Reviewer #1

We thank the referee for their valuable comments. We have addressed each point in detail
below and will incorporate the following changes:

Summary

Comment: In this paper, the authors evaluate the performance of various LSTM models for
hydrological simulations across Australian catchments: a land surface model-LSTM hybrid
based on climate data as well as runoff from the AWRA-L land surface model, and an LSTM
model based on climate data. They show that both models outperform runoff simulation
from AWRA-L as well as from the conceptual hydrological model GR4J across most
catchments. They investigate the impacts of methodological decisions, namely the cross-
validation strategies, on the results. They additionally discuss the relevance of the proposed
approches for three real-world applications: long-term historical simulations, predictions in
ungauged basins, and climate projections. This application-focused framing is a welcomed
perspective in a scientific paper. Overall, this is a well-executed, well-written study that
addresses important research questions and contributes valuable insights to the hydrological
modelling community. Below are some comments that will hopefully help review your paper
for publication.

Response: We sincerely appreciate your thorough and constructive review of our
manuscript. Your positive assessment and insightful comments will help us improve both
the clarity and depth of the study. In response, we have revised the manuscript to better
articulate model design choices, clarified terminology, provided more context on
catchment diversity, and addressed uncertainty and model evaluation procedures. Below,
we address your comments point by point.

Main Comments

Comment: The term “static features” or “static predictors” is somewhat misleading,
especially since some of these predictors are recalculated for different time windows to
demonstrate the impact on model performance. Please consider using a different term for
the recalculated features (e.g., quasi-static) to remove any confusion.

Response: We thank the reviewer for this helpful suggestion. We agree that the term
“static predictors” may be misleading when referring to climatic attributes that are
recalculated for different time windows in the temporal cross-validation experiments. To
avoid confusion, we now distinguish between static predictors (geomorphological
attributes that remain constant over time) and quasi-static predictors (climatic attributes
such as mean annual precipitation and potential evapotranspiration, which are
recalculated for each fold). This change has been implemented throughout the
manuscript, including in Section 2.5.2, Table 1, Figure 5, and the Conclusion, to ensure
consistent terminology.

Comment: Model design clarity: It is unclear whether the static predictors are used for both
LSTM-C and LSTM-QC models presented in section 2.5.1 by default, or only for some versions
of these models. You could clarify this by merging sections 2.5.1 and 2.5.2 into a single model
design section, summarizing model inputs more clearly (e.g., a table with two columns to



separate predictors into dynamic and static for each model). If static predictors are not
always used and | misunderstood this, consider renaming the various versions of each model
to differentiate them clearly.

Response: We thank the reviewer for this helpful suggestion. To clarify, all static
(geomorphological) and quasi-static (climatic) predictors are used in both LSTM-C and
LSTM-QC models. We have revised the manuscript to make this explicit. As suggested,
Sections 2.5.1 and 2.5.2 have been merged into a single “2.5.1 Model Design” section for
improved clarity. We also added a new summary table (Table 3) that clearly distinguishes
the dynamic, static, and quasi-static predictors used in each model configuration, with
detailed definitions of the static and quasi-static predictors retained in Table 1.

Comment: Catchment characteristics: It would be useful to know what the diversity of
catchments is, for example using characteristics found in CAMELS-AU. This would help
contextualize model transferability results (especially with SooS and TSooS) for an audience
that is not familiar with Australian geography/hydrology.

Response: We agree this would be helpful, especially for readers unfamiliar with
Australian catchment diversity. We have now included a new figure (figure 1) showing the
spatial distribution of CAMELS-AUS catchments overlaid with the Kppen—Geiger major
climate zones (Stern et al, 2000).

Stern, H., De Hoedt, G., and Ernst, J.: Objective classification of Australian climates,
Australian Meteorological Magazine, 49, 2000. https://www.weather-
climate.com/AustMetMag2000pp87t096.pdf

Comment: Uncertainty quantification: While comprehensive uncertainty analysis may be
beyond the paper's scope, some quantification would enhance the robustness of the results,
especially for hydroclimate projections or more specific applications such as regional-scale
climate change vulnerability assessments (mentioned on L485-491). You could give an
appreciation of the uncertainty for example by showing the spread in results from the cross-
validation experiments (as mentioned on L267-268) in the Appendix. Additionally, you could
apply bootstrapping when evaluating the model performance.

Response: We thank the reviewer for highlighting the importance of assessing uncertainty
and robustness in our modelling results. In response, we have added two complementary
analyses in the Appendices: (i) a block bootstrap approach (365-day blocks) to account for
temporal dependence and quantify uncertainty in performance metrics, and (ii) a
sensitivity analysis across multiple random training trials to evaluate the variability due to
model initialisation. The results (Figures A3—A4) show that the LSTM consistently
outperforms AWRA-L and GR4J across resamples and trials.

Comment: Model evaluation methodology: Please consider adding a dedicated subsection
on model evaluation in the methods. This could include: i) an explanation of the NSE and
what it measures (i.e., a measure of overall performance rather than an evaluation of
extremes), and ii) the criterion for “best performing model” selection - was an 20.01 NSE
difference sufficient or was there a more stringent measure (e.g., with a larger buffer)? My
fear is that the results might be a bit noisy, and that using a more stringent measure or
adding a statistical test to assess differences would be beneficial.


https://www.weather-climate.com/AustMetMag2000pp87to96.pdf
https://www.weather-climate.com/AustMetMag2000pp87to96.pdf

Response: We thank the reviewer for this constructive suggestion. In the revised
manuscript, we added a dedicated subsection on model evaluation in the Methods
section, subsection 2.4.2, where we explain the NSE metric.

Regarding the criterion for selecting the “best performing model,” we did not apply an
arbitrary buffer but rather defined the best model at each catchment as the one with the
highest NSE, we make it clear in the new Evaluation Metrics section. To address the
reviewer’s concern about noise and the magnitude of improvements, we emphasize that
the top-row exceedance plots in Figure 4 provide a direct view of the distribution of NSE
improvements across all catchments. These plots explicitly show the proportion of
catchments that experience improvements greater than any given threshold. In this way,
the results convey not only whether one model performs better than another, but also the
scale and prevalence of those improvements across the full set of catchments. We clarify
this by adding an explanation to Figure 4 result discription: “In each catchment, the best-
performing model is defined as the one with the highest NSE value. To avoid reliance on
marginal differences, the exceedance curves also show the proportion of catchments
where performance gains exceed any given threshold, providing a clearer picture of
whether improvements are both consistent and substantial”

Comment: Terminology around climate projections: The term “climate projection”
capabilities is somewhat misleading, as actual climate projections were not used here.
Please consider reframing as “proxy for climate projection capabilities”.

Response: We agree with the reviewer that the original phrasing was misleading. We have
revised the manuscript to consistently describe our evaluation as a “proxy for climate
projection capabilities” rather than suggesting that actual climate projections were
applied. This terminology has been updated in the Abstract, at the end of the
Introduction, in the Results (first paragraph and Section 3.2.3 Application 3), and in the
Conclusion.

Specific comments:

Comment: L96-98: The “worthwhile” type of modelling system likely depends on the use. For
example, for climate change scenarios the hybrid method might be favoured. Please clarify
this nuance in the paper.

Response: Thank you for pointing this out. We clarified this in the revised manuscript by
adding the following sentences:

“The value of hybrid approaches may depend on the application context. For example,
hybrid models may be particularly valuable for climate change scenario analysis, where
maintaining physical consistency with land surface model outputs is important.
Conversely, standalone LSTM models may be more advantageous for applications such as
prediction in ungauged basins, where maximizing data-driven performance is the priority.
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Comment: L100-102: How can hybrid models help assess the dominant deficiencies? This
warrant one to two more sentences in the paper.

Response: Thank you for the suggestion. We revised the text to clarify how hybrid models
can help assess dominant deficiencies in land surface models. Specifically, we explained
that by comparing performance across different input sequence lengths, one can
distinguish between improvements due to routing correction and those due to bias



correction. This diagnostic insight can assist land surface model developers in targeting
specific weaknesses. The revised paragraph now reads:

"In addition, in cases where LSTMSs improve predictions from land surface models, as we
show in the current study, the source of these improvements can be diagnosed. For
instance, land surface models often exhibit two main deficiencies: routing errors and
systematic biases in specific catchments. By comparing hybrid models trained with short
input sequences (i.e. one time step) to those trained with longer sequences, we can isolate
the contribution of each deficiency. Short sequence lengths limit the LSTM’s capacity to
correct routing errors, meaning improvements in this case are more likely due to bias
correction.”

Comment: L125: |s there any specific study of the application of GR4J in Australia that you
could cite here?

Response: Thank you for the suggestion. We added the following references to support
the use of GR4J in the Australian context. Coron et al. (2012) provide a comprehensive
evaluation of GR4J performance across 216 Australian catchments under diverse climate
conditions. Hapuarachchi et al. (2022) describe the use of GR4J as part of the operational
ensemble streamflow forecasting system for Australia. Zheng et al. (2024) further
demonstrate the application of GR4J in projecting future streamflow under various climate
change scenarios for Australia.

- Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., & Hendrickx, F.
(2012). Crash testing hydrological models in contrasted climate conditions: An experiment
on 216 Australian catchments. Water Resources Research, 48, W05552.

- Hapuarachchi, H. A. P., Bari, M. A,, Kabir, A., Hasan, M. M., Woldemeskel, F. M., Gamage,
N., Sunter, P. D., Zhang, X. S., Robertson, D. E., Bennett, J. C., & Feikema, P. M. (2022).
Development of a national 7-day ensemble streamflow forecasting service for Australia.
Hydrology and Earth System Sciences, 26, 4801-4821.

- Zheng, H., Chiew, F. H. S., Post, D. A., Robertson, D. E., Charles, S. P.,, Grose, M. R., &
Potter, N. J. (2024). Projections of future streamflow for Australia informed by CMIP6 and
previous generations of global climate models. Journal of Hydrology, 636, 131286.

Comment: L225: Please explicitly mention what the AWRA-L output is here to remind the
reader.

Response: Thank you for this recommendation. We have revised the text to clearly state
that the AWRA-L output used in our study refers to gridded runoff (surface and
subsurface) at a 5 km x 5 km resolution across Australia. Specifically, we added the
clarification “(i.e., gridded runoff from surface and subsurface processes at a 5 km x 5 km
resolution across Australia)” to the Model design section (2.5.1).

Comment: L280-283: The differences seen using an increasing time window could also be
impacted by the catchment size, with larger differences between the two performance
measures expected in larger catchments. It would be interesting to compare the length of the
sequence with the known response time of each catchment.

Response: Thank you for this suggestion. We examined how catchment size influences the
performance gains from including AWRA-L runoff (Qtot), measured as the difference
between (NSEsry—gc — NSELstm—c), across different sequence lengths (1 day vs. 365



days). Our analysis shows that AWRA-L inclusion yields larger improvements in NSE for
bigger catchments when a short sequence length (1 day) is used. This effect arises
because AWRA-L incorporates a partial surface water storage at the grid-cell level. While
this does not resolve in-stream routing, it does simulate some delayed runoff processes
within each pixel. When used as input to the LSTM, this storage effect provides additional
memory that helps improve predictions for large catchments. However, as the sequence
length provided to the LSTM increases, the model itself is able to capture these
dependencies, and the added benefit of AWRA-L diminishes.
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Given that this was primarily an illustrative exercise (since we would not recommend using
a 1-day sequence length in practice for models like LSTM-C), we have chosen not to
include this additional figure in the manuscript to avoid overcomplicating the
presentation. Instead, we now note in the Discussion “... We also note that the influence
of sequence length is partly modulated by catchment size: larger catchments tend to
benefit more from the inclusion of AWRA-L runoff at very short sequence lengths, as its
partial surface water storage provides additional memory. However, this advantage
diminishes as longer sequences allow the LSTM itself to capture the relevant
dependencies”.

Comment: L312: “higher exceedance probabilities” might be misinterpreted as referring to
flow exceedance. Please clarify that this refers to the distribution of values when introducing
the first plot of this kind.

Response: We clarified that this refers to the distribution of NSE values across catchments,
not to flow exceedance:

“...the fine-tuned model (blue) consistently outperformed the global model (red),
especially at higher exceedance probabilities of NSE values across catchments.”

Comment: L312-314: It would be interesting to speculate why some catchments don’t benefit
from finetuning. Are there commonalities in catchment type, data quality, hydro-
meteorological processes, etc?

Response: Thanks for the suggestion. In our analysis, only four catchments showed
reduced performance after fine-tuning. These catchments are either ephemeral rivers
with highly variable and intermittent flow (meaning they can cease to flow for many



consecutive years and experience very large, infrequent flow events when they do occur)
or are characterised by limited data. Such conditions make them difficult to model, and
due to their variability, local fine-tuning may overfit or underperform relative to a more
generalized global model. We will expand on this point in the revised manuscript,
providing additional detail on the characteristics of these catchments. This explanation is
added to section 3.1.1.

Comment: L388-389: Please consider spelling out what you mean by “possibly other
hydrological processes” in the paper. For example, groundwater storage and processes, as
well as lakes and reservoirs could be mentioned here. A side question to this, are the effects
of lakes and reservoirs accounted for by the AWRA model?

Response: We acknowledge the need for greater clarity here. In the revised manuscript,
we specified the types of hydrological processes we are referring to: “...showing an
improvement in performance metrics, which is mostly due to channel routing processes
and additional lag processes such as percolation, groundwater interactions, and human
influences (e.g., farm dams)”.

Regarding the side question: the AWRA model does not explicitly simulate lakes or large
reservoirs. However, the catchments used in this study are not impacted by major
reservoirs. Nonetheless, small farm dams are present and may impact local hydrology,
particularly by modifying runoff and storage patterns. While not directly modelled, their
effects are likely implicitly represented through calibration where data are available. These
farm dams have a widespread and growing impact on water availability across Australian
agricultural regions and can significantly reduce downstream flows, particularly during dry
years. We explained this in the revised manuscript introduction as follows:

“AWRA-L also does not explicitly simulate lakes or large reservoirs. While the catchments
used in this study are not impounded by major reservoirs and were nominally selected to
avoid the impact of farm dams (see Zhang et al, 2013), small farm dams are widespread
across many agricultural regions of Australia. These can significantly alter runoff and
storage patterns, particularly during dry years, by reducing downstream flows. Although
farm dams are not directly represented in AWRA-L, their effects are likely partially
captured through calibration where observational data are available and farm dams were
present . Recent studies have highlighted the growing regional impact of farm dams on
water availability under climate change (Malerba et al., 2021; Pefia-Arancibia et al., 2023).

- Pefa-Arancibia, J. L., M. E. Malerba, N. Wright and D. E. Robertson (2023).
"Characterising the regional growth of on-farm storages and their implications for water
resources under a changing climate." Journal of Hydrology 625: 130097.

- Malerba, M. E., N. Wright and P. |. Macreadie (2021). "A Continental-Scale Assessment of
Density, Size, Distribution and Historical Trends of Farm Dams Using Deep Learning
Convolutional Neural Networks." Remote Sensing 13(2): 319.

- Zhang, Y., N. Viney, A. Frost, A. Oke, M. Brooks, Y. Chen and N. Campbell (2013).
"Collation of Australian modeller's streamflow dataset for 780 unregulated Australian
catchments." CSIRO, Australia. csiro:EP113194.
https://doi.org/10.4225/08/58b5baad4fcc2



https://doi.org/10.4225/08/58b5baad4fcc2

Comment: L492: One advantage of land surface or conceptual hydrological models
compared to LSTM models is that they can output various other hydrological variables in
addition to streamflow. Please considering adding this to the list.

Response: We agree and added that conceptual and land surface models can output
additional hydrological variables to the last paragraph of the conclusion.

Typos:

L62: Some kind of sentence separation is needed between “streamflow” and “for instance”.
L114: Missing “in” or similar between “performance” and “218 catchments”.

L133: In the introduction it says that outputs are available from 1910. -> introduction is fixed
L138: Missing closing parenthesis.

L152: Missing “for catchments” or similar between “)” and “that have been”.

L154: Rephrase “covering from”.

L157: “is produce” is missing a “d”.

L263: Missing “the” between “from” and “calibration”.

L469: Small “b” for “behavior”.

L472: “strongly performing”?

Response: Thank you for identifying these issues. We corrected all of them in the revised
manuscript.



Reviewer #2

We appreciate the reviewer’s careful reading and constructive feedback. We address each
comment below and describe the revisions we will incorporate into the manuscript.

Overview:

Comment: This manuscript compares a standalone LSTM (LSTM-C) and an LSTM that
includes simulated streamflow from a land surface model (AWRA-L) as an additional dynamic
input (LSTM-QC). The two LSTM-based models are additionally benchmarked against AWRA-
L and GR4J, a conceptual hydrological model widely used in an Australian context. They
compare the models using three different cross-validation strategies, evaluating the ability of
the models to predict temporally out of-sample, spatially out-of-sample, and
spatiotemporally out-of-sample. Overall, they show that the two LSTM models outperform
AWRA-L and GR4J in most catchments under all three cross-validation strategies, although
there are some notable exceptions. The authors discuss the potential relevance of their study
in three real-world applications, namely historical reconstruction, predictions in ungauged
basins, and simulating hydrological change under climate change projections.

Response: We thank you for the clear and thoughtful summary of our manuscript. Your
overview accurately captures the key elements of our study and reflects our intent to
assess the relative performance of different modelling approaches under varying out-of-
sample conditions. We hope the revisions we have made in response to your detailed
comments further clarify the study’s motivations, methodology, and implications.

Main comments

Comment: 1. As far as | can tell, LSTM-C and LSTM-QC are identical in every respect except
for the inclusion of streamflow from AWRA-L as an additional dynamic input in LSTM-QC. |
therefore question whether this paper is really testing whether the LSTM can correct the
AWRA-L output, or whether the AWRA-L output provides any additional information content
that can be leveraged by the LSTM architecture. In effect these two possibilities amount to
the same thing, but the paper would benefit from emphasising one over the other. In my
opinion, the latter characterisation more accurately reflects what the LSTM is actually doing.

Response: We agree with the reviewer that the distinction between correcting AWRA-L
output versus leveraging its additional information content is important, and we
appreciate this opportunity to clarify the framing. In the revised manuscript, we:

(1) Re-casted the Introduction and Abstract to emphasise that our primary goal is to
assess the information content of AWRA-L when used as a predictor, rather than to correct
its outputs. We now explicitly state that LSTM-QC and LSTM-C differ only by the inclusion
of AWRA-L runoff, and that our comparison quantifies the added value of this information.
Revised text:

“LSTM-QC, a rainfall-runoff LSTM that incorporates runoff outputs from the Australian
Water Resources Assessment—Landscape model (AWRA-L), which can also be interpreted
as a post-processor”

“interpreted as the information content provided by the land surface model. Land surface
models often exhibit two main deficiencies: routing errors and systematic biases in specific
catchments. By comparing hybrid models trained with short input sequences (i.e. one time
step) to those trained with longer sequences, we can distinguish the type of information



AWRA-L contributes. Short sequence lengths limit the LSTM’s ability to correct routing
errors, meaning improvements in this case are more likely due to information related to
bias correction.”

(2) Updated the Discussion by re-labelling Figures 4 and 7 and revising the text to make
sure it is reflecting this fact better.

Revised opening paragraph of the Discussion: “The results of this study highlight the
significant potential of LSTM networks in streamflow prediction as a rainfall-runoff model
(LSTM-C) or as a rainfall-runoff model that incorporates additional information from the
AWRA-L land surface model (LSTM-QC), which can also be viewed as a post-processor for
AWRA-L”

Revised sequence length description: “The sensitivity of the LSTM-QC and LSTM-C to the
length of predictors passed to the model was investigated, enabling a decomposition of
the information provided by AWRA-L in terms of bias-related signals and routing-related
signals.”

(3) Revised the Conclusions to highlight that the main contribution of this work lies not in
correcting AWRA-L biases, but in evaluating the informational value of a process-based
model (AWRA-L) when used alongside data-driven LSTM approaches.

Revised first paragraph of the Conclusions: “The potential of Long Short-Term Memory
(LSTM) networks to enhance streamflow predictions in Australia was evaluated. The
findings demonstrate that LSTM networks—whether functioning as standalone rainfall—
runoff models (LSTM-C) or as rainfall-runoff models that incorporate additional
information from AWRA-L (LSTM-QC) and thus can also be interpreted as post-processors
to AWRA-L—consistently improve prediction accuracy across Australia relative to existing
models.”

Comment: 2. The results of the comparison with LSTM-C (i.e. the LSTM model that does not
include the AWRA-L streamflow as a dynamic input) is undermined by the limited number of
static catchment attributes that are supplied to the model (Table 1). A large number of
studies have shown that LSTM models perform best when they are trained across many
catchments at once using catchment descriptors that adequately describe the physical
diversity of catchments in the training set. For example, (Kratzert et al., 2019) train an LSTM
on static catchment attributes that include soils, climate, vegetation, topography, and
geology. Here, the authors have selected attributes that broadly cover climate and
geomorphology, but discard a large number of attributes from CAMELS-AUS that are
potentially highly influential in determining the hydrological behaviour of Australian
catchments (e.g. geology, land cover). Presumably, in common with most land surface
models, AWRA-L is parameterised using land cover and geological data. Therefore, | believe
it is at least a possibility that LSTM-QC is utilising the information on catchment diversity
that is encoded in the AWRA-L output but which has been arbitrarily excluded from LSTM-C.
It seem to me that LSTM-C is trained in a way that is inconsistent with our current
understanding of how best to use this class of model for hydrological simulation, raising
doubts about whether it is a fair comparison.

Response: Thank you for your thoughtful comment. We agree that the choice of static
catchment attributes can significantly affect LSTM model performance. The selection of
static features in our study was deliberate and guided by both performance considerations
and data availability in operational or ungauged settings.

As noted in Kratzert et al. (2019), they also did not use the full set of static attributes



available in CAMELS. Instead, they selected 27 features as a subset of those explored by
Addor et al. (2017), focusing on variables derivable from remote sensing or nationally
available datasets. Similarly, in our case, we explored a wide range of attributes available
in CAMELS-AUS and found through systematic testing that a subset of 12 variables
consistently improved model performance across catchments. These variables cover key
aspects of climate and geomorphology and were chosen to ensure applicability in real-
world, data-limited contexts.

We also deliberately excluded static variables derived from streamflow to avoid highly
correlated predictors, and we omitted attributes that are difficult to estimate reliably for
ungauged basins. This aligns with our focus on creating a parsimonious and operationally
feasible model.

Minor comments

Comment: 1. L27: “The ubiquity of these model predictions...”- are you referring to the
spatial coverage or widespread use? Please clarify.

Response: Thank you for pointing this out. In this context, "ubiquity" refers primarily to
the widespread spatial coverage of land surface model predictions across large regions,
often at continental or global scales. We revised the sentence to clarify this and remove
ambiguity.

"The widespread spatial coverage of these model predictions often trades off against
accuracy..."

Comment: 2. L33: It’s worth pointing out that most land surface models were not originally
designed to predict streamflow, but rather to provide the lower boundary condition to Earth
system models.

Response: We agree that many land surface models were originally developed to provide
lower boundary conditions for Earth system models rather than for direct streamflow
prediction. However, we would like to clarify that unlike most other land surface models
AWRA-L was specifically developed for water balance estimation and runoff prediction
across Australia, with a focus on hydrological applications rather than atmospheric
coupling. We clarified this distinction in the revised manuscript by adding:

“It is worth noting that while many land surface models were originally developed to
provide boundary conditions for Earth system models rather than for direct streamflow
prediction, AWRA-L was specifically designed for water balance estimation and runoff
prediction across Australia, with an emphasis on hydrological applications rather than
atmospheric coupling, and calibrated to streamflow observations.”

Comment: 3. L39-48: | agree that the lack of channel routing and calibration scheme are
weaknesses of AWRA-L with respect to streamflow simulation, but is a lack of process
understanding not also a weakness?

Response: We agree that understanding and simulating key processes adds to confidence
in a model, and that the sometimes-imperfect representation of these processes in
AWRA-L (as well as the total lack of such processes in LSTMs), may contribute to a lack of
confidence in these models. We updated the manuscript to explicitly acknowledge the
sometimes-imperfect representation of hydrological processes of AWRA-L, alongside the
issues of channel routing and calibration.



“catchments. In addition, the sometimes-imperfect representation of hydrological
processes in AWRA-L reduces confidence in its streamflow predictions. ”

Comment: 4. L62: Punctuation needed.

Response: Thank you for pointing this out. We revised the sentence for clarity and correct
punctuation.

Comment: 5. L73: A third advantage is that they are unconstrained by physical laws such as
mass balance, so they are better able to implicitly correct biases in the input data. In land
surface models, uncertainty in the input will propagate to the output.

Response: Thank you for the suggestion. We agree and have incorporated this point into
the revised manuscript. The paragraph has been updated as follows:

“... A third advantage is that they are not constrained by physical laws such as mass
balance, which allows them to implicitly correct biases in the input data. In contrast, in
land surface models, uncertainty in the inputs typically propagates directly to the
outputs.”

Comment: 6. L85-93: This passage is not particularly relevant to the topic in hand. As the
introduction is already quite long it could be safely removed.

Response: Thank you for the suggestion. We removed this part.

Comment: 7. L98: “..as we show in the current study...”- This would seem to pre-empt the
results.

Response: Thank you for pointing this out. We removed “as we show in the current study”
to maintain a more neutral tone in the introductory text.

Comment: 8. L99-100: Arguably deficiencies in routing and bias in individual catchments
amount to the same thing. Perhaps you could clarify what you mean here?

Response: While both routing deficiencies and catchment-specific biases contribute to
model error, they stem from different sources and have distinct implications for model
behaviour. Routing deficiencies primarily affect the timing and shape of the hydrograph
(e.g., delayed or premature peak flows), whereas biases typically refer to systematic over-
or underestimation of flow magnitude, independent of timing. This distinction is
important for diagnosing model limitations. We updated the manuscript to more clearly
articulate this difference:

“Routing errors primarily affect the timing and shape of the hydrograph, while systematic
biases reflect consistent over- or underestimation of flow magnitude, regardless of
timing.”

Comment: 9. L122: I’'m not sure it is particularly easy to test the ability of the model to
perform well under climate change projections, because it is likely that the range of input
values in the climate projections will exceed those the LSTM would encounter in the training
set. Thus, what you really ought to be testing is the ability of the model to extrapolate, but
I’'m not sure the experimental design achieves this at present.

Response: Thank you for raising this important point. We agree that true testing under
climate change conditions requires the model to extrapolate beyond the historical range



of climate inputs, which is inherently challenging. While our experimental setup does not
fully replicate future climate scenarios, the Temporally and Spatially out of Sample (TSooS)
cross-validation partially addresses this concern. In this design, the data are split into
spatiotemporal quadrants, such that the model is trained on one period (e.g. 1975-1995)
and evaluated on a different period (e.g. 2000—2014) in distinct catchments. This setup
introduces a degree of extrapolation in both space and time. However, we acknowledge
that the future climate may involve more extreme conditions than those seen in our
historical training period. To better reflect this limitation, we have revised the manuscript
to refer to this analysis as a “proxy for climate projection capabilities,” rather than
implying direct applicability to future climate conditions.

Comment: 10. L156: You could acknowledge here that using multiple precipitation datasets
can enhance LSTM performance (Kratzert et al., 2021).

Response: Thank you for the suggestion. While previous studies such as Kratzert et al.
(2021) have shown that using multiple precipitation datasets can enhance LSTM
performance, in our case the AGCD (formerly known as AWAP) and SILO datasets share
many common rain gauges and differ mainly in processing methods. As a result,
incorporating both datasets may not improve model performance greatly. However, the
main reason for omitting SILO is to test our methods under close-to operational
conditions. AGCD is produced operationally at the Bureau, and is available in real time.
While many of the gauges used in AGCD are also used by SILO, AGCD uses fewer rain
gauges than SILO, which incorporates many now-defunct rainfall gauges in its analysis.
This means that if the LSTM performance did improve with SILO, these improvements
would not have been available if the model was run in operations, as these rain gauges are
no longer available. AGCD is much less sensitive to rain gauges becoming unavailable. See
Fawcett R., Trewin B. and Barnes-Keoghan I. (2010) "Network-derived inhomogeneity in
monthly rainfall analyses over western Tasmania", 17th National Conference of the
Australian Meteorological and Oceanographic Society. Canberrra. doi:
https://doi.org/10.1088/1755-1315/11/1/012006

Comment: 11. L175: Please clarify that you are referring to the hidden state size here.

Response: Thank you for the comment. We clarified in the text that the reference is
specifically to the hidden state size.

Comment: 12. [221: You describe the static and dynamic predictors, but not the target (i.e.
streamflow). Please could you describe your treatment of the target variable (e.g. do you
normalize by catchment area)?

Response: Good observation. The target is gauged daily streamflow observation which is
provided in the CAMELS-AUS dataset and is normalized by catchment area in mm unit. We
added this to the text.

Comment: 13. L225: Please could you confirm that the two LSTM models are identical in
every respect except for the inclusion of AWRA-L streamflow in LSTM-QC?

Response: Yes, we can confirm that the LSTM models are identical in every respect except
for the use of AWRA-L runoff as a predictor in LSTM-QC. We have revised the model



design section and stated this explicitly in the text (Section 2.5.1 and Table 3 in revised
manuscript).

Comment: 14. L240: You say this important but not that you actually do it. We later find out
that you have, although this information is in the results section. Please consider moving
3.1.3to 2.5.2.

Response: Thank you for pointing this out. We have comprehensively revised Sections
2.5.1 and 2.5.2 of the original manuscript and merged them into a new section, “2.5.1
Model Design”, with a clear explanation of the recalculation of static predictors. In
addition, to avoid confusion, we now refer to predictors that require recalculation as
guasi-static predictors.

Comment: 15. L245: In general | think the training approach for LSTMs is well established
and so you don’t need to go into so much detail here. The text could also be shortened by
using scientific notation (e.g. Section 2.3 of (Lees et al., 2021)). Typically when training an
LSTM there will be a training period, a validation period (that is used during training to test
each parameter set) and a hold-out test period. However, Table 2 only details a training and
validation period. Please could you clarify whether the model is tested on an unseen dataset?

Response: We appreciate this useful suggestion. Regarding the first point: In the revised
manuscript, we have shortened this section and adopted the scientific shorthand style
recommended (e.g., Lees et al., 2021, Section 2.3).

Regarding the hold-out test period: You are correct that Table 2 currently lists only the
training and validation periods. In fact, we also use a separate hold-out test period (2014—
2022), with model performance illustrated by the dashed line in Figure 4. We added this
explanation to the section 2.4.1.

Comment: 16. L265: This needs some clarification. I think it is feasible (i.e. it could be done
under the experimental setup) but not meaningful, because in a real out-of-sample situation
you would not have any data to conduct fine-tuning.

Response: Thank you for the comment. We agree that the term “feasible” may be
misleading in this context. While fine-tuning is technically possible within the
experimental setup, it would not be meaningful in a true out-of-sample scenario where no
data from the target catchment would be available for adjustment. We revised the
manuscript accordingly and replace “feasible” with “realistic” to better reflect the
intention. The revised sentence will read:

“Fine-tuning for individual catchments would not be realistic in a true out-of-sample
scenario, as no target catchment data would be available for adjustment.”

Comment: 17. L285: | can see the argument for including GR4J in the model comparison, but
| wonder whether it would be better to only use it in the TooS test. | would argue that by
including GR4J in the SooS and TSoo0S tests you are really testing the parameter
regionalization scheme, which is not really the main focus of the manuscript.

Response: While we understand the concern, we maintain that testing GR4J under the
SooS and TSooS setups aligns with one of our primary objectives, which is to evaluate
model performance in regionalization scenarios. Including GR4J across all experimental
setups allows for a consistent benchmark against a widely used conceptual model, noting



that GR4J is also used in out-of-spatial-sample prediction in Australia. This helps illustrate
the value of LSTM models in both interpolation and extrapolation contexts.

Comment: 18. Figure 4/5/6: Your description of the results would benefit from using subplot
labels, so the reader knows what they should be looking at.

Response: We thank the reviewer for pointing this out. To improve clarity, we have revised
the results text for Figures 4—6 so that it explicitly directs the reader to what they should
be looking at in each subplot (e.g., trends in exceedance curves or spatial patterns).

Comment: 19. L373: Notwithstanding my previous point about climate projections, I'm not
sure why this is categorised as TSooS rather than TooS?

Response: Thank you for your comment. The reason this is categorized as TSooS rather
than TooS relates to the data partitioning strategy used for training and testing. In the
TooS setup, the model is trained on all catchments but only during one period, then tested
on the same catchments during a different period. In contrast, TSooS is a stricter test
where the model is trained on only half of the catchments for half of the overall time
period and then tested on the remaining unseen catchments during the other (also
unseen) half of the time. This means the model effectively trains on only about a quarter
of the total data in TSooS, compared to about three-quarters in TooS. This distinction is
important because TSooS better evaluates the model’s ability to generalize to completely
new catchments and unseen periods, which may include extreme events like the
millennium drought that are absent from the training data. To clarify this, we added
following explanation to the text: “This experiment is categorized as TSooS because
validation data are independent in both space and time. Specifically, the model is trained
on half of the catchments over half of the available period and tested on the other half of
the catchments during the remaining period. This setup ensures that the validation set
comprises entirely unseen catchments and time periods, providing a more stringent test of
model generalization than TooS and S00S.”

Comment: 20. L390: I'm not sure it is meaningful to compare with LSTM-C at short sequence
lengths, as we already know that LSTMs require long sequence lengths to make good
predictions.

Response: We agree that it is already known that LSTM-C requires longer sequence
lengths to perform well. However, we use LSTM-C here primarily as a baseline to
demonstrate the added value of the routing component in LSTM-QC. Even at shorter
sequence lengths, the difference in performance between LSTM-C and LSTM-QC highlights
the extent to which AWRA-L is resolving routing processes. We believe this comparison
offers important insights for AWRA-L users. To clarify this, the following explanation has
been added to the analysis of Figure 7: “The comparison with LSTM-C at very short
sequence lengths is not intended as a practical configuration for standalone LSTMs, which
are known to require longer sequences to perform well. Instead, it serves as a baseline to
illustrate the added value of AWRA-L runoff: even when the sequence length is too short
for LSTM-C to capture catchment memory, LSTM-QC can leverage AWRA-L to resolve
routing processes.”



Comment: 21. L481: This could arise because the LSTM training is suboptimal, as it has not
been exposed to catchment attributes that may help it learn the hydrological behaviour in
these regions.

Response: We agree that suboptimal LSTM training due to limited exposure to catchment
attributes is one possible explanation. However, we believe the poorer performance of
LSTMs compared to GR4J in south-west Western Australia is more likely due to the more
informative regionalisation scheme used by GR4J. This region is hydrologically distinct
(Petrone et al., 2010; Hughes et al., 2012), and since GR4J’s regionalisation is weighted by
inverse-distance, it places greater emphasis on local catchments, whereas the LSTM does
not. That said, it is possible that training the LSTM on a more global dataset might
improve its performance in this region. We consider a thorough investigation of these
hypotheses outside the scope of the current paper and intend to address them in future
research. We added this discussion to the revised manuscript.

Petrone, K. C., J. D. Hughes, T. G. Van Niel, and R. P. Silberstein (2010), Streamflow decline
in southwestern Australia, 1950-2008, Geophys. Res. Lett., 37, L11401,
doi:10.1029/2010GL043102.

Hughes, J. D., K. C. Petrone, and R. P. Silberstein (2012), Drought, groundwater storage and
stream flow decline in southwestern Australia, Geophys. Res. Lett., 39, L03408,
doi:10.1029/2011GL050797.
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