Responses to the reviewer comments for manuscript egusphere-2025-804 (Global patterns
and drivers of climate-driven fires in a warming world).

We thank the reviewers for their thoughtful and constructive feedback on our manuscript. In
this document, we provide detailed responses to all comments and suggestions. For ease of
reference, the responses are compiled into one single file.

e Response to Reviewer #1: Page 1 — Page 10
e Response to Reviewer #2: Page 11 — Page 17
e Response to Reviewer #3: Page 18 — Page 36

In each section, the reviewer comments are shown in black, followed by our responses in blue.

Response to Reviewer #1

This paper presents a timely and important study on how future climate change may affect
global wildfire patterns and carbon emissions. Using CLMS5 with interactive biogeochemistry
and fire components, the authors simulate burned area and emissions under two future
scenarios (SSP1-2.6 and SSP3-7.0). The inclusion of global and seasonal analyses helps
capture broad patterns in future fire dynamics.

However, several aspects require further clarification or development. In particular, regional
model evaluation is limited, interpretation relies heavily on correlations, and the machine
learning analysis lacks methodological details. While the paper is well-structured and relevant
to Biogeosciences, substantial revisions are needed before publication.

We thank the reviewer for their thoughtful and encouraging feedback. We are pleased that the
reviewer found our study timely and recognized the value of our modeling framework, scenario
design, and the inclusion of global and seasonal analyses to assess future wildfire dynamics.

We appreciate the identification of key areas for improvement. We have carefully considered
each of these points and provided detailed point-to-point responses.

Major Comments
1. Model Evaluation

The model evaluation is only performed at the global scale, overlooking regional and seasonal
differences in fire regimes. Many regions, such as boreal forests or the tropics, exhibit distinct
fire behaviors that should be validated individually. Including regional comparisons with
GFED data and assessing fire seasonality would increase confidence in the model’s ability to
project future trends.

We appreciate the reviewer’s comment. Now, we have extended our evaluation to include
seasonal comparisons of monthly burned area (BA) for the Global, Tropical (20°S—20°N), and
Northern extratropics (NET: 30°N—70°N) regions. These are now presented in newly added
panels (Figure le—g). This addition allows us to demonstrate the model’s ability to capture not
only spatial but also temporal trends in fire activity, thereby strengthening confidence in its use



for future projections. The following paragraph has been added to Section 2.4 of the revised
manuscript:

“To further assess the ability of CLMS5 to capture temporal fire dynamics, we compared
monthly BA across global, tropical (20°S-20°N), and northern extratropical (NET: 30°N—70°N)
regions (Figure le—g). CLMS5 reproduces the observed double-peak seasonal cycle in the
tropics, which is also reflected in the global mean due to the dominance of tropical fire activity.
This pattern, visible in both GFED4.1 and GFEDS, likely reflects distinct early and late dry
season burning phases, though with some discrepancies in the timing and magnitudes of the
peaks, likely due to known precipitation biases or underrepresentation of early dry season fires
and differences in the fuel build-up season (Hantson et al., 2020; Li et al., 2024). In NET
regions, CLM5 overestimates BA (1.09 million km? vs. 0.37 and 0.81 million km? in GFED4.1
and GFEDS, respectively), particularly during summer months, potentially due to over-
sensitivity to fire weather or fuel availability. Despite these regional biases, CLMS5 broadly
reproduces key spatiotemporal patterns of global fire regimes. While CLMS5 retains the core
structure of CLM4.5, key updates to fuel moisture sensitivity and agricultural fire treatment
improve fire sensitivity (Lawrence et al., 2019). Comparison of CLM performance with other
fire models within the Fire Model Intercomparison Project (FireMIP) also reported that CLM
reasonably reproduces the spatiotemporal variability in global fires (Li et al., 2019; Hantson et
al., 2020). Importantly, Hantson et al. (2020) reported CLM as the only model to reproduce the
double-peak fire season, while all other models produce a single summer peak, indicating its
improved ability to simulate fire dynamics. Recent studies have further compared different
Earth system models and found CESM estimates closer to observations (e.g., Li et al., 2024).”
(Section 2.4)
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Figure 1. Model validation (added panels e—g and changed ‘boreal’ to ‘northern extratropics
(NET)").

Figure caption is modified adding, “Monthly climatology of BA for (e) global, (f) tropical
(20°S—-20°N), and (g) northern extratropics (NET: 30°N-70°N) regions are compared for
CLMS5 with GFEDA4.1 and GFEDS. Shaded areas represent interannual variability (£SD).”

2.Correlation Metrics

The paper draws many conclusions based on correlations between BA, meteorological
variables, and vegetation carbon. While statistically strong, some statements read as causal—
e.g. suggesting that increased vegetation directly “fuels more intense fires” (Lines 372—373),
or that precipitation enhances BA in boreal forests (Line 331). These interpretations rely solely
on correlations from model outputs without supporting observational references. A more
cautious framing, supported by literature or alternative statistical methods, would strengthen
this section.

We thank the reviewer for this observation. As Reviewer #3 suggested to use annual gridded
data (instead of previously used monthly data to avoid seasonal effect on correlation), we
replotted the correlation map (Figure 5) and we have carefully refined our language to avoid
causal interpretations. Where applicable, we have referenced relevant literature to support our
analysis. We believe these revisions provide a more balanced and robust presentation of the
results. (Section 3.2)



“To identify the main factors influencing climate-driven wildfires, we analyzed the spatial
variations (Figure S3) and correlations between BA and meteorological factors, vegetation
dynamics, and carbon emissions. To isolate interannual variability and minimize the influence
of long-term trends, we performed a Pearson correlation coefficient analysis on detrended
annual mean data for each grid cell from 2015 to 2100. We found strong correlations of BA
with meteorological variables, total vegetation carbon (TOTVEGC), and TC emissions for both
SSP1 (Figure 5) and SSP3 (Figure S6) scenarios. BA is positively correlated with surface
temperature across most fire-prone regions (R > 0.6), consistent with the role of warming in
enhancing fuel flammability and increasing fire risks (e.g., Abatzoglou and Williams, 2016;
Wu et al., 2021). A strong positive correlation also appears between BA and total vegetation
carbon in Eurasian (Steppe) and tropical grasslands (e.g., African savanna, parts of Australia),
where warmer and wetter conditions stimulate plant productivity, thereby increasing the fuel
supply and fire risks. This is also likely amplified under future elevated CO>, which enhances
photosynthesis and fuel accumulation via fertilization effects (Lawrence et al., 2019; Walker
et al., 2021; Allen et al., 2024). Meanwhile, in forested regions, the correlation between BA
and vegetation carbon is often negative, suggesting that dense woody vegetation may suppress
fire through improvement in plant water use efficiency, thereby retaining soil moisture and
lowering fuel flammability. These findings support the notion that herbaceous fuels respond
more rapidly to fire-conducive weather, while forests may buffer such effects due to slower
drying and deeper rooting (Jones et al., 2022). Effects of these individual forcing factors, such
as climate, CO», and land use, on fuel availability and combustibility have also been previously
discussed for historical fires using several climate models under FireMIP (Li et al., 2019).

BA shows widespread negative correlations with moisture-related variables (e.g., RH, 10-cm
soil moisture, precipitation, and CWA), consistent with their role in suppressing fire through
increased fuel moisture and reduced flammability (Jolly et al., 2015). Soil moisture, in
particular, has a key indirect control on wildfire activity, influencing both vegetation stress and
fuel moisture content. Although the model does not simulate dead fuel moisture explicitly, soil
moisture serves as a proxy for fuel combustibility. Drier soil conditions reduce live fuel
moisture and increase the likelihood of ignition and fire spread. However, persistently dry
conditions may also suppress vegetation growth and thus reduce fuel availability, which can
lead to lower fire activity in some cases (Turco et al., 2017).

In tropical forests, high precipitation and soil moisture continue to reduce BA, consistent with
fuel combustibility suppression. However, in semiarid savannas, modest precipitation
enhancements promote grass growth, boosting fire-prone fine fuel loads. However, upper soil
moisture (10 cm) may not fully represent deeper root zones in forests and can vary in
flammability (Markewitz et al., 2010; Lawrence et al., 2019). These contrasting relationships
demonstrate region-specific climate-fire dynamics, mediated by vegetation types and fuel
responses to water availability.

Wind speed shows mixed correlations with BA. In fire-prone regions such as Australia and
parts of South America, positive correlations indicate that stronger winds enhance fire spread.
In contrast, in some high-latitude northern regions, increased wind is possibly associated with
the influx of cooler, moister air masses, leading to a suppression of fire activity.

BA shows a strong spatial correlation with TC emissions (R > 0.80) across most regions,
highlighting the model-inherent link between area burned and carbon output. Further analysis
of the differences in carbonaceous species also corroborates the robust correlation with
differences in BA (0.56 <R <0.71, p <0.05; Figure S7), underscoring the synergetic effect of



BA on carbon emissions. Although increased BA generally leads to higher emissions, a
reduction in grassland BA accompanied by forest fire increases may result in higher emissions
despite declining total BA (Zheng et al., 2021).”
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Figure 5. Pearson correlation (R) on annual mean time series data (2015 to 2100). Hatch lines
are shown over regions with a 95% significance level.

Additionally, we have also rephrased initial Line 372373 as:

“... Increased vegetation, while potentially serving as a carbon sink, may contribute to higher
fire risks by increasing fuel availability, especially under warmer and drier conditions
(Flannigan et al., 2009).” (Section 3.3)

3.Machine Learning

The use of XGBoost, LightGBM, and Random Forest for feature importance appears redundant,
as all are tree-based methods with similar structures. The methodology lacks details on how
feature importance was computed (e.g. permutation, SHAP), and no evaluation of model
performance is provided. Without validation metrics, it is unclear whether the models are
accurate enough to support reliable interpretation of variable importance. This section should
be either better justified or revised with appropriate technical detail.



Thanks for pointing this out. We recognize and first test which ML model performs best, and
choose the best-performing model for feature importance and SHAP values as discussed below.
We have added Section 2.5 (Method) to describe the comprehensive technical details of the
machine learning approach:

“2.5 Machine learning models

To assess the relative contribution of climate and vegetation drivers to high latitudes (=40°N)
summer (JJA) BA, we trained three supervised machine learning models: XGBoost,
LightGBM, and Random Forest. These models were trained on monthly grid cell-level data
using predictors from CLMS5 simulations: 10-cm soil moisture, total vegetation carbon
(TOTVEGC), 2-m air temperature, 2-m RH, 10-m wind speed, precipitation, and climate water
availability (CWA = precipitation — evapotranspiration).

Each model was trained using an 80/20 train-test split, with Bayesian hyperparameter
optimization and 5-fold cross-validation. Predictive performance was assessed using the
coefficient of determination (R?) and root mean square error (RMSE) on held-out test sets for
both SSP1 and SSP3 scenarios. XGBoost demonstrated the best performance across both
scenarios and was selected for further interpretation (Table 1). To interpret the model outputs,
we used both gain-based built-in feature importance and SHAP (Shapley Additive exPlanations)
values to capture the marginal effects of each feature and their nonlinear interactions with BA.

Table 1. Performance metrics (R’ and RMSE) for XGBoost, LightGBM, and Random Forest
models in predicting boreal summer burned area under SSP1 and SSP3 scenarios.

SSP1 SSP3
ML model RZ  RMSE R  RMSE
XGBoost 070 95748 062 1111.06
LightGBM 059 111272 054 1215.03

Random Forest 0.52 1202.24 049 1284.20

2

We also updated Figure 8 and the analysis in Section 3.3:

“Feature importance results consistently identify 10-cm soil water content (influencing fuel
availability and dryness) and vegetation carbon (influencing canopy and surface fuel loads) as
primary predictors of wildfire activity (Figure 8). These two factors alone explain over 40—
50% of model variance. While CLM5 does not explicitly simulate dead fuel moisture, lower
soil moisture is often associated with drier fuels, increasing fire susceptibility.

SHAP analysis further reveals the nonlinear and context-dependent behavior of environmental
drivers. Low soil moisture and high vegetation carbon values substantially increase predicted
BA, underscoring the critical role of dry and abundant fuels. Surface temperature and RH show
moderate yet consistent effects: higher temperatures and lower RH are associated with elevated
fire risks. In contrast, precipitation and wind speed exhibit weaker and more variable influences,
often depending on local fuel conditions. Moreover, high CWA contributes to elevated BA as
it may facilitate vegetation growth and thus indirectly accumulate fuel required for fires,
reflecting fuel accumulation during wetter conditions followed by subsequent drying. These
insights emphasize both the dominant controls and complex interdependencies shaping wildfire



risks in boreal regions. Although these ML results provide useful diagnostic insights into
feature importance, they are inherently limited by the underlying correlations in the input
variables and model structure. Future work should explore process-level attribution through
sensitivity simulations using fixed climate forcings within CLMS5.”
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Figure 8. Feature importance and SHAP summary plots showing analysis of environmental
drivers of wildfire activity during boreal summer (JJA) over northern latitudes (>40°N) using
XGBoost machine learning model under (a, b) SSP1 and (c, d) SSP3 scenarios.”

4.Model Uncertainty

Although standard deviations are reported in some figures, they only reflect interannual
variability, not actual modeling uncertainty. The paper does not quantify uncertainties related
to model structure, parameter choices, or scenario assumptions. A discussion of these
limitations, or references to uncertainty estimates from comparable studies, would improve the
robustness of the conclusions.

We acknowledge that the standard deviations reported in our figures capture interannual
variability but do not fully represent structural or parametric modeling uncertainty. In the
revised manuscript, we have added discussion in Section 2.4 (as indicated in response to
comment #1) citing studies considering FireMIP (Li et al., 2019; Hantson et al., 2020) and
Earth system models (Li et al., 2024).

Moreover, we have now added a paragraph in the limitations point explicitly addressing key
sources of uncertainty, including model structure, parameter choices, and scenario assumptions.
We clarify that our single-model framework does not account for internal climate variability
or multi-model spread, and we reference relevant uncertainty-focused studies. We believe this



addition helps contextualize our conclusions within the broader landscape of fire modeling
uncertainty.

“Uncertainty quantification: Our single-model approach does not explicitly account for model
structural uncertainty, parameter sensitivity, or internal variability from ensemble simulations.
While our study using CLMS5 provides a controlled framework to isolate climate-driven fire
responses, multi-model comparisons such as those conducted in the FireMIP initiative
(Hantson et al., 2016; Teckentrup et al., 2019; Burton et al., 2024) have shown that inter-model
differences can lead to considerable spread in regional and global BA estimates. Additionally,
Jones et al. (2022) demonstrated that uncertainty in fire emissions can stem from interactions
between land cover change and fire suppression assumptions. Future studies should incorporate
ensemble simulations or model intercomparison frameworks to more robustly assess projection
uncertainty and guide policy-relevant interpretation.” (Section 4)

Minor Comments
* The spatial resolution of CLM5 (~100 km) may miss small-scale fires. A brief discussion
on its implications would be useful.

We agree with the reviewer that the coarse spatial resolution of CLMS5 (~100 km) limits its
ability to capture small-scale and short-lived fires, which can be significant in certain
ecosystems. We have now included a discussion in the limitations paragraph of the Discussion
(Section 4) to acknowledge this issue and discuss its implications.

“Model resolution and representation: The CLM5 model, with its relatively coarse spatial
resolution (~100 km), may lead to underrepresentation of short-term and small-scale fires,
particularly those driven by local ignition sources, land use changes, or fine-scale vegetation
patterns. These fires, although individually small, can have cumulative ecological and
atmospheric impacts, especially in fragmented landscapes or human-dominated regions. ...”

* Although land use and population are held constant, it would help to briefly discuss how
their future changes might affect BA and emissions.

While we have expanded Section 2.2 explaining our rationale for holding land use and
population constant and their possible impacts on BA and emissions, we have now added a
brief discussion in the limitations (Section 4) outlining how potential changes in these factors
could influence BA and fire emissions. Specifically, we discuss how land use change and
population dynamics could alter ignition patterns, fire suppression, and fuel continuity—thereby
modifying regional fire risk in ways not captured in this study.

Modification in Section 2.2:

“In this study, to focus on the impacts of future climate change on wildfires, land use and
populations were held constant at present-day levels, allowing only climate to evolve over time.
This introduces a partial decoupling from the SSP framework but allows us to attribute changes
in BA and emissions directly to climate-driven factors, independent of socioeconomic and land
use shifts. While fixing land use change directly affects fuel availability, fixing population
change is associated with fire management (suppress or ignite), thereby affecting BA and
carbon emissions. ...”



Modification in Section 4:

“Several limitations of this study warrant further investigation and consideration when
interpreting our results:

Attribution experiments: Our study isolates the climate effect by holding anthropogenic
influence (changes in land use and population density) constant. While this provides a
controlled framework for evaluating climate-driven wildfire risks, real-world fire dynamics are
shaped by a broader set of factors. Future land use changes — such as agricultural expansion,
forest fragmentation, or abandonment — can alter fuel continuity and flammability. For instance,
fragmentation may reduce fire spread by breaking fuel connectivity, while deforestation or
abandonment could increase fire risk by creating more open, combustible landscapes. Similarly,
population growth and urbanization may lead to more frequent human ignitions or enhanced
suppression capacity, depending on regional context. These socioeconomic dynamics, which
have already contributed to declining BA in recent decades (e.g., Andela et al., 2017; Forkel et
al., 2019), are not captured in our simulations. In addition, our interpretation of fire-climate
relationships is based on statistical methods, which are inherently correlative. Future research
would benefit from targeted sensitivity simulations that systematically vary climate drivers
(e.g., CO,, temperature, precipitation) or land use parameters, either independently or in
combination. Such factorial experiments would enable more rigorous causal attribution and
improve confidence in regional fire projections under complex future scenarios.”

 Using only 10-cm soil moisture may overlook deeper rooting in forests. A note on subsoil
moisture would improve the interpretation.

We agree that 10-cm soil moisture may not fully capture root-zone water availability,
particularly in forests and deeper rooting systems. We have now acknowledged this limitation
in Section 3.2 of the manuscript to clarify that deeper soil layers can influence vegetation water
stress and thus fire susceptibility.

“... However, the 10-cm soil moisture may not fully represent deeper root zones in forests
(Markewitz et al., 2010; Lawrence et al., 2019). ...”

Additionally, we have also discussed it in the limitations part in Section 4 as:

“... Additionally, our analysis relies on 10-cm topsoil moisture as a proxy for assessing fuel
dryness, which may not fully reflect water availability for deep-rooted vegetation in forest
ecosystems. However, CLM5 fire module internally relies on root-zone soil wetness to estimate
fuel combustibility, which captures moisture availability over a deeper soil profile. This
distinction introduces some approximation in our interpretation, especially in ecosystems
where deeper soil layers better reflect vegetation water access and fire susceptibility.”

* The strong correlation between BA and total carbon emissions (Lines 346—347) reflects
a direct model dependency. This could be reframed more cautiously.



As also stated in response to comment #2, we have reframed and revised Section 3.2.
Specifically, the paragraph with BA and carbon emissions correlation has been revised to:

“BA shows a strong spatial correlation with TC emissions (R > 0.80) across most regions,
highlighting the model-inherent link between area burned and carbon output. Further analysis
of the differences in carbonaceous species also corroborates the robust correlation with
differences in BA (0.56 <R <0.71, p <0.05; Figure S7), underscoring the synergetic effect of
BA on carbon emissions. Although increased BA generally leads to higher emissions, a
reduction in grassland BA accompanied by forest fire increases may result in higher emissions
despite declining total BA (Zheng et al., 2021).”

* While climate forcings are based on SSP1 and SSP3 scenarios, land use and population
are held constant. Clarifying this partial inconsistency in the CLMS5 setup would help
readers understand the scope.

We agree that using SSP-based climate forcings while holding land use and population constant
introduces a partial decoupling from the SSP framework. This modeling design choice was
intentional to isolate climate-driven impacts on fire activity. We have clarified this explicitly
in Section 2.2 and Section 4 of the revised manuscript (as detailed previously in response to
#second minor comment).
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Response to Reviewer #2

This is a very well-written and clear article. The conclusions are of scientific interest, however,
before publication further validation of the temporal trends under current conditions as well as
the impact of holding socio-economic variables constant is needed.

We thank the reviewer for their positive assessment of our manuscript. We appreciate the
constructive suggestions regarding validation of temporal trends and discussion on holding
socioeconomic variables constant. These are important considerations, and we have carefully
addressed each point along with revisions to the manuscript where appropriate, and provided
point-by-point responses.

Major comments

The authors have chosen to hold socio-economic activity constant in this paper, to isolate out
the climate and vegetation effects of climate change on burnt area. Whilst this is a defendable
and useful counter-factual set up, more discussion is needed as to the effect of this choice on
the results. More specifically:

o The authors state that the model can reproduce current patterns in burnt area, but this
validation appears to be only spatial. However, a validation of the temporal trends and
the model’s ability to reproduce current trends is needed given that this study performs
a transient temporal analysis.

As suggested, we have expanded our model evaluation to include seasonal (monthly) burned
area (BA) comparisons between CLMS5 simulations and GFED4.1/GFEDS5 observations over
the Global, Tropical (20°S—-20°N), and northern extratropics (NET: 30°N—70°N) regions (new
panels e-g in Figure 1). Additionally, we have also discussed the evaluation by comparing with
FireMIP and other relevant studies in further polishing our comparison. This additional
validation confirms that CLMS5, while having some biases, captures not only spatial patterns
but also core temporal dynamics of fire activity.

“To further assess the ability of CLMS5 to capture temporal fire dynamics, we compared
monthly BA across global, tropical (20°S-20°N), and northern extratropical (NET: 30°N—70°N)
regions (Figure le—-g). CLMS5 reproduces the observed double-peak seasonal cycle in the
tropics, which is also reflected in the global mean due to the dominance of tropical fire activity.
This pattern, visible in both GFED4.1 and GFEDS, likely reflects distinct early and late dry
season burning phases, though with some discrepancies in the timing and magnitudes of the
peaks, likely due to known precipitation biases or underrepresentation of early dry season fires
and differences in the fuel build-up season (Hantson et al., 2020; Li et al., 2024). In NET
regions, CLM5 overestimates BA (1.09 million km? vs. 0.37 and 0.81 million km? in GFED4.1
and GFEDS, respectively), particularly during summer months, potentially due to over-
sensitivity to fire weather or fuel availability. Despite these regional biases, CLMS5 broadly
reproduces key spatiotemporal patterns of global fire regimes. While CLMS retains the core
structure of CLM4.5, key updates to fuel moisture sensitivity and agricultural fire treatment
improve fire sensitivity (Lawrence et al., 2019). Comparison of CLM performance with other
fire models within the Fire Model Intercomparison Project (FireMIP) also reported that CLM
reasonably reproduces the spatiotemporal variability in global fires (Li et al., 2019; Hantson et
al., 2020). Importantly, Hantson et al. (2020) reported CLM as the only model to reproduce the
double-peak fire season, while all other models produce a single summer peak, indicating its
improved ability to simulate fire dynamics. Recent studies have further compared different
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Earth system models and found CESM estimates closer to observations (e.g., Li et al., 2024).”
(Section 2.4)
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Figure 1. Model validation (added panels e—g and changed ‘boreal’ to ‘northern extratropics
(NET)).

Figure caption is modified adding, “Monthly climatology of BA for (e) global, (f) tropical
(20°S—-20°N), and (g) northern extratropics (NET: 30°N-70°N) regions are compared for
CLMS5 with GFEDA4.1 and GFEDS. Shaded areas represent interannual variability (£SD).”

o Furthermore, given the fact that the current declining global trend in burnt area has been
attributed to changes in human activity, and that this study holds human activity
constant, a quantification is needed to assess the impact this choice will have on trends.

We have expanded Section 2.2 and also explained in the Discussion (Section 4) that our setup
isolates climate-driven impacts and their possible impacts in BA and carbon emissions, backed
up with the relevant studies. Specifically, we discuss how land use change and population
dynamics could alter ignition patterns, fire suppression, and fuel continuity—thereby modifying
regional fire risk in ways not captured in this study.

“In this study, to focus on the impacts of future climate change on wildfires, land use and
populations were held constant at present-day levels, allowing only climate to evolve over time.
This introduces a partial decoupling from the SSP framework but allows us to attribute changes
in BA and emissions directly to climate-driven factors, independent of socioeconomic and land

12



use shifts. While fixing land use change directly affects fuel availability, fixing population
change is associated with fire management (suppress or ignite), thereby affecting BA and
carbon emissions. ...” (Section 2.2)

In addition, we have outlined this approach as a key direction for future work in the revised
Discussion (Section 4).

“Several limitations of this study warrant further investigation and consideration when
interpreting our results:

Attribution experiments: Our study isolates the climate effect by holding anthropogenic
influence (changes in land use and population density) constant. While this provides a
controlled framework for evaluating climate-driven wildfire risks, real-world fire dynamics are
shaped by a broader set of factors. Future land use changes — such as agricultural expansion,
forest fragmentation, or abandonment — can alter fuel continuity and flammability. For instance,
fragmentation may reduce fire spread by breaking fuel connectivity, while deforestation or
abandonment could increase fire risk by creating more open, combustible landscapes. Similarly,
population growth and urbanization may lead to more frequent human ignitions or enhanced
suppression capacity, depending on regional context. These socioeconomic dynamics, which
have already contributed to declining BA in recent decades (e.g., Andela et al., 2017; Forkel et
al., 2019), are not captured in our simulations. In addition, our interpretation of fire-climate
relationships is based on statistical methods, which are inherently correlative. Future research
would benefit from targeted sensitivity simulations that systematically vary climate drivers
(e.g., CO,, temperature, precipitation) or land use parameters, either independently or in
combination. Such factorial experiments would enable more rigorous causal attribution and
improve confidence in regional fire projections under complex future scenarios.”

e It would be nice to see the temporal trend of simulated BA between 2015 and 2024 with
a) the socio-economic variables varying, b) the socio-economic variables held constant.

In this study, we designed our simulations to isolate the impacts of future climate change on
fire activity by holding land use and population constant at present-day levels. As such, we did
not perform a parallel simulation with evolving socioeconomic forcings, and therefore cannot
directly compare the effects within our current framework. However, previous studies (e.g.,
Andela et al., 2017; Jones et al., 2022) have shown that changes in land use and fire
management significantly contributed to observed declines in burned area over recent decades.
We have clarified this point in the Discussion section (as discussed in response to the above
comment) and referenced relevant literature to provide context on the potential influence of
socioeconomic changes, which are beyond the scope of our current study design.

e The impact of human activity in each region could then be quantified by taking the
difference in these two simulations. This would allow a discussion of regions in which
we expect that the results shown here (climate effect only) to be the driving trend and
regions in which, given that human activity is a significant driver, the results presented
here should be taken with more caution.

We appreciate this suggestion. However, as explained above, this is beyond the scope of this
research design. We acknowledge that the influence of human activities on fire dynamics is
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highly region-specific. For example, boreal regions are expected to be more strongly influenced
by climate-driven factors such as fuel availability and fire weather, while tropical and
subtropical regions are more sensitive to land use change and fire management practices (e.g.,
Andelaetal., 2017; Forkel et al., 2019). As indicated above, we have now clarified these points
in the Discussion section and highlighted that future modeling studies integrating evolving
socioeconomic factors would enable a more complete regional attribution of fire trends.

Given that the largest increases of burnt area and emissions are in the northern latitudes, regions
in which we expect human activity to have very little impact, this exercise would strengthen
your conclusions. Furthermore, another interesting result is the fact that this analysis shows
decreases in many regions, including the tropics, despite holding human activity constant.

We agree that boreal regions are primarily driven by climatic factors such as temperature, soil
moisture, and vegetation productivity, and thus our climate-only setup is particularly relevant
for interpreting projected increases in these regions. We also acknowledge that the simulated
decreases in tropical BA, despite holding human activity constant, suggest a strong climate
influence (e.g., increased precipitation leading to reduced fire activity). We have now
emphasized these points in the Discussion section to strengthen the interpretation of our
findings.

“Regional differences: Relative importance of climate versus human activity is expected to
differ across regions. Boreal ecosystems are primarily sensitive to climatic factors such as fuel
availability, soil moisture, and fire weather conditions, whereas tropical regions are more
strongly influenced by human land use change, agricultural expansion, and fire suppression
practices (e.g., Andela et al., 2017; Forkel et al., 2019; Wu et al., 2021). This regional
heterogeneity highlights the need for caution when interpreting climate-only fire projections,
particularly in human-dominated landscapes. Notably, our findings show that the largest
projected increase in BA and carbon emissions occur in boreal regions, where human activity
is comparatively limited. This reinforces the robustness of our climate-driven projections in
these areas. Conversely, the simulated declines in tropical burned area despite constant
socioeconomic forcings suggest that climate-induced changes, such as increased precipitation,
may independently drive fire suppression in some regions. These contrasting patterns
underscore the critical role of regional context in interpreting future wildfire trends.” (Section
4)

Minor comments
Line 258 “In any case, tropical fires dominate the global landscape for both BA and carbon
emissions, compared to boreal fires.” — this sentence is quite unclear, could you please rephrase.

We have rephrased the sentence for clarity (Section 3.1):
“Despite the upwards trends in NET fires, the tropics remain the dominant contributor to total

global BA and carbon emissions during the 21% century, underscoring a shifting geographic
balance of wildfire risks.”

Line 342 “In contrast, tropical regions show a decrease in BA as increased precipitation
dampens fire activity.” — could this not lead to increases in fuel loading, as it does in the
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northern high latitudes? More detailed discussion as to why decreases are shown in these
regions are needed. Furthermore, what causes the large decrease in extra-tropical regions (e.g.
eastern United States, United Kingdom and northern Europe, regions of Russia?). More
detailed discussion of what is driving decreases in burnt area globally is needed here.

We have now explained the characteristics of BA reduction in extratropical regions (such as
the Eastern US and the UK).

“We found important differences at a regional scale. In northern extratropics, particularly near
60°N, where boreal forests dominate alongside alpine forests and shrublands, BA and TC
emissions are projected to increase by over 150% in both SSP scenarios (Figure 3a—d and
Figure S4). This intensification is most evident in boreal region, where the trend in BA reaches
+5237 km? yr! under SSP1 and +8515 km? yr! under SSP3. In contrast to the pronounced
increases in boreal BA, our simulations project localized decreases in BA across parts of the
humid tropics as well as temperate regions such as the UK and eastern US. In tropical rainforest
regions, elevated precipitation and humidity under future climate scenarios likely suppress fire
activity by maintaining higher fuel moisture levels and shortening the fire season. In temperate
zones such as the UK and eastern US, projected climate changes (e.g., increased rainfall or
limited warming) may reduce conditions that promote fires. These declines occur despite fixed
land use and populations, indicating that purely climatic effects can suppress fire activity in
certain fuel-rich or moisture-sensitive systems. Additionally, tropical regions show slight
decline in BA under SSP3 (-2429 km? yr!) and SSP1 (—64 km? yr'), both remaining
statistically insignificant at 95% level (Figure 3e—h). Despite the upward trends in NET fires,
the tropics remain the dominant contributor to total global BA and carbon emissions during the
21% century, underscoring a shifting geographic balance of wildfire risks.” (Section 3.1)”

Additionally, while precipitation in some regions (e.g., grasslands) could increase fire risk,
precipitation in forest regions could reduce the risk of fires. We have now provided a detailed
discussion on the meteorological effects on fire activity. While we updated Figure 5 based on
Reviewer #3 comment to use annual mean data to avoid seasonal characteristics, we have
rephrased the whole discussion in Section 3.2, including the stated lines 342 as:

“To identify the main factors influencing climate-driven wildfires, we analyzed the spatial
variations (Figure S3) and correlations between BA and meteorological factors, vegetation
dynamics, and carbon emissions. To isolate interannual variability and minimize the influence
of long-term trends, we performed a Pearson correlation coefficient analysis on detrended
annual mean data for each grid cell from 2015 to 2100. We found strong correlations of BA
with meteorological variables, total vegetation carbon (TOTVEGC), and TC emissions for both
SSP1 (Figure 5) and SSP3 (Figure S6) scenarios. BA is positively correlated with surface
temperature across most fire-prone regions (R > 0.6), consistent with the role of warming in
enhancing fuel flammability and increasing fire risks (e.g., Abatzoglou and Williams, 2016;
Wu et al., 2021). A strong positive correlation also appears between BA and total vegetation
carbon in Eurasian (Steppe) and tropical grasslands (e.g., African savanna, parts of Australia),
where warmer and wetter conditions stimulate plant productivity, thereby increasing the fuel
supply and fire risks. This is also likely amplified under future elevated CO>, which enhances
photosynthesis and fuel accumulation via fertilization effects (Lawrence et al., 2019; Walker
et al., 2021; Allen et al., 2024). Meanwhile, in forested regions, the correlation between BA
and vegetation carbon is often negative, suggesting that dense woody vegetation may suppress
fire through improvement in plant water use efficiency, thereby retaining soil moisture and
lowering fuel flammability. These findings support the notion that herbaceous fuels respond
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more rapidly to fire-conducive weather, while forests may buffer such effects due to slower
drying and deeper rooting (Jones et al., 2022). Effects of these individual forcing factors, such
as climate, CO», and land use, on fuel availability and combustibility have also been previously
discussed for historical fires using several climate models under FireMIP (Li et al., 2019).

BA shows widespread negative correlations with moisture-related variables (e.g., RH, 10-cm
soil moisture, precipitation, and CWA), consistent with their role in suppressing fire through
increased fuel moisture and reduced flammability (Jolly et al., 2015). Soil moisture, in
particular, has a key indirect control on wildfire activity, influencing both vegetation stress and
fuel moisture content. Although the model does not simulate dead fuel moisture explicitly, soil
moisture serves as a proxy for fuel combustibility. Drier soil conditions reduce live fuel
moisture and increase the likelihood of ignition and fire spread. However, persistently dry
conditions may also suppress vegetation growth and thus reduce fuel availability, which can
lead to lower fire activity in some cases (Turco et al., 2017).

In tropical forests, high precipitation and soil moisture continue to reduce BA, consistent with
fuel combustibility suppression. However, in semiarid savannas, modest precipitation
enhancements promote grass growth, boosting fire-prone fine fuel loads. However, upper soil
moisture (10 cm) may not fully represent deeper root zones in forests and can vary in
flammability (Markewitz et al., 2010; Lawrence et al., 2019). These contrasting relationships
demonstrate region-specific climate-fire dynamics, mediated by vegetation types and fuel
responses to water availability.

Wind speed shows mixed correlations with BA. In fire-prone regions such as Australia and
parts of South America, positive correlations indicate that stronger winds enhance fire spread.
In contrast, in some high-latitude northern regions, increased wind is possibly associated with
the influx of cooler, moister air masses, leading to a suppression of fire activity.

BA shows a strong spatial correlation with TC emissions (R > 0.80) across most regions,
highlighting the model-inherent link between area burned and carbon output. Further analysis
of the differences in carbonaceous species also corroborates the robust correlation with
differences in BA (0.56 <R <0.71, p <0.05; Figure S7), underscoring the synergetic effect of
BA on carbon emissions. Although increased BA generally leads to higher emissions, a
reduction in grassland BA accompanied by forest fire increases may result in higher emissions
despite declining total BA (Zheng et al., 2021).”
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Figure 5. Pearson correlation (R) on annual mean time series data (2015 to 2100). Hatch lines
are shown over regions with a 95% significance level.
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Response to Reviewer #3

The authors present future simulations under two different scenarios with the fire-enabled
DGVM CLMS3, and report burnt area and speciated emissions. They examine the drivers of
global burnt area using simple univariate linear regression, and further focus on the northern
latitudes with three machine learning models. The study is timely, relevant and well-presented.
The chosen methods are appropriate. However, I have several scientific concerns with the paper
in its current form.

We greatly appreciate and thank the reviewer for their constructive comments and suggestions.
We have carefully addressed all the concerns and provided point-by-point responses.

1. T agree strongly with comments from Reviewers 1 and 2 concerning additional
benchmarking. Whilst the spatial patterns are indeed reasonable (for a fire-enabled
DGVM), both the seasonal patterns and more importantly, the temporal patterns - both
interannual variability and trend - should be evaluated over some a reference period.
Perhaps 2001 to 2015 which according to the methods was simulated as part of the
spinup but not presented here. Regardless of the protocol, when presenting these future
simulations, some degree of evidence should be offered that the simulations reliably
capture the temporal dynamics and interannual variability. Ideally this should be done
regionally as well as globally. Otherwise the future projections are hard to credit.

It may be that such benchmarking already exists, but it doesn’t seem to be in any of the
references provided in the manuscript. As part of the FireMIP project, Hantson et al.
2020 found the the CLM fire module, whilst amongst the better performing fire-enabled
DGVMs, only managed to better the mean value null model with respect to two of the
four burnt area dataset to which it was compared (and even that barely). Can the authors
provide evidence that the model has been improved since then?

As also suggested by Reviewer 1 and 2, we have now expanded the benchmarking of the
model’s temporal dynamics. In addition to the spatial comparison already shown, we now
present seasonal and interannual variability in burned area (BA) across global, tropical (20°S—
20°N), and northern extratropics (NET: 30°N—70°N) regions using monthly time series from
CLM5, GFEDA4.1, and GFEDS (Figure le—g). Additionally, we have also discussed the
evaluation by comparing with FireMIP and other relevant studies in further polishing our
comparison.

“To further assess the ability of CLMS5 to capture temporal fire dynamics, we compared
monthly BA across global, tropical (20°S—20°N), and northern extratropical (NET: 30°N—-70°N)
regions (Figure le—g). CLMS5 reproduces the observed double-peak seasonal cycle in the
tropics, which is also reflected in the global mean due to the dominance of tropical fire activity.
This pattern, visible in both GFED4.1 and GFEDS, likely reflects distinct early and late dry
season burning phases, though with some discrepancies in the timing and magnitudes of the
peaks, likely due to known precipitation biases or underrepresentation of early dry season fires
and differences in the fuel build-up season (Hantson et al., 2020; Li et al., 2024). In NET
regions, CLM5 overestimates BA (1.09 million km? vs. 0.37 and 0.81 million km? in GFED4.1
and GFEDS, respectively), particularly during summer months, potentially due to over-
sensitivity to fire weather or fuel availability. Despite these regional biases, CLMS5 broadly
reproduces key spatiotemporal patterns of global fire regimes. While CLMS5 retains the core
structure of CLM4.5, key updates to fuel moisture sensitivity and agricultural fire treatment
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improve fire sensitivity (Lawrence et al., 2019). Comparison of CLM performance with other
fire models within the Fire Model Intercomparison Project (FireMIP) also reported that CLM
reasonably reproduces the spatiotemporal variability in global fires (Li et al., 2019; Hantson et
al., 2020). Importantly, Hantson et al. (2020) reported CLM as the only model to reproduce the
double-peak fire season, while all other models produce a single summer peak, indicating its
improved ability to simulate fire dynamics. Recent studies have further compared different
Earth system models and found CESM estimates closer to observations (e.g., Li et al., 2024).”
(Section 2.4)
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Figure 1. Model validation (added panels e-g and changed ‘boreal’ to ‘northern extratropics
(NET)).

Figure caption is modified adding, “Monthly climatology of BA for (e) global, (f) tropical
(20°S—-20°N), and (g) northern extratropics (NET: 30°N-70°N) regions are compared for
CLMS5 with GFEDA4.1 and GFEDS. Shaded areas represent interannual variability (£SD).”

2. Talso question the utility of parts of Figure 5, at least as a main manuscript figure. Many
of the relationships would entirely expected. Especially because the correlation uses
monthly values, and so the seasonal patterns should be expected to dominate the
correlation in seasonal areas, this includes of course, soil moisture. I suggest using
remaking this figure with annual values, or perhaps better would be fire season months
or fire season aggregates, or perhaps deviations from the long term mean. As things
stand Fig. 5 is not useful.

More than this, the discussion should be more nuanced. For example, line 332-33

19



“However, in tropical regions, where fuel is already abundant, increased precipitation
primarily raises soil moisture, further suppressing fire activity rather than promoting it.”

Actually in the arid tropics fuel can often be limiting so this is not a reasonable comment.
Furthemore, line 330-332

“Interestingly, in boreal regions, precipitation exhibits a positive correlation with BA, as it
enhances vegetation growth, increasing the availability of fuel.”

Again, this is against the conventional wisdom here. The boreal zone is not considered to be
fuel limited because actually there is a lot of both live and dead biomass available as fuel.

We appreciate the reviewer’s suggestion. We have replaced the original correlation maps
(previously based on detrended monthly data) with new maps computed from detrended annual
mean values, now shown in the revised Figure 5 (for SSP1) and Figure S6 (for SSP3). This
approach better isolates interannual variability from dominant seasonal cycles. Importantly,
switching to annual means reversed the sign of the BA-precipitation correlation in parts of the
boreal region, highlighting the reviewer’s valid point that seasonal cycles can obscure
ecological drivers. We updated Figure 5 and rephrased the discussion in Section 3.2, including
the stated lines 330 to 333 as:

“To identify the main factors influencing climate-driven wildfires, we analyzed the spatial
variations (Figure S3) and correlations between BA and meteorological factors, vegetation
dynamics, and carbon emissions. To isolate interannual variability and minimize the influence
of long-term trends, we performed a Pearson correlation coefficient analysis on detrended
annual mean data for each grid cell from 2015 to 2100. We found strong correlations of BA
with meteorological variables, total vegetation carbon (TOTVEGC), and TC emissions for both
SSP1 (Figure 5) and SSP3 (Figure S6) scenarios. BA is positively correlated with surface
temperature across most fire-prone regions (R > 0.6), consistent with the role of warming in
enhancing fuel flammability and increasing fire risks (e.g., Abatzoglou and Williams, 2016;
Wu et al., 2021). A strong positive correlation also appears between BA and total vegetation
carbon in Eurasian (Steppe) and tropical grasslands (e.g., African savanna, parts of Australia),
where warmer and wetter conditions stimulate plant productivity, thereby increasing the fuel
supply and fire risks. This is also likely amplified under future elevated CO>, which enhances
photosynthesis and fuel accumulation via fertilization effects (Lawrence et al., 2019; Walker
et al., 2021; Allen et al., 2024). Meanwhile, in forested regions, the correlation between BA
and vegetation carbon is often negative, suggesting that dense woody vegetation may suppress
fire through improvement in plant water use efficiency, thereby retaining soil moisture and
lowering fuel flammability. These findings support the notion that herbaceous fuels respond
more rapidly to fire-conducive weather, while forests may buffer such effects due to slower
drying and deeper rooting (Jones et al., 2022). Effects of these individual forcing factors, such
as climate, CO», and land use, on fuel availability and combustibility have also been previously
discussed for historical fires using several climate models under FireMIP (Li et al., 2019).

BA shows widespread negative correlations with moisture-related variables (e.g., RH, 10-cm
soil moisture, precipitation, and CWA), consistent with their role in suppressing fire through
increased fuel moisture and reduced flammability (Jolly et al., 2015). Soil moisture, in
particular, has a key indirect control on wildfire activity, influencing both vegetation stress and
fuel moisture content. Although the model does not simulate dead fuel moisture explicitly, soil
moisture serves as a proxy for fuel combustibility. Drier soil conditions reduce live fuel
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moisture and increase the likelihood of ignition and fire spread. However, persistently dry
conditions may also suppress vegetation growth and thus reduce fuel availability, which can
lead to lower fire activity in some cases (Turco et al., 2017).

In tropical forests, high precipitation and soil moisture continue to reduce BA, consistent with
fuel combustibility suppression. However, in semiarid savannas, modest precipitation
enhancements promote grass growth, boosting fire-prone fine fuel loads. However, upper soil
moisture (10 cm) may not fully represent deeper root zones in forests and can vary in
flammability (Markewitz et al., 2010; Lawrence et al., 2019). These contrasting relationships
demonstrate region-specific climate-fire dynamics, mediated by vegetation types and fuel
responses to water availability.

Wind speed shows mixed correlations with BA. In fire-prone regions such as Australia and
parts of South America, positive correlations indicate that stronger winds enhance fire spread.
In contrast, in some high-latitude northern regions, increased wind is possibly associated with
the influx of cooler, moister air masses, leading to a suppression of fire activity.

BA shows a strong spatial correlation with TC emissions (R > 0.80) across most regions,
highlighting the model-inherent link between area burned and carbon output. Further analysis
of the differences in carbonaceous species also corroborates the robust correlation with
differences in BA (0.56 <R <0.71, p <0.05; Figure S7), underscoring the synergetic effect of
BA on carbon emissions. Although increased BA generally leads to higher emissions, a
reduction in grassland BA accompanied by forest fire increases may result in higher emissions
despite declining total BA (Zheng et al., 2021).”
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Figure 5. Pearson correlation (R) on annual mean time series data (2015 to 2100). Hatch lines
are shown over regions with a 95% significance level.

Additionally, we tested fire-season-only means (JJA for the Northern Hemisphere and DJF for
the Southern Hemisphere) for SSP1 results, which yielded broadly similar spatial patterns
(Figure R1). Thus, we opted to stay with the annual mean rather than the fire-season mean plot.
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Figure R1. Pearson correlation on SSP1 results for fire-season-only means (JJA for the
Northern Hemisphere and DJF for the Southern Hemisphere) time series data with hatch lines
showing 95% significance level.

3. More detail is needed about the ML methods in Fig 8, but I am also not convinced about
their utility. I guess they were run on the model outputs and climate inputs as a kind of
emulator, and then feature importance was extracted. But emulators should be used to
make a short cut to produce results, not extract process knowledge. Since they
essentially work on correlations, there is no guarantee that they are getting the right
result for the right reason, therefore they are truly capturing the model’s cause and effect.
This is in indeed evidenced by the author’s own results which show quite different
results between ML methods.

Having said that, the results are fairly consistent in that they say veg C and soil water
content are the most important variables, so perhaps this is all good enough. But since
those two things are in themselves very likely to be very correlated (assuming a fuel
limited system), I am not so sure what are really learning. More details here please. In
fact there are likey to be strong correlations between many of these variables, this
should be explored with some pair-wise correlation plots.
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We appreciate the reviewer’s comment. Our intent was not to infer causality but to complement
traditional statistical approaches by identifying dominant covariates within a high-dimensional,
nonlinear framework. While we acknowledge that ML models do not explicitly account for
causal mechanisms, their application here provides insight into variable importance under
complex interactions not easily captured by linear models. Additionally, all of these analyses
are based on model outputs.

We have added Section 2.5 describing the machine learning setup as:
“2.5 Machine learning models

To assess the relative contribution of climate and vegetation drivers to high latitudes (=40°N)
summer (JJA) BA, we trained three supervised machine learning models: XGBoost,
LightGBM, and Random Forest. These models were trained on monthly grid cell-level data
using predictors from CLMS5 simulations: 10-cm soil moisture, total vegetation carbon
(TOTVEGC), 2-m air temperature, 2-m RH, 10-m wind speed, precipitation, and climate water
availability (CWA = precipitation — evapotranspiration).

Each model was trained using an 80/20 train-test split, with Bayesian hyperparameter
optimization and 5-fold cross-validation. Predictive performance was assessed using the
coefficient of determination (R?) and root mean square error (RMSE) on held-out test sets for
both SSP1 and SSP3 scenarios. XGBoost demonstrated the best performance across both
scenarios and was selected for further interpretation (Table 1). To interpret the model outputs,
we used both gain-based built-in feature importance and SHAP (Shapley Additive exPlanations)
values to capture the marginal effects of each feature and their nonlinear interactions with BA.

Table 1. Performance metrics (R’ and RMSE) for XGBoost, LightGBM, and Random Forest
models in predicting boreal summer burned area under SSP1 and SSP3 scenarios.

SSP1 SSP3
ML model RZ  RMSE R?  RMSE
XGBoost 070 95748 062 1111.06
LightGBM 059 111272 054  1215.03

Random Forest 0.52 1202.24 049 1284.20

2

We also updated Figure 8 and the analysis in Section 3.3:

“Feature importance results consistently identify 10-cm soil water content (influencing fuel
availability and dryness) and vegetation carbon (influencing canopy and surface fuel loads) as
primary predictors of wildfire activity (Figure 8). These two factors alone explain over 40—
50% of model variance. While CLM5 does not explicitly simulate dead fuel moisture, lower
soil moisture is often associated with drier fuels, increasing fire susceptibility.

SHAP analysis further reveals the nonlinear and context-dependent behavior of environmental
drivers. Low soil moisture and high vegetation carbon values substantially increase predicted
BA, underscoring the critical role of dry and abundant fuels. Surface temperature and RH show
moderate yet consistent effects: higher temperatures and lower RH are associated with elevated
fire risks. In contrast, precipitation and wind speed exhibit weaker and more variable influences,
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often depending on local fuel conditions. Moreover, high CWA contributes to elevated BA as
it may facilitate vegetation growth and thus indirectly accumulate fuel required for fires,
reflecting fuel accumulation during wetter conditions followed by subsequent drying. These
insights emphasize both the dominant controls and complex interdependencies shaping wildfire
risks in boreal regions. Although these ML results provide useful diagnostic insights into
feature importance, they are inherently limited by the underlying correlations in the input
variables and model structure. Future work should explore process-level attribution through
sensitivity simulations using fixed climate forcings within CLMS5.”
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Figure 8. Feature importance and SHAP summary plots showing analysis of environmental
drivers of wildfire activity during boreal summer (JJA) over northern latitudes (=40°N) using
XGBoost machine learning model under (a, b) SSP1 and (c, d) SSP3 scenarios.”

To address concerns regarding collinearity, we computed pairwise Pearson correlation
coefficients using the annual mean of the predictor variables used in ML models (Figure R2).
As expected, precipitation and climate water availability (CWA, defined as precipitation minus
evapotranspiration) exhibit a strong correlation (R = 0.91). While this redundancy is inherent,
we retained both variables in our ML model to capture their potentially distinct nonlinear
interactions, as shown in SHAP values. Importantly, the correlation between total vegetation
carbon and soil moisture, the two top-ranked features, is relatively low (R = 0.19), indicating
that their contributions are not simply redundant. Even moderate correlations (e.g.,
precipitation—vegetation carbon: R = 0.75) were found to contribute distinct patterns in SHAP
results, supporting their retention.
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Figure R2: Pairwise correlation of annual mean variables.

4. Instead of running statistical models on model output, I would strongly recommend that
the authors lean into the strength of a process-based model such as CLM and run
sensitivity experiments i.e. fixing temperature, precipitation and CO2 to present day
conditions. This will isolate the effects of the changes to the individual driving variables
in a much cleaner way.

We agree that sensitivity experiments would provide cleaner attribution than post hoc statistical
methods. Our current study focuses on scenario-based projections using transient simulations,
and we recognize the value of targeted sensitivity runs (e.g., holding temperature, precipitation,
or CO: constant) to isolate the role of individual drivers. However, this is beyond the scope of
our current study design. However, similar fire sensitivity studies have been done in the past
during FireMIP (Li et al., 2019), and we have added relevant literature highlighting their effect
on BA as indicated in response to comment #5.

In addition, we have outlined this approach as a key direction for future work in the revised
Discussion (Section 4).

“Several limitations of this study warrant further investigation and consideration when
interpreting our results:
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Attribution experiments: Our study isolates the climate effect by holding anthropogenic
influence (changes in land use and population density) constant. While this provides a
controlled framework for evaluating climate-driven wildfire risks, real-world fire dynamics are
shaped by a broader set of factors. Future land use changes — such as agricultural expansion,
forest fragmentation, or abandonment — can alter fuel continuity and flammability. For instance,
fragmentation may reduce fire spread by breaking fuel connectivity, while deforestation or
abandonment could increase fire risk by creating more open, combustible landscapes. Similarly,
population growth and urbanization may lead to more frequent human ignitions or enhanced
suppression capacity, depending on regional context. These socioeconomic dynamics, which
have already contributed to declining BA in recent decades (e.g., Andela et al., 2017; Forkel et
al., 2019), are not captured in our simulations. In addition, our interpretation of fire-climate
relationships is based on statistical methods, which are inherently correlative. Future research
would benefit from targeted sensitivity simulations that systematically vary climate drivers
(e.g., CO,, temperature, precipitation) or land use parameters, either independently or in
combination. Such factorial experiments would enable more rigorous causal attribution and
improve confidence in regional fire projections under complex future scenarios.”

5. In general CO2 effects - both increased water use efficiency which will lead to
increased soil moisture and fertilization which will lead to increased biomass — are not
adequately discussed. How will these be affecting the results here. How much is the
effect here climate change per se, and how much is CO2?

CLMS explicitly represents CO; fertilization effects through enhanced photosynthesis and
vegetation productivity, as well as increased water use efficiency, which can particularly buffer
against drying. These processes contribute to increased fuel availability and modulate soil
moisture, and are implicitly reflected in our simulations under both SSP scenarios.

We have now clarified these CO,-driven mechanisms in the results (Section 3.2). As stated
above in comment #4, we also acknowledge that our experimental design does not separate
CO; effects from concurrent meteorological changes, and emphasized this in the Discussion
stating potential future research scope.

“A strong positive correlation also appears between BA and total vegetation carbon in Eurasian
(Steppe) and tropical grasslands (e.g., African savanna, parts of Australia), where warmer and
wetter conditions stimulate plant productivity, thereby increasing fuel supply and fire risks.
This is likely amplified under future elevated CO2, which enhances photosynthesis and fuel
accumulation via fertilization effects (Lawrence et al., 2019; Walker et al., 2021; Allen et al.,
2024). Meanwhile, in forested regions, the correlation between BA and vegetation carbon is
often negative, suggesting that dense woody vegetation may suppress fire through
improvement in plant water use efficiency, thereby retaining soil moisture and lowering fuel
flammability. These findings support the notion that herbaceous fuels respond more rapidly to
fire-conducive weather, while forests may buffer such effects due to slower drying and deeper
rooting (Jones et al., 2022). Effects of these individual forcing factors, such as climate, CO»,
and land use, on fuel availability and combustibility have also been previously discussed for
historical fires using several climate models under FireMIP (Li et al., 2019).” (Section 3.2)

6. Similarly, soil moisture does not directly affect fire (apart from ground fires which
maybe included in the peat fire module but isn’t clearly discussed). It does affect live
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fuel moisture and serve as a proxy for dead fuel moisture, but these are somewhat
indirect. The role of soil moisture as a proxy needs to be discussed, particularly how
this plays out in the model logic.

The fire module in CLMS5 does account for soil moisture indirectly, beyond peatland fires. It
uses root zone soil wetness (btran2) to estimate the “combustibility of fuel for fire occurrence”
(fire_m) for natural vegetation fires (i.e., non-crop). The root zone soil wetness is in turn linked
to soil moisture. We have now added these clarifications:

“BA shows widespread negative correlations with moisture-related variables (e.g., RH, 10-cm
soil moisture, precipitation, and CWA), consistent with their role in suppressing fire through
increased fuel moisture and reduced flammability (Jolly et al., 2015). Soil moisture, in
particular, is a key indirect control on wildfire activity, influencing both vegetation stress and
fuel moisture content. Although the model does not simulate dead fuel moisture explicitly, soil
moisture serves as a proxy for fuel combustibility. Drier soil conditions reduce live fuel
moisture and increase the likelihood of ignition and fire spread. However, persistently dry
conditions may also suppress vegetation growth and thus reduce fuel availability, which can
lead to lower fire activity in some cases (Turco et al., 2017).” (Section 3.2)

“Additionally, our analysis relies on 10-cm topsoil moisture as a proxy for assessing fuel
dryness, which may not fully reflect water availability for deep-rooted vegetation in forest
ecosystems. However, CLM5 fire module internally relies on root-zone soil wetness to estimate
fuel combustibility, which captures moisture availability over a deeper soil profile. This
distinction introduces some approximation in our interpretation, especially in ecosystems
where deeper soil layers better reflect vegetation water access and fire susceptibility.” (Section
4, limitations points)

7. It would be very interesting (and important) to give some idea of of which fire types
are increasing. Presumably it is the peatland and “everything else” category since land
use is constant. But the relative proportions of these, given the strong high latitude
signal, is important.

As indicated in Section 2.2, CLMS5 internally tracks four fire types — natural vegetation, peat,
crop, and deforestation fires — but in our model output configuration, these components are not
separately archived or post-processed. Given that land use and population are held constant in
our simulations, contributions from crop and deforestation fires are expected to remain largely
unchanged over time. Therefore, the projected increases in burned area and emissions are
primarily driven by natural vegetation and peatland fires. This is consistent with the spatial
pattern of high-latitude increases, where peatlands and dense boreal vegetation dominate. We
have clarified this point in the revised manuscript:

“Although CLMS tracks four fire types, our analysis focuses on total BA and aggregated
emissions. Since land use and populations were held constant in our simulations, the projected
increases in BA are primarily attributable to natural vegetation and peat fires, particularly
dominant in high-latitude regions.” (Section 2.2)

8. The analysis of the “high latitudes”/“Boreal” is rather broad and rather inconsistent. Fig
8 is “northern latitudes” between 30 and 70 North, but this includes all sorts of
(seasonally) hot and/or dry ecosystems such as the Mediterranean and the continental
interiors. Figure 7 is stated as the boreal region, but at > 40N this definition also
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includes a lot of non-Boreal ecosystems. This is not just a semantic issue, there is a big
difference in driving dynamics, especially fuel- vs moisture-limited systems across
these regions, and it does seem like this is a key issue of this paper. I also don’t think it
is reasonable to say that tundra dominates at 60N (line 251), there is a lot of forest at
that latitude.

We agree that the use of terms such as “boreal” and “tundra” warrants more ecological
precision, especially since these zones encompass diverse ecosystems with differing fire-
climate controls. We have now reviewed all uses of terms like “boreal”, “northern latitudes”,
and “high latitudes” throughout the manuscript to ensure they are used more consistently and
ecologically appropriately. Where applicable, we now refer to “northern extratropics (NET)”
for the region explaining 30°N—70°N in the figure and in discussion.

Additionally, in Section 3.3 (Figure 7 and Figure 8), we have clarified that the latitudes >40°N
are shown/used to explicitly focus on higher northern latitudes. We explicitly state that results
reflect fire drivers across NET regions, not boreal forests alone.

Moreover, we have also replaced “tundra” with “boreal”, which we believe dominates at
around 60°N.

9. Was dynamic vegetation enabled or not? It isn’t clear. This needs to be fully detailed,
and if not the potential effect on the results discussed.

We used CLMS5-BGC mode for our simulation, which simulates vegetation dynamics via
prescribed PFTs and carbon-nitrogen cycling, but it does not include dynamic vegetation
competition, establishment, or mortality as in a classic DGVM. However, it does simulate
dynamic LAI, carbon allocation, and biomass growth in response to climate and CO2, but PFT
composition is fixed in space. So, calling CLM5-BGC a DGVM is not strictly correct unless it
is coupled with a DGVM like FATES, which allows for succession and vegetation turnover.
We have clarified this in Section 2.1:

“... While CLMS5 simulates vegetation structure, carbon allocation, and biomass dynamics in
response to environmental drivers, it does not include dynamic changes in PFT composition,
competition, or succession as in Dynamic Global Vegetation Models. This constraint may limit
the representation of biome shifts and their long-term feedbacks on fire regimes. Thus,
vegetation types remain fixed in space, although their biomass and productivity evolve, which
is important for fire regime responses driven by vegetation.”

10. In Fig. 2, why is the SSP1 line much higher than the SSP3 line? The authors report a
higher increase in SSP3 (not unexpected), but it is still lower that SS1 at the end of the
century. The authors need to to explain what is going on here. Also, I don’t find the 25
year moving average to be useful or convincing, especially when it seems not to be
centered on the actual year in question (look at about 2080 for example, time series
goes up, moving average goes down).

SSP1 initially exhibits a higher absolute value, particularly during the early-to-mid 21 century,
potentially due to higher near-term warming in this scenario, which later stabilizes. In contrast,
SSP3 begins with lower fire activity but shows a more pronounced increase later in the century
as strong warming accelerates. This accelerated rise in BA under SSP3 is especially evident in
the northern extratropics, whereas larger reductions occur in the tropics (but increases in SSP1;
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Figure 2). These tropical declines offset the boreal increases, leading to a slightly lower global
BA in SSP3 compared to SSP1 by the end of the century under our simulation settings.

We appreciate the reviewer’s observation regarding the moving average in Figure 2. We have
updated our analysis to use a 30-year centered moving average, consistent with the World
Meteorological Organization climatological baseline (WMO, 2017) and adopted in recent
studies (e.g., Bento et al., 2023). This moving average was implemented using a symmetric
padding method in convolution, ensuring that each smoothed value is centered on the
respective year. We have updated the Methods (Section 2.3):

“To analyze long-term trends, we applied a centered 30-year moving average to the annual
values, which was implemented using a symmetric padding method with convolution, ensuring
that each smoothed value is centered on the corresponding year. These smoothing highlights
decadal variability and long-term trends while minimizing short-term fluctuations.”

Figures 2, 3, and S5 have been updated to reflect this change. The revised Figure 2, now based
on the 30-year centered moving average, better captures short-term trends and improves
interpretability as shown below.
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Figure 2. Updated panel (a) in revised Figure 2 with a 30-year centered moving average.
11. Also in Fig. 2 (and others) what is that repeating cycle in results? And why are SSP1

and SSP3 so similar? It doesn’t seem like the input climate data was actually two
independent GCM runs. Please explain.
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The repeated cycles visible in Figure 2 possibly reflect residual interannual variability from the
climate forcing data (CESM2). While both SSP1-2.6 and SSP3-7.0 scenarios diverge in terms
of greenhouse gas trajectories, they are derived from the same initial condition ensemble
member of CESM2, meaning they share natural internal variability in the early part of the
simulation. This is a common approach in long-term climate experiments to isolate the effects
of external forcing (i.e., SSP pathways) from natural variability. SSP1 and SSP3 look similar
for global BA; however, if we track regional variations like in Figure 3 in the manuscript, they
differ significantly.

We now clarify this point in the Methods (Section 2.3) to avoid misinterpretation.

“Both SSP1 and SSP3 were forced with outputs from the same CESM ensemble member,
meaning that they share internal variability in the early part of the simulation.”

Concerning the manuscript itself:

12. I think the title should be adjusted. What are “Climate-driven fires”? I think the authors
are trying to say that they are only simulate changes in fires due to changes in climate,
but the title doesn’t express that.

We appreciate the reviewer’s suggestion regarding the clarity of the title. For clarity, we have
revised the title to:

“Global wildfire patterns and drivers under climate change”

13. The language needs some overhaul for clarity and narrative flow. This applies
throughout the Results and Discussion sections, but lines 250-259 really typify this.
Whilst the text does kind of describe the results, it is unclear what point we are supposed
to take from this formulation.

We have revised the whole Results and Discussion sections, ensuring that each paragraph more
explicitly conveys the key message drawn from the results, improving overall readability and
interpretation for the reader. In particular, original lines 250-259 have been revised to:

“We found important differences at a regional scale. In northern extratropics, particularly near
60°N, where boreal forests dominate alongside alpine forests and shrublands, BA and TC
emissions are projected to increase by over 150% in both SSP scenarios (Figure 3a—d and
Figure S4). This intensification is most evident in boreal region, where the trend in BA reaches
+5237 km? yr! under SSP1 and +8515 km? yr! under SSP3. In contrast to the pronounced
increases in boreal BA, our simulations project localized decreases in BA across parts of the
humid tropics as well as temperate regions such as the UK and eastern US. In tropical rainforest
regions, elevated precipitation and humidity under future climate scenarios likely suppress fire
activity by maintaining higher fuel moisture levels and shortening the fire season. In temperate
zones such as the UK and eastern US, projected climate changes (e.g., increased rainfall or
limited warming) may reduce fire-conducive conditions. These declines occur despite fixed
land use and populations, indicating that purely climatic effects can suppress fire activity in
certain fuel-rich or moisture-sensitive systems. Additionally, tropical regions show slight
decline in BA under SSP3 (-2429 km? yr!) and SSP1 (—64 km? yr'), both remaining
statistically insignificant at 95% level (Figure 3e—h). Despite the upward trends in NET fires,
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the tropics remain the dominant contributor to total global BA and carbon emissions during the
21% century, underscoring a shifting geographic balance of wildfire risks.” (Section 3.1)

14. Line 314 — what is “detrained”?
Corrected to "detrended".

15. I don’t find that the speciated emission add much value to the paper. They are barely
discussed.

While total carbon (TC) emissions is the primary focus of the main text, as it encompasses all
carbonaceous fire emissions, we have also analyzed speciated emissions, including black
carbon (BC), organic carbon (OC), and carbon monoxide (CO), which are presented in the
Supplementary Information (Figures S4, S5, S7, and S8). These species exhibit similar spatial
and temporal trends that closely align with those of TC across both scenarios, a point we now
clarify explicitly in Section 3.1.

Focusing the main discussion on TC helps streamline the narrative and avoid redundancy,
while still capturing the broader implications for air quality and radiative forcing. Speciated
emissions are primarily used to validate model performance for a broader suite of fire-related
species (as discussed in Section 2.4). Since the primary objective of this study is to investigate
the influence of climate change on wildfire behavior and associated carbon emissions, we limit
our discussion to TC as a representative metric of fire-driven carbon fluxes.

16. There needs to be more discussion of the effects of not including changes to the human
aspects, especially as it is now well accepted that global burnt area is going down due
to anthropogenic effects (Andela et al 2017, Science). This suggests that the simulations
presented here (which shown the opposite trend with increasing burnt area) aren’t
actually capturing the dominant global effect. This needs far more discussion, much
beyond the few lines 495-498.

We agree that human factors, especially land use change and fire suppression, have played a
major role in the observed global decline in burned area over recent decades (e.g., Andela et
al., 2017). Our modeling framework was explicitly designed to isolate the effects of climate
change by holding land use and population constant, allowing us to assess fire responses solely
to evolving meteorological conditions and CO; levels. While this approach helps attribute
future fire risks to climate drivers, we fully acknowledge that it omits key anthropogenic
influences. To clarify this, we have expanded Section 2.2 and also explained in the limitations
section (Section 4), explaining that our setup isolates climate-driven impacts and their possible
impacts in BA and carbon emissions, backed up with the relevant studies.

“In this study, to focus on the impacts of future climate change on wildfires, land use and
populations were held constant at present-day levels, allowing only climate to evolve over time.
This introduces a partial decoupling from the SSP framework but allows us to attribute changes
in BA and emissions directly to climate-driven factors, independent of socioeconomic and land
use shifts. While fixing land use change directly affects fuel availability, fixing population
change is associated with fire management (suppress or ignite), thereby affecting BA and
carbon emissions. ...” (Section 2.2)

We have also discussed this in Section 4 as indicated in response to comment #4.
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17. Line 511 —I can’t agree with the assertion that “afforestation/reforestation in fire-prone
regions can reduce fire risks while enhancing carbon storage.” There is no evidence to
support that (in fact the author’s own results suggest the opposite). Suggesting
afforestation or reforestation in fire-prone areas for enhancing C storage seems like a
bad idea.

We have revised this final paragraph (Section 4) to reflect this more nuanced understanding:

“Our findings have broader implications for sustainable forestry and global climate policies.
Balancing biomass harvesting with carbon sequestration goals is crucial for maintaining
ecosystem resilience. While afforestation and reforestation can enhance carbon storage, in fire-
prone regions these efforts must be carefully evaluated to avoid unintentionally increasing fire
risks. Reforestation strategies should prioritize fire-adapted species, ecosystem-appropriate
fuel management, and resilience to projected climate extremes. A comprehensive
understanding of climate-fire-vegetation feedbacks is essential for developing robust
adaptation and mitigation strategies that align with global sustainability objectives.”

18. The manuscript structure is somewhat unconventional. The Methods section is rather
short, but the Results section is very long and introduces new methods as it goes. As
Reviewer 1 points out these aren’t fully explained (indeed what exactly is show in Fig
87) so more detail is required. Additionally, I would suggest moving all methodological
details to the methods section.

We have revised the manuscript to move all methodological details, including those related to
the machine learning analysis, to the Methods section. This includes expanded descriptions of
model training, evaluation metrics, SHAP interpretation, and variable selection. These changes
also address related concerns raised by Reviewer 1. We have added Section 2.5 in revised
manuscript as also indicated in response to comment #3.

19. Abstract line 22 — when you discuss the drivers individually it sounds as if they were
tested individually, but they weren’t, please rephrase.

We have rephrased and removed the individually named climate parameters.

20. Abstract line 23-25 — this sentence combines both present day evaluation and future
projections, please split and rephrase.

Rephrased to separate model evaluation and projection results.

21. Abstract line 28-31 — Please reconsider referring to soil moisture as a “driver” of wild
fire (see above) and also reconsider your mention of CO2 fertilization as a driver in the
abstract. This was barely mentioned in the results and wasn’t explicitly studied, and
increased biomass could also come from warming and wetting.

We have largely rephrased the abstract for smooth flow and clarity. Additionally, effect of CO2
fertilization and warming and wetting on biomass increase is also discussed in the results
section. Together, the changes made for comments 19, 20, and 21 can be seen in the revised
abstract as:
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“Wildfires increasingly threaten human lives, ecosystems, and climate, yet a comprehensive
understanding of the factors driving their future dynamics and emissions remains elusive,
hampering mitigation efforts. In this study, we assessed how future climate change would
influence global burned area (BA) and carbon emissions between 2015 to 2100 using the
Community Land Model version 5 (CLMS5) with active biogeochemistry and fires. The model
reasonably captures observed spatial and seasonal patterns of BA and emissions during the
present-day reference period. Under two future scenarios — SSP1-2.6 (low warming) and SSP3-
7.0 (high warming) — CLM5 projects global BA increases of +6400 km? yr~! and +7500 km?
yr-!, respectively. Northern extratropics, particularly the boreal regions, emerge as the
dominant hotspot with BA increasing by 200% and fire-related carbon emissions by +4 to +7
Tg yr!, while in tropical regions BA remains comparatively stable or slightly declines. These
shifts are associated with warming-induced changes in vegetation productivity and fuel dryness,
particularly in boreal ecosystems. Enhanced vegetation carbon contributes to fuel availability,
while declines in relative humidity and soil moisture increase flammability. Elevated
atmospheric CO; also contributes to these effects by enhancing biomass growth through
fertilization and increasing water use efficiency, thereby affecting fire risks and carbon
emissions. These findings underscore the need to integrate climate-vegetation-fire interactions
into global policy frameworks for effective mitigation and adaptation planning of future fire-
related threats.”

22. Line 256 — no one could say that decline in the tropics under SSP3 is “sharp”.
Rephrased it to:

“Additionally, tropical regions show slight decline in BA under SSP3 (-2429 km? yr!) and
SSP1 (—64 km? yr!), both remaining statistically insignificant at 95% level (Error! Reference
source not found.e—h).” (Section 3.1)

23. I don’t find an adequate reason or discussion for burnt area going down in some regions
in the tropics and, for example, the UK and Eastern US.

In the revised manuscript, we have expanded our discussion to reflect the underlying
mechanisms in some specific regions, including the UK and the Eastern US. These are already
discussed in response to comment #13, which includes:

“In contrast to the pronounced increases in boreal BA, our simulations project localized
decreases in BA across parts of the humid tropics as well as temperate regions such as the UK
and eastern US. In tropical rainforest regions, elevated precipitation and humidity under future
climate scenarios likely suppress fire activity by maintaining higher fuel moisture levels and
shortening the fire season. In temperate zones such as the UK and eastern US, projected climate
changes (e.g., increased rainfall or limited warming) may reduce conditions that promote fires.
These declines occur despite fixed land use and populations, indicating that purely climatic
effects can suppress fire activity in certain fuel-rich or moisture-sensitive systems.” (Section
3.1)

I will refrain from making more detailed comments on the manuscript as I believe the
comments above may results in some re-writing and re-interpretation. I will be happy to give

such comments if reviewing a revised version of the manuscript.

Thank you for all the constructive comments and suggestions.
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