historical outputs available from 1911 onward. AWRA-L v7 

(most recent iteration of AWRA-L ) was calibrated using data from 295 catchments over the period 1981–2011, employing a 

objective function that incorporates weighting of the following observations in each catchment GRACE Terrestrial Water 

Storage (TWS: 50%), streamflow (35%), satellite-based soil moisture (7.5%), satellite-based evapotranspiration (ET: 2.5%), 

and satellite-based vegetation fraction (5% ), which are then combined further over all catchments (Frost and Shokri, 2021). 155 

AWRA-L version 7 was extensively validated against a range of observational datasets (Frost et al., 2021. AWRA-L generates 

a number of variables that can potentially serve as predictors (e.g. evaporation, soil moisture, runoff, deep drainage). In this 

study, we focused only on runoff (𝑑𝑒𝑛𝑜𝑡𝑒𝑑	𝑄𝑡𝑜𝑡). In AWRA-L, 𝑄𝑡𝑜𝑡 is derived from surface flow, baseflow, and interflow. 

The discharge from these sources is routed (at a pixel scale) through a conceptual surface water store, 𝑆𝑟. The primary function 

of this store is to replicate the partially delayed drainage of storm flows, which is typically observed in all but the smallest and 160 

fastest-responding catchments. As noted in the introduction, however, the model lacks channel routing (with independent grid 
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cells with no lateral flow), creating challenges when calculating the streamflow at the outlets of large basins (i.e. those with a 

time of concentration greater than one day). 

Streamflow at catchment outlets/gauges was calculated by summing  𝑄𝑡𝑜𝑡 from all grid cells within the catchment, weighted 

by the proportion of each grid cell within the catchment. However, this approach does not account for in-stream routing, stream 165 

losses, overbank flow, or storages. The time series of the accumulated runoff for each catchment was used for both 

benchmarking (to compare as a baseline methodology) and as a dynamic predictor for the LSTM model. 

2.1.2 CAMELS-AUS 

The CAMELS-AUS dataset (Fowler et al., 2021, 2024) consists of streamflow, meteorological variables, and various 

catchment attributes (222 Australian catchments in the version 1 and 561 in the version 2) for catchments that have been 170 

minimally impacted by human activities. We used the following data from the CAMELS-AUS: 

Streamflow: This serves as the predictand and is used to evaluate model performance over the period 1975 - 2014 in 

CAMELS-AUS version 1 and 1975 - 2022 in CAMELS-AUS version 2. 

Rainfall: CAMELS-AUS includes two time series of catchment-averaged rainfall. We used the "awap_rain" product, which 

is taken from the Bureau’s Australian Gridded Climate Data (AGCD). AGCD is produced at a spatial resolution of 0.05° (~5 175 

km) by interpolating data from its extensive network of meteorological stations. 

Potential Evaporation (PE): Among several evaporation products available, we selected "et_morton_wet_silo" from 

CAMELS-AUS. This product estimates potential evaporation under wet conditions using the Morton wet environment method, 

which accounts for factors such as temperature, humidity, wind speed, and solar radiation. The data is provided by the 

Queensland Government's SILO database, offering an upper limit of evaporation potential. 180 

Static Attributes: Static attributes are assumed to be constant over time and provide essential catchment characteristics. These 

attributes include mean annual precipitation, mean annual PE, aridity, and other climatic and geomorphological features such 

as average slope and catchment area. These static attributes help contextualize the dynamic data and improve the model's 

ability to generalize across different catchments. 

Catchment Boundaries: CAMELS-AUS provides catchment delineations. The catchment boundaries were used to subset the 185 

AWRA-L gridded dataset to calculate total discharge at gauges as daily timeseries. 

To illustrate the diversity of catchments used, Figure 1 shows their spatial distribution across Australia overlaid with the 

Köppen–Geiger climate classification (Stern et al., 2000). 
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Figure 1 Spatial distribution of CAMELS-AUS v1 catchments used in this study, overlaid on the Köppen–Geiger climate 190 
classification. Numbers in parentheses indicate the number of catchments in each climate class. 

2.2 LSTM model 

In this study the LSTM model architecture (Hochreiter and Schmidhuber, 1997) was based on the work of Kratzert et al. 

(2019). The LSTM structure comprises four key components - an input gate, forget gate, cell state, and output gate -which 

collectively manage information flow and maintain the network's long-term memory (Figure 2). 195 

The input sequence at each timestep includes one or more dynamic predictors. At the end of the sequence, the hidden state of 

the LSTM network is used to predict a single streamflow value as the target via a dense layer with one hidden layer of size 10. 

For all experiments, an LSTM hidden state size of 256 was used, along with smooth-joint Nash-Sutcliffe Efficiency (NSE) 

(Kratzert et al., 2019) loss function, and a sequence length of 365 days. All dynamic predictors were standardized with the 

mean and standard deviation of the calibration data across all catchments. 200 
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Figure 2. Diagram of the LSTM model structure used in this study. 

2.3 Predictors and target variables 

The LSTM models use spatially averaged 𝑄!"!  from AWRA-L, and rainfall and ET from CAMELS-AUS as dynamic 205 

predictors as well as 12 static predictors, which represent the characteristics of each basin (Table 1). Additionally, the sine and 

cosine of the day of the year (doy), calculated as sin	(#$%"&
'()

) and cos	(#$%"&
'()

), are included as dynamically varying predictors 

to capture seasonality. The target variable is gauged daily streamflow from the CAMELS-AUS dataset, which is normalized 

by catchment area and expressed in millimetres. 
Table 1 Static and quasi static features for LSTM Model 210 

Category Predictor Description 

Climatic and 

Precipitation 

Characteristics 

(static) 

p_mean Mean Annual Precipitation 

pet_mean Mean Annual Potential Evapotranspiration 

Aridity Aridity (Mean Annual PET/Mean Annual Precipitation) 

p_seasonality Precipitation Seasonality 

high_prec_freq Frequency of High-Precipitation Days (≥ 5 times mean 

annual) 

high_prec_dur Average Duration of High Precipitation Events 

Catchment and 

Geomorphological 

Characteristics 

(quasi-static) 

catchment_area Catchment Area 

mean_slope_pct Catchment Mean Slope 

prop_forested Proportion of Catchment Occupied by Forest 

Upsdist Maximum Flow Path Length Upstream 

Strdensity Ratio of Total Length of Streams to Catchment Area 

Strahler Strahler Stream Order at Gauging Station 

Dynamic predictor
Static predictor

Predicting head
Target

LSTM blocks
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2.4 Evaluation 

2.4.1 Cross-validation approaches: TooS, SooS and TSooS 

To evaluate the performance and generalizability of the LSTM models, three cross-validation techniques were employed: 

buffered Temporal out of Sample (TooS), Spatial out of Sample (SooS), and Temporal-Spatial out of Sample (TSooS). Each 

technique was designed to evaluate the model under different scenarios of data availability and variability. In addition, we 215 

reserved a separate hold-out test period (2014–2022), drawn from CAMELS-AUS version 2, which lies outside both the 

AWRA-L and LSTM calibration periods and was not used in training or validation. 

TooS – buffered temporally out-of-sample cross-validation: This approach divides the entire dataset into k temporal folds 

(in this case, k = 4). Where for each fold 10 years data out of 40 years overall were designated as the validation set, and the 

remaining periods were used to train the model (Table 3). A trailing buffer of five years was applied after the validation period 220 

and subsequent training period to prevent data leakage and ensure temporal independence. This process was repeated for each 

fold, with each period serving as the validation set, while the model was trained on the other periods. After running the 

validation across all the folds, the results from each fold were combined to create a complete set of simulations produced in 

the validation mode. 
Table 2 Buffered temporal out of sample cross-validation folds 225 

Fold Training Period Validation Period 

Fold 0 1/1/1990-31/12/2014 1/1/1975-31/12/1984 

Fold 1 1/1/1975-31/12/1984 and 

1/1/2000-31/12/2014 
1/1/1985-31/12/1994 

Fold 2 1/1/1975-31/12/1994 and 

1/1/2010-31/12/2014 
1/1/1995-31/12/2004 

Fold 3 1/1/1975-31/12/2004 1/1/2005-31/12/2014 

 

SooS – spatially out-of-sample cross-validation: In this approach, the dataset is divided into four spatial groups, with each 

group containing a unique set of catchments. The model was trained on data from three of these groups and validated on the 

remaining group. This process was repeated for each fold, allowing each group of catchments to serve as a validation set once. 

Care was taken to ensure that nested catchments (i.e., catchments that share upstream-downstream relationships within the 230 

same river system) are grouped together. This prevents cases where hydrologically similar regions appear in both training and 

validation sets, which could lead to data leakage (a situation where the model learns patterns from similar catchments in the 

training set, leading to overly optimistic validation performance). To mitigate this, each nested group was assigned exclusively 

to either training or validation, ensuring independence between the two. 
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After all folds were used as the validation set, the validation results from each fold were combined to produce a complete 235 

assessment of model performance across all catchments. This method tests the model’s ability to generalize to new, unseen 

spatial regions, making it suitable for evaluating its adaptability to areas with limited or no training data (Figure 3). 

 
Figure 3. Spatial distribution of catchments used in SooS cross-validation 

TSooS – temporally and spatially -out-of-sample cross-validation: The TSooS approach combines both temporal and 240 

spatial cross-validation to provide the most stringent assessment of model performance. A 2x2 fold-splitting technique was 

used, where folds 0 and 1 and folds 2 and 3 from the TooS and SooS experiments were merged, effectively dividing the dataset 

into four quadrants with both spatial and temporal splits. This setup allows the model to be trained in one quadrant and validated 

in a non-adjacent quadrant, ensuring that the validation data remain distinct from the training data in both time and space. This 

method is strict because it requires the model to work well with new times and locations, making it a strong way to test the 245 

model's ability to handle different and realistic hydrological situations. 

2.4.2 Evaluation Metrics 

We evaluated model performance primarily using the Nash–Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), which 

measures how well predicted streamflow matches observations relative to the mean of the observed series. NSE is defined as 

𝑁𝑆𝐸 = 1 − ∑ (&!,&!-)"!
∑ (&!,&/)"!

 , (1) 250 

where 𝑦! and 𝑦!7  are the observed and predicted discharged at time 𝑡, and 𝑦8 is the mean observed discharge. NSE provides an 

overall measure of performance across all time steps but is more sensitive to high flows. To provide complementary 

information on other parts of the hydrograph, we also report NSE calculated in square-root space and the absolute bias in 

appendices. For each catchment, the best-performing model was defined as the one achieving the highest NSE, without 

applying a buffer. 255 
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2.5 Experimental Design 

2.5.1 Model Design 

We examine how different combinations of dynamic predictors influence the performance of our LSTM models in predicting 

streamflow. Two experiments were conducted: 

• The first experiment included both the AWRA-L output (i.e., gridded runoff from surface and subsurface processes 260 

at a 5 km × 5 km resolution across Australia) and additional climate variables, specifically rainfall and evaporation, 

as predictors in the LSTM. Although these climate variables (or at least very similar estimates of precipitation and 

potential evapotranspiration) are used within the AWRA-L model, we hypothesized that incorporating them directly 

might retain valuable information. Specifically, transformations of these climate variables may not be adequately 

captured by the AWRA conceptualization, leading to conditional errors. By incorporating these variables, we aimed 265 

to correct such errors and enhance the LSTM’s predictive skill. This model will be referred to as LSTM-QC. 

• The second experiment completely bypassed AWRA-L, using only climate variables (rainfall and potential 

evapotranspiration) as predictors. In this setup, the LSTM essentially acts as a rainfall-runoff model, eliminating any 

dependence on AWRA-L. This model will be referred to as LSTM-C. 

In addition to these dynamic predictors, both models also used catchment attributes to provide spatial context. Two categories 270 

of attributes were considered: 

• Static predictors: geomorphological characteristics that are independent of climate and can be assumed to remain 

stable over time if no major developments occur in the catchment area. These include features such as catchment area, 

mean slope, proportion of forest cover, stream density, Strahler order, and maximum upstream distance. 

• Quasi-static predictors: climatic characteristics, such as mean annual precipitation and potential evapotranspiration, 275 

which may change due to long-term climate variability or climate change. For temporal cross-validation (TooS), it is 

important to consider the period over which these variables are calculated. By default, the climatic attributes provided 

with CAMELS-AUS are calculated for the entire available record. However, for proper TooS cross-validation, it is 

necessary to exclude the validation period and recalculate these climatic variables for each fold. This prevents 

information leakage and ensures that predictors reflect only the calibration data. Recalculation is particularly 280 

important when training the model in a wet or dry period and testing its generalizability to an opposite condition. 

To avoid confusion, we therefore refer to geomorphological attributes as static predictors, since they do not vary across time 

windows, and to climatic attributes as quasi-static predictors, since they must be recalculated for different time periods.  

The full set of predictors used in each model configuration is summarized in Table 3, with the detailed definitions of static and 

quasi-static predictors provided in Table 1. 285 
Table 3 Predictors used in LSTM-C and LSTM-QC models 

Model Dynamic predictors Static and quasi-static predictors 
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LSTM-C • Rainfall, 
• Potential evapotranspiration  

• Climatic attributes  
• Geomorphological attributes 

(see Table 1) 

LSTM-QC 
• Rainfall 
• Potential evapotranspiration, 
• AWRA-L runoff 

• Climatic attributes  
• Geomorphological attributes 

(see Table 1) 

2.5.2 Training approach 

The initial experiment involved calibrating a continental LSTM model using data from all catchments simultaneously. This 

calibration enabled the model to learn general patterns and relationships across diverse geographical and climatic conditions. 

The training data were prepared using a sliding window approach with a sequence length of k=365 days. For each catchment 290 

n, the dynamic predictors at time t are represented by the feature vector 𝐱!,1 ∈ ℝ𝒅 (rainfall, potential evaporation, AWRA-L 

runoff, and seasonality terms), and the static attributes are represented by 𝐚1 ∈ ℝ𝒑  (climatic and geomorphological 

characteristics). For each sample, the input sequence is the matrix 𝐗!,1 = [𝐱!,456,1, … , 𝒙!,1] ∈ ℝ𝒌×𝒅, which together with 𝐚1 

is used to predict observed discharge of day 𝑡, 𝑦!,1. This produced overlapping samples that were shuffled across all catchments 

to form a diverse training set. 295 

The LSTM parameters 𝜽 were optimized to minimize the smooth-joint Nash–Sutcliffe Efficiency loss function (Kratzert et al., 

2019), ℓ(𝑦E!,1, 𝑦!,1), where predictions are given by 𝑦E!,1 = 𝑀𝛉([𝐗!,456,1, … , 𝐗!,1]).  

To evaluate whether the general knowledge gained from the continentally calibrated model could be further enhanced at the 

individual catchment level in TooS experiments, an additional fine-tuning process was implemented. After developing the 

continental-scale model, before implementing it for validation, further training of all model parameters is conducted using only 300 

the data from the calibration period of each catchment. This step allows the model to better capture localized patterns by 

adjusting its parameters to reflect the unique characteristics of individual catchments. In the SooS and TSooS cross-validation 

experiment, fine-tuning for individual catchments would not be realistic in a true out-of-sample scenario, as no target catchment 

data would be available for adjustment. 

To recognize the uncertainty in the training process, each calibration and validation was repeated 10 times, and the median of 305 

the 10 simulations was used to calculate performance metrics. 

2.5.3 Decomposing the effect of bias-correction and routing 

Any improvement achieved through post-processing the AWRA-L outputs can originate from two primary sources: correcting 

systematic model errors (bias-correction) and addressing temporal misalignments caused by the absence of channel routing in 

the AWRA-L model. To investigate the relative contributions of these two sources, two versions of the LSTM post-processors 310 

with different predictor sequence lengths were designed. 
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All experiments described thus far use a sequence length of 365 days, allowing the model to capture temporal dependencies 

and account for flow routing—an effect that occurs over several days as water moves through river systems. This configuration 

is expected to correct both systematic biases and routing errors. Additionally, a series of experiments using shorter sequence 

lengths (i.e., 1, 2, 3, 4, 5, 10, 30, and 60 days) was conducted to analyze the sensitivity of the model predictive performance to 315 

this variable. When a single day is used, the model primarily focuses on correcting immediate daily discrepancies in the 

outputs, addressing bias without capturing temporal flow patterns. 

By comparing the performance of these models, the sources of improvement can be decomposed. Significant sensitivity to 

sequence length would indicate that fixing temporal dependencies—and thereby correcting routing errors—contributes 

substantially to the model’s enhanced accuracy. Conversely, minimal performance differences would suggest that most 320 

improvements are attributable to bias-correction alone. 

2.6 GR4J 

To test the performance of our AWRA-LSTM hybrid setup, we compare it to the GR4J conceptual rainfall-runoff model 

(Perrin et al. 2003). GR4J is a four-parameter model, developed through a rigorous process of parameter reduction to enable 

strong performance with automated calibration algorithms. It has been widely tested in Australia and abroad, often 325 

outperforming other conceptual rainfall-runoff models in automated calibration experiments (Coron et al. 2012). For this study, 

we optimize GR4J with shuffled complex evolution (Duan et al. 1993). To ease optimization and to enable parameters to be 

applied to different catchments under spatial cross-validation studies, we scale and transform GR4J parameters (see Appendix 

0). In all cases, GR4J is initialized for 5 years before parameters are optimized. 

For SooS and TSooS cross-validation experiments, we use a distance-weighted regional estimation (Regional) to produce 330 

GR4J parameters. For each recipient catchment we estimate a global parameter-set from 𝑁 donor catchments by maximising 

an inverse-distance weighted objective: 

𝑁𝑆𝐸!"#$%" = ∑ 𝑤&𝑁𝑆𝐸&'
&()  (1) 

𝑤& =
() +:⁄ );

∑ () +<⁄ );=
<>?

𝛼 ≥ 1 (2) 

where 𝑁𝑆𝐸1 is the Nash-Sutcliffe Efficiency for the 𝑛th donor catchment, 𝑤1 is the weight applied to the 𝑛th donor catchment 335 

such that ∑ 𝑤1@
1A6 = 1, and 𝑑1 is the Euclidean distance between the catchment centroid of the target catchment and the 𝑛th 

donor catchment. 𝛼 controls the emphasis on nearby catchments: the higher the value, the more emphasis is put on more 

closer catchments. We choose 𝛼 = 2 for this study. We found that this regionalisation method tended to outperform a 

conventional ‘nearest-neighbour’ regionalisation in cross-validation experiments (not shown for brevity). 
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3 Results 340 

This section evaluates the performance of the LSTM models under different configurations and cross-validation strategies. It 

first examines model development, assessing the effect of fine-tuning, dynamic predictor selection, and the inclusion of static 

predictors. The next part benchmarks model performance across three applications: long-term historical simulations, 

predictions in ungauged basins, and a proxy for climate projections, while also analyzing spatial patterns in model performance. 

The final part investigates systematic error correction and the influence of sequence length on model predictions. 345 

3.1 Post processor refinement  

3.1.1 Effect of finetuning 

Figure 4 shows the performance of the LSTM-QC model according to NSE using the national LSTM-QC without fine tuning, 

then with local fine tuning. The left panel shows the NSE probability exceedance curve for 218 catchments, with the fine-

tuned model (blue) consistently outperforming the global model (red), especially at higher exceedance probabilities of NSE 350 

values across catchments. The right panel maps where each model performs best: blue points indicate gauges where fine-

tuning outperformed, while red points show the opposite. The inset pie chart reveals that 95.4% of catchments benefited from 

fine-tuning. These results demonstrate the effectiveness of fine-tuning for better model adaptation to local conditions. It should 

be noted that in the four catchments where performance decreased after fine-tuning, two are ephemeral rivers with highly 

intermittent flow regimes, and two have relatively short or limited records. These conditions make them particularly difficult 355 

to model, as extreme variability can lead to overfitting during fine-tuning, meaning the generalized global model may 

sometimes perform better. From here on, only fine-tuned results are presented for TooS cross-validation. 

  
Figure 4. NSE probability exceedance curve over all 218 catchments (left), comparing the performance of the pretrained and 
finetuned LSTM-QC model when using temporal out of sample (TooS) cross validation. Curves closer to 1 show better performance. 
Right panel is a map of where each model performed best; blue (red) points show gauges where LSTM-QC with finetuning 360 
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outperformed (underperformed) LSTM-QC without finetuning; inset pie chart shows the proportion of catchments in which LSTM-
QC with finetuning outperformed (underperformed) LSTM-QC in blue (red). 

3.1.2 Dynamic predictor selection 

The LSTM was used in two forms: i) as a post-processor for AWRA-L, where we used AWRA-L 𝑄!"! along with climate data 

(rainfall and ET) as predictors (LSTM-QC); and ii) as a rainfall-runoff model without dependency on AWRA-L, using only 365 

climate data as dynamic predictors (LSTM-C). Figure 5 illustrates the effect of selecting dynamic predictors on model 

performance. In each catchment, the best-performing model is defined as the one with the highest NSE value. To avoid reliance 

on marginal differences, the exceedance curves also show the proportion of catchments where performance gains exceed any 

given threshold, providing a clearer picture of whether improvements are both consistent and substantial. LSTM-QC performs 

better in the TooS experiment for 66.1% of catchments (Figure 5-a, and d). However, in the SooS and TSooS experiments, 370 

adding AWRA-L 𝑄!"! as a predictor generally does not improve performance compared to the LSTM-C predictions (Figure 

5b, c, e, and f). 

AWRA-L is calibrated over the period 1970 to 2011. Therefore, when using AWRA-L’s 𝑄!"! as a predictor in a TooS cross-

validation, there is a potential risk of information leakage from the calibration phase into the cross-validation. To determine if 

this leakage significantly contributes to the observed improvement of LSTM-QC over LSTM-C, the calibrated model for the 375 

third fold (calibrated for 1975 to 2004) was used to simulate flows outside the AWRA-L calibration period, from 2012 to 2022, 

using the CAMELS-AUS V2 dataset. The dashed lines in Figure 5-a confirms that LSTM-QC outperforms LSTM-C for 2012-

2022 in the TooS experiment as the difference is greater than zero for approximately 60% of catchments, similar to the general 

results. 
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Figure 5. Exceedance curve of NSE difference between LSTM-QC, which uses both AWRA-L 𝑸𝒕𝒐𝒕 and climate dynamic predictors, 380 
with LSTM-C, which uses only climate dynamic predictors, illustrating the information gain from including AWRA-L 𝑸𝒕𝒐𝒕. Top 
row shows exceedance probability curves of the NSE difference between LSTM-QC and LSTM-C under TooS (a) SooS (b) and 
TSooS (c) experiments. Bottom row shows spatial distribution of the best-performing model under each. 

3.1.3 Static predictors 

Figure 6 compares the effect of cross-validation of static climatic variables (see section 2.5.2) on model performance when 385 

using TooS cross-validation, both without (Figure 6a) and with (Figure 6b) fine-tuning. Recalculating the quasi-static climatic 

variables for the calibration period at each fold slightly but consistently reduces the performance of predictions. Consequently, 

we cross-validate climate predictors for TooS and TSooS experiments in the remainder of the paper. 

 

Figure 6. Impact of cross-validation on model performance with (right) and without (left) fine-tuning of recalculated quasi-static 390 
climatic variables for each fold in TooS validation 

3.2 Applications 

The LSTM model was evaluated across three distinct applications to assess its versatility and performance in different 

hydrological contexts. We benchmarked the LSTM-QC model against both the raw AWRA-L and GR4J simulations, focusing 

on: 1) long-term historical simulations in gauged catchments (TooS cross-validation), 2) predictions in ungauged basins (SooS 395 
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cross-validation), and 3) a proxy for climate projection capabilities (TSooS cross-validation). Figure 7 presents the 

benchmarking NSE results across these applications. The NSE in square root space and the absolute bias are presented in the 

Appendix. 

 

 400 

 

 

 

 

   
Figure 7. Benchmarking LSTM-QC results against AWRA and GR4J. Top row is excedance curve of NSE across all catchments; 
bottom row shows which model performs best for each catchment. The columns from left to right show TooS, SooS, and TSooS 405 
cross-validation experiments. 

3.2.1 Application 1 – long term historical simulation (TooS) 

LSTM-QC with fine-tuning significantly outperformed GR4J in TooS experiments (Figure 7a, Figure 7d), achieving superior 

results in 77.5% of catchments. Both LSTM-QC and GR4J performed considerably better than the AWRA-L model. It should 

be noted that AWRA-L employs a continental-scale calibration approach with a single set of parameters derived nationwide, 410 

while both GR4J and the fine-tuned LSTM-QC benefit from catchment-specific calibration. Thus, we do not expect AWRA-

L to perform well in relation to the other models and included AWRA-L only as a reference. 
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3.2.2 Application 2 – predictions in ungauged basins (SooS) 

LSTM-QC generally outperformed both GR4J and AWRA-L models in SooS experiments (Figure 7b, Figure 7e). Specifically, 

in 69% of catchments LSTM-QC performed better than GR4J. However, the regionally calibrated GR4J preforms better than 415 

LSTM-QC in catchments with poorer NSE. The regional calibration applied to GR4J is particularly adept at avoiding very 

poor performance, a notable advantage over both AWRA-L and LSTM-QC. 

3.2.3 Application 3 – a proxy for climate projections (TSooS) 

The TSooS results were largely consistent with those observed in the SooS approach (Figure 7c, Figure 7f): in 67% of 

catchments, LSTM-QC outperformed regionally calibrated GR4J. 420 

This experiment is categorized as TSooS because validation data are independent in both space and time. Specifically, the 

model is trained on half of the catchments over half of the available period and tested on the other half of the catchments during 

the remaining period. This setup ensures that the validation set comprises entirely unseen catchments and time periods, 

providing a more stringent test of model generalization than TooS and SooS. 

3.2.4 Spatial pattern 425 

While the LSTM-QC model generally outperformed GR4J across all three applications, certain regions showed a clear 

advantage for the GR4J model. In areas such as Western Australia and the western parts of Victoria—characterized by unique 

hydrological behaviors (Grigg and Hughes, 2018; Saft et al., 2015)—the GR4J model demonstrated superior performance. 

Comparing the TooS cross-validation (which involves fine-tuning) and the other two (SooS and TSooS) shows that fine-tuning 

improves the performance of LSTM in these regions. These findings highlight the potential limitations of a highly generalized 430 

LSTM approach in regions with distinct hydrological dynamics. 

3.3 Systematic Error Correction and Routing Impact of LSTM Performance as a Postprocessor 

Figure 8 shows the performance of LSTM-C and LSTM-QC models for different LSTM predictor sequence lengths under a 

TooS cross-validation. At a sequence length of one, the performance of LSTM-QC for the median and upper band is similar 

to AWRA, but catchments with lower performance show improvement when LSTM-QC was used. This suggests that bias 435 

correction has little effect on the upper 50% of catchments, but for the lower tail of the distribution, LSTM improves AWRA 

through bias correction. The median and upper tail of the distribution improve after a sequence length of three, showing an 

improvement in performance metrics, which is mostly due to the channel routing processes and additional lag processes such 

as percolation, groundwater interactions, and human influences (e.g., farm dams). The performance of LSTM-QC improves 

considerably when the sequence length is increased from 1 to 365 days. 440 

Conversely, LSTM-C performs poorly at very short sequence lengths. This is unsurprising: without the ability to attenuate 

climate forcings or catchment/channel routing processes, we do not expect LSTM-C to be able to simulate streamflow 



19 
 

efficiently. The different responses of LSTM-QC and LSTM-C to sequence length suggests that AWRA-L's built-in 

hydrological processes capture at least some of the long-term hydrological memory through its storage components. However, 

the LSTM-QC model's continued improvement with longer sequences indicates its ability to compensate for AWRA-L's lack 445 

of in-stream routing capabilities. 

 

Figure 8. Performance of LSTM-C and LSTM-QC across different predictor sequence lengths under a TooS cross-validation 
showing the information gain from including AWRA-L runoff. 

The comparison with LSTM-C at very short sequence lengths is not intended as a practical configuration for standalone 450 

LSTMs, which are known to require longer sequences to perform well. Instead, it serves as a baseline to illustrate the added 

value of AWRA-L runoff: even when the sequence length is too short for LSTM-C to capture catchment memory, LSTM-QC 

can leverage AWRA-L to resolve routing processes. 

4 Discussion 

The results of this study highlight the significant potential of LSTM networks in streamflow prediction as a rainfall-runoff 455 

model (LSTM-C) or as a rainfall-runoff model that incorporates additional information from AWRA-L land surface model 

(LSTM-QC), which can also be viewed as a post-processor for AWRA-L. The comparative analysis between LSTM and 

conceptual models, such as AWRA-L and GR4J, reveals the strengths and limitations of each approach, shedding light on the 

trade-offs between model complexity, and performance. Through a series of experiments, we have demonstrated how LSTM 

models can improve streamflow estimation across various regions and for different applications including prediction in gauged 460 

catchments, ungauged catchments and for projection studies. 
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LSTM models strongly outperform AWRA-L in streamflow prediction. Notably, predictive performance of LSTM-C models, 

which rely solely on climate data, surpass AWRA-L. However, incorporating AWRA-L outputs into the LSTM models 

(LSTM-QC) provides measurable information gain in temporal out of sample results by leveraging additional hydrological 

information provided by AWRA-L. This suggests that in gauged catchments, benefits can be gained from using AWRA-L as 465 

an input to LSTM models. However, there is a trade-off between complexity and gains in predictive performance, as LSTM-

QC’s slight advantage may not always justify the additional data requirements of an LSTM, especially when aiming for 

generalized, scalable models suitable for ungauged basins.  

Kratzert et al. (2019) showed that using static catchment characteristics as predictors improves the LSTM results when trained 

over multiple catchments. In our study, two types of static predictors—geomorphological and climatic characteristics—were 470 

employed to specify catchment characteristics. Geomorphological features, being independent of climatic factors, are 

considered stable over time unless significant changes, such as land-use alterations or infrastructure development, occur within 

the catchment area. These features provide a reliable foundation for catchment characterization. Conversely, climate 

characteristics, such as mean precipitation and evapotranspiration, are subject to long-term changes due to climate variability 

and long-term climate change. As these predictors are more sensitive to temporal shifts, they require careful consideration 475 

when used in predictive models, particularly in the context of temporal cross-validation procedures. We observed slight but 

consistent improvements in performance when the static variables were calculated over the entire available period (including 

validation period), which is coming from information leakage from validation to calibration period, compared to when the 

calculation of these variables was cross-validated. Accordingly, we recommend that when a temporal split is involved in cross 

validation, i.e. TooS and TSooS cross-validation, it is necessary to recalculate the static climatic variables for each fold.  480 

Similarly, care has to be taken when using land surface model outputs if they have been calibrated (as is the case with AWRA-

L). Because they are computationally intensive, it is often infeasible to subject land surface models to multiple re-calibrations 

to carry out rigorous cross-validation. This was the case in our study. This raises the concern that when AWRA-L is used as a 

predictor, it could potentially transfer information from the validation period to the training period through its calibrated 

parameters. Since AWRA-L calibration relies on a single set of parameters across all catchments in Australia, any information 485 

leakage is likely to be minimal. To assess whether the observed improvements from incorporating AWRA-L were due to 

information leakage or if AWRA-L was genuinely enhancing model performance, a simulation for the 2011 to 2022 period 

(outside of AWRA-L’s calibration range) was conducted. The results showed that the LSTM-QC model, which includes 

AWRA-L as a predictor, still slightly outperformed the LSTM-C model under TooS cross-validation. Accordingly, we 

recommend that out-of-temporal sample testing be conducted when using a land surface model as a predictor, if possible. 490 

The comparison between fine-tuning and global calibration for the LSTM models using TooS cross-validation showed that 

fine-tuning significantly improved model performance. This localized fine-tuning allowed the model to better capture 

catchment-specific hydrological patterns, improving its predictive accuracy. These findings are consistent with previous 

studies, which have also highlighted the advantages of tailoring models to local conditions to enhance predictive performance 

(Frame et al., 2021; Kratzert et al., 2018). In contrast, global calibration, which uses a single model trained on all catchments 495 
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without further adjustment, showed lower performance, especially when applied to unseen catchments with distinct climatic 

and geomorphological characteristics. However, fine-tuning was not applied in SooS and TSooS cross-validation due to the 

lack of validation catchment data in the calibration phase, highlighting the advantages of fine-tuning when such data is 

available. It should be noted that regionalized fine-tuning using nearby catchments could be a viable alternative, although it 

was not implemented in this study. 500 

The sensitivity of the LSTM-QC and LSTM-C to the length of predictors passed to the model was investigated, enabling a 

decomposition of the information provided by AWRA-L in terms of bias-related signals and routing-related signals. The results 

highlight distinct patterns of improvement achieved by the LSTM across different catchment types. In well-performing 

catchments, where the AWRA-L benchmark already demonstrates relatively high accuracy (NSE > 0.5), the primary benefit 

of the LSTM model is to correct timing errors in streamflow predictions. When an LSTM model is applied with a sequence 505 

length of just one day, its capacity to capture the temporal dynamics of streamflow routing is limited. Consequently, 

improvements in these cases are primarily attributed to systematic error correction rather than advancements in routing, 

confirming that the LSTM model cannot significantly surpass the AWRA-L benchmark in such catchments without explicitly 

addressing routing and timing. We also note that the influence of sequence length is partly modulated by catchment size: larger 

catchments tend to benefit more from the inclusion of AWRA-L runoff at very short sequence lengths, as its partial surface 510 

water storage provides additional memory. However, this advantage diminishes as longer sequences allow the LSTM itself to 

capture the relevant dependencies 

Furthermore, the findings indicate that the LSTM using the AWRA-L predictor (LSTM-QC) in TooS cross validation 

outperforms climate-only predictors (LSTM-C) providing more accurate streamflow predictions due to its integration of 

detailed hydrological processes. The AWRA-L predictor implicitly includes the effects of multiple storage mechanisms, 515 

specifically three soil layers, groundwater and surface water storages, and therefore contributes to a deeper understanding of 

catchment water flow and retention. Consequently, the LSTM-QC model requires only a shorter backward-looking window 

since much of the necessary memory for slow routing processes is already embedded within AWRA-L’s structure. However, 

a slight performance boost is observed by extending the sequence length beyond 5–10 days, particularly in LSTM-QC, 

suggesting that for some catchments enhanced slow routing processes are necessary. 520 

The demonstrated superior performance (through TooS cross validation) of LSTM-QC in long-term historical simulation has 

significant implications for water resource management and planning. This capability is particularly valuable for water 

accounting studies, environmental flow assessments, and infrastructure planning in gauged catchments. The model's ability to 

outperform GR4J while maintaining consistent performance across multiple runs suggests that LSTM-QC is likely to produce 

more reliable assessments of long-term water balances. This robustness is especially crucial for applications such as reservoir 525 

operation optimization, where accurate long-term simulations of historical flow are essential for developing operational rules. 

The enhanced performance of the fine-tuned LSTM-QC also makes it suitable for retrospective analysis of extreme events and 

their impacts on water resources, providing water managers with a more reliable tool for understanding historical catchment 
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Behavior and improving future management strategies. However, there is a need to analyze in depth the predictions made of 

extreme events so as to be certain of the model's robustness and its applicability in various scenarios. 530 

The LSTM outperformed GR4J under all cross-validation experiments for the majority of Australian catchments. This is a 

noteworthy outcome: GR4J is a widely used and high-performing rainfall-runoff model in Australian conditions. Perhaps the 

least surprising of these is the SooS performance, as LSTMs have been shown in a variety of studies to outperform conceptual 

models for predictions in ungauged basins (Frame et al., 2021; Kratzert et al., 2019). This capability has broad practical 

applications, particularly in remote areas and developing regions where gauge networks are sparse. The LSTM model's ability 535 

to outperform traditional GR4J simulations derived from regional calibration suggests its potential for improving water 

resource assessments in ungauged catchments, supporting applications such as small-scale hydropower development, irrigation 

planning, and flood risk assessment. The consistent performance across different catchment types indicates that the model 

more successfully captures the underlying hydrological processes and their spatial variations than existing alternatives, making 

it a valuable tool for regional water resource planning and management in data-scarce regions. It should be noted that in regions 540 

such as Western Australia and the western parts of Victoria —characterized by distinct hydrological behavior (Hughes et al., 

2012; Petrone et al., 2010)—the GR4J model demonstrated superior performance. We attribute this primarily to the 

regionalization scheme employed in GR4J, which places greater weight on nearby catchments and therefore captures local 

hydrological signals that the LSTM, trained more globally, does not. While suboptimal LSTM training due to limited exposure 

to relevant catchment attributes may also contribute, we expect that training on larger or more diverse datasets could reduce 545 

this gap. We conclude that LSTMs should at least be considered for applications for which conceptual rainfall-runoff models 

are currently used in Australia. 

The successful validation of LSTM using TSooS cross validation demonstrates its potential for supporting climate change 

adaptation strategies in water resource management. This capability is particularly valuable for infrastructure design and long-

term water security planning. The maintained performance advantage in both spatial and temporal transferability indicates that 550 

LSTM could be effectively employed in climate impact assessments, supporting decision-making for adaptation measures such 

as reservoir design, environmental flow provisions, and urban water supply planning under various climate change scenarios. 

Moreover, this capability extends to regional-scale climate change vulnerability assessments, where understanding potential 

hydrological responses across multiple ungauged catchments is crucial for developing robust adaptation strategies. 

While the results of this study highlight the advantages of LSTM models, it is important to acknowledge the challenges 555 

associated with their application. One key consideration is the computational and data overhead associated with training LSTM 

models on large datasets, especially for applications focusing on single catchments. In such cases, simpler models like GR4J 

may offer a more practical alternative without the need for extensive computational resources. Additionally, the application of 

LSTMs, as implemented in this study, focuses primarily on improving predictive skill rather than exploring hydrological 

hypotheses. Unlike conceptual models, which are designed to test causal relationships and provide insights into hydrological 560 

processes, LSTMs function as data-driven tools that excel in capturing patterns but are less suited for unravelling the sensitivity 

of runoff generation to specific predictors. Conceptual and land surface models also have the advantage of providing outputs 
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for a range of other hydrological variables (e.g., soil moisture, evapotranspiration, groundwater storage), in addition to 

streamflow. This highlights a trade-off between prediction accuracy and the ability to explore system dynamics, which must 

be considered when selecting models for specific purposes. 565 

5 Conclusion 

The potential of Long Short-Term Memory (LSTM) networks to enhance streamflow predictions in Australia was evaluated. 

The findings demonstrate that LSTM networks —whether functioning as standalone rainfall–runoff models (LSTM-C) or as 

rainfall–runoff models that incorporate additional information from AWRA-L (LSTM-QC), and thus can also be interpreted 

as post-processors to AWRA-L—consistently improve prediction accuracy across Australia relative to existing models. LSTM 570 

models outperformed traditional approaches, including AWRA-L and GR4J, particularly in applications involving ungauged 

basins, historical data analysis of gauged basins, and a proxy for climate projection scenarios. 

This study highlights the applicability of LSTM-based hydrological models and post-processors in climate adaptation 

strategies, long-term water resource planning, infrastructure design, environmental flow provisions, and regional vulnerability 

assessments, especially in data-scarce or climatically dynamic regions. The results confirm that LSTM networks, when fine-575 

tuned to specific catchments, effectively correct systematic biases and address routing deficiencies in AWRA-L, achieving 

superior predictive performance in gauged catchments. For TooS cross-validation, fine-tuning yielded notable improvements, 

particularly in catchments with less accurate AWRA-L predictions. Under SooS and TSooS cross-validation, which precluded 

individual fine-tuning, LSTM models benefited from the model’s generalization capabilities derived from broader datasets. 

Incorporating AWRA-L outputs into LSTM models (LSTM-QC) provided marginal gains over standalone LSTM-C models 580 

for TooS validation, with no obvious improvement in SooS and TSooS validation. This suggests that while AWRA-L 

contributes some hydrological insights, the additional complexity may not always justify its inclusion, at least in a catchment 

scale streamflow application as trialed here. The study underscores the importance of recalculating quasi-static climatic 

predictors, such as mean precipitation, during temporal cross-validation to avoid information leakage. Using static climate 

variables calculated over the calibration and validation periods together can compromise validation accuracy. Recalculation 585 

of these predictors for each fold ensured that the model’s performance reflected its true predictive capabilities. 

Integrating AWRA-L outputs with LSTM models provided additional hydrological insights by incorporating processes such 

as soil moisture storage and groundwater flow, which improved predictions for shorter memory windows. This integration was 

particularly effective in correcting systematic biases and routing errors, enhancing the representation of hydrological processes 

beyond what climate data alone could achieve. 590 

Overall, the research establishes the utility of deep learning, particularly LSTM networks, in refining outputs from land surface 

models like AWRA-L. Future work should investigate incorporating dynamic predictors beyond runoff to further improve 

LSTM models' capacity to capture complex hydrological processes. 
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database at: https://www.longpaddock.qld.gov.au/silo/. The CAMELS-AUS dataset, including hydrometeorological timeseries 

and catchment attributes, is available through Earth System Science Data. The dataset can be accessed via: 600 
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developed for this study is available upon request from the corresponding author due to licencing requirements. 

Author contributions 
AS, JCB, and DER designed the study. AS developed the models and performed the analyses. JMP provided software and 

technical support for model development. AJF and EAL provided data and contributed to interpretation. All authors contributed 605 

to the discussion of results and to the writing of the manuscript. 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgment 

This research was conducted on the traditional lands of the Boonwurrung people of the Kulin Nation. We pay our respects to 610 

their elders. We also acknowledge the traditional owners of the catchments used in this study. This research was supported by 

the Commonwealth Scientific and Industrial Research Organisation (CSIRO) AquaWatch Australia Mission and the CSIRO 

AI4Missions program. Additional support was received from the Murray-Darling Basin Sustainable Yields project. The 

authors also wish to express their appreciation to Dr. Nagur Cherukuru for his invaluable contributions to the management and 

coordination of this work. We acknowledge the use of artificial intelligence tools for partial proofreading of this manuscript. 615 

References 

Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., and Hendrickx, F.: Crash testing hydrological models 

in contrasted climate conditions: An experiment on 216 Australian catchments, Water Resour Res, 48, 

https://doi.org/10.1029/2011WR011721, 2012. 



25 
 

Fowler, K. J. A., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C.: CAMELS-AUS: Hydrometeorological time series and 620 

landscape attributes for 222 catchments in Australia, Earth Syst Sci Data, 13, https://doi.org/10.5194/essd-13-3847-2021, 

2021. 

Fowler, K. J. A., Zhang, Z., and Hou, X.: CAMELS-AUS v2: updated hydrometeorological timeseries and landscape attributes 

for an enlarged set of catchments in Australia, Earth System Science Data Discussions, 2024, 1–21, 

https://doi.org/10.5194/essd-2024-263, 2024. 625 

Frame, J. M., Kratzert, F., Raney, A., Rahman, M., Salas, F. R., and Nearing, G. S.: Post-Processing the National Water Model 

with Long Short-Term Memory Networks for Streamflow Predictions and Model Diagnostics, J Am Water Resour Assoc, 57, 

https://doi.org/10.1111/1752-1688.12964, 2021. 

Frost, A. and Shokri, A.: The Australian Landscape Water Balance model (AWRA-L v7)  , Melbourne, 2021. 

Frost, A., Shokri, A., Kier, G., Bahramian, K., and Azarnivand, A.: Evaluation of the Australian Landscape Water Balance 630 

model (AWRA-L v7), Melbourne, 2021. 

Grigg, A. H. and Hughes, J. D.: Nonstationarity driven by multidecadal change in catchment groundwater storage: A test of 

modifications to a common rainfall–run-off model, Hydrol Process, 32, https://doi.org/10.1002/hyp.13282, 2018. 

Hapuarachchi, H. A. P., Bari, M. A., Kabir, A., Hasan, M. M., Woldemeskel, F. M., Gamage, N., Sunter, P. D., Zhang, X. S., 

Robertson, D. E., Bennett, J. C., and Feikema, P. M.: Development of a national 7-day ensemble streamflow forecasting service 635 

for Australia, Hydrol Earth Syst Sci, 26, https://doi.org/10.5194/hess-26-4801-2022, 2022. 

Ho, M., Wasko, C., O’Shea, D., Nathan, R., Vogel, E., and Sharma, A.: Changes in flood-associated rainfall losses under 

climate change, J Hydrol (Amst), 625, https://doi.org/10.1016/j.jhydrol.2023.129950, 2023. 

Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Comput, 9, 1735–1780, 

https://doi.org/10.1162/neco.1997.9.8.1735, 1997. 640 

Hughes, J. D., Petrone, K. C., and Silberstein, R. P.: Drought, groundwater storage and stream flow decline in southwestern 

Australia, Geophys Res Lett, 39, https://doi.org/10.1029/2011GL050797, 2012. 

Konapala, G., Kao, S. C., Painter, S. L., and Lu, D.: Machine learning assisted hybrid models can improve streamflow 

simulation in diverse catchments across the conterminous US, Environmental Research Letters, 15, 

https://doi.org/10.1088/1748-9326/aba927, 2020. 645 

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall-runoff modelling using Long Short-Term 

Memory (LSTM) networks, Hydrol Earth Syst Sci, 22, https://doi.org/10.5194/hess-22-6005-2018, 2018. 

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and 

local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol Earth Syst Sci, 23, 

https://doi.org/10.5194/hess-23-5089-2019, 2019. 650 

Kratzert, F., Gauch, M., Klotz, D., and Nearing, G.: HESS Opinions: Never train a Long Short-Term Memory (LSTM) network 

on a single basin, Hydrol Earth Syst Sci, 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, 2024. 



26 
 

Li, J. and Yuan, X.: Daily Streamflow Forecasts Based on Cascade Long Short-Term Memory (LSTM) Model over the 

Yangtze River Basin, Water (Switzerland), 15, https://doi.org/10.3390/w15061019, 2023. 

Lima, M., Deck, K., Dunbar, O. R. A., and Schneider, T.: Toward Routing River Water in Land Surface Models with Recurrent 655 

Neural Networks, https://arxiv.org/abs/2404.14212, 2024. 

Liu, J., Koch, J., Stisen, S., Troldborg, L., and Schneider, R. J. M.: A national-scale hybrid model for enhanced streamflow 

estimation – consolidating a physically based hydrological model with long short-term memory (LSTM) networks, Hydrol 

Earth Syst Sci, 28, 2871–2893, https://doi.org/10.5194/hess-28-2871-2024, 2024. 

Malerba, M. E., Wright, N., and Macreadie, P. I.: A continental‐scale assessment of density, size, distribution and historical 660 

trends of farm dams using deep learning convolutional neural networks, Remote Sens (Basel), 13, 

https://doi.org/10.3390/rs13020319, 2021. 

Nagesh Kumar, D., Srinivasa Raju, K., and Sathish, T.: River Flow Forecasting using Recurrent Neural Networks, Water 

Resources Management, 18, 143–161, https://doi.org/10.1023/B:WARM.0000024727.94701.12, 2004. 

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: What Role 665 

Does Hydrological Science Play in the Age of Machine Learning?, https://doi.org/10.1029/2020WR028091, 2021. 

Peña-Arancibia, J. L., Malerba, M. E., Wright, N., and Robertson, D. E.: Characterising the regional growth of on-farm storages 

and their implications for water resources under a changing climate, J Hydrol (Amst), 625, 

https://doi.org/10.1016/j.jhydrol.2023.130097, 2023. 

Petrone, K. C., Hughes, J. D., Van Niel, T. G., and Silberstein, R. P.: Streamflow decline in southwestern Australia, 1950-670 

2008, Geophys Res Lett, 37, https://doi.org/10.1029/2010GL043102, 2010. 

Saft, M., Western, A. W., Zhang, L., Peel, M. C., and Potter, N. J.: The influence of multiyear drought on the annual rainfall-

runoff relationship: An Australian perspective, Water Resour Res, 51, https://doi.org/10.1002/2014WR015348, 2015. 

Sharples, W., Bende-Michl, U., Wilson, L., Shokri, A., Frost, A., and Baron-Hay, S.: Improving continental hydrological 

models for future climate conditions via multi-objective optimisation, Environmental Modelling and Software, 176, 675 

https://doi.org/10.1016/j.envsoft.2024.106018, 2024. 

Shokri, A., Walker, J. P., van Dijk, A. I. J. M., Wright, A. J., and Pauwels, V. R. N.: Application of the patient rule induction 

method to detect hydrologic model behavioural parameters and quantify uncertainty, Hydrol Process, 32, 

https://doi.org/10.1002/hyp.11464, 2018. 

Slater, L. J., Arnal, L., Boucher, M. A., Chang, A. Y. Y., Moulds, S., Murphy, C., Nearing, G., Shalev, G., Shen, C., Speight, 680 

L., Villarini, G., Wilby, R. L., Wood, A., and Zappa, M.: Hybrid forecasting: blending climate predictions with AI models, 

https://doi.org/10.5194/hess-27-1865-2023, 2023. 

Stern, H., De Hoedt, G., and Ernst, J.: Objective classification of Australian climates, Australian Meteorological Magazine, 

49, 2000. 

Tang, S., Sun, F., Liu, W., Wang, H., Feng, Y., and Li, Z.: Optimal Postprocessing Strategies With LSTM for Global 685 

Streamflow Prediction in Ungauged Basins, Water Resour Res, 59, https://doi.org/10.1029/2022WR034352, 2023. 



27 
 

Wasko, C. and Nathan, R.: Influence of changes in rainfall and soil moisture on trends in flooding, J Hydrol (Amst), 575, 

https://doi.org/10.1016/j.jhydrol.2019.05.054, 2019. 

Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based description of floodplain inundation dynamics in a global 

river routing model, Water Resour Res, 47, https://doi.org/10.1029/2010WR009726, 2011. 690 

Yu, Q., Tolson, B. A., Shen, H., Han, M., Mai, J., and Lin, J.: Enhancing long short-term memory (LSTM)-based streamflow 

prediction with a spatially distributed approach, Hydrol Earth Syst Sci, 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-

2024, 2024. 

Zheng, H., Chiew, F. H. S., Post, D. A., Robertson, D. E., Charles, S. P., Grose, M. R., and Potter, N. J.: Projections of future 

streamflow for Australia informed by CMIP6 and previous generations of global climate models, J Hydrol (Amst), 636, 695 

131286, https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.131286, 2024. 

  

Appendices 

GR4J parameter adjustments and transformations 

Our implementation of GR4J differs slightly from that described be Perrin et al. (2003). When inferring parameters for each 700 

catchment, we scale parameters as follows: 

𝑥+) = 𝑥) (A.1) 

𝑥+/ = 0.67 × 𝑥/ (A.2) 

𝑥+0 = 2.21 × 𝑥0 (A.3) 

𝑥+1 = 𝑥1
√3
/45

 (A.4) 705 

where 𝐶 is the catchment area. These scalings are based on our experience and on the advice of the developers of GR4J to 

maximize performance. To ease inference, we apply the following transformations to the parameters: 

log)5(𝑥+)) (A.5) 

𝑎𝑠𝑖𝑛ℎ(𝑥+/) (A.6) 

log)5(𝑥+0) (A.7) 710 

log)5(𝑥+1) (A.8) 
For SooS experiments, when applying parameters from donor catchments to recipient catchments, we have to account for 

differences in catchment size between the donor and recipient catchments for 𝑥MB, as follows: 

𝑥1,+ = 𝑥+1,+
/45
73C

 (A.9) 
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𝑥+1,8 = 𝑥1,+
73D
/45

 (A.10) 715 

where 𝑥MB,% is the 𝑥MB parameter from the donor catchment and 𝐶% is the catchment area of the donor catchment, and 𝑥MB,E is the 

converted 𝑥MB parameter used in the recipient catchment and 𝐶E is the catchment area of the recipient catchment. 

Other performance metrics: 

 

   
Figure A1. Benchmarking LSTM-QC results against AWRA and GR4J. Top row is excedance curve of NSE sqrt across all 
catchments; bottom row shows which model performs best for each catchment. The columns from left to right show TooS, SooS, 720 
and TSooS cross-validation experiments 
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Figure A2. Benchmarking LSTM-QC results against AWRA and GR4J. Top row is excedance curve of Absolute bias across all 
catchments; bottom row shows which model performs best for each catchment. The columns from left to right show TooS, SooS, 
and TSooS cross-validation experiments 

Uncertainty Analysis: 725 

To assess the robustness of the reported results, we conducted two complementary analyses. 

Block bootstrap analysis: 

Hydrological time series exhibit strong temporal dependence, which can bias conventional resampling approaches. To address 

this, we implemented a block bootstrap with a block length of 365 days. For each model, 1000 bootstrap replicates were 

generated and performance metrics recalculated. The resulting confidence intervals provide an indication of sampling 730 

uncertainty while preserving the temporal structure of hydrological processes. This analysis confirms that the reported 

improvements are not an artefact of isolated hydrological events. 

 
Figure A3. Exceedance probability curves of NSE TooS, SooS, and TSooS experiments. Shaded regions show 95% confidence 
intervals from 1000 block bootstrap replicates (365-day blocks), confirming the robustness of LSTM-QC performance relative to 735 
AWRA-L and GR4J. 
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Sensitivity to model initialization and randomness: 

Deep learning models are inherently stochastic, with variability introduced by random initialization and optimization. To 

quantify this effect, we repeated each LSTM experiment 10 times using different random seeds. Median performance across 

runs is reported as the central curve, while the lighter blue lines represent the variability across trials. Although some spread 740 

is evident, the relative ordering of LSTM, AWRA-L, and GR4J is preserved across all repetitions. 

 
Figure A4. NSE exceedance curves from TooS, SooS, and TSooS experiments. Thick blue line shows performance of median 
timeseries, and lighter blue lines show results from 10 independent LSTM runs with different random seeds. 

 745 


