
Reviewer #1 Responses 

The authors use a data-driven approach (based on long-term satellite observations + neural 
networks + Monte Carlo methods) to study the impact of Arctic sea ice cover on absorbing 
aerosol direct radiative forcing (ADRF) and reveal its long-term trend. The following issues 
should be addressed before publication: 

Response: we thank the reviewer for constructive comments. 

 

1. The study’s methodology is not highly innovative, as NN + data has been used in 
previous studies. However, the scientific findings seem more novel, particularly 
regarding the impact of sea ice on ADRF and the long-term trend. The literature 
review should more clearly compare this work with existing studies to confirm the 
novelty of the sea ice-ADRF relationship, as many GCM studies have already 
estimated Arctic ADRF and explored aerosol-sea ice interactions. 

 
RESPONSE: We thank the reviewer for the comments and suggestions. We have 
added the following text to the introduction: 
 
“Similarly, previous studies have investigated the interactions between aerosol 
particles and snow- and ice-covered surfaces, with many using global climate 
models to determine how the deposition of absorbing particles onto sea ice and 
snow impacts the aerosol-radiation interactions (Bond et al., 2013; Flanner et al., 
2007; Gagné et al., 2015; Schacht et al., 2019; Shindell and Faluvegi, 2009). Some 
studies have even investigated how changes in sea ice coverage affect aerosol 
radiative forcing in the Arctic. Using a global climate model, Struthers et al. (2011) 
found that reductions in Arctic sea ice extent led to increased emissions of sea 
spray/salt aerosol particles, with the associated increase in total AOD leading to 
stronger aerosol radiative cooling effects and a negative feedback on the Arctic 
climate.” 

 

2. The 50+ samples used to train the NN might not be sufficient to represent all 
atmospheric conditions in the Arctic fully. If the NN primarily learns radiation fluxes 
from low-aerosol regions while the studied region has aerosols at higher altitudes, 
SWFcln may have systematic bias, leading to ADRF estimation errors. Stronger 
independent validation is needed to ensure the reliability of NN predictions. 



 

RESPONSE: We thank the reviewer for the comments and suggestions. When 
counting the training data in terms of the number of swaths/granules, the training dataset 
seems limited.  However, each swath/granule contains sufficient data points with different 
observing conditions and viewing geometries.  The dataset used for training and validation 
during the training process for the NN consisted of colocated L2 pixels from over 1100 OMI 
swaths over the Arctic across the boreal sunlit months from 2005 – 2020. This equates to 
about 4.4 million pixels, and after reserving 10% of the pixels for testing purposes during 
the training process, nearly 4 million pixels were used to train the model while 400,000 
pixels were used to test the model during training.  

After training the model, we used 50 swaths of co-located L2 data (independent of 
the training dataset) to validate the trained model, equating to about 200,000 pixels. While 
the initial results of validating the NN against these 50 reserved L2 swaths showed little 
systematic bias, we further validated the model by randomly selecting an additional 25 
aerosol-free OMI swaths from the 2005 – 2020 data record. We co-located CERES, MODIS, 
and SSMIS data to those OMI swaths, and then added those swaths to the post-training 
validation dataset to determine the model’s performance in these other unknown 
conditions. The new validation dataset thus consisted of about 300,000 pixels. The results 
from validating the model against CERES SWF obs for the new dataset showed similar 
results to the initial validation, suggesting that the model is not significantly affected by 
systematic biases. As we show later in response to comment #4, binning the NN errors by 
SSMIS surface type and MODIS COD yields little overall systematic bias as a function of 
those variables. We added a new Section 3.2 titled “Validation of the NN against CERES” to 
discuss our investigation of potential systematic biases in the NN output. 

 

3. In the section on neural network design on pages 11-12 (lines 300-315), the authors 
mention: “All nodes in the hidden layer use the Leaky Rectified Linear Unit 
(LeakyReLU) activation (Maas et al., 2013), with this activation function having been 
identified to provide the best performance after testing with other activation 
functions.” Why does LeakyReLU provide the best performance？ It is suggested 
that comparative test results for different activation functions (such as ReLU, 
Sigmoid, etc.) be provided and that the specific advantages of LeakyReLU in 
handling TOA radiation flux estimation be explained. 

 



RESPONSE: We thank the reviewer for the comments and suggestions. To 
investigate how the LeakyReLU gives better performance than other activation functions, 
we retrained the model using many other activation functions and compared the mean 
absolute errors both during and at the end of training. The ending mean absolute errors 
(MAE) of the NN-predicted aerosol-free SWF against CERES SWF observations after 
training  for 100 epochs are listed in the table below. The LeakyReLU and ReLU activation 
functions gave the best performance, with the ending MAE for the simulations with 
LeakyReLU and ReLU activation being 2.86 Wm-2 and 2.92 Wm-2, respectively. Other 
models that gave good performance, but slightly worse performance than LeakyReLU, 
include the softplus and softsign activation functions, though the simulation with the 
softplus activation function exhibited some instability between epochs 60 and 80. While 
the simulations with ELU and SELU activation functions ended with MAE of around 3.2 Wm-

2, the training was highly unstable, with the errors spiking randomly between 3.0 Wm-2 and 
3.5 Wm-2 with each epoch. The linear activation function provided one of the worst 
performances with an ending MAE of 5.47 Wm-2, while training with GELU and sigmoid were 
stopped early because the MAE after the first about 10 epochs remained at around 12 Wm-2 
and did not converge. Since the LeakyReLU activation function gave the best performance 
out of the other activation functions, we used this activation function in the NN hidden 
layers model during training. With the LeakyReLU activation function known to avoid the 
”dead neuron” problem associated with the ReLU activation function (Dubey et al., 2022; 
Maas et al., 2013), we suspect that this could be behind the slightly better performance of 
the LeakyReLU activation function than the ReLU activation function.  

The following paragraph was added to the end of Section 3.1 to discuss the 
comparative test results of training the NN with different activation functions: 

“Several experiments were conducted to determine the best activation function (AF) to use 
in the NN hidden layers. The NN was trained multiple times using different AFs in the 
hidden layer nodes, and the ending mean absolute errors (MAE) of the NN-predicted 
aerosol-free SWF against CERES SWF observations after training with each AF for 100 
epochs are listed in Table 1. The Leaky Rectified Linear Unit  (LeakyReLU, Maas et al., 2013) AF 
gave the best performance with an ending MAE of 2.86 Wm-2, while the Rectified Linear Unit 
(ReLU, Nair and Hinton, 2010) AF gave the second-best performance with an ending MAE of 
2.92 Wm-2. With the LeakyReLU activation function known to avoid the “dead neuron” 
problem associated with the ReLU activation function (Dubey et al., 2022; Maas et al., 2013), we 
suspect that this could be behind the slightly better performance of the LeakyReLU AF 
relative to the ReLU AF. Other models that gave good performance, but slightly worse 
performance than LeakyReLU, include the softplus (Glorot et al., 2011) and softsign (Glorot and 

Bengio, 2010) AFs, though training with the softplus AF exhibited some instability between 



epochs 60 and 80. While the experiments with Exponential Linear Unit (ELU, Clevert et al., 

2016) and Scaled Exponential Linear Unit (SELU, Klambauer et al., 2017) AFs ended with MAE of 
around 3.2 Wm-2, the training was highly unstable, with the errors spiking randomly 
between 3.0 Wm-2 and 3.5 Wm-2 with each epoch. The linear AF provided one of the worst 
performances with an ending MAE of 5.47 Wm-2, while the training experiments with 
Gaussian Error Linear Unit (GELU, Hendrycks and Gimpel, 2016) and sigmoid AFs were stopped 
early because the MAE after the first about 10 epochs remained at around 12 Wm-2 and did 
not converge. Since the LeakyReLU activation function gave the best performance out of 
the other activation functions tested in this experiment, we used this activation function in 
all NN hidden layer nodes during training. Training was conducted on a GPU node for 100 
epochs with a batch size of 128, an Adam optimizer (Kingma and Ba, 2017), and with back-
propagational loss being derived by minimizing the mean squared error.  After training for 
100 epochs, the mean squared error (MSE) and mean absolute error (MAE) of the model-
estimated SWF values against the training observations were 16.9 Wm-2 and 2.86 Wm-2, 
respectively.” 

Table 1. Mean absolute errors (MAE) of the neural network output after training for 100 epochs with several different 

activation functions. Training with the sigmoid and GELU activation functions was terminated after about 10 epochs due 

to the extremely high MAE and the lack of convergence during the training process. 

Activation Function Reference 
Mean absolute error after 

training for 100 epochs (Wm-2) 

LeakyReLU (Maas et al., 2013) 2.86 

ReLU (Nair and Hinton, 2010) 2.92 

Softplus (Glorot et al., 2011) 2.94 

Softsign (Glorot and Bengio, 2010) 3.06 

ELU (Clevert et al., 2016) 3.21 

SELU (Klambauer et al., 2017) 3.32 

Tanh  4.87 

Linear  5.47 

Sigmoid  ~12* 

GELU (Hendrycks and Gimpel, 2016) ~12* 

 

 

4. Monte Carlo methods quantify uncertainty but cannot verify potential systematic 
biases. How can the authors confirm that NN-predicted SWFcln has no systematic 
bias? 

 



RESPONSE: We thank the reviewer for the comment and question. To test for 
systematic biases in the neural network-based estimates of ADRF, which would lead to 
systematic biases in the daily L3 ADRF estimates, we binned the validation dataset first by 
the different surface types, and then by the different COD ranges to determine if systematic 
biases were associated with either variable. The NN error distributions binned by the SSMIS 
surface type and by the MODIS COD are shown in the figure below. We found that the mean 
SWF errors for all of these swaths are largely small, with magnitudes primarily less than 3 
Wm-2. The peaks of nearly all the error distributions for the different surface types and 
CODs are around 0, suggesting little systematic bias in the system overall associated with 
the different surface types and CODs. The mean error for the land distribution is slightly 
larger at -5.5 Wm-2, suggesting a slight negative bias over land. We suspect that this is 
related to the lack of information about the land-based surface type in the system. For 
example, if the NN is primarily trained on dark land surfaces, but it is applied to brighter-
than-normal land surfaces (e.g. snow- and ice-covered land), the NN will predict lower 
upwelling SWF than is actually seen by CERES. When excluding data from April and May 
from this analysis, the mean error for the over-land data is much smaller, supporting our 
hypothesis that the slight negative shift in the land-based error distribution is related to the 
land surface brightness that is unaccounted for in this system. Given that the majority of 
the smoke events analyzed in the study occurred in the summer months (June – August), 
we do not expect this potential low bias of the NN over bright land surfaces to significantly 
impact the results of our study.  

We have added the following text and figure to the paper: 

3.2 “Validation of the NN against CERES 

Once trained, the NN was first applied to the 50 reserved aerosol-free validation swaths (independent from the 131 

aerosol swaths) to validate the NN output against CERES observations. The 50 validation swaths contained about 

200,000 pixels to use for validation; we note that similar validation results were obtained when increasing the size of 

the validation dataset to about 300,000 pixels by adding 25 additional aerosol-free OMI swaths (and co-located 

MODIS, SSMIS, and CERES data) randomly chosen from the 2005 – 2020 boreal summer study period. Errors were 

calculated between the NN-estimated aerosol-free SWF and the associated CERES TOA SWF observations, and the 

distribution of the errors from the 50 validation swaths is shown in Fig. 6a. The error distribution peaks at about 0 

Wm-2, suggesting little overall bias in the NN-estimated aerosol-free SWF values. To further test for systematic biases 

in the NN-estimated aerosol-free SWF, we binned the validation dataset first by the SSMIS SIC and surface type, and 

then by MODIS COD. The NN error distributions binned by the SSMIS surface type and the MODIS COD are shown 

in Fig. 6b and Fig. 6c, respectively. We found that the mean SWF errors for the error distributions binned by SSMIS 

SIC and MODIS COD are largely small, with magnitudes primarily less than 3 Wm-2. The peaks of nearly all the error 

distributions for the different surface types and CODs are around 0 Wm-2, suggesting little systematic bias in the 



system associated with the different surface types and CODs. The mean error for the land distribution (Fig. 6b, brown) 

is slightly larger at -5.5 Wm-2, suggesting a slight negative bias over land. We suspect that this is related to the lack of 

information about the land-based surface type in the system. If the NN is primarily trained on dark land surfaces, but 

it is applied to brighter-than-normal land surfaces (e.g. snow- and ice-covered land), the NN will predict lower 

upwelling SWF than is observed by CERES. When excluding data from April and May from this analysis, the mean 

error for the over-land data is much smaller, supporting our hypothesis that the slight negative shift in the land-based 

error distribution is related to the land surface brightness that is unaccounted for in this system. Given that the majority 

of the smoke events analyzed in the study occurred in the summer months (June – August), we do not expect this 

potential low bias of the NN over bright land surfaces to significantly impact the results of our study.” 

 

Figure 6. a) Distribution of errors in the neural network (NN)-estimated aerosol-free shortwave flux (SWF) relative 

to CERES TOA upwelling SWF observations for the 50 validation swaths reserved from the NN training dataset. b) 

As in (a), but with the errors binned by the SSMIS sea ice concentration (SIC) and surface type. c) As in (a), but 

with the errors binned by MODIS cloud optical depth (COD). 

 

5. Can Figure 2 include quantitative data on misclassification, such as the percentage 
of smoke misidentified as clouds? 

 

RESPONSE: We thank the reviewer for the question. After colocating the MODIS L1B 
cloud mask data to the OMI data for the swath shown in Figure 2, we calculated the 
number of smoky OMI pixels (defined as OMI UVAI > 1.0) for which the colocated 
MODIS cloud type was incorrect (i.e. pixels that should be “clear” being classified 
otherwise). We found that the co-located MODIS L1B cloud type classification was 
incorrect for about 25% of the smoky OMI pixels in this case. We note that this 



misclassification only happens for very optically dense smoke plumes, which are 
low probability events over polar regions.  So, the number calculated from Figure 2 
might not be representative. For this reason, we didn’t add this number to Figure 2. 

 

6. Why does ADRF shift from negative (cooling) to positive (warming) at a critical sea 
ice concentration of approximately 60%? Why is 60% the turning point? How does 
aerosol-surface multiple scattering influence ADRF? 
 
RESPONSE: We thank the reviewer for the comments and questions. To further 
investigate the 60% sea ice concentration (SIC) threshold beyond which the ADRF 
shifts from negative (cooling) to positive (warming), we replotted the binned L2 UVAI 
vs ADRF results from Figure 7, but with several other SIC bin sizes and bin centers. 
For example, we rebinned the ADRF data using SIC bin widths of 5%, 10%, 15%, and 
20%, and with bin edges of both 60% and 65% (in other words, SIC bins around the 
60% critical threshold include 40% - 60%, 45% - 65%, 45% - 60%, 50% - 65%, 50 – 
60%, 55 – 65%, etc.). The critical SIC threshold was found to be 60% in most of the 
recalculations, with the others having the threshold at the 65% bin. Thus, we are -
confident that the critical SIC threshold is between 60% – 65%. We have modified 
the text in Section 4.1 to reflect this added confidence: “…positive between the 40% 
– 60% and 60% – 80% bins, or roughly a SIC of 60% (we note that a similar threshold 
of 60% - 65% is also found when binning the ADRF data using a variety of other SIC 
bin sizes and bin edges).” We have also added the following text to point 2 in the 
conclusions: “… though the ADRF over mixed ice/ocean surfaces is still rather mild 
due to lack of albedo contrast between the aerosol particles and the surface 
beneath. We note that a similar threshold of 60% - 65% is still found when using a 
variety of other SIC bin sizes and bin edges. Over primarily sea ice scenes…” 
 
We are also curious as to why an SIC of 60 – 65% represents the turning point 
between TOA warming and cooling effects of lofted absorbing aerosol particles, and 
about the impacts of aerosol-surface multiple scattering on the ADRF results. In 
theory, this is related to the relative reflectance/scattering properties of the surface 
and aerosol layer (e.g. a bright aerosol layer over a darker surface versus a dark 
aerosol layer over a brighter surface).  Such a study to investigate these phenomena 
would require extensive radiative transfer model simulations using varying sea ice 
concentrations, atmospheric temperature and moisture profiles, cloud properties, 
and aerosol properties (with observations needed to quantify the aerosol properties 
over the multiple surface types in the Arctic), which would go beyond the scope of 



this study and make this study much longer than it already is. While this is a very 
interesting research question that warrants further study, we leave this to future 
work and simply report the identified critical threshold here. We have added the 
following paragraph to the end of the conclusions section: 
 
“While we identified that the TOA radiative impacts of a lofted plume of absorbing 
aerosol particles change from cooling (i.e. scene brightening) to warming (i.e. scene 
darkening) above a critical SIC threshold of 60% - 65%, this raises several questions 
that are unanswered in this study. We do not know precisely why 60% – 65% 
represents the critical threshold. Additionally, we do not know how other 
phenomena, such as multiple scattering between the aerosol layer and the ice 
surface, impact the TOA forcing characteristics. Studies to investigate such 
questions would require extensive radiative transfer model simulations using 
varying sea ice concentrations, atmospheric temperature and moisture profiles, 
cloud properties, and aerosol properties (with observations needed to quantify the 
aerosol properties over the multiple surface types in the Arctic), which would go 
beyond the scope of this study. These are very interesting research questions that 
warrant further study, but we leave them to future work.” 
 

  



Reviewer #2 Responses 

This study presents an interesting data-driven approach, combining satellite observations, 
neural networks, and Monte Carlo uncertainty estimation, to derive Arctic absorbing 
aerosol direct radiative forcing (ADRF) trends over a 15-year period. The topic is highly 
relevant and timely, given the sensitivity of the Arctic climate. The manuscript is generally 
clear, but several areas require improvement to strengthen its scientific rigor and clarity. 

Response:  We thank the reviewer for constructive comments 

 

1. Data quality is critical for this analysis. Although the authors utilize several satellite 
products, many of these have primarily been validated over low- to mid-latitudes. 
Thorough validation over the Arctic region is necessary. More importantly, 
uncertainties associated with cloud, aerosol, and surface classification must be 
quantified. How reliable are the cloud-free and aerosol-free conditions as defined? 
Similar validation is needed for other aerosol and cloud products. 

 
RESPONSE: We thank the reviewer for the comments. Regarding the quality of the 
surface classification dataset, we have added the following paragraph to Section 2.4 
describing the accuracy of the SSMIS sea ice concentration dataset: 
 
“The SSMIS SIC dataset used in this study is one of two key SIC datasets provided by 
the NSIDC and has been used extensively in the scientific community to study 
Arctic sea ice trends. The algorithm used in the dataset, developed by NASA 
(Cavalieri et al., 1984), has been included in several SIC validation studies (Cavalieri 
et al., 1992; Ivanova et al., 2015; Kern et al., 2019, 2020; Meier, 2005; Steffen and 
Schweiger, 1991). Overall, and as reported in the NSIDC dataset user guide 
(https://nsidc.org/sites/default/files/documents/user-guide/nsidc-0051-v002-
userguide.pdf), errors in the SIC dataset are less than 5% in the wintertime but can 
be as large as 15% in the summertime (Cavalieri et al., 1992). Some recent studies 
have reported that the SIC dataset may underestimate SIC by up to 10% (Kern et al., 
2019, 2020), with the underestimation being partly caused by surface melt ponds in 
the summer months (Steffen and Schweiger, 1991). Additionally, microwave-based 
sea ice concentrations have been found to be sensitive to areas of thin ice (Ivanova 
et al., 2015). Nevertheless, despite some limitations, the algorithm and associated 
SIC dataset are widely used to represent Arctic SIC.” 
 

https://nsidc.org/sites/default/files/documents/user-guide/nsidc-0051-v002-userguide.pdf
https://nsidc.org/sites/default/files/documents/user-guide/nsidc-0051-v002-userguide.pdf


As for the MODIS cloud dataset used in the study, we note that additional checks 
are already included in MODIS cloud masking over polar regions, including the use 
of the observed radiance difference between the 6.7 and 11 μm channels.  Still, 
there are known issues in cloud masking over the polar regions, especially 
associated with misclassification of snow and ice surfaces or smoke plumes as 
clouds (e.g. Fig. 2).  It is for this reason that additional checks, such as the use of 
OMI AI and MODIS observations at 2.1 μm were included to mediate the issues (e.g. 
as shown in Fig. 2).  
 
Regarding the quality of the aerosol information, we describe the methods by which 
we mitigate uncertainty in the OMI UVAI dataset in Section 2.1. Sorenson et al. 
(2023) developed a “perturbing method” to remove systematic biases and 
uncertainties in Arctic OMI UVAI data for use in quantitative Arctic aerosol studies. 
This method removes substantial viewing geometry and surface condition-related 
biases and uncertainties in the Arctic OMI UVAI data, and in addition to removing 
row anomaly-related uncertainty in the data following Sorenson et al. (2023), the 
OMI UVAI dataset is prepped for analysis in this study. 
 
Regarding validation of the CERES data over the Arctic region, we have added the 
following paragraph to the end of Section 2.2 to describe the validation of CERES 
data in the Arctic region:  
 
“CERES data have been used extensively for investigating changes in Arctic radiative 
energy budgets for both TOA (Duncan et al., 2020; Kay and L’Ecuyer, 2013; Riihelä et 
al., 2013) as well as the surface (Boeke and Taylor, 2016; Hegyi and Taylor, 2017). 

Previous studies have also worked to validate Arctic CERES surface radiative fluxes 
(Di Biagio et al., 2021; Riihelä et al., 2017) and TOA fluxes (Taylor et al., 2022), with 
the latter seeking to validate CERES TOA radiative fluxes against aircraft-based 
upwelling radiative flux observations. While Taylor et al. (2022) noted some error in 
the Arctic CERES Level-2 SSF TOA upwelling SWF resulting largely from errors in the 
imager-based sea ice concentrations used in the scene classification, the CERES 
observations compared well overall with the aircraft observations (differences 
between the CERES and aircraft observations were within 2σ uncertainty). The 
authors concluded that CERES TOA radiative flux data are suitable for polar climate 
studies (Taylor et al., 2022).” 
 

 



2. The authors should clarify whether all retrieved data were used or if any quality 
control measures (e.g., quality flags) were applied. 
 
 
RESPONSE: We thank the reviewer for the comment and suggestion. The quality 
control methods applied to the data are summarized in Table 1 in the paper. 
Following the Arctic OMI quality control methods described by Sorenson et al. 
(2023), we use the OMI row anomaly quality control flag to remove L2 OMI pixels 
from rows with known row anomaly issues. Then, we follow Sorenson et al. (2023) to 
remove additional row anomaly-affected rows that exhibit contamination over the 
Arctic. These quality control methods have cascading impacts on the rest of the 
datasets used in this study, as the L2 OMI UVAI data served as the basis for the co-
location of the other satellite products. The surface type flag in the SSMIS sea ice 
concentration dataset was applied to remove pixels classified as “coastline” or as 
being too near the North Pole (i.e. in the “pole hole”).  
 
We have modified paragraph 2 of section 2.1 with the following text (new text is in 
italics here): “…with about 50% of the OMI rows currently being contaminated, so we 
apply the row anomaly quality control flag in the OMI dataset to exclude all flagged, 
row anomaly-affected rows from our analysis.” 
 
We also added the following text to paragraph 2 of Section 3 to describe the 
application of the quality control flags during the colocation process: 
 
“As described in Section 2.1, we used the L2 OMI quality control flags and the 
methods described by Sorenson et al. (2023) to exclude pixels with flagged or 
unflagged OMI row anomaly contamination. from the colocated dataset. “ 
 
 “We excluded pixels from the colocated dataset with the SSMIS surface type flag 
denoting coastline pixels or pixels too close to the North Pole (i.e. in the “pole 
hole”).” 

 

3. The dataset used for training the neural network appears limited, which could 
introduce biases, particularly given the uncertain data quality. This needs careful 
discussion. 

 



RESPONSE: We thank the reviewer for the comments and suggestions. When counting 
the training data in terms of the number of swaths/granules, the training dataset seems 
limited.  However, each swath/granule contains sufficient data points with different 
observing conditions and viewing geometries.  The training dataset consisted of co-located 
L2 pixels from over 1100 OMI swaths over the Arctic across the boreal sunlit months of 
2005 - 2020, equating to about 4 million pixels for training and 400,000 pixels for testing 
the neural network during the training process. The validation dataset used in the study 
consisted of about 50 independent swaths with a total size of about 200,000 pixels.  

To test for systematic biases in the neural network-based estimates of ADRF, we binned the 
validation dataset first by the different surface types, and then by the different COD ranges 
to determine if systematic biases were associated with either variable. The NN error 
distributions binned by the SSMIS surface type and by the MODIS COD are shown in the 
figure below. We found that the mean SWF errors for all of these swaths are largely small, 
with magnitudes primarily less than 3 Wm-2. The peaks of nearly all the error distributions 
for the different surface types and CODs are around 0, suggesting little systematic bias in 
the system overall associated with the different surface types and CODs. The mean error 
for the land distribution is slightly larger at -5.5 Wm-2, suggesting a slight negative bias over 
land. We suspect that this is related to the lack of information about the land-based 
surface type in the system. If the NN is primarily trained on dark land surfaces, but it is 
applied to brighter-than-normal land surfaces (e.g. snow- and ice-covered land), the NN 
will predict lower upwelling SWF than is actually seen by CERES. When excluding data from 
April and May from this analysis, the mean error for the over-land data is much smaller, 
supporting our hypothesis that the slight negative shift in the land-based error distribution 
is related to the land surface brightness that is unaccounted for in this system. Given that 
the majority of the smoke events analyzed in the study occurred in the summer months 
(June – August), we do not expect this potential low bias of the NN over bright land surfaces 
to significantly impact the results of our study.    

To further test for biases in the system, we expanded the validation dataset with an 
additional 25 randomly-selected aerosol-free OMI swaths from the 2005 – 2020 boreal 
summer data set, bringing the total number of validation pixels up to 300,000 pixels. When 
including these additional swaths, the results of the comparison were nearly identical to 
the results when using the original 50 validation swaths, further suggesting that the system 
does not contain significant systematic bias. 

We have added the following text and figure to the paper: 



3.2 “Validation of the NN against CERES 

Once trained, the NN was first applied to the 50 reserved aerosol-free validation swaths (independent from the 131 

aerosol swaths) to validate the NN output against CERES observations. The 50 validation swaths contained about 

200,000 pixels to use for validation; we note that similar validation results were obtained when increasing the size of 

the validation dataset to about 300,000 pixels by adding 25 additional aerosol-free OMI swaths (and co-located 

MODIS, SSMIS, and CERES data) randomly chosen from the 2005 – 2020 boreal summer study period. Errors were 

calculated between the NN-estimated aerosol-free SWF and the associated CERES TOA SWF observations, and the 

distribution of the errors from the 50 validation swaths is shown in Fig. 6a. The error distribution peaks at about 0 

Wm-2, suggesting little overall bias in the NN-estimated aerosol-free SWF values. To further test for systematic biases 

in the NN-estimated aerosol-free SWF, we binned the validation dataset first by the SSMIS SIC and surface type, and 

then by MODIS COD. The NN error distributions binned by the SSMIS surface type and the MODIS COD are shown 

in Fig. 6b and Fig. 6c, respectively. We found that the mean SWF errors for the error distributions binned by SSMIS 

SIC and MODIS COD are largely small, with magnitudes primarily less than 3 Wm-2. The peaks of nearly all the error 

distributions for the different surface types and CODs are around 0 Wm-2, suggesting little systematic bias in the 

system associated with the different surface types and CODs. The mean error for the land distribution (Fig. 6b, brown) 

is slightly larger at -5.5 Wm-2, suggesting a slight negative bias over land. We suspect that this is related to the lack of 

information about the land-based surface type in the system. If the NN is primarily trained on dark land surfaces, but 

it is applied to brighter-than-normal land surfaces (e.g. snow- and ice-covered land), the NN will predict lower 

upwelling SWF than is observed by CERES. When excluding data from April and May from this analysis, the mean 

error for the over-land data is much smaller, supporting our hypothesis that the slight negative shift in the land-based 

error distribution is related to the land surface brightness that is unaccounted for in this system. Given that the majority 

of the smoke events analyzed in the study occurred in the summer months (June – August), we do not expect this 

potential low bias of the NN over bright land surfaces to significantly impact the results of our study.” 



 

Figure 6. a) Distribution of errors in the neural network (NN)-estimated aerosol-free shortwave flux (SWF) relative 

to CERES TOA upwelling SWF observations for the 50 validation swaths reserved from the NN training dataset. b) 

As in (a), but with the errors binned by the SSMIS sea ice concentration (SIC) and surface type. c) As in (a), but 

with the errors binned by MODIS cloud optical depth (COD). 

 

4. Figure 5 is not very informative for understanding the neural network architecture. A 
clearer schematic illustrating the network structure and flow is recommended. 

 

RESPONSE: We thank the reviewer for the recommendation. We have remade Fig. 5 
to more clearly illustrate the neural network structure, as shown below, and have inserted 
this figure into the paper in place of the old version. 

 



Figure 5. Architecture of the neural network for estimating L2 aerosol-free SWF from L2 input values of solar 

zenith angle (SZA), viewing zenith angle (VZA), sea ice concentration (SIC), 2.1 μm reflectance (CH7), cloud 

optical depth (COD), cloud top pressure (CTP), and surface albedo (ALB). Green circles represent nodes in the 

input layer, gray circles represent nodes in the hidden layers, and the red circle represents the node in the output 

layer. All nodes in the neural network are fully connected to the nodes in the next layer, as illustrated by the lines 

connecting the circles. 

 

5. The method used for trend estimation should be described in detail. Was data 
uncertainty incorporated into the trend analysis? In Section 4.3, the error analysis is 
not pixel-based—how representative is this approach? 

 

RESPONSE: We thank the reviewer for the comments and questions. Our methods 
for trend estimation, in addition to the methods by which we quantify trend error, are 
discussed in Section 4.4. Daily ADRF estimates were derived from the daily 
averaged OMI UVAI value and the ADRF look-up table. Then, a randomly-generated 
error value matching the error distribution derived in Section 4.3 was added to the 
derived daily ADRF estimate. Then, all daily ADRF estimates were averaged into 
monthly values at each grid point. To estimate the trend at each grid point, linear 
regression was applied to the time series of monthly averaged ADRF estimates, and 
the difference between the end and beginning points of the fitted trend line 
represent the trend. This process was repeated 600 times, through a stochastic 
approach, so that at each grid point there were 600 independent estimates of the 
monthly ADRF trend from 2005 – 2020. 

We account for data uncertainty in this trend approach by perturbing the daily 
forcing values by an error that matches the distribution from Section 4.3, and 
through a Monte Carlo method. In that section, we quantified how errors in the input 
components (i.e. uncertainty in the NN output, uncertainty in applying the LUT to 
estimate ADRF, uncertainty in the SSMIS SIC / surface type, and uncertainty in the 
MODIS COD) affect the final daily L3 ADRF estimate. Thus, by conducting 600 
independent trend estimates while adding errors that match the combined 
distribution of the errors from Section 4.3, the spread of the 600 trends at each grid 
point represents the impacts of data uncertainty on the final trend. We chose to 
conduct a bulk error analysis rather than a pixel-based error analysis to simplify the 
error analysis and include more data in each error distribution. 

 



6. CERES data are used as the reference for shortwave flux (SWF) validation. However, 
the authors must first assess and validate the accuracy of CERES data specifically 
over the Arctic. 

 
RESPONSE: We thank the reviewer for the suggestion. We have modified the end of 
Section 2.2 to include the following paragraph that describes the validation of 
CERES data in the Arctic region:  
 
“CERES data have been used extensively for investigating changes in Arctic radiative 
energy budgets for both TOA (Duncan et al., 2020; Kay and L’Ecuyer, 2013; Riihelä et 
al., 2013) as well as the surface (Boeke and Taylor, 2016; Hegyi and Taylor, 2017). 

Previous studies have also worked to validate Arctic CERES surface radiative fluxes 
(Di Biagio et al., 2021; Riihelä et al., 2017) and TOA fluxes (Taylor et al., 2022), with 
the latter seeking to validate CERES TOA radiative fluxes against aircraft-based 
upwelling radiative flux observations. While Taylor et al. (2022) noted some error in 
the Arctic CERES Level-2 SSF TOA upwelling SWF resulting largely from errors in the 
imager-based sea ice concentrations used in the scene classification, the CERES 
observations compared well overall with the aircraft observations (differences 
between the CERES and aircraft observations were within 2σ uncertainty). The 
authors concluded that CERES TOA radiative flux data are suitable for polar climate 
studies (Taylor et al., 2022).” 

 

7. On line 564, the authors assume that daily Level 3 ADRF errors are normally 
distributed. This assumption should be justified with supporting analysis. 
 

RESPONSE: We thank the reviewer for the comments and suggestions. Our 
assumption that the daily Level 3 ADRF errors are normally distributed is based on 
our component-based error analysis we conducted in Section 4.3. A normal 
distribution provides a good fit for the first two error components, which are the 
errors in the NN-based L2 ADRF estimates and errors in the application of the ADRF 
LUT. Though we calculate mean error and error standard deviations for the error 
distributions arising from the impacts of SSMIS SIC errors and MODIS COD errors on 
the estimated L3 ADRF values, as shown in Fig. 10 (now Fig. 11), those error 
distributions are not normally distributed. The vast majority of the errors are equal to 
0 because of the size of the SIC and COD bins, so a fitted curve from a normal 
distribution would likely exhibit a wider spread than is actually present in the error 



distribution. However, a normal fit likely provides an overestimate of the spread of 
the errors for those components. Thus, this overestimate leads to the L3 ADRF 
errors likely being an overestimate of the true L3 ADRF error. We chose to accept 
this overestimation of the error to have higher confidence in the trends found to be 
significant in the study. 
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