
1 

 

An observational estimate of Arctic UV-absorbing aerosol direct 

radiative forcing on instantaneous and climatic scales  

Blake T. Sorenson1*, Jianglong Zhang1, Jeffrey S. Reid2, and Peng Xian2 

1Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota, 58202, United States of America 
2Marine Meteorology Division, Naval Research Laboratory, Monterey, California, 93943, United States of America 5 
*Now at the National Research Council, Monterey, California, 93943, United States of America 

Correspondence to: Blake T. Sorenson (blake.sorenson@und.edu) 

Abstract.  Using co-located satellite observations from the Aqua Moderate resolution Imaging Spectroradiometer, the 

Aqua Cloud and the Earth Radiant Energy System, the Special Sensor Microwave Imager / Sounder, and the Ozone 

Monitoring Instrument, we investigated changes in absorbing aerosol direct radiative forcing (ADRF) in the spring 10 

through fall Arctic from 2005 – 2020 through an observation based method, assisted by a neural network for estimating 

cloud and aerosol free sky Top-of-Atmosphere (TOA) radiative fluxes, and an innovative, Monte-Carlo-based method 

for estimating uncertainties in derived ADRF values. This study suggests that Arctic ADRF is a strong function of 

observing conditions, and changes in Arctic sea ice concentrations (SIC) and cloud properties introduce a complex 

scenario for estimating ADRF. For example, the TOA ADRF reverses sign from negative (cooling) to positive 15 

(warming) for sea ice concentrationSIC above 60% for a region with a relatively cloud free scene.  ADRF trends over 

Arctic land surfaces are primarily negative. Strong negative ADRF trends of up to -4 Wm-2 were found over northern 

Russia and northern Canada in the summer months. Both positive and negative ADRF trends were found over the 

Arctic Ocean in the boreal summer, though these trends are much weaker than the over-land trends. Positive ADRF 

trends in the Arctic Ocean north of northeastern Russia and northern Canada are as high as +1.0 Wm-2 per study 20 

period. The trend results suggest that increasing amounts of absorbing aerosols in the Arctic have a cooling effect 

from TOA that could act to counter Arctic warming.  

1. Introduction 

The Arctic is a complex and changing region, especially due to recent drastic decreases in summertime Arctic sea ice 

coverage (Comiso, 2012; Kwok and Rothrock, 2009). Warming in the Arctic over the past few decades has been much 25 

stronger than the global average, with this phenomenon being referred to as “Arctic Amplification” (Dai et al., 2019; 

Serreze and Barry, 2011; Serreze and Francis, 2006). As the Arctic warms, bright ice- and snow-covered surfaces are 

converting to darker ocean and land surfaces, increasing the amount of absorbed solar energy and fueling further 

warming and ice melt (Dai et al., 2019; Kashiwase et al., 2017; Perovich et al., 2007). One factor complicating the 

changing Arctic is the intrusion of significant aerosol plumes, primarily biomass burning (BB) smoke from lower 30 

latitudes, into the Arctic region. Such intrusions of BB smoke into the Arctic region have become more frequent over 
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the past two decades (Sorenson et al., 2023; Xian et al., 2022a, b). Aerosol particles are well known to impact the 

climate directly through absorption and scattering of shortwave solar radiation and absorption of earth emitted 

longwave radiation. Indirectly, aerosol particles affect the climate through their interactions with clouds. Aerosol 

particles can act as cloud condensation nuclei, leading to the formation of smaller cloud droplets that increase cloud 35 

albedo ( Twomey, 1977) and affect cloud lifetime (Albrecht, 1989). Over the Arctic region, light-absorbing aerosol 

particles can also be deposited on snow- and ice-covered surfaces (e.g. Khan et al., 2023), reducing surface reflectivity 

and accelerating snow/ice melt, causing a positive (i.e., warming) radiative forcing (Flanner et al., 2007; Hansen and 

Nazarenko, 2004).  

While it is well documented that the Arctic climate is sensitive to aerosol particles (Feng et al., 2013; Flanner, 2013; 40 

Samset et al., 2013; Shindell and Faluvegi, 2009), with the detectable increases in aerosol events over the Arctic 

regions for the past two decades (Sorenson et al., 2023; Xian et al., 2022a, b), it is necessary to carefully quantify the 

impact of aerosol particles on Arctic climate.  Various Many studies have investigated aerosol-climate impacts in the 

Arctic region, primarily through the use of numerical climate models and/or aerosol analyses (Breider et al., 2017; 

DeRepentigny et al., 2022; Feng et al., 2013; Markowicz et al., 2017, 2021; Oshima et al., 2020; Schacht et al., 2019). 45 

Similarly, previous studies have investigated the interactions between aerosol particles and snow- and ice-covered 

surfaces, with many using global climate models to determine how the deposition of absorbing particles onto sea ice 

and snow impacts the aerosol-radiation interactions (Bond et al., 2013; Flanner et al., 2007; Gagné et al., 2015; Schacht 

et al., 2019; Shindell and Faluvegi, 2009). Some studies have even investigated how changes in sea ice coverage affect 

aerosol radiative forcing in the Arctic. Using a global climate model, Struthers et al. (Struthers et al., 2011); found 50 

that reductions in Arctic sea ice extent led to increased emissions of sea spray/salt aerosol particles, with the associated 

increase in total aerosol optical depth leading to stronger aerosol radiative cooling effects and a negative feedback on 

the Arctic climate. 

While numerical models have been used extensively to study the impact of aerosol particles on Arctic climate, the 

observation-based study of Arctic aerosol-climate impact, which can prove valuable for evaluation of model-based 55 

studies, remains a very challenging research topic. Observing Arctic aerosol particles from traditional, passive-based 

sensors such as the MODerate resolution Imaging Spectroradiometer (MODIS) or the Visible Infrared Radiometer 

Suite (VIIRS) is difficult due to the bright ice and snow surfaces that frequently cover the Arctic (Martin, 2008). 

Further, active-based sensors such as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) have much 

smaller fields of view than passive imagers, have orbits that only extend to 82° N and miss a large part of the Arctic, 60 

and are also at times sensitive to reduced signal to nose over bright surfaces (Toth et al., 2018).  

Attempts have been made in recent years to detect aerosol features over the bright surfaces in the Arctic from passive-

based satellite sensors, with methods developed using combined Aqua and Terra MODIS data (Mei et al., 2013a) and 

others with observations from the Advanced Along-Track Scanning Radiometer (AATSR) (Mei et al., 2013b, 2020; 

Swain et al., 2024). These methods have limitations, though, with the AATSR-based method focusing on coarse-mode 65 

aerosol particles. Additionally, Arctic aerosol retrievals from those methods have data records that are too short for a 

long-term trend analysis (e.g. Mei et al., 2013a), and/or are without a companion sensor providing broadband 



3 

 

observations enabling observation-based ADRF study (e.g. Swain et al., 2024). As an alternative, the Ozone 

Monitoring Instrument (OMI) ultraviolet aerosol index (UVAI), through detection of UV-absorbing aerosols by 

comparing observed radiance and computed radiance assuming a Rayleigh atmosphere at the 354 nm channel, is able 70 

to detect aerosols over bright surfaces such as desert and cloud and over bright snow- and ice-covered surfaces (Alfaro-

Contreras et al., 2014, 2016; Hsu et al., 1999; Torres et al., 2012). Furthermore, with the combined use of OMI UVAI 

and broadband observations from the Cloud and the Earth Radiant Energy System (CERES), Feng and Christopher 

(2015) studied the direct radiative effect of BB aerosols over marine stratocumulus clouds, further showing the utility 

of OMI UVAI measurements to study aerosol radiative forcing over bright surfaces. Recent work has even 75 

demonstrated how the OMI UVAI parameter may be used to study instantaneous and climatological Arctic aerosol 

patterns over both dark and bright surfaces (Sorenson et al., 2023; Zhang et al., 2021). Thus, with the combined use 

of observations from OMI and Aqua CERES, which are both included in the A-train constellation and have near 

coinciding observations within 30 minutes, it is feasible to quantify absorbing aerosol direct radiative forcing (ADRF) 

from an observation-based analysis.  80 

Quantifying ADRF from observations, while feasible, is nevertheless daunting. Frequent and significant changes in 

surface properties due to the retreat and expansion of sea ice make the Arctic a uniquely difficult region to study the 

ADRF from observations. In addition to decreasing sea ice, observation-based studies also found increases in Arctic 

summertime cloud cover over the last few decades on the order of 10% per decade (Abe et al., 2016; Philipp et al., 

2020; Schweiger, 2004; Schweiger et al., 2008), adding another layer of complexity to observational-based aerosol 85 

forcing analyses. The impact of sea ice change and the behavior of Arctic clouds on the radiative effect of an aerosol 

plume in the Arctic can be seen in Fig. 1. Aqua MODIS true color imagery (Fig. 1a) and OMI UVAI (Fig. 1Figure 

1b) reveal a plume of BB smoke from central Russia that extends north from the mainland, over the exposed Arctic 

Ocean water and eventually over the sea ice. The Aqua CERES TOA shortwave flux (SWF) measurements (Fig. 1c 

and with OMI UVAI overlaid in Fig. 1d) within the plume region over the ocean water exhibit higher upwelling SWF 90 

than in the surrounding regions over the water. In this case, the aerosols have a brightening effect, causing more 

upwelling TOA radiation than in clear-sky regions. In the second case, however, Aqua MODIS true color imagery 

(Fig. 1Figure 1e) and OMI UVAI (Fig. 1f) show a dense smoke plume over northeastern Russia and extending north 

over both Arctic sea ice and cloud. The visible imagery and CERES SWF measurements (Fig. 1g and with OMI UVAI 

overlaid in Fig. 1h) show that the same smoke plume has both a darkening and a brightening effect: brightening over 95 

the landmass of northeastern Russia and darkening over the sea ice. These two cases illustrate the complex factors that 

affect Arctic aerosol radiative effects.  
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Figure 1. Comparison of the radiative effect of Arctic biomass burning smoke plumes of a smoke plume over ocean water from 
the 22:11 UTC 11 August 2014 OMI swath (top row), and of a smoke plume over ice and snow-free land from the 22:13 UTC 5 100 
July 2018 OMI swath (bottom row). First column: Aqua MODIS true-color image. Second column: OMI UV aerosol index. Third 
column: Aqua CERES top of atmosphere (TOA) shortwave flux (SWF). Fourth column: CERES TOA SWF with OMI UVAI 
overlaid (fourth column).  

With OMI UVAI being capable of detecting UV-absorbing aerosols over snow, ice, and clouds, the data provide a 

unique pathway for studying the complicated aerosol direct radiative effectsADRF in the Arctic. In this study, we seek 105 

to use OMI UVAI and collocated CERES observations to derive a first-of-its-kind, observational estimate of absorbing 

aerosol direct radiative forcing trends in the Arctic. This analysis focuses on the radiative forcing of absorbing 

aerosols, so the radiative cooling impacts of sulfates or other scattering aerosol particles are not included in this study. 

Additionally, as this study focuses on only the direct radiative impacts of absorbing aerosols, we do not include the 

impacts of aerosol-cloud interactions or the radiative impacts of aerosol-cryosphere interactions (such as the 110 

deposition of absorbing aerosol particles onto bright snow- and ice-covered surfaces). In Section 2, we describe the 

data sources and variables analyzed in this study. In Section 3, we develop methods for estimating aerosol-free TOA 

upwelling SWF in smoky regions using a neural network-based approach. In Section 4, we estimate observation-

based, long-term trends in ADRF using a look-up table (LUT) of aerosol forcing properties and applied Monte Carlo 

simulations for estimating uncertainties in the trend analyses.   115 

2. Data 

To perform an observational study of ADRF in the Arctic, observations of aerosol loading, TOA upwelling shortwave 

flux, surface type (including sea ice concentration (SIC)), and cloud condition are needed. Satellite-based sensors from 

the A-train constellation provide observations of the needed atmospheric variables (aerosol loading proxied by UVAI 

from OMI, shortwave flux from Aqua CERES, and cloud conditions from Aqua MODIS) within 15 minutes of each 120 

other (Schoeberl, 2002). While not part of the A-train constellation, SSMIS daily sea ice concentrationSIC retrievals 
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can provide surface type information for the analysis. The long data record of the A-train satellite sensors and the 

SSMIS instruments allow for a long-term analysis of Arctic ADRF.  

2.1 OMI UV Aerosol Index Data 

The Ozone Monitoring Instrument (OMI), onboard the Aura satellite, measures reflected solar energy from the 125 

ultraviolet (UV) to the visible spectrum (270 nm – 500 nm) (Levelt et al., 2006). Aura orbits the Earth in a sun-

synchronous orbit at 705 km of altitude, an orbital inclination of 98.2o, and an equatorial crossing time of ~1:45 PM 

local time. In this study, UV-absorbing Arctic aerosol particles are detected using OMI ultraviolet aerosol index 

(UVAI) data, which relates the observed UV radiance at 354 nm to a calculated UV radiance assuming a purely 

Rayleigh atmosphere using equation 1: 130 

𝑈𝑉𝐴𝐼 = −100 log [
𝐼𝜆

𝑜𝑏𝑠

𝐼𝜆
𝑐𝑎𝑙 ]  (1) 

where 𝐼𝜆
𝑜𝑏𝑠 is the observed 354 nm radiance and 𝐼𝜆

𝑐𝑎𝑙 is the calculated 354 nm radiance assuming a Rayleigh 

atmosphere. Level 2 OMI OMAERUV V003 data from April to September of each year from 2005 through 2020 were 

obtained from the Goddard Earth Science (GES) Data and Information Services Center (DISC) archive (Torres, 2006). 

In order to enable a study such as presented here,  135 

Arctic OMI UVAI data needed to be extensively quality controlled and corrected to enable a study as is presented 

here.  We followed the methods described by Sorenson et al. (2023), where the raw UVAI data are converted to Arctic 

UVAI perturbations relative to a climatological UVAI that is binned by viewing geometry and surface condition, thus 

removing substantial viewing geometry and surface condition-related uncertainties in the Arctic UVAI data. The OMI 

sensor has also suffered from the row anomaly problem, a dynamic and changing problem in which certain sensor 140 

rows become contaminated and unusable, since 2007 (Torres et al., 2018). The number of contaminated rows varied 

from 2007 to the present, with about 50% of the OMI rows currently being contaminated, so we applied the row 

anomaly quality control flag in the OMI dataset to exclude all flagged, row anomaly-affected rows from our analysis. 

Sorenson et al. (2023) also identified additional OMI sensor rows in the data record that are affected by the row 

anomaly problem in the Arctic but are not flagged accordingly in the L2 OMAERUV data files; in this analysis, those 145 

additional unflagged, contaminated rows were excluded from this analysis.  

Other satellite sensors provide measurements of UVAI, including the Tropospheric Monitoring Instrument 

(TROPOMI), onboard Sentinel-5p (Veefkind et al., 2012). TROPOMI has significantly higher resolution than OMI 

(3.5 km x 7 km nadir pixel size for TROPMI and 13 km x 24 km nadir pixel size for OMI) and does not suffer from 

row anomaly issue, but we do not include TROPOMI data in this study for several reasons. First, the data record for 150 

TROPOMI does not extend as far back as the OMI data record, with Sentinel 5-p being launched in 2017 and Aura 

being launched in 2004. Second, spatially and temporally collocated TROPOMI and space-borne broadband data (e.g. 

CERES) are very finite due to different orbiting patterns, further limiting the use of TROPOMI data in this study.    
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2.2 CERES Data 

The Aqua Cloud and the Earth’s Radiant Energy System (CERES) instrument measures upwelling radiant energy in 155 

the shortwave (0.3 -5 µm), window (8-12 µm), and total spectra (0.3 – 100 µm) (Su et al., 2015a, b; Wielicki et al., 

1996). The spatial resolution for Aqua CERES is on the order of 20 km at nadir. In this study, we used upwelling top 

of atmosphere (TOA) shortwave flux (SWF) data from the Aqua CERES Level 2 Single Scanner Footprint (SSF) data 

product to assess the direct radiative effects of the biomass burning smoke in the Arctic. The CERES SSF data are 

derived by collocating CERES observations with MODIS aerosol and cloud data to provide aerosol information and 160 

for cloud screening of observed CERES scenes. The CERES SWF data are derived by converting from observed 

radiances to fluxes using predetermined angular distribution models (ADMs), with different ADMs applied for 

different surface types (land, snow type, sea ice, ocean) and cloud conditions (clear-sky, partly-cloudy, and cloudy) 

(Su et al., 2015a, b). Comparisons of CERES SWF against aircraft observations in the Arctic showed overall 

agreement between the datasets (differences between the CERES and aircraft observations were within 2σ 165 

uncertainty), though CERES tended to underestimate SWF in partly cloudy scenes over sea ice (Taylor et al., 2022). 

CERES data have been used extensively for investigating changes in Arctic radiative energy budgets for both TOA 

(Duncan et al., 2020; Kay and L’Ecuyer, 2013; Riihelä et al., 2013) as well as the surface (Boeke and Taylor, 2016; 

Hegyi and Taylor, 2017). Previous studies have also worked to validate Arctic CERES surface radiative fluxes (Di 

Biagio et al., 2021; Riihelä et al., 2017) and TOA fluxes (Taylor et al., 2022), with the latter seeking to validate CERES 170 

TOA radiative fluxes against aircraft-based upwelling radiative flux observations. While Taylor et al. (2022) noted 

some error in the Arctic CERES Level-2 SSF TOA upwelling SWF resulting largely from errors in the imager-based 

SICs used in the scene classification, the CERES observations compared well overall with the aircraft observations 

(differences between the CERES and aircraft observations were within 2σ uncertainty). The authors concluded that 

CERES TOA radiative flux data are suitable for polar climate studies (Taylor et al., 2022).     175 

2.3 MODIS Data 

Along with the Aqua CERES data, we used multiple data products from the Aqua MODerate resolution Imaging 

Spectroradiometer (MODIS), which measures spectral radiances in 36 channels across the visible, near-infrared, and 

infrared spectra (Justice et al., 1998). Level 1B Aqua MODIS 2.1 μm reflectance (1-km spatial resolution, from data 

product MYD021KM, (MODIS Characterization Support Team (MCST), 2017)) and Level 2 cloud optical depth and 180 

cloud top pressure (1-km spatial resolution, from data product MYD06, (Platnick et al., 2015)) were used in this study 

for identifying the visible thickness and height of clouds around the Arctic. Cloud detection in the Arctic is a 

challenging problem, so we included the MODIS 2.1 μm reflectance for added confidence in cloud screening over 

Arctic sea ice. Unlike clouds, which exhibit high reflectance from both the visible and 2.1 μm channels, sea ice and 

snow look bright at the visible channel but have a low reflectivity at the 2.1 μm channel.  Thus, reflectance data from 185 

the 2.1 μm channel can be further used to assist cloud-clearing of CERES and OMI data over the Arctic region. For 

example, for the Aqua MODIS granule over northeastern Russia and the Arctic Ocean, the OMI UVAI data (Fig. 2a) 
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and Aqua MODIS true color image (Fig. 2b) reveal dense smoke extending from northeastern Russia out over the 

Arctic Ocean, as well as widespread bright features (cloud and ice) over the Arctic Ocean. However, from the visible 

imagery, it is difficult to distinguish between clouds and sea ice, so we analyzed the MODIS 2.1 um reflectance data 190 

in the same regions (Fig. 2c). The 2.1 um reflectance values reveal a clear distinction between clouds and sea ice 

covered surfaces. 

The MODIS 2.1 um reflectance data also help in minimizing the number of dense smoke plumes that are mistakenly 

classified as cloud. For example, in the dense biomass burning smoke plume over northeastern Russia shown in Fig. 

2a and Fig. 2b, the L1B Aqua MODIS cloud mask (Fig. 2d) classifies about half of the plume as “cloudy” or “probably 195 

cloudy.” However, the Aqua MODIS 2.1 μm reflectance (Fig. 2c) in the same plume region does not exhibit any 

higher values that would indicate the presence of cloud (for example, the higher 2.1 μm reflectance values across the 

lower half and left third of the panel indicate clouds; note that this is reflected in the MODIS L1B cloud mask shown 

in Fig. 2d). The 2.1 μm reflectance in the plume region very closely matches the reflectance of the nearby clear regions, 

suggesting that there are no clouds within the dense smoke plume and the MODIS L1B cloud mask misclassified the 200 

dense smoke as cloud. The MODIS cloud mask also misclassified smoke over ice and ocean scenes as “cloud”, as 

shown in Fig. 2d.   

 

Figure 2. Comparison of (a) OMI UV aerosol index, (b) Aqua MODIS true color imagery, (c) Aqua MODIS 2.1 μm reflectance, 
and (d) Aqua MODIS L1B cloud mask overlaid on the MODIS 2.1 μm reflectance in a biomass burning smoke plume over 205 
northeastern Russia and the Arctic Ocean.  

Level-3 daily-gridded Aqua MODIS cloud optical depth (subsets of the daily MYD08_D3 product, (Platnick, S. et al., 

2015a)) data were also used when calculating daily estimated Arctic ADRF. Level-3 monthly gridded Aqua MODIS 

cloud fraction (from the MYD08_M3 product (Platnick, S. et al., 2015b) from April through September of 2005 



8 

 

through 2020 were used for qualitative comparisons between Arctic-region cloud fraction trends and the observation-210 

based ADRF trend estimates.   

2.4 SSMIS Sea Ice Concentration (SIC) Data 

The Defense Military Satellite Program (DMSP) Special Sensor Microwave Imager / Sounder (SSMIS) instruments 

are linearly polarized passive microwave radiometers that measure upwelling microwave radiances in 24 channels 

(Kunkee et al., 2008). The first SSMIS instrument was launched on board the DMSP F-16 spacecraft in 2003 (Kunkee 215 

et al., 2008). Version 2 daily sea ice concentration (SIC) data from DMSP SSMIS passive microwave data were 

obtained from the National Snow and Ice Data Center (NSIDC) data archive from April through September of 2005 

through 2020 over the Arctic region on a 25 x 25 km polar stereographic grid (DiGirolamo et al., 2022). We used 

SSMIS daily sea ice data for determining surface types (ice, mixed ice/ocean, ocean, and land) in the Arctic region. 

We also used monthly SSMIS sea ice concentrationSIC data from the NSIDC data archive for qualitative comparisons 220 

between Arctic sea ice concentrationSIC trends and the ADRF trends.  

The SSMIS SIC dataset used in this study is one of two key SIC datasets provided by the NSIDC and has been used 

extensively in the scientific community to study Arctic sea ice trends. The algorithm used in the dataset, developed 

by NASA (Cavalieri et al., 1984), has been included in several SIC validation studies (Cavalieri et al., 1992; Ivanova 

et al., 2015; Kern et al., 2019, 2020; Meier, 2005; Steffen and Schweiger, 1991). Overall, and as reported in the NSIDC 225 

dataset user guide (https://nsidc.org/sites/default/files/documents/user-guide/nsidc-0051-v002-userguide.pdf), errors 

in the SIC dataset are less than 5% in the wintertime but can be as large as 15% in the summertime (Cavalieri et al., 

1992). Some recent studies have reported that the SIC dataset may underestimate SIC by up to 10% (Kern et al., 2019, 

2020), with the underestimation being partly caused by surface melt ponds in the summer months (Steffen and 

Schweiger, 1991). Additionally, microwave-based sea ice concentrations have been found to be sensitive to areas of 230 

thin ice (Ivanova et al., 2015). Nevertheless, despite some limitations, the algorithm and associated SIC dataset are 

widely used to represent Arctic SIC. 

3. Estimate instantaneous ADRF over multiple surface types and cloud conditions 

Aerosol radiative forcing is defined relative to the aerosol-free conditions, given by: 

𝐴𝐷𝑅𝐹 = 𝑆𝑊𝐹𝑐𝑙𝑛 − 𝑆𝑊𝐹𝑎𝑙𝑙  (2) 235 

where 𝑆𝑊𝐹𝑐𝑙𝑛 is the aerosol-free SWF, 𝑆𝑊𝐹𝑎𝑙𝑙 is the all-sky SWF, and 𝐴𝐷𝑅𝐹 is the aerosol direct radiative forcing. 

With recent work exhibiting the utility of OMI UVAI data at identifying BB aerosol plumes over the bright Arctic ice 

and cloud surfaces (Sorenson et al., 2023), UVAI data can serve as the basis for quantifying instantaneous absorbing 

aerosol radiative forcing in the Arctic region with co-located satellite observations. While the vertical aerosol 

distribution significantly affects the retrieved UVAI values, we do not have the proper observations of aerosol vertical 240 

distribution to accurately account for these effects in this analysis, so the aerosol layer height was not included as a 

https://nsidc.org/sites/default/files/documents/user-guide/nsidc-0051-v002-userguide.pdf
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variable in estimating ADRF over the Arctic region.  This is also partially because the impact of aerosol extinction 

profiles has less effect on clear sky TOA ADRF (Guan et al., 2010).   

To estimate ADRF, all swaths of OMI UVAI data were scanned to identify OMI swaths that contained widespread 

and significant (perturbed UVAI > 2.0) absorbing aerosol events over the Arctic region, which we defined here as 245 

north of 65 oN. We chose the 2.0 UVAI threshold for this step to efficiently select swaths that provide good coverage 

of high aerosol loading conditions, with those swaths also containing regions of lower UVAI to provide good data 

range for machine learning training purposes. We identified 131 OMI swaths meeting these criteria, and for each of 

these swaths, each OMI pixel north of 65 oN was co-located with a L2 Aqua CERES TOA SWF and surface albedo, 

a L1B Aqua MODIS 2.1 μm reflectance and L2 Aqua MODIS cloud optical depth and cloud top pressure, and a 25 x 250 

25 km SSMIS sea ice concentrationSIC value. As described in Section 2.1, we used the L2 OMI quality control flags 

and the methods described by Sorenson et al. (Sorenson et al., 2023) to exclude pixels with flagged or unflagged OMI 

row anomaly contamination from the co-located dataset. Due to the similar pixel size between the OMI footprint (13 

x 24 km2 near nadir) and both the CERES footprint (20 x 20 km2 near nadir) and the SSMIS grid box (25 x 25 km2), 

we applied a “nearest-neighbor” approach to co-locate the nearest CERES pixel and SSMIS grid box to each OMI 255 

pixel. We excluded pixels from the co-located dataset with the SSMIS surface type flag denoting coastline pixels or 

pixels too close to the North Pole (i.e. in the “pole hole”). However, additional averaging steps were required for 

collocating the MODIS data to the OMI grid because the MODIS pixels (1 x 1 km2) are much smaller than the OMI 

pixels. For all MODIS products (2.1 μm reflectance, cloud optical depth, and cloud top pressure), the co-location 

values consisted of the averages of the values from all MODIS pixels with latitudes and longitudes that were within 260 

the latitude/longitude bounds of the OMI pixel, with these bounds defining the latitudes and longitudes of the four 

corners of each OMI pixel (provided with the OMI data). For the MODIS cloud top pressure data, an additional check 

was added to ensure only non-zero cloud top pressure values were included in the averaging for each co-location pixel. 

This was done to avoid the skewing of the average cloud top pressure by some non-retrieval fill values of 0.  After 

performing the co-location, each swath contains the following variables listed in Tab. 1. the table: 265 

Table 1. The variables contained in each co-located Arctic OMI L2 swath. The methods by which the CERES, MODIS, and SSMIS 
data are co-located to the L2 OMI grid, as well as the quality control methods applied to all the data products, are given in the right 
column. 

Sensor Variable Co-location/QA Processes Applied 

OMI UVAI Perturbation Viewing geometry-based and surface type-based 
uncertainties removed following the “perturbing method” of 

Sorenson et al (2023). The row anomaly quality control flag 

was also applied to exclude rows impacted by the OMI row 

anomaly. 

Solar Zenith Angle (SZA) Taken from L2 OMI data 

Viewing Zenith Angle (VZA) Taken from L2 OMI data 

Latitude Taken from L2 OMI data 

Longitude Taken from L2 OMI data 
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Aqua CERES TOA upwelling shortwave flux 

(SWF) 

CERES value from nearest grid point 

Surface Albedo CERES value from nearest grid point 

Aqua MODIS 2.1 μm reflectance Pixels within the latitude and longitude bounds of each OMI 

pixel averaged together 

Cloud Optical Depth (COD) Pixels within the latitude and longitude bounds of each OMI 

pixel averaged together 

Cloud Top Pressure (CTP) Pixels within the latitude and longitude bounds of each OMI 

pixel averaged together. Excluded values with CTP equal to 

0. 

SSMIS Sea Ice Concentration (SIC) SSMIS value from the nearest grid point 

Coastline (sea ice value = 253) and “pole hole” (sea ice value 

= 251) removed 

    

Figure 3 shows the distribution of surface types identified for the absorbing aerosol-containing OMI pixels (plotted 270 

here for UVAI greater than 1.0) from each of the identified swaths from 2005 – 2020. The stacked bars represent the 

percent of aerosol-containing OMI pixels in the swath over the Arctic that fall into each surface category, with blue 

corresponding to “ice” (SSMIS sea ice concentrationSIC greater than 80%), orange corresponding to “mix” (SSMIS 

sea ice concentrationSIC greater than 20% and less than 80%), green corresponding to “ocean” (SSMIS sea ice 

concentrationSIC less than 20%), red corresponding to “land” (SSMIS grid box containing a land mask value), and 275 

purple corresponding to “other” (SSMIS grid box identified as coastline or “pole hole”). Coastline pixels were 

excluded from this analysis to ensure only pixels that are entirely “land” were classified as such in our analysis. Land, 

ocean, and mixed ice/ocean conditions were frequently observed among the swaths, with a smaller percent coverage 

of ice conditions observed. A table describing each of the smoke plumes being analyzed here, including their source 

region and visual characteristics, is included as an appendix. The majority of the identified swaths are from the boreal 280 

summer months (June, July, and August), times of frequent biomass burning events in northern Russia and Canada.  

 

Figure 3. Distribution of SSMIS-derived surface types among the OMI pixels with UVAI > 1.0 in each of the selected aerosol-
containing swath between April through September of 2005 through 2020.  
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After collocating the data, we inspected each of the selected aerosol swaths to determine if the locations of the BB 285 

aerosol plumes shifted between the MODIS imagery and OMI UVAI. Though Aqua and Aura are both members of 

the A-train satellite constellation, Aqua crosses the equator about 15 minutes before Aura, and thus likewise OMI 

UVAI observations lag behind the Aqua MODIS and CERES observations by about 15 minutes. This time lag could 

introduce a shift in the BB plume locations in the OMI and MODIS data. Feng and Christopher (2015), who conducted 

a study of above-cloud aerosol radiative effect (ARE) over marine stratocumulus clouds near equatorial Africa using 290 

co-located observations from sensors on-board Aqua, Aura, and CALIPSO, assumed that the locations of the BB 

aerosol plumes studied did not significantly shift between the overpasses of the three satellites. Nevertheless, we 

compared the locations of the plume identified in the OMI UVAI data with MODIS true color imagery for each aerosol 

swath, and the comparison of OMI and MODIS plume locations for the 03:08 UTC 10 August 2019 OMI swath is 

shown in Fig. 4. The OMI UVAI data are overlaid on the MODIS true color imagery in Fig. 4c, and the region of high 295 

UVAI lines up very closely with the visibly dense smoke in the true color imagery, showing that there was no 

significant drift between the OMI and MODIS observations for this plume. After visually inspecting all OMI and 

MODIS plume location comparisons, we did not find any significant drift in any of the analyzed aerosol swaths.  

 

 300 

Figure 4. Comparison of BB smoke aerosol plume locations as observed by Aqua MODIS and OMI for the 10 August 2019 03:08 
UTC OMI swath. a) OMI UVAI perturbations. b) Aqua MODIS true color imagery. c) Aqua MODIS true color imagery with the 
OMI UVAI data overlaid.  

3.1 Neural network for estimating aerosol-free SWF from L2 satellite data 

With aerosol forcing being defined relative to the aerosol-free conditions, the difficulty of determining aerosol forcing 305 

from only observations is the determination of the aerosol-free TOA upwelling SWF in smoky regions. To solve this 
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issue, we constructed and trained a neural network (NN) to estimate aerosol-free TOA upwelling SWF from 

observations in BB smoke plumes around the Arctic. The NN was designed to take inputs of solar zenith angle; 

viewing zenith angle; SSMIS sea ice concentrationSIC and surface type; MODIS cloud optical depth, cloud top 

pressure, and 2.1 μm reflectance; and CERES surface albedo, values that were assumed to be largely independent of 310 

the aerosols, and return aerosol-free SWF after training the NN on aerosol-free input data. We note that the assumption 

of the NN input variables being independent of the aerosol loading may not hold for the MODIS cloud optical depth 

data, as it is well known that, due to the aerosol indirect effect, aerosol particles can greatly impact cloud properties 

such as cloud optical depth. Nevertheless, for simplicity, we designed this system to focus on the aerosol direct effect 

and leave the study of the impacts of the aerosol indirect effect on these results to a future study.  315 

First, to provide a large training and testing dataset, we retrieved additional L2 OMI, MODIS, SSMIS, and CERES 

data from the four days on either side of each identified aerosol event, with the four-day window providing coverage 

of the aerosol-free conditions in the aerosol regions. For example, for the smoke event of 24 – 27 July 2006, additional 

data were downloaded to fill in the time period of 20 – 31 July 2006. The other L2 swaths from the days with chosen 

aerosol-containing swaths were also included in the training dataset. Thus, a total of 116 days (each day may contain 320 

multiple OMI swaths) of L2 OMI, MODIS, SSMIS, and CERES observations were downloaded and co-located for 

training and testing purposes. However, since the NN needs to estimate aerosol-free SWF, and to ensure the validity 

of the results when applying the NN to the aerosol swaths, the 131 aerosol-containing swaths were removed from the 

input dataset. Additionally, we removed 50 other randomly-selected swaths from the dataset and reserved them for 

validation of the NN model after training. Thus, about 1100 L2 OMI swaths with co-located MODIS, SSMIS, and 325 

CERES data were available for the NN training and testing dataset. As an extra check, all remaining pixels with OMI 

UVAI greater than 1 were removed to further ensure that only aerosol-free data were provided to the NN for training. 

In addition to the OMI UVAI check, pixels were removed if the latitude was less than 65o N, the SSMIS sea ice 

concentrationSIC contained coastline or “pole hole” values, or the COD data were greater than 70. Since the Arctic 

SSMIS data containing land pixels are set to 254, these values were changed to 101 to remove the large discontinuity 330 

of the sea ice concentrationSIC data from 100 to 254. After applying all of these quality control checks and 

preprocessing steps, all of the values in each variable were scaled to a 0 – 100 range, ensuring all variables were 

equally weighted in the NN (thus, the min and max of each variable sent to the NN was 0 and 100, respectively). The 

CERES SWF values used for validating the model at each training epoch were also scaled to a 0 to 100 range. 

Following these QC steps, there were 4.4 million available aerosol-free pixels identified, and with 10% of these being 335 

reserved for testing purposes (about 400,000 pixels), the training dataset consisted of 4 million aerosol-free pixels.  

Figure 5 shows the architecture of the NN, which consists of 13 total layers: one input layer, 11 fully-connected hidden 

layers, and 1 output layer. The input layer consists of 7 nodes, with one node for each input variable (solar zenith 

angle, viewing zenith angle, sea ice concentrationSIC / surface type, MODIS cloud optical depth, MODIS 2.1 μm 

reflectance, MODIS cloud optical depth, MODIS cloud top pressure, and CERES surface albedo). The hidden layers 340 

contain an increasing number of nodes per layer from hidden layer 1 to layer 6, with layers 1 through 6 having 8, 12, 

16, 24, 32, and 64 nodes, respectively, and a decreasing number of nodes per layer from layers 6 to 11, with layers 7 
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through 11 having 32, 24, 16, 12, and 8 nodes, respectively. All nodes in the hidden layer use the Leaky Rectified 

Linear Unit (LeakyReLU) activation (Maas et al., 2013), with this activation function having been identified to provide 

the best performance after testing with other activation functions. Finally, the output layer consists of 1 node that uses 345 

linear activation. With all of the input variables being scaled to a 0 – 100 scale, the output SWF value is on a 0 – 100 

scale, so this output value was reverted to a true SWF using the same scaling values to convert the original SWF 

values to the 0 – 100 scale. The NN was built using the TensorFlow Python package (Abadi et al., 2015) and was 

trained on a GPU node. Training was conducted for 100 epochs with a batch size of 128, an Adam optimizer (Kingma 

and Ba, 2017), and with back-propagational loss being derived by minimizing the mean squared error.  After training 350 

for 100 epochs, the mean squared error (MSE) and mean absolute error (MAE) of the model-estimated SWF values 

against the training observations were 16.9 Wm-2 and 2.86 Wm-2, respectively. 
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Figure 5. Architecture of the neural network for estimating L2 aerosol-free SWF from L2 input values of solar zenith angle (SZA), 355 
viewing zenith angle (VZA), sea ice concentration (SIC), cloud optical depth, 2.1 μm reflectance (CH7), cloud optical depth (COD), 
cloud top pressure (CTP), and surface albedo (ALB). Green circles represent nodes in the input layer, gray circles represent nodes 
in the hidden layers, and the red circle represents the node in the output layer. While no connections are shown here, allAll nodes 
between each layer are fully connected to the next layerin the neural network are fully connected to the nodes in the next layer, as 
illustrated by the lines connecting the circles.  360 

Several experiments were conducted to determine the best activation function (AF) to use in the NN hidden layers. 

The NN was trained multiple times using different AFs in the hidden layer nodes, and the ending mean absolute errors 

(MAE) of the NN-predicted aerosol-free SWF against CERES SWF observations after training with each AF for 100 
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epochs are listed in Tab. 2. The Leaky Rectified Linear Unit  (LeakyReLU, Maas et al., 2013) AF gave the best 

performance with an ending MAE of 2.86 Wm-2, while the Rectified Linear Unit (ReLU, Nair and Hinton, 2010) AF 365 

gave the second-best performance with an ending MAE of 2.92 Wm-2. With the LeakyReLU activation function 

known to avoid the “dead neuron” problem associated with the ReLU activation function (Dubey et al., 2022; Maas 

et al., 2013), we suspect that this could be behind the slightly better performance of the LeakyReLU AF relative to the 

ReLU AF. Other models that gave good performance, but slightly worse performance than LeakyReLU, include the 

softplus (Glorot et al., 2011) and softsign (Glorot and Bengio, 2010) AFs, though the simulation with the softplus AF 370 

exhibited some instability between epochs 60 and 80. While the experiments with Exponential Linear Unit (ELU, 

Clevert et al., 2016) and Scaled Exponential Linear Unit (SELU, Klambauer et al., 2017) AFs ended with MAE of 

around 3.2 Wm-2, the training was highly unstable, with the errors spiking randomly between 3.0 Wm-2 and 3.5 Wm-

2 with each epoch. The linear AF provided one of the worst performances with an ending MAE of 5.47 Wm-2, while 

the training experiments with Gaussian Error Linear Unit (GELU, Hendrycks and Gimpel, 2016) and sigmoid AFs 375 

were stopped early because the MAE after the first about 10 epochs remained at around 12 Wm-2 and did not converge. 

Since the LeakyReLU activation function gave the best performance out of the other activation functions tested in this 

experiment, we used this activation function in all NN hidden layer nodes during training. (Dubey et al., 2022; Maas 

et al., 2013)All nodes in the hidden layer use the Leaky Rectified Linear Unit (LeakyReLU) activation (Maas et al., 

2013), with this activation function having been identified to provide the best performance after testing with other 380 

activation functions.Training was conducted on a GPU node for 100 epochs with a batch size of 128, an Adam 

optimizer (Kingma and Ba, 2017), and with back-propagational loss being derived by minimizing the mean squared 

error.  After training for 100 epochs, the mean squared error (MSE) and mean absolute error (MAE) of the model-

estimated SWF values against the training observations were 16.9 Wm-2 and 2.86 Wm-2, respectively. 

Table 2. Mean absolute errors (MAE) of the neural network output after training for 100 epochs with several different 385 
activation functions. Training with the sigmoid and GELU activation functions was terminated after about 10 epochs due 

to the extremely high MAE and the lack of convergence during the training process. 

Activation Function Reference 
Mean absolute error after 

training for 100 epochs (Wm-2) 

LeakyReLU (Maas et al., 2013) 2.86 

ReLU (Nair and Hinton, 2010) 2.92 

Softplus (Glorot et al., 2011) 2.94 

Softsign (Glorot and Bengio, 2010) 3.06 

ELU (Clevert et al., 2016) 3.21 

SELU (Klambauer et al., 2017) 3.32 

Tanh  4.87 

Linear  5.47 

Sigmoid  ~12* 

GELU (Hendrycks and Gimpel, 2016) ~12* 
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3.2 Validation of the NN against CERES 

Once trained, the NN was first applied to the 131 aerosol swaths and 50 reserved aerosol-free validation swaths 390 

(independent from the 131 aerosol swaths) to estimate aerosol-free SWF for each of those swathsvalidate the NN 

output against CERES observations. The 50 validation swaths contained about 200,000 pixels to use for validation; 

we note that similar validation results were obtained when increasing the size of the validation dataset to about 300,000 

pixels by adding 25 additional aerosol-free OMI swaths (and co-located MODIS, SSMIS, and CERES data) randomly 

chosen from the 2005 – 2020 boreal summer study period. Errors were calculated between the NN-estimated aerosol-395 

free SWF and the associated CERES TOA SWF observations, and the distribution of the errors from the 50 validation 

swaths is shown in Fig. 6a. The error distribution peaks at about 0 Wm-2, suggesting little overall bias in the NN-

estimated aerosol-free SWF values. To further test for systematic biases in the NN-estimated aerosol-free SWF, we 

binned the validation dataset first by the SSMIS SIC and surface type, and then by MODIS COD. The NN error 

distributions binned by the SSMIS surface type and the MODIS COD are shown in Fig. 6b and Fig. 6c, respectively. 400 

We found that the mean SWF errors for the error distributions binned by SSMIS SIC and MODIS COD are largely 

small, with magnitudes primarily less than 3 Wm-2. The peaks of nearly all the error distributions for the different 

surface types and CODs are around 0 Wm-2, suggesting little systematic bias in the system associated with the different 

surface types and CODs. The mean error for the land distribution (Fig. 6b, brown) is slightly larger at -5.5 Wm-2, 

suggesting a slight negative bias over land. We suspect that this is related to the lack of information about the land-405 

based surface type in the system. If the NN is primarily trained on dark land surfaces, but it is applied to brighter-than-

normal land surfaces (e.g. snow- and ice-covered land), the NN will predict lower upwelling SWF than is observed 

by CERES. When excluding data from April and May from this analysis, the mean error for the over-land data is 

much smaller, supporting our hypothesis that the slight negative shift in the land-based error distribution is related to 

the land surface brightness that is unaccounted for in this system. Given that the majority of the smoke events analyzed 410 

in the study occurred in the summer months (June – August), we do not expect this potential low bias of the NN over 

bright land surfaces to significantly impact the results of our study.    
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Figure 6. a) Distribution of errors in the neural network (NN)-estimated aerosol-free shortwave flux (SWF) relative to CERES 
TOA upwelling SWF observations for the 50 validation swaths reserved from the NN training dataset. b) As in (a), but with the 415 
errors binned by the SSMIS sea ice concentration (SIC) and surface type. c) As in (a), but with the errors binned by MODIS cloud 
optical depth (COD).  

3.23.3 Analysis of NN-based ADRF estimates on L2 basis 

Once trained, the NN was applied to the 131 aerosol swaths and 50 reserved validation swaths (independent from the 

131 aerosol swaths) to estimate aerosol-free SWF for each of those swaths. We then applied the NN to the 131 aerosol 420 

swaths to estimate aerosol-free SWF in smoky regions. Comparisons of the NN-estimated aerosol-free SWF against 

OMI UVAI and CERES SWF observations for an aerosol-free swath (22:44 UTC 8 July 2018, one of the 50 swaths 

reserved for validation) and a swath containing an aerosol plume (22:13 UTC 5 July 2018, one of the 131 aerosol 

swaths) are shown in Fig. 7. The OMI UVAI perturbations for the first swath (Fig. 7a) are all below 0, confirming 

that there were no absorbing aerosols within the swath. The aerosol-free SWF values generated by the neural network 425 

(Fig. 7c) closely match the observed CERES SWF values (Fig. 7b), with the NN-estimated SWF matching both the 

patterns and intensity of the observations. Fig. 7d, which shows the spatial differences between the CERES-observed 

SWF against the NN-estimated SWF, shows small differences between the observations and NN output; the R2 of the 

comparison between the CERES observations and NN output (shown in Fig. 7i) is 0.955 showing the overall 

agreement between the observations and NN output. For the aerosol swath, the OMI UVAI observations (Fig. 7e) 430 

exhibit a plume of high UVAI (> 4) perturbations extending from far northeastern Russia out over the Arctic Ocean, 

over regions of both sea ice and open ocean water. The CERES SWF observations (Fig. 7f) and NN-estimated aerosol-

free SWF values (Fig. 7g) show agreement across much of the swath, in regions with very low OMI UVAI, but the 

differences between the CERES and NN SWF values (Fig. 7h) reveal large differences within the plume region. In 

the plume areas over dark land surfaces and ocean water, the NN – CERES differences are strongly negative, showing 435 

that the NN output is much lower than the CERES observations within these regions; this agrees with the expected 

behavior of a dense smoke plume over a dark surface, with the BB smoke scattering sunlight upwards to TOA and 
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inducing a strong cooling effect from TOA. On the other hand, the differences between the CERES and NN SWF 

values in the plume regions over cloudy and icy regions are strongly positive, showing that the NN-estimated aerosol-

free SWF values are much higher than the CERES observations; this suggests that the BB aerosols have a darkening 440 

(or warming) effect over the bright cloud and ice surfaces. We note that some regions in the NN-estimated aerosol-

free SWF values contain missing values, which we suspect is a result of missing L2 MODIS COD values. Even in the 

aerosol-containing swath, after removing pixels with OMI UVAI perturbation greater than 1, the R2 of the comparison 

between the CERES observations and NN output (shown in Fig. 7j) is still high at 0.933. Using the CERES 

observations and NN output shown in Fig. 7i and j, we calculated a noise floor of about 18 Wm-2.  445 

   

 

Figure 7. Validation of the neural network under aerosol-free (top row) and aerosol (middle row) conditions. The first two rows 
contain maps of the (first column) OMI UVAI perturbations, (second column) CERES SWF observations co-located to the OMI 
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grid, (third column) NN-estimated aerosol-free SWF, and (fourth column) difference between the NN-estimated aerosol-free SWF 450 
and CERES SWF observations. The bottom row contains scatter plots of the CERES SWF and NN aerosol-free SWF from the (i) 
aerosol-free swath and (j) aerosol-containing swath, with points plotted for the aerosol-containing swath only when the OMI UVAI 
was less than 1.  

4. Estimate long-term trends in observation-based ADRF 

4.1 Generate a look-up table (LUT) of aerosol forcing regression statistics from binned L2 data 455 

While aerosol direct forcing trend can be directly estimated using CERES data and neural network simulated aerosol 

free TOA SWF as mentioned in Section 3, it is rather computationally expensive to perform those estimations on 16 

years of Level 2 data. As an alternative, ADRF values can be estimated at the OMI UVAI domain.  In this approach, 

aerosol direct forcing values from Section 3 were used to derive the relationship between ADRF and observing 

conditions, including the underlying surface conditions (e.g. sea ice, clouds, oceans, land), aerosol loading (proxied 460 

by OMI UVAI) and observing angles (e.g.  SZA, VZA). Upon validating against aerosol forcing values using 

approaches as mentioned in Section 3, long-term aerosol forcing trend (at the OMI UVAI domain) and uncertainties 

were derived using an innovative, Monte-Carlo-based method, and through the analysis of daily level 3 (L3) cloud, 

sea ice and OMI UVAI data. 

In this approach, aerosol forcing efficiency, which is defined as ADRF per OMI UVAI in this study, was estimated 465 

based on observing conditions including OMI solar zenith angle (SZA), MODIS cloud optical depth, and SSMIS sea 

ice concentrationSIC. The observation conditions were quantified in discrete size bins, and we used uniform bin sizes 

of 5o and 20% for the OMI SZA and SSMIS sea ice concentrationSIC, respectively, with MODIS COD bin sizes 

increasing from 0.5 for low COD values to 20 for high COD values. Examples of deriving aerosol forcing efficiency 

as functions of observing condition are shown in Fig. 8 for each of the SSMIS surface type categories and COD bins. 470 

The data for each of the surface type bins in this figure are not separated by solar zenith angle, but as shown later in 

Fig. 9, the ADRF does not change significantly with solar zenith angle. A table containing the mean and standard 

deviation of the ADRF for three of the COD bins is given in Tab. 3. The magnitudes and signs of the ADRF vary 

significantly as a function of COD and sea ice concentrationSIC.  
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 475 

 

Figure 8. Aerosol direct radiative forcing (ADRF) derived from co-located satellite observations (CERES, OMI, MODIS, SSMIS) 
and neural network output of aerosol-free SWF, divided by COD and binned for ocean surfaces (sea ice concentration (SIC) below 

20%, panel a), mixed ice/ocean surfaces (ice concentrationSIC between 20% and 40%, panel b; ice concentrationSIC between 40% 
and 60%, panel c; ice concentrationSIC between 60% and 80%, panel d), ice surfaces (ice concentrationSIC greater than 80%, 480 
panel e), and land surfaces (panel f). Linear regression lines between ADRF and OMI UVAI are plotted for each of the COD bins. 
Counts of L2 pixels in each surface type bin are given in the subplot titles. 

Table 3. Mean and standard deviation (in Wm-2) of the absorbing aerosol direct radiative forcing (ADRF) from Fig. 8 binned by 
SSMIS sea ice concentration (SIC) / surface type, MODIS cloud optical depth (COD), and OMI UV aerosol index (UVAI). Results 
are given for three COD ranges: 0 – 0.5, 8 – 12, and 20 – 30.  485 

Mean and Standard Deviation of Binned L2 ADRF 

SSMIS 

Surface Type 

MODIS 

COD 

UVAI 

0 – 2 

UVAI 

2 – 4 

UVAI 

4 – 6 

UVAI 

> 6 

Mean 

ADRF 

ADRF 

St.Dev. 

Mean 

ADRF 

ADRF 

St.Dev. 

Mean 

ADRF 

ADRF 

St.Dev. 

Mean 

ADRF 

ADRF 

St.Dev. 

Ocean 

(0% - 20% ice) 

0 – 0.5 

8.0 – 12 

20 – 30 

-21.7 

-1.0 

0.6 

28.3 

24.8 

20.7 

-47.8 

1.5 

8.4 

32.0 

19.8 

14.5 

-66.4 

3.3 

10.4 

38.9 

14.6 

18.2 

-78.4 

2.6 

14.2 

32.9 

15.8 

11.8 
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Mix 

(20% - 40% ice) 

0 – 0.5 

8.0 – 12 

20 - 30 

-8.8 

1.7 

4.4 

31.8 

29.0 

24.9 

-32.0 

13.1 

12.9 

35.1 

22.8 

31.6 

-51.7 

33.7 

12.3 

37.6 

29.7 

0.0 

-35.2 

N/A 

N/A 

39.7 

N/A 

N/A 

Mix 

(40% - 60% ice) 

0 – 0.5 

8.0 – 12 

20 - 30 

-6.3 

1.8 

3.7 

30.3 

25.8 

22.3 

-15.6 

14.4 

18.1 

32.8 

22.8 

16.9 

-32.1 

31.8 

43.3 

38.6 

19.1 

26.8 

-27.7 

42.9 

N/A 

33.8 

0 

N/A 

Mix 

(60% - 80% ice) 

0 – 0.5 

8.0 – 12 

20 - 30 

-4.0 

2.1 

5.8 

32.7 

25.5 

23.3 

1.3 

16.6 

21.0 

25.7 

22.0 

17.2 

1.3 

26.9 

32.2 

33.3 

23.7 

18.9 

16.3 

83.3 

N/A 

34.1 

14.9 

N/A 

Mix 

(0% - 20% ice) 

0 – 0.5 

8.0 – 12 

20 - 30 

4.5 

5.7 

7.5 

27.6 

25.1 

22.5 

26.1 

25.0 

23.3 

29.9 

27.4 

20.6 

36.5 

43.9 

24.6 

32.0 

27.6 

0.0 

62.3 

44.6 

N/A 

25.9 

15.1 

N/A 

Land 

0 – 0.5 

8.0 – 12 

20 - 30 

-14.5 

-3.7 

-4.9 

34.1 

35.2 

32.4 

-50.2 

-6.3 

5.8 

32.8 

26.1 

28.3 

-75.5 

-13.8 

5.0 

31.8 

29.5 

24.3 

-71.1 

-12.7 

25.8 

40.7 

28.9 

17.1 

 

For primarily cloud-free scenes (COD < 0.5, dark blue in Fig. 8), ADRF over dark surfaces such as ice-free ocean and 

land is strongly negative (i.e., scene brightened). For high UVAI scenarios and for COD < 0.5, the ADRF for both 

land and ocean conditions is as large as -100 Wm-2, indicating a strong TOA cooling effect of dense aerosol plumes. 

For the same low COD conditions, the forcing for high UVAI scenarios increases gradually with increasing SSMIS 490 

sea ice concentrationSIC, with the sign of the forcing efficiency switching from negative to positive between the 40% 

– 60% and 60% – 80% bins, or roughly a sea ice concentrationSIC of 60% (.we note that a similar threshold of 60% 

- 65% is also found when binning the ADRF data using a variety of other SIC bin sizes and bin edges). However, for 

primarily cloud-free scenes over sea ice (SSMIS sea ice concentrationSIC >= 80%), forcing over the bright surfaces 

is strongly positive, with ADRF values for high UVAI scenarios being as large as +80 Wm-2 (i.e., scene darkening). 495 

As COD increases, the ADRF as a function of UVAI also generally increases (darkening), though the increase per 

unit COD is higher for darker surfaces than for lighter surfaces. The change in forcing efficiency (the slope of the 

UVAI vs ADRF regression line) as COD increases is large for ocean and land surfaces, but the slopes of the lines 

remain roughly the same over ice scenes. The slopes of the UVAI vs ADRF regression lines are positive across all 

surface types for high COD (> 20) scenes, suggesting that the thick clouds obscure the ocean and land surfaces below. 500 

The regression equations for the data plotted in Fig. 8 are listed in the appendix (Tab. A2).  

Following similar steps, for each OMI SZA, MODIS COD, and SSMIS surface type bin, all ADRF values and 

associated OMI UVAI values were analyzed with linear regression to identify the slope and intercepts of the fitted 

line between the data (we note that similar results were found when using the more robust Theil-Sen slope estimator). 

The slopes and intercepts of the forcing regression allowed the ADRF to be estimated given an input UVAI value and 505 

the associated SZA, COD, and sea ice value, and these values were used to construct a look-up table (LUT) of aerosol 

forcing regression statistics for use in estimating daily aerosol direct forcing from L3 data. The slopes of the 

regressions applied to each bin for each surface type are shown in Fig. 9. Only grid boxes with more than 50 co-

located values in the box are shown in the figure. Over ocean and land surfaces, negative forcing efficiencies were 
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identified for low COD conditions, shown by the blue on the bottom of these panels. The negative forcing efficiency 510 

(negative slope) shows that an increase in UVAI leads to negative ADRF, meaning the presence of the aerosols leads 

to increased upwelling TOA SWF; in other words, negative forcing leads to less energy into the Earth and Atmospheric 

system (a brightening effect). The negative forcing efficiencies for low COD conditions over land suggest that the 

land surfaces were dark in the input data, which is not surprising given that most of the input data for the NN were 

from boreal summer. Thus, we did not detect data data with land snow coverage in this analysis. For COD values 515 

primarily above 8 over land and ocean scenes, the magnitude of the forcing efficiency slopes shift to being positive; 

as a note, this behavior closely matches results reported by Feng and Christopher (2015) in their analysis of aerosol 

forcing over tropical marine stratocumulus clouds. The positive forcing efficiencies for the higher COD values 

indicates that higher aerosol loading leads to less upward-directed SWF (i.e., a darkening effect). On the other hand, 

over ice surfaces, the forcing efficiencies are entirely positive, with little change exhibited for increasing COD over 520 

icy surfaces. Over mixed ice/ocean surfaces, there is some variability with increasing COD, with slightly negative 

forcing efficiency for clear-sky conditions (COD < 0.5) and positive forcing efficiency for nearly all other SZA and 

COD bins. While not shown, the slope standard errors in most of the bins are generally low (< 2 Wm-2 UVAI-1), 

though higher slope errors are found in some of the outer bins where the number of co-located values per bin is very 

low, such as for the “Mix 20% - 40%” bin. These results show the complex nature of aerosol forcing over the different 525 

cloud and surface conditions in the Arctic.  
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Figure 9. Slopes of the regression lines between the UVAI perturbations and NN-based ADRF estimates as functions of OMI solar 
zenith angle and MODIS COD, for (a) ocean surfaces ( (a) sea ice concentration (SIC) below 20%), mixed ice/ocean surfaces ( (b) 
ice concentrationSIC between 20% and 40%, (c) ice concentrationSIC between 40% and 60%, (d) ice concentrationSIC between 530 
60% and 80%), ice surfaces ( (e) ice concentrationSIC greater than 80%), and (f) land surfaces . 

4.2 Calculate daily estimates of ADRF from LUT & daily-averaged OMI UVAI data 

With the forcing efficiency values derived from the co-located L2 data, we then estimated ADRF on a daily basis from 

1 April to 30 September of 2005 through 2020. Daily averages of perturbed OMI UVAI on a 1x1 degree latitude x 

longitude grid were derived from the QC-ed L2 OMI UVAI data, while L3 MODIS daily 1x1 degree gridded cloud 535 

optical depth (product MYD08_D3) were obtained from NASA Langley online data archive and daily SSMIS sea ice 

concentrationSICs on the default 25 x 25 km2 grid were converted to a 1x1 degree latitude longitude grid. For each 

day, if a 1x1 degree OMI grid box contained a daily averaged perturbed OMI UVAI value that was higher than a 

threshold (here, set to 0.7), then a forcing value was estimated for that grid box. Regions with OMI UVAI values less 

than the threshold value were assumed to be aerosol free, and the ADRF values were set to zero for those regions. We 540 

note that similar results were obtained when, rather than using this straightforward threshold approach for the daily 

OMI UVAI data, we compared the daily OMI UVAI value to a UV-absorbing aerosol-free OMI background 
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climatology value and calculated daily forcing if the daily UVAI was greater than the background by more than the 

threshold amount. The daily SSMIS sea ice concentrationSIC value, the calculated daily minimum solar zenith angle, 

and the L3 MODIS COD values for that grid box were used to select the correct forcing regression slope and intercept 545 

from the forcing regression LUT. Once the forcing efficiency slope and intercept values were identified, the estimated 

daily ADRF was calculated following: 

𝐴𝐷𝑅𝐹[𝑖, 𝑗] =
𝜕𝐴𝐷𝑅𝐹

𝜕𝐴𝐼
|𝐼𝐶𝐸[𝑖,𝑗],𝑆𝑍𝐴[𝑖,𝑗],𝐶𝑂𝐷[𝑖,𝑗] × 𝑈𝑉𝐴𝐼[𝑖, 𝑗] + 𝐶𝐴𝐷𝑅𝐹|𝐼𝐶𝐸[𝑖,𝑗],𝑆𝑍𝐴[𝑖,𝑗],𝐶𝑂𝐷[𝑖,𝑗] (3) 

where i denotes the latitude index, j denotes the longitude index, 𝑈𝑉𝐴𝐼[𝑖, 𝑗] is the daily UVAI for the grid box, and 

𝜕𝐴𝐷𝑅𝐹

𝜕𝐴𝐼
|𝐼𝐶𝐸[𝑖,𝑗],𝑆𝑍𝐴[𝑖,𝑗],𝐶𝑂𝐷[𝑖,𝑗] and 𝐶𝐴𝐷𝑅𝐹|𝐼𝐶𝐸[𝑖,𝑗],𝑆𝑍𝐴[𝑖,𝑗],𝐶𝑂𝐷[𝑖,𝑗] are the forcing efficiency slope and intercept, respectively, 550 

associated with the sea ice concentrationSIC, solar zenith angle, and COD of the lat/lon grid box. Thus, although both 

sea ice concentrationSIC and cloud coverage change throughout the study period, their combined impact to ADRF is 

reflected in the analysis. An example of the daily estimated aerosol forcing for 5 July 2018 is shown in Fig. 10. In Fig. 

10a, the daily averages of perturbed OMI UVAI reveal a large plume of BB smoke over northeastern Russia and 

extending over the Arctic Ocean. The SSMIS sea ice concentrationSIC (Fig. 10b) and MODIS COD (Fig. 10c) values 555 

indicate that most of this plume was located over primarily ocean and ice surfaces, with a mixture of cloudy and cloud-

free conditions in those regions. After following the methodology described above, the daily estimated ADRF was 

calculated, with the forcing value being shown in Fig. 10d. The positive (red) values indicate less upward-directed 

SW energy caused by the BB aerosol particles, which is expected due to the icy and cloudy conditions in those regions. 

The same plume also exhibited negative (blue) forcing values across the land and mixed ice/ocean areas.  560 
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Figure 10. Estimated forcings from aerosol using forcing efficiency slopes and intercepts for 5 July 2018. a) Daily averaged 
perturbed OMI UVAI. b) SSMIS sea ice concentration (SIC). c) Daily L3 Aqua MODIS COD. d) Estimated aerosol direct radiative 
forcing (ADRF) for 5 July 2018 based on the OMI UVAI and the look-up table (LUT) of aerosol forcing regressions under different 565 
viewing geometry, surface, ad cloud conditions.  

4.3 Error analysis of daily-estimated aerosol direct radiative forcing 

Before applying the NN results and forcing regression LUT to long-term ADRF trend analyses, an analysis of the 

impacts of errors in the system on the daily observation-based estimates of ADRF must be conducted. Thus, we 

calculated error statistics for four error sources: errors in the neural network output, errors in the forcing regressions 570 

used in the LUT, impacts of daily SSMIS sea ice concentrationSIC errors on the daily forcing estimates, and impacts 

of daily MODIS COD errors on the daily forcing estimates.  

First, we quantified the errors in the NN-generated aerosol-free SWF estimates against CERES observations. For each 

of the 50 L2 swaths reserved for testing (not involved in training the NN), aerosol-free SWF values were estimated 

and were compared to the CERES SWF observations from the same swaths. All these errors were combined, and after 575 

removing any pixels with UVAI > 1, the distribution of the combined errors from all 50 swaths was generated and is 

shown in Fig. 11a. The red curve represents a Gaussian curve fitted to the distribution, fitted using the Levenberg-

Marquardt algorithm and least squares statistics. A normal distribution fits the errors well, though with a slight 
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underestimation of errors towards the edges of the distribution. Based on the fitted Gaussian curve, the mean and 

standard deviation of the NN output errors are 1.4 Wm-2 and 18.3 Wm-2, respectively (Fig. 11a).  580 

Another source of error in the daily estimates of ADRF is in the application of the forcing regressions in the LUT. To 

quantify errors in the LUT method at estimating ADRF, we first calculated ADRF for all of the aerosol swaths by 

subtracting the CERES observations from the NN aerosol-free SWF output; this is referred to as the “L2-style” forcing 

estimate. Then, for the same L2 swaths, we calculated estimated ADRF at each aerosol-containing pixel using the 

LUT-based method, in which the MODIS COD, OMI SZA, and SSMIS sea ice concentrationSIC values were used to 585 

select the forcing regression values from the LUT, and the OMI UVAI perturbation from the L2 pixel was then applied 

to the forcing regression values to generate an estimated ADRF; this is referred to as the “L3-style” forcing estimate. 

The errors between the L2-style and L3-style forcing estimates for all aerosol-containing pixels in the L2 aerosol 

swaths were combined, and the distribution of the combined errors is shown in Fig. 11b. As in Fig. 11a, a Gaussian 

curve was fitted to the data using the Levenberg-Marquardt algorithm and least squares, and the normal distribution 590 

provides a good estimate for the errors. The mean and standard deviation of the L2-style vs. L3-style errors are -1.3 

Wm-2 and 21.0 Wm-2, showing that the L3-style ADRF values slightly overestimate the ADRF computed directly 

from the NN output and CERES observations.  

Lastly, we investigated how errors in the daily L3 SSMIS sea ice concentrationSICs and MODIS COD values affect 

the daily estimated ADRF. According to the SSMIS daily sea ice concentrationSIC dataset user guide from the 595 

National Snow and Ice Data Center, and as described in Section 2.4, SSMIS sea ice concentrationSICs are generally 

within +/- 5% of the true sea ice concentrationSIC in the wintertime, and within +/- 15% in the summertime due to 

the presence of melt ponds on the ice surface. Thus, to determine how possible errors in the daily SSMIS sea ice 

concentrationSICs of this magnitude impact the estimated daily ADRF values, we first calculated daily estimated 

ADRF using the methods described in Section 4.2 for 1 April to 30 September of 2005 – 2020. Then, we calculated 600 

the daily ADRF values again, but before using the daily SSMIS sea ice concentrationSIC to select the aerosol forcing 

regression values from the LUT, we perturbed the sea ice concentrationSIC by an error from a normal distribution 

with a mean of 0% and a standard deviation of 15%, though the ending sea ice concentrationSIC values were capped 

to a minimum of 0% and a maximum of 100% after adding the errors. The distribution of the errors between the 

original daily L3 ADRF estimates and the ice error-affected daily L3 ADRF estimates are shown in Fig. 11c; note that 605 

the y-axis is set to a logarithmic scale because the vast majority of the errors are equal to 0 (the “0” bin contains about 

60,000 values while the next closest bins contain less than 1,000 values). We suspect that the overwhelming frequency 

of 0-value errors in the distribution is due to the chosen SSMIS surface bins and the wide coverage of land surfaces 

within the study area. With the SSMIS ice concentrationSIC bins used in the LUT being 20% wide, if the error applied 

to the daily SSMIS sea ice concentrationSIC value was too small to change the sea ice value to a different sea ice bin, 610 

the forcing regression values selected from the LUT did not change, and therefore the calculated daily ADRF value 

remained unchanged from the original calculation. Also, these changes did not affect the calculations over land 

surfaces, and with the source region for the aerosol plumes in the Arctic primarily being boreal Russia and Canada, 

many of the identified smoky grid points were over land and were unaffected by the perturbations in the ice values. 
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Unlike the previous two error distributions, the errors in Fig. 11c are not normally distributed. The mean and standard 615 

deviation of the errors in daily L3 ADRF estimates due to SSMIS sea ice errors are 0 Wm-2 and 3.2 Wm-2, respectively.  

Similar methods were applied to determine the impacts of errors in the daily MODIS COD values on the estimated 

daily ADRF values. After surveying the standard deviations of the L1B/L2 MODIS COD values that were averaged 

into each daily L3 COD value across the entire 1 April to 30 September of 2005 – 2020 dataset, we found that, though 

the most commonly-occurring COD standard deviation is less than 1, the second most commonly-occurring daily 620 

MODIS COD standard deviation is about 5. Thus, similar to above, we recalculated the daily L3 ADRF values, but 

before using the MODIS COD value at the grid point to select the forcing regression values from the LUT, we 

perturbed the COD value by an error from a normal distribution with a mean of 0 and a standard deviation of 5. The 

distribution of the errors between the original ADRF values and the values calculated using the perturbed COD values 

are shown in Fig. 11d; as in Fig. 11c, a logarithmic y-axis is used in Fig. 11d because the vast majority of the errors 625 

are equal to 0, with the “0” bin containing about 40,000 values while the next closest bins have about 8,000 values. 

We suspect that there are more non-zero errors in the COD error distribution than in the ice error distribution because 

of the small COD bin sizes for lower COD values. As with the ice errors, the COD-induced forcing errors are not 

normally distributed. The mean and standard deviation of the errors in daily L3 ADRF estimates due to MODIS COD 

errors are 0.7 Wm-2 and 14.6 Wm-2, respectively. 630 
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Figure 11. Error distributions of four error sources in the daily forcing estimates. a) Distribution of errors between the CERES 
SWF observations and the NN-estimated aerosol-free SWF, generated from the 50 reserved co-located L2 swaths and for pixels 
with UVAI < 1. b) Distribution of errors between the ADRF calculated directly from the NN output and CERES observations (L2-635 
style) and the ADRF calculated on the L2 swaths using the OMI UVAI perturbations and the look-up table (LUT) of forcing 
regressions (L3-style). c) Distribution of errors in the daily L3 forcing estimates caused by the application of normally-distributed 
errors to the daily SSMIS sea ice values during the calculation process. d) Similar to panel c, but showing the impacts of the 
application of errors in the daily MODIS COD values. The mean and standard deviation of the distributions in Wm-2 are represented 

by μ and σ, respectively, in each panel. Note that a logarithmic y-axis is applied to panels (c) and (d).  640 

With the mean and standard deviation of the errors from each component calculated, the error statistics were combined 

to derive the total error statistics for the daily L3 observation-estimated ADRF values. The mean error was calculated 

as the sum of the individual error distribution means, which is -0.8 Wm-2. This slight low bias can be corrected in the 

L3 daily ADRF calculations by adding 0.8 Wm-2 to the calculated daily ADRF values. The final standard deviation 

was calculated as the square root of the sum of the squares of each individual standard deviation, which equates to 645 

31.6 Wm-2, assuming error variances are addable. We note that this does not account for co-varying errors (such as 

related errors in COD and sea ice concentrationSIC), so this standard deviation is likely an overestimate of the true 

error in the daily forcing values.  
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4.4 Total observation-based Arctic aerosol forcing trends using Monte Carlo error estimations 

We conducted a Monte Carlo simulation method to estimate the impact of the errors in the observational estimates of 650 

daily L3 ADRF. In this approach, a total of 600 independent simulations were performed. We note that, although 600 

simulations were selected, the mean trend values largely stabilized after 300 simulations, with a less than 5% 

difference found between mean ADRF trends larger than 0.25 Wm-2 per study period for simulations with 300 and 

600 runs. For each simulation, daily ADRF values were computed from the LUT as mentioned in Section 4.2 using 

daily OMI UVAI, sea ice concentrationSIC and COD data at a spatial resolution 1x1° latitude/longitude over the study 655 

domain. For each day and each 1x1° latitude/longitude grid, an error in ADRF was added to the daily ADRF value. 

The added error term was randomly generated by following the normal distribution as derived from Section 4.3, with 

a mean of 0.8 Wm-2 and a standard deviation of 31.6 Wm-2. For each simulation, ADRF trends (2005-2020) can be 

estimated, first by averaging daily values into monthly averages, and then by estimating trends through the linear 

regression analyses over the monthly averages. Since we added semi-random errors to the ADRF calculations, with 660 

errors added following the accumulated error distributions from Section 4.3, in theory, with sufficient simulations, the 

spread of aerosol forcing trends from those simulations shall capture error sources as mentioned in Section 4.3 (e.g. 

with an error standard deviation of 31.6 Wm-2). Here we assumed that the errors in the daily L3 ADRF values are 

normally distributed. We note that the same number of data points were included in each simulation, and the only 

difference among the 600 simulations is that for each observation for each simulation, the added error term, which 665 

was randomly generated based on the error distribution from Section 4.3, was different.  

The mean trend from the 600 simulations was considered the ADRF trend from this study and the spread in trends 

from different simulations was related to the error boundaries of the calculated ADRF trend. This exercise was 

performed for April – September for the study period of 2005-2020. In addition to computing the trends of ADRF 

over the study period, we computed monthly trends of SSMIS sea ice concentrationSIC, Aqua MODIS cloud fraction, 670 

and perturbed OMI UVAI data over the study period for qualitative comparison with the ADRF trends. The monthly 

SSMIS sea ice concentrationSIC values were first averaged into a 1 x 1o latitude/longitude grid, and then linear 

regression was applied to the time series of monthly averaged sea ice concentrationSIC at each grid point to find the 

trends. Linear regression was also applied to the L3 monthly Aqua MODIS cloud fraction data at each 

latitude/longitude grid point to find cloud trends. Monthly perturbed UVAI values were calculated by averaging 675 

together all daily UVAI averages that were greater than 0, and linear regression was applied to the time series of 

monthly perturbed UVAI data at each grid point to find the trends.  

To determine the significance of the ADRF trends, we analyzed the mean and the spread of the 600 estimated monthly 

trends at each lat/lon grid point. We used the standard deviation of the 600 trends to construct a 90% confidence 

interval around the mean of each trend, and if the bounds of the confidence interval were the same sign as the mean 680 

trend (i.e. if the absolute value of the trend was greater than 1.645 times the standard deviation of the 600 trends), we 

denoted the trend as being significant. An example of applying this methodology for the 600 trends at a point over 

northern Russia is shown in Fig. 12. The histogram of all 600 trend estimates at that point reveal that the trends are 
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centered just above -4 Wm-2 per study period, though some of the estimates are as low as -7 Wm-2 per study period 

and some are as high as about 0 Wm-2 per study period. The dashed black line represents the mean of the 600 trends, 685 

which is equal to -3.7 Wm-2 per study period, while the dotted black lines represent the 90% confidence interval. With 

a standard deviation of 1.3 Wm-2 per study period, the confidence interval of the trend of “𝜇 ± 1.645𝜎” becomes (-

5.9, -1.6), and since this interval does not contain the value of zero, we denote this trend as being significant at the 

90% confidence level.  

  690 

Figure 12. Example of the methods applied for determining the significance of the observation-based estimates of ADRF trend at 
each lat/lon grid point in the Arctic. The histogram shows the distribution of the 600 trend estimates at the selected point. The black 
dotted line represents the mean trend value, while the dotted black lines on either side of the mean represent the mean plus and 
minus the standard deviation.  

The monthly trends of SSMIS sea ice concentrationSIC, Aqua MODIS cloud fraction, OMI UVAI, and the mean and 695 

standard deviation of the 600 observation-based ADRF trends are shown in Fig. 13, with trends calculated separately 

per month. Decreases in sea ice concentrationSIC (Fig. 13, first column) are strongest in the late summer months and 

September, times of the year when Arctic sea ice extent is at its yearly minimum. The Aqua MODIS cloud fraction 

trends (Fig. 13, second column), though variable by month and region, are largely positive across the Arctic, though 

decreases in cloud fraction were found over Russia in June and August and over Europe in July.   700 

Both the UVAI (Fig. 13, third column) and ADRF trends (Fig. 13, fourth column) are weak in the spring months, with 

weak negative UVAI trends over much of the Arctic. Weak positive ADRF trends are found over parts of Russia and 

Alaska, with regions of weak negative ADRF trend over the Arctic Ocean north of Alaska and Russia. Summertime 

UVAI and ADRF trends, in contrast, are much stronger. Positive UVAI trends are found over Russia for June, July, 
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and August, as well as over Canada in August, though a region of negative UVAI trend over northwestern Russia can 705 

be attributed to a large-scale BB aerosol event in that area early in the study period. Weaker UVAI trends extend from 

Russia over the Arctic Ocean. The ADRF trends for the summer months largely follow the patterns in the UVAI 

trends, with strong decreases in ADRF over Russia in June, July, and August, and over northern Canada in August. 

The negative ADRF trends are as large as -4 Wm-2 per study period locally. These results indicate stronger ADRF 

closer to the BB aerosol source regions in north central Russia and Canada, with weaker ADRF for the BB smoke 710 

plumes after being transported. Over the Arctic Ocean, in regions where BB aerosols are transported from mainland 

Russia and Canada, the magnitudes of the ADRF trends are smaller, and both negative and positive ADRF trends are 

found in different areas of the Arctic. Positive ADRF trends are found over the Arctic Ocean north of Russia and 

Alaska in July, as well as north of Canada in August, while negative ADRF trends are found closer to the northern 

coasts of Russia, Canada, and Alaska. The strongest positive ADRF trends over the Arctic Ocean, north of Russia in 715 

July, are as high as +1 Wm-2 per study period. We determined the confidence of the trends at each grid point using the 

methods described above, and trends in which the 90% confidence interval is nonzero are denoted with black hashing 

in Fig. 13. Most of the April and May ADRF trends do not have high confidence, but many of the strong negative 

ADRF trends over Russia and Canada in June, July, and August have high confidence. The positive trends over the 

Arctic Ocean north of Russia in July and north of Canada in August also have high confidence, but most of the other 720 

weak trends over the Arctic do not. We suspect that the lower confidence in the weaker trends across much of the 

Arctic is likely a result of the high errors in daily observation-based estimates of ADRF. 



32 

 

    

Figure 13. Monthly trends in SSMIS sea ice concentration (SIC), Aqua MODIS cloud fraction, OMI UVAI and observation-
estimated ADRF trends over the 2005 – 2020 study period for April (1st row), May (2nd row), June (3rd row), July (4th row), August 725 
(5th row), and September (6th row). First column: Trends of monthly-averaged SSMIS sea ice concentrationSIC. Second column: 
Trends of monthly-averaged Aqua MODIS cloud fraction. Third column: Trends of monthly-averaged perturbed OMI UVAI, 
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Fourth column: Mean of 600 trends from monthly averages of observation-based ADRF estimates, plotted in units of Wm-2 per 
study period. Fifth column: Standard deviation of the 600 monthly ADRF trends, plotted in units of Wm-2 per study period.   

In addition to the spatial trends, we analyzed the regional averages of observation-based ADRF estimates across the 730 

Arctic. We calculated regional averages of the 600 monthly forcing values in three regions: the entire Arctic (65o N – 

90o N), low Arctic (65o N – 75o N), and high Arctic (75o N – 90o N). Then, we calculated the mean and standard 

deviation of the 600 trends across those regional averages of ADRF for each region. The mean trends are considered 

statistically significant if the mean of the p values associated with the 600 trends is below 0.05. The mean and standard 

deviation of the monthly mean and trends across the 600 trends are listed in Tab. 4, with bolded trends denoting those 735 

that are statistically significant. We note that similar results were obtained when using 300 trend estimates. Trends in 

region-averaged ADRF for the spring months are very small for all three regions. Larger trends are found in the 

summer months, with the low Arctic having the largest trends. Over the entire Arctic region, the strongest trends in 

regional observation-based ADRF estimates are in August, with a trend of -0.059 +/- 0.005 Wm-2 per study period. 

Over the low Arctic, however, the trend is much larger at a statistically significant -0.185 +/- 0.009 Wm-2 per study 740 

period for August. Trends in the high Arctic are the smallest, with the largest trends in the high Arctic found in August 

at +0.046 +/- 0.006 Wm-2 per study period. While some of the trends in region-averaged ADRF are statistically 

significant, we admit that statistically significant trends may not actually be impactful. However, the magnitudes of 

Arctic annual mean aerosol radiative forcing estimates from model-based studies (Breider et al., 2017; Feng et al., 

2013; Markowicz et al., 2021; Myhre et al., 2013; Schacht et al., 2019) range from 0.05 Wm-2 to 0.64 Wm-2 . Thus, 745 

some of the larger trends in monthly regional ADRF averages, such as those calculated for the low Arctic in the boreal 

summer, are comparable in magnitude to regional mean forcing estimates and therefore may be impactful.  

Table 4. Mean and standard deviation of the trends over the 600 region-averaged monthly forcing estimates, separated by month, 
for 2005 – 2020, in units of Wm-2 per study period. The uncertainty range denotes the standard deviation of the 600 trend estimates. 
Bolded trends are statistically significant, with the mean of the p values associated with the 600 trends being below 0.05.  750 

 Arctic (65o N – 90o N) Low Arctic (65 o N – 75 o N) High Arctic (75 o N – 90 o N) 

Apr -0.002 +/- 0.002 0.002 +/- 0.003 -0.005 +/- 0.003 

May 0.001 +/- 0.001 0.004 +/- 0.002 -0.001 +/- 0.002 

Jun -0.023 +/- 0.003 -0.053 +/- 0.005 -0.003 +/- 0.003 

Jul -0.031 +/- 0.004 -0.078 +/- 0.008 0.008 +/- 0.004 

Aug -0.059 +/- 0.005 -0.185 +/- 0.009 0.046 +/- 0.006 

Sep -0.019 +/- 0.007 -0.033 +/- 0.005 -0.006 +/- 0.012 

 

Changes in ADRF across the study period could result from changes in aerosol amount (UVAI) or from changes in 

the lower boundary condition (ice and cloud). First, to determine the impacts of sea ice change on the ADRF trends, 

we recalculated the daily ADRF estimates across the April – September of 2005 – 2020 study period while keeping 

the sea ice values unchanged from 2005. For example, in this method, the 1 August 2016 daily ADRF value was 755 
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calculated using the OMI UVAI and MODIS COD data from 1 August 2016, but with the SSMIS sea ice 

concentrationSIC data from 1 August 2005. We repeated this analysis while holding the ice values constant from other 

years and compared the trends in Arctic-averaged ADRF from the original calculations with those from the 

calculations with sea ice held constant. Overall, the trends calculated when holding the sea ice constant did not 

significantly vary from the initial trend results, with the mean percent difference over the 6 months being about 12%. 760 

We conducted a similar analysis to determine the impacts of clouds on the trends in Arctic-averaged ADRF trends by 

recalculating the daily ADRF estimates across the study period while holding the cloud optical depth values unchanged 

from individual years. The trends calculated using the modified cloud optical depth values exhibited deviated more 

from the originals than the trends calculated with modified sea ice values, with a mean percent difference over the 6 

months of about 65%. However, the signs of the monthly average forcing values and forcing trends remained largely 765 

the same, showing that changes in UVAI were still the dominant factor causing the changes in absorbing aerosol direct 

radiative forcing.   

5. Conclusions 

In this study, through the use of satellite data from MODIS, CERES, SSMIS and OMI, we developed an observation 

based estimation of aerosol direct radiative forcing (ADRF) patterns and trends over the Arctic region for UV-770 

absorbing aerosols for the period of 2005-2020.  To derive ADRF, aerosol free sky TOA upwelling SW flux values 

were derived through a neural network based method.  Error distributions from various error sources were analyzed 

and an innovative Monte Carlo error estimation method was developed and implemented for quantifying uncertainties 

in estimated ADRF trends.  This study found: 

1. High R2 values of above 0.9 were found between co-located CERES SWF data and the aerosol-free SWF 775 

values derived from a neural network-based method with the use of level 2 OMI, MODIS, SSMIS, and 

CERES data as input parameters. The mean squared error (MSE) and mean absolute error (MAE) of 16.9 

Wm-2 and 2.86 Wm-2, respectively, were found for the neural network after training based on aerosol-free 

SWF values, suggesting that the neural-network based method may be used for estimating aerosol-free SWF 

values for future aerosol forcing studies using CERES data. 780 

2. With the combined use of OMI, CERES data, and with the use of aerosol-free SWF values as estimated from 

the neural network-based method for over 130 aerosol-containing swaths over the Arctic, we quantified the 

instantaneous ADRF of absorbing aerosols (primarily BB) over the Arctic region as functions of solar zenith 

angle, surface type, and cloud conditions.  For primarily cloud-free scenes (COD < 0.5) and with 20%-wide 

SSMIS sea ice concentrationSIC bins, a sea ice concentrationSIC of about 60% represents the turning point 785 

between ice concentrationSICs over which the scattering effects of BB aerosols ("cooling" effect) dominate 

to ice concentrationSICs over which the absorbing effects of BB aerosols ("warming" effect) dominate, 

though the ADRF over mixed ice/ocean surfaces is still rather mild due to lack of albedo contrast between 

the aerosol particles and the surface beneath. We note that a similar threshold of 60% - 65% is still found 
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when using a variety of other SIC bin sizes and bin edges. Over primarily sea ice scenes and cloud-free 790 

conditions, instantaneous ADRF values can be as high as +80 Wm-2 for heavy aerosol loading (AI 

perturbation > 6), and over open water or over dark land, ADRF can be as low as -100 Wm-2 for similar 

heavy aerosol loading scenarios. 

3. To reduce computational burden, LUTs of ADRF as a function of observing conditions were constructed and 

were used to study long-term trends in observation-based ADRF at the OMI UVAI domain. The overall error 795 

in estimated daily ADRF, quantified as a Gaussian distribution, has a mean error of 0.8 Wm-2 with a standard 

deviation of 31.6 Wm-2. An innovative Monte Carlo method was introduced to estimate ADRF trends and 

uncertainties based on the daily ADRF error distribution, by introducing daily ADRF errors to the trend 

estimates through a stochastic-based method. As suggested from this study, strong negative ADRF trends as 

large as -4 Wm-2 per study period were found over Russia and Alaska in the summer months, closer to the 800 

source region for the BB aerosols, with weaker trends over the Arctic Ocean. The trends over the Arctic 

Ocean in the boreal summer are mixed in sign, with both negative and positive ADRF trends found locally 

across the Arctic. The positive trends, which are generally closer to the North Pole than the negative trends, 

are as high as +1.0 Wm-2 per study period in some regions.  

4. When analyzing trends in regional averages of the monthly ADRF estimates around the Arctic, the strongest 805 

(and statistically significant) ADRF trends were found in the low Arctic (65 oN – 75 oN) at August at -0.185 

+/- 0.009 Wm-2 per study period. Trends in averaged ADRF over the high Arctic (75 oN – 90 oN) are much 

smaller than in the low Arctic, also peaking at August with a slightly positive and statistically insignificant 

trend of +0.046 +/- 0.006 Wm-2 per study period.  

This study suggests that while overall all changes in ARDF over the Arctic region are marginal and are only significant 810 

over certain period (e.g. August for the low Arctic), changes in regional ARDF can be significant and could contribute 

to regional warming and cooling and possible change in sea ice status, although ADRF over the Arctic region can be 

significantly affected by the underlying complex surface conditions. As the Arctic continues to warm, sea ice coverage 

continues to decrease, and intrusions of large amounts of BB smoke aerosol particles into the Arctic region become 

more frequent, these results suggest that absorbing aerosols may act to counter Arctic warming. This is still 815 

complicated, however, by Arctic sea ice and changes in Arctic cloud status, besides aerosol-cloud and aerosol-

cryosphere interactions. Increases in Arctic cloud cover, especially in regions of sea ice loss (Abe et al., 2016), could 

mask the dark, ice-free ocean surfaces beneath the clouds and reduce the TOA cooling effect of lofted BB aerosol 

particles in the Arctic. However, the optical depth of the clouds over ocean surfaces have a significant impact on the 

TOA radiative forcing characteristics of a BB aerosol plume, so estimating how future changes in cloud status could 820 

affect future ADRF is very complicated. Additionally, BB smoke plumes reaching the high Arctic over sea ice regions 

may lead to local warming effects. Further, this study focused only on the direct radiative impacts of absorbing 

aerosols, leaving out the impacts of scattering aerosols. While scattering aerosols such as sea salt and sulfates have 

radiative cooling effects, reductions in sulfate emissions have led to decreases in sulfate aerosols. Thus, the cooling 

effects of sulfate aerosols is projected to weaken in the future (Ren et al., 2020; Schmale et al., 2022).  825 
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While we identified that the TOA radiative impacts of a lofted plume of absorbing aerosol particles switch from 

cooling (i.e. scene brightening) to warming (i.e. scene darkening) above a critical SIC threshold of 60% - 65%, this 

raises several questions that are unanswered in this study. We do not know precisely why 60% – 65% represents the 

critical threshold. Additionally, we do not know how other phenomena, such as multiple scattering between the aerosol 

layer and the ice surface, impact the TOA forcing characteristics. Studies to investigate such questions would require 830 

extensive radiative transfer model simulations using varying SIC, atmospheric temperature and moisture profiles, 

cloud properties, and aerosol properties (with observations needed to quantify the aerosol properties over the multiple 

surface types in the Arctic), which would go beyond the scope of this study. These are very interesting research 

questions that warrant further study, but we leave them to future work. 
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cleaned, perturbed UVAI data were conducted following methods described in Sorenson et al (2023). Aqua CERES 

SSF Level 2 FM4 data (https://doi.org/10.5067/Aqua/CERES/SSF-FM3_L2.004A) were used in this study, with 

subsets of the FM4 data obtained from the NASA Langley Research Center (LaRC) online data archive. The daily 

and monthly DMSP SSM/I-SSMIS sea ice concentration data version 2 were retrieved from the National Snow and 

Ice Data Center (NSIDC) online archive at https://nsidc.org/data/NSIDC-0051/versions/2 (DiGirolamo et al., 2022). 1105 

The Level 1B (MYD021KM; 10.5067/MODIS/MYD021KM.061; (MODIS Characterization Support Team (MCST), 

2017)), Level 2 (MYD06; 10.5067/MODIS/MYD06_L2.061; (Platnick et al., 2015)) and Level 3 daily (MYD08_D3; 

10.5067/MODIS/MYD08_D3.061; (Platnick, S. et al., 2015a)) and monthly (MYD08_M3; 

10.5067/MODIS/MYD08_M3.061) MODIS data were retrieved from the NASA Level-1 and Atmosphere Archive & 

Distribution System Distributed Active Archive Center (LAADS DAAC) website.  1110 
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Appendix 

Table A1. The dates and visual description of the BB aerosol events from which L2 data were obtained and used in the study. 

Date Event Description 

24-27 July 2006 Large smoke plume from central Russia extending to the Arctic Ocean 

https://doi.org/10.5067/Aqua/CERES/SSF-FM3_L2.004A
https://nsidc.org/data/NSIDC-0051/versions/2
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22 April 2008 Smoke from Alaska extending north over the Arctic Ocean 

11-12 August 2014 Smoke from NE Russia extending over Arctic ocean and sea ice 

27 June 2015 Smoke over Alaska and the Beaufort Sea 

6 – 10 June 2015 Yellow smoke over sea ice in Arctic ocean north of Alaska 

14-17 August 2017 Smoke from pyrocumulonimbus event in British Columbia extended into the central Arctic 

3 – 5 July 2018 Smoke from NE Russia crossing the Chukchi Sea and entering Alaska 

21 July 2018 Large amounts of dark smoke over the Arctic between NE Siberia and Alaska 

14 August 2018 Large smoke plume over Arctic Ocean (both ice and water) starting from central Siberia 

26 August 2018 Large smoke plume across northern Canada and Greenland 

10 – 11 August 2019 Smoke from NE Siberia lofted across the Arctic Ocean 

Table A2. The linear regression equations relating the UVAI and ADRF values binned by SSMIS surface type and MODIS COD 
from Fig. 8. 1125 

ADRF vs UVAI Regression Equations 

Obtained from ADRF and UVAI Binned by SSMIS Sea Ice Concentrations and MODIS COD 

 

 SSMIS Surface Type 

Ocean (0 – 20% ice) 

SSMIS Surface Type 

Mix (20 – 40% ice) 

SSMIS Surface Type 

Mix (40 – 60% ice) 

MODIS 

COD 

0 – 0.5  

0.5 – 2 

2 – 4 

4 – 8 

8 – 12 

12 – 20 

20 – 30 

30 – 50 

ADRF = -11.4 * UVAI – 14.2 
ADRF = -7.4 * UVAI – 7.4 
ADRF = -6.3 * UVAI – 3.0 
ADRF = -2.6 * UVAI – 1.8 

ADRF = 0.9 * UVAI – 1.3 
ADRF = 2.9 * UVAI – 1.9 
ADRF = 2.7 * UVAI – 0.6 
ADRF  =   2.3   *   UVAI   +  2.3 

ADRF = -8.3 * UVAI - 4.6 
ADRF = -3.6 * UVAI + 0.2 
ADRF = -1.9 * UVAI + 1.4 
ADRF = -0.6 * UVAI + 1.3 

ADRF = 3.8 * UVAI + 0.1 
ADRF = 5.8 * UVAI - 1.9 
ADRF = 3.0 * UVAI + 3.1 
ADRF  =   2.3  *  UVAI   +  3.1 

ADRF = -4.8 * UVAI - 3.3 
ADRF = 0.8 * UVAI - 1.3 
ADRF = 2.3 * UVAI - 1.1 
ADRF = 3.6 * UVAI - 2.6 

ADRF = 5.8 * UVAI - 1.6 
ADRF = 6.1 * UVAI - 3.0 
ADRF = 7.4 * UVAI - 0.9 
ADRF  =   7.7  *   UVAI  +  1.2 

 SSMIS Surface Type 

Mix (60% – 80% ice) 

SSMIS Surface Type 

Ice (80% – 100% ice) 

SSMIS Surface Type 

Land 

MODIS 

COD 

0 – 0.5  

0.5 – 2 

2 – 4 

4 – 8 

8 – 12 

12 – 20 

20 – 30 

30 – 50 

ADRF = 2.1 * UVAI - 5.2 
ADRF = 5.9 * UVAI - 5.0 
ADRF = 5.9 * UVAI - 4.0 
ADRF = 6.2 * UVAI - 3.1 

ADRF = 6.2 * UVAI - 1.3 
ADRF = 7.1 * UVAI - 2.5 
ADRF = 6.1 * UVAI + 2.3 
ADRF   =   6.2  *   UVAI  +   3.9 

ADRF = 7.8 * UVAI + 1.6 
ADRF = 8.2 * UVAI + 1.0 
ADRF = 8.5 * UVAI - 2.6 
ADRF = 8.5 * UVAI - 0.5 

ADRF = 8.1 * UVAI + 1.5 
ADRF = 9.1 * UVAI + 1.0 
ADRF = 7.6 * UVAI + 2.7 
ADRF  =   7.3  *  UVAI   +  3.3 

ADRF = -14.3 * UVAI - 5.4 
ADRF = -8.4 * UVAI - 5.8 
ADRF = -4.5 * UVAI - 6.8 
ADRF = -2.2 * UVAI - 5.3 

ADRF = -1.0 * UVAI - 3.5 
ADRF = 2.3 * UVAI - 7.1 
ADRF = 3.4 * UVAI - 6.4 
ADRF  =   5.3  *   UVAI  -   5.8 

 

 


