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Abstract. In response to recent advances in satellite ocean color remote sensing, we have developed a chlorophyll-a size 15 

distribution (CSD) model using machine learning (ML) approaches for optically complex Pacific Arctic waters. Previous CSD 

models have used principal component analysis (PCA) to retrieve spectral features from satellite-estimated phytoplankton 

absorption coefficient (aph(λ)) by assuming a strong correlation between the spectral features and phytoplankton size structure 

determined from the exponent of the CSD (η). A weakness of such approach is that it relies on satellite retrievals of aph(λ), 

which can be highly uncertain due to the optical effects of water constituents other than phytoplankton. In this study, we have 20 

developed a method based on ML to use remote sensing reflectance (Rrs(λ)) for directly retrieving η, thus avoiding uncertainties 

due to the inversion of aph(λ) from Rrs(λ). Results show superior performance of the ML-based CSD models compared to the 

PCA-based model utilizing both Rrs(λ) and aph(λ) as predictors of η. For direct Rrs(λ)-based retrievals, a CSD model based on 

multivariable linear regression produced the best performance among all models considered. Nevertheless, models using in-

situ aph(λ) yielded better accuracy, reflecting a closer optical linkage between η and aph(λ) than between η and Rrs(λ). Our choice 25 

of an Rrs(λ)-based model for satellite application is therefore practical, motivated by the limitations and uncertainty of aph(λ) 

inversions in optically complex waters. Another key finding is that more complex ML approaches do not always produce more 

effective models than standard linear regression. Indeed, multivariable linear regression outperformed other ML approaches 

for retrieving η directly from Rrs(λ), whereas support vector machine performed the best among diverse ML approaches in the 

case of aph(λ). Overall, this study found benefits in using Rrs(λ) with ML to improve the retrieval accuracy of η for Pacific 30 

Arctic waters.  
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1 Introduction 

Satellite remote sensing is a cost-effective tool that can provide observations across a range of temporal and spatial scales. One 

of the primary parameters retrieved from ocean color satellite data is the mass concentration of chlorophyll-a (Chla; see Table 

1 for symbols, definitions, and units), the primary pigment associated with photosynthesis and a key indicator of phytoplankton 35 

biomass. Satellite-derived Chla observations have revolutionized our understanding of climate systems, marine ecosystems, 

and biogeochemical processes (McClain, 2009). However, Chla alone does not provide a full description of the fundamental 

ecosystem functions of phytoplankton, such as nutrient uptake and cycling, energy transfer through marine food webs, deep-

ocean carbon export, and gas exchange with the atmosphere (Mouw et al., 2017).  

Due to the significance of phytoplankton community composition in ocean biogeochemical processes, continuous research 40 

and innovation in satellite ocean color techniques have extended our capabilities from routinely estimating Chla concentration 

to retrieving phytoplankton functional types (PFTs) (Gordon et al., 1980; Mouw et al., 2017). PFTs are conceptual groupings 

of phytoplankton species that have similar biogeochemical functions (e.g., nitrogen fixers, calcifiers, dimethylsulfide 

producers, and silicifiers) and other characteristics such as cell size (pico-, nano-, and micro-phytoplankton). PFTs are often 

defined based on phytoplankton size class (PSC), phytoplankton taxonomic composition (PTC), or particle size distribution 45 

(PSD), and the choice of partitioning depends on the question at hand (Mouw et al., 2017), with no universally accepted 

standard (Reynolds et al., 2002). In particular, PSC serves as a useful index of the trophic state, carbon export efficiency, and 

productivity (Hood et al., 2006; Le Quéré et al., 2005) and, therefore, comprises the majority of PFT research.  

A wide range of satellite-based methods for global estimations of PFTs have been developed to date (IOCCG, 2014). Mouw 

et al. (Mouw et al., 2017) provide a "user guide" for applying remote sensing techniques to monitor PFTs, explaining details 50 

of various PFT algorithms and their associated uncertainties and discussing the advantages and disadvantages of different 

approaches. Satellite estimation of PFTs generally exploit spectral features in remote sensing reflectance (Rrs(λ)), absorption 

coefficient of phytoplankton (aph(λ)), and/or backscattering coefficient of particles (bbp(λ)) caused by variations in PFT 

composition (Fujiwara et al., 2011; Kostadinov et al., 2010; Li et al., 2013; Roy et al., 2017). The ocean color variables used 

in these spectral approaches are grouped into two categories: apparent optical properties (AOPs, e.g., Rrs(λ)) and inherent 55 

optical properties (IOPs, e.g., aph(λ)). Remotely sensed IOPs are derived from spectral inversion of Rrs(λ) (Mobley, 1994), 

thereby introducing additional uncertainties for IOP-based methods compared to Rrs(λ)-based methods. 

For global estimation of PSC, Waga et al. (Waga et al., 2017) developed a Chla size distribution (CSD) model that retrieves 

the synoptic size structure of the phytoplankton community by determining the exponent of CSD (CSD slope; η). As opposed 

to other PSC approaches, η represents the size structure of the phytoplankton community with a single value; thus, the output 60 

of the approach can be easily incorporated into ocean biogeochemical models. Akin to the PSD (Kostadinov et al., 2010; Roy 

et al., 2017), the arbitrariness of the arrangement of the size range is another advantage of this approach, where other methods 
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generally adopt a fixed target group or size class (e.g., <2 μm, 2–20 μm, and >20 μm for pico-, nano-, and micro-

phytoplankton, respectively). More specifically, once η is determined, fractional contributions of phytoplankton biomass at 

diverse size ranges can be estimated from η. Moreover, there is flexibility in computing η with different combinations of size-65 

fractionated Chla, generating a comparable variable across datasets that often comprise various size ranges of size-fractionated 

Chla data. 

The spectral features of aph(λ) can reveal specific information regarding variations in the composition and size structure of 

phytoplankton assemblage (Bricaud and Morel, 1986a). For example, how pigments are distributed within a phytoplankton 

cell affects the magnitude of aph(λ), while pigment composition influences the spectral shape of aph(λ). Waga et al. (Waga et 70 

al., 2017) applied principal component analysis (PCA) to normalized aph(λ) spectra derived from in situ measurements at seven 

wavelengths (412, 443, 469, 488, 531, 547, and 555 nm) that are consistent with spectral bands of the Moderate Resolution 

Imaging Spectroradiometer (MODIS). This method assumes that PCA captures spectral features of aph(λ) as a simpler set of 

principal component (PC) scores while still maintaining significant patterns and trends. The relationship between η and the 

resulting PC scores was then quantified by ordinary least squares regression, enabling η to be estimated from satellite 75 

derivations of aph(λ) (Waga et al., 2017). In order to investigate spatiotemporal variations in the size structure of phytoplankton 

communities and its impacts on the marine ecosystems in the Pacific Arctic, the CSD model was subsequently optimized for 

the Pacific Arctic based on a regional in situ dataset (Waga et al., 2019a). However, in Arctic coastal waters, phytoplankton 

absorption is typically low (only 16% of non-water absorption at 443 nm) relative to colored dissolved organic matter (CDOM) 

and non-algal particles (NAP) and, as a result, IOP inversion algorithms for estimating aph(λ) are characterized by high 80 

uncertainty (Matsuoka et al., 2007). Therefore, direct approaches to estimate η utilizing Rrs(λ) may be advantageous in Arctic 

coastal environments, even though Rrs(λ) itself is not solely influenced by phytoplankton. 

The present study develops the CSD model for the Pacific Arctic utilizing diverse supervised machine learning (ML) 

approaches, ranging from simple linear regression to convoluted methods such as neural networks (Chen et al., 2015, 2018; Li 

et al., 2020, 2023; Waga et al., 2022), support vector machines (Deng et al., 2019; Selvaraju et al., 2021; Su et al., 2015), 85 

Gaussian processes (Pasolli et al., 2010), and ensemble methods (Bao et al., 2023; Qi et al., 2022; Qiao et al., 2022; Zhang et 

al., 2023). A main advantage of ML is the ability to parameterize general relationships from training data without predefined 

or explicit equations (Marzban, 2009). To date, a variety of ML models have been used for retrieval of various ocean 

parameters, including the diffuse attenuation coefficient (Chen et al., 2015), particle backscattering coefficient (Sauzède et al., 

2016), Chla concentration (Chen et al., 2021; Hu et al., 2021; Kolluru and Tiwari, 2022; Mukonza and Chiang, 2022; Syariz 90 

et al., 2020), and reconstructions of ocean color data (Chen et al., 2019; Fasnacht et al., 2022; Krasnopolsky et al., 2016). The 

current study aims to (1) parameterize CSD models for the Pacific Arctic using spectral features of Rrs(λ) and aph(λ), (2) assess 

satellite algorithm performance using an in situ dataset, and (3) compare newly developed models with the previously 

developed PCA-based CSD model. The updated CSD model provides accurate estimates of spatiotemporal variations in PSC 
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in the Pacific Arctic, providing key information on how recent environmental changes are affecting the foundation of marine 95 

food webs in a changing Arctic. 

Table 1. Definitions and units of all symbols used in the text, figures, and equations. 

Symbol Definition Unit 
Chla Chlorophyll-a concentration mg m⁻³ 
Chla₀ Chla at reference diameter D0 mg m⁻³ 
Chlatotal Total Chla  mg m⁻³ 
Chlasize Size-fractionated Chla in within a size bin from D₁ to D₂ mg m⁻³ 
Chlasize_obs In situ Chlasize mg m⁻³ 
η Exponent of the CSD - 
ηobs In situ η retrieved from in-situ Chlasize_obs - 
ηMDLobs Estimated η using the CSD model from in situ data - 
ηMDLsat Estimated η using the CSD model from satellite data - 
Fsize Fractional contribution of pico-, nano-, micro-plankton to Chlatotal - 
Fsize_obs In situ Fsize retrieved from Chlatotal and Chlasize_obs - 
Fsize_MDL Estimated Fsize using the CSD model - 
D0 Reference diameter (0.7 µm) µm 
Dmin Lower bound for size integration (0.7 µm) µm 
Dmax Upper bound for size integration (200 µm) µm 
D1 Lower size limit of Chlasize µm 
D₂ Upper size limit of Chlasize µm 
λ Wavelength nm 
Rrs(λ) Remote sensing reflectance at λ sr⁻¹ 
Rrs_obs(λ) In situ Rrs(λ) sr⁻¹ 
Rrs_sat(λ) Satellite Rrs(λ) sr⁻¹ 
𝑅"!"_$%"(𝜆) In situ Rrs(λ) normalized with Eq. (5) - 
aph(λ) Absorption coefficient of phytoplankton at λ m⁻¹ 
aph_obs(λ) In situ aph(λ) m⁻¹ 
aph_QAA(λ) aph(λ) estimated using modified QAA m⁻¹ 
aph_QAAobs(λ) Estimated aph_QAA(λ) from in situ Rrs(λ) m⁻¹ 
aph_QAAsat(λ) Estimated aph_QAA(λ) from satellite Rrs(λ) m⁻¹ 
𝑎'&'_$%"(𝜆) In situ Rrs(λ) normalized with Eq. (5) - 
ap(λ) Absorption coefficient of particles at λ m⁻¹ 
ap_obs(λ) In situ ap(λ) m⁻¹ 
aNAP(λ) Absorption coefficient of NAP at λ m⁻¹ 
aNAP_obs(λ) In situ aNAP(λ) m⁻¹ 
aCDOM(λ) Absorption coefficient of CDOM at λ m⁻¹ 
aCDOM_obs(λ) In situ aCDOM(λ) m⁻¹ 
aw(λ) Absorption coefficient of pure water at λ m⁻¹ 
Sdg Spectral slope of the absorption coefficient of combined CDOM and NAP nm⁻¹ 
Lw(λ) Water-leaving radiance at λ W m⁻² sr⁻¹ nm⁻¹ 
Es(λ) Downwelling irradiance above surface at λ W m⁻² nm⁻¹ 
β₀ Intercept in PCA-based CSD model - 
Cj Coefficients in PCA-based CSD model at wavelength j - 
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2 Material and methods 

An updated CSD model is proposed in this study to enable reasonable estimation of spatiotemporal variations in PSC for 

optically complex Pacific Arctic waters. See Section S1–S4 in Supplement for complete materials and methods. 100 

2.1 In situ data 

Multiple research cruises were conducted in the Pacific Arctic during the summer months from 2007 to 2021 (Table 2). A total 

of 177 open ocean and coastal sampling locations were visited in the sub-Arctic Bering Sea and the west Beaufort Sea, 

including the Stefansson Sound near Prudhoe Bay along the northern coast of Alaska (Figure 1). A companion map, color-

coded by cruise year, is provided in Figure S1. At each station, spectral radiometric measurements were made during daylight 105 

hours, and water samples were collected for aph (λ) and size-fractionated Chla (hereafter referred to as aph_obs(λ) and Chlasize_obs, 

respectively).  

Figure 1. Sampling locations of in situ data used in this study. Colors of each plot indicate the exponent of chlorophyll-a (Chla) 

size distribution (CSD slope; ηobs), whereas background color represent the bathymetry. 

Table 2. Details of cruises, number of samples (N) obtained during each cruise, and filter pore sizes used to collect size 110 

fractionated chlorophyll-a samples. Note that the cruise period indicates the date span of in situ data collected. 
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Cruise period (mm/dd/yyyy) Cruise ID Vessel N Filter pose size 

07/25–08/14/2007 OS180 T/S Oshoro-maru 20 20, 5, and 0.7 μm 

09/11–10/10/2009 MR09-03 R/V Mirai 12 10, 5, and 0.7 μm 

09/04–10/13/2010 MR10-05 R/V Mirai 28 10, 5, and 0.7 μm 

09/13–10/02/2012 MR12-E03 R/V Mirai 12 20, 2, and 0.7 μm 

06/06–07/17/2013 OS255 T/S Oshoro-maru 34 20, 2, and 0.7 μm 

08/31–10/04/2013 MR13-06 R/V Mirai 32 20, 2, and 0.7 μm 

08/30–09/22/2016 MR16-06 R/V Mirai 18 20, 2, and 0.7 μm 

07/09–07/21/2017 OS040 T/S Oshoro-maru 11 20, 2, and 0.7 μm 

08/13–08/15/2021 PB21 R/V Ukpik 10 20, 2, and 0.7 μm 

2.1.1 Phytoplankton pigments 

Chlasize_obs was determined using a 10-AU fluorometer (Turner Designs), except for ten samples from the 2021 cruise in 

Prudhoe Bay (PB21), for which Chlasize_obs was determined using high performance liquid chromatography (HPLC). HPLC 

analysis provides the concentration of not only Chla but also other major phytoplankton pigments (i.e., fucoxanthin, peridinin, 115 

19’-hexanoyloxyfucoxanthin, 19’-butanoylofucoxanthin, alloxanthin, chlorophyll-b, neoxanthin, prasinoxanthin, 

violaxanthin, lutein, and zeaxanthin). At each station in all the cruises, both fractionated and unfractionated (i.e., without 

filtration using filters of different pore sizes for size fractionation) samples were collected. Unfractionated HPLC samples were 

collected at each station in all the cruises.  

2.1.2 Absorption coefficient 120 

Particles in surface seawater samples were collected on a GF/F filter until the filter had sufficient coloration to measure 

aph_obs(λ). The absorption coefficient of particles (ap_obs(λ)) on the filter was measured in the spectral range from 300 to 850 nm 

at 1 nm intervals using an MPS-2400 (Shimadzu Corporation), MPS-2450 (Shimadzu Corporation) or Cary 100 (Agilent 

Technologies) spectrophotometer. The quantitative filter technique (QFT) was used to determine aph_obs(λ) for samples 

measured with the MPS-2400 and MPS-2450 instruments (i.e., all cruises but PB21), following the procedure described by 125 

Mitchell (Mitchell, 1990), whereas aph_obs(λ) for the PB21 samples was determined with GF/F filters placed inside a 15-cm 

integrating sphere connected to the Cary 100 (IOCCG, 2018). Following the measurement for ap_obs(λ), the absorption 

coefficient of NAP (aNAP_obs(λ)) was measured after soaking the filter in 95% methanol or sodium hypochlorite, and aph_obs(λ) 

was finally obtained by subtracting aNAP_obs (λ) from ap_obs (λ). The absorption coefficient of CDOM (aCDOM_obs (λ)) at 

wavelengths from 250 to 750 nm at 1 nm intervals was measured using the same spectrophotometers as for the particulate 130 

absorption measurements, with the exception of the PB21 samples, which were analyzed using a Cary 300 (Agilent 

Technologies) spectrophotometer with 5-cm quartz cuvettes.  
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2.1.3 Remote sensing reflectance 

In situ spectral radiance and irradiance measurements were acquired using a PRR-800/810 (Biospherical Instruments), C-OPS 

(Biospherical Instruments), or HyperPro (Satlantic) spectroradiometer. Each spectroradiometer has different spectral 135 

resolutions and ranges: the PRR-800/810 and C-OPS collected at 17 (380 to 765 nm) and 19 wavelengths (320 to 875 nm), 

respectively, whereas the HyperPro acquired data between 400 and 800 nm at approximately 3 nm intervals. Remote sensing 

reflectance (Rrs_obs(λ)) was calculated as the ratio of the water-leaving radiance (Lw(λ)) to the above-water downward spectral 

irradiance (Es(λ)): 

𝑅!"_$%"(𝜆) = 𝐿((𝜆) 𝐸"(𝜆)⁄ . (1) 

Rrs_obs(λ) was resampled at ten MODIS bands in the visible range (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm) 140 

from the original wavelengths of each instrument using spline interpolation (Wang et al., 2015). Finally, a modified version of 

the Quasi-Analytical Algorithm (QAA; (Lee et al., 2002)) for the Pacific Arctic (Fujiwara et al., 2016) was used to estimate 

aph(λ) (aph_QAA(λ)) from in situ Rrs(λ) (Rrs_obs(λ)) and satellite Rrs(λ) (Rrs_sat(λ)). Here, aph_QAA(λ) estimated from Rrs_obs(λ) and 

Rrs_sat(λ) is denoted as aph_QAAobs(λ) and aph_QAAsat(λ), respectively. To avoid the retrieval of negative aph_QAA(λ), the modified 

version of QAA uses an optimized spectral slope of the absorption coefficient of combined CDOM and NAP (Sdg) obtained 145 

by reconstructing the Sdg based on a dataset collected in the Pacific Arctic (Fujiwara et al., 2016). The aph_QAAobs(λ) was used 

to validate the performance of the modified version of the QAA by comparing it with aph_obs(λ).  

2.1.4 Pigment-based identification of phytoplankton taxonomic composition 

An open-source R software package, phytoclass (ver 1.0.0), was used to determine the Chla biomass of different phytoplankton 

groups from their accessory pigments (Hayward et al., 2023). The phytoclass package is a Chla taxonomic partitioning 150 

software package similar to the widely used CHEMTAX software (Mackey et al., 1996). However, phytoclass has been shown 

to be more accurate and does not rely on initial assumptions of pigment to Chla ratios for each phytoplankton group (Hayward 

et al., 2023). Eight target taxonomic groups (diatoms, chrysophytes, dinoflagellates, prymnesiophytes, chlorophytes, 

prasinophytes, cryptophytes, and cyanobacteria) and 11 marker pigments for each taxonomic group (peridinin, 19’-

butanoyloxyfucoxanthin, fucoxanthin, 19’-hexanoyloxyfucoxanthin, neoxanthin, prasinoxanthin, violaxanthin, alloxanthin, 155 

lutein, zeaxanthin, and chlorophyll-b) were selected following (Zhuang et al., 2016), as these groupings have been used 

previously for CHEMTAX analysis in the Chukchi Sea shelf region. 

2.2 Satellite data  

The MODIS sensor onboard NASA's Aqua satellite (MODIS-A), operational since 2002, provides the longest time series 

among all currently operational ocean color sensors, which is an attractive advantage for decadal-scale monitoring and 160 

retrospective analyses. Level-3 standard mapped images of 4 km spatial resolution monthly climatological Rrs_sat(λ) at ten 
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bands in the visible range (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm) and daytime sea surface temperature 

(SST) derived by MODIS-A (version R2022.0) were downloaded from NASA’s Ocean Color website. The Rrs_sat(λ) data were 

then used to compute aph_QAAsat(λ) by using the modified QAA algorithm (Fujiwara et al., 2016). 

2.3 Chlorophyll-a size distribution model 165 

The exponent of the CSD (η), representing the size structure of phytoplankton communities, was determined following the 

method of Waga et al. (2017). Assuming the CSD follows a Junge-type power law distribution, the total Chla (Chlatotal) and 

Chlasize in a size range from D1 to D2 can be expressed as follows: 

Chl𝑎)$)*+ = / Chl𝑎, 0
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where Chla0 is the Chla at a reference diameter D0 (here, 0.7 μm). In this study, Dmin and Dmax were defined as 0.7 μm and 

200 μm, respectively. η was derived as the slope of the linear regression in log-space computations between the inverse log-170 

transformed median diameters (from D1 to D2), and Chlasize normalized by the bin width. An advantage of the CSD model is 

its robustness when using different sets of Chlasize to retrieve η (Waga et al., 2017).  

A large η indicates a greater contribution of smaller-sized phytoplankton, whereas a small η suggests that larger-sized 

phytoplankton dominate. The fraction of Chlasize can be derived using η as follows: 
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In this study, the size ranges for pico-, nano-, and micro-phytoplankton were defined as 0.7–2 μm, 2–20 μm, and 20–200 μm, 175 

respectively. To estimate the fraction of Chla within the size ranges for pico- (Fpico), nano- (Fnano), and micro-phytoplankton 

(Fmicro), D1 and D2 in Eq. (4) were set as the lower and upper limits of each size range. For clarification purposes, the size 

fractions determined from in situ Chlasize observations are denoted as Fsize_obs, whereas those estimated through a CSD model 

with Eq. (4) using η were represented as Fsize_MDL. 
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2.4 Model development 180 

The CSD model was trained using 70% of the entire dataset (i.e., training subset), randomly determined using the MATLAB 

randsample function (R2025b), while the remaining 30% was used for final validation (i.e., validation subset). The details of 

model development based on the PCA and supervised ML approaches are described in sections 2.4.1 and 2.4.2, respectively.  

2.4.1 PCA approach 

The previous version of the CSD model for the Pacific Arctic (Waga et al., 2019a) used the spectral shape of aph(λ) to estimate 185 

η. To capture the spectral features of aph(λ), PCA was applied to normalized aph_obs(λ) (𝑎'&'_$%"(𝜆)) at ten MODIS-A bands. 

The formula for 𝑎'&'_$%"(𝜆) is: 

𝑎'&'_$%"(𝜆) = [𝑎&'_$%"(𝜆) − mean(𝑎&'_$%"(𝜆))] std(𝑎&'_$%"(𝜆))⁄ , (5) 

where mean(aph_obs(λ)) and std(aph_obs(λ)) are the spectral arithmetic mean and standard deviation of individual aph_obs(λ) spectra, 

respectively. The input values for the PCA comprise a matrix (m × N) composed of 𝑎'&'_$%"(𝜆) values, where m and N are the 

number of the wavelengths and number of samples, respectively. Assuming the resulting PC scores correlate with η, η was 190 

estimated as follows: 

𝜂 = I𝛽, + expN𝛽5𝑆5

6

574

P

-4

,	
(6) 

𝑆5 = ∑ 𝑤5,9:
974 𝑎'&'_$%"S𝜆9T, (7) 

where Si and wi,j are the ith PC score and the loading factors for ith PC at wavelength j. In addition, m and k represent the 

number of wavelengths and the number of PCs (k = 4 in this study). The model parameters β0 and βi are the regression 

coefficients between η and PC scores.  

By substituting for the calculation of Si in Eq. (6), we obtained new equations as follows: 195 

𝜂 = U𝛽, + expN𝐶9𝑎'&'_$%"S𝜆9T
:

974

W

-4

,	
(8) 

𝐶9 = ∑ 𝛽5𝑤5,96
574 , (9) 

where β0 and Cj are the final model parameters. Once the model parameters were determined based on aph_obs(λ), the same 

coefficients were used in the case of aph_QAAobs(λ) and aph_QAAsat(λ) to produce estimates of η. For the Rrs-based models, 
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normalized Rrs_obs(λ) (𝑅"!"_$%"(𝜆)) was calculated in the same manner as Eq. (5), and η was determined by employing 𝑅"!"_$%"(𝜆) 

in Eqs. (6)–(9) in place of 𝑎'&'_$%"(𝜆). Note that η determined by Chlasize_obs, estimated through the CSD model using in situ 

measurements (𝑎'&'_$%"(𝜆) or 𝑅"!"_$%"(𝜆)) and satellite products (𝑎'&'_;<<"*)(𝜆) or 𝑅"!"_"*)(𝜆)) are denoted as ηobs, and ηMDLobs 200 

and ηMDLsat, respectively. 

2.4.2 Supervised ML approach 

In addition to the PCA approach used in prior work (Waga et al., 2017, 2019a, b, 2021a), CSD models were trained with 

various ML approaches. Since we know both the input (i.e., 𝑅"!"_$%"(𝜆) or 𝑎'&'_$%"(𝜆)) and corresponding output (i.e., ηobs) 

values, supervised ML was used to train CSD models. To this end, we leveraged the Regression Learner App in the MATLAB 205 

Statistics and Machine Learning toolbox, a user-friendly resource that enables simple data exploration, feature selection, 

specification of validation schemes, model training, and model evaluation. This application includes commonly used 

regression methods, e.g., linear regression models, regression trees, Gaussian process regression models, support vector 

machines, kernel approximation models, ensembles of regression trees, and neural network regression models. 

To avoid the possibility of missing certain representative samples and/or overfitting the models, repeated five-fold cross-210 

validation (ten repeats) was carried out by randomly dividing the training subset into five equally sized sets (or five-folds). 

Evaluation of the trained models was performed five times, each time excluding one-fold from the training subset and using it 

for validation. Each observation in the training subset was assigned to an individual group and stayed in that group for the 

duration of the procedure so that each observation was allowed to be used one time for testing and four times for training the 

model. Finally, the performance of the trained models was determined as the average of the performance metrics from the five 215 

iterations.  

The MATLAB Regression Learner App returns three other statistical metrics besides the coefficient of determination (r2): the 

root mean square error (RMSE), mean squared error (MSE), and mean absolute error (MAE) between the observed and 

predicted values, defined as: 

RMSE = \N(𝑋= − 𝑌=)3
>

=74

𝑁` , (10) 

MSE =N(𝑋= − 𝑌=)3
>

=74

𝑁` , (11) 

MAE =N|𝑋= − 𝑌=|
>

=74

𝑁` , (12) 
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where Xn and Yn represent the nth observed and predicted values, respectively. Once CSD models based on each ML method 220 

were finalized, the best ML-based CSD model for each predictor (i.e., 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆)) was determined based on 

the four aforementioned statistical metrics. Once the best-performing models for 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆) among diverse 

regression methods were determined, they were used for final validation and further analysis. 

2.5 Model validation metrics  

The performance of the resulting PCA-based CSD models and the best-performing ML-based CSD models were compared 225 

using the validation subset. Bias is a key metric for the performance assessment of satellite products (Seegers et al., 2018), 

defined as: 

Bias = 10^gN(𝑋= − 𝑌=)
>

=74

𝑁` h (13) 

Following recommended validation procedures for satellite ocean color algorithms (Seegers et al., 2018), the performance of 

the CSD models, as well as the modified QAA, was evaluated based on MAE (Eq. (12)) and bias.  

3 Results 230 

3.1 Phytoplankton size structure and taxonomic composition 

The measured exponent of CSD (ηobs) values ranged from 0 to 2.24 with corresponding Chlatotal_obs values of 18.84 and 0.05 

mg m−3, respectively (Table 3). Figure 2 depicts the Chlatotal_obs and ηobs values with regard to the relative contributions of 

Fsize_obs. High Chlatotal_obs was characterized by communities having a predominant contribution of Fmicro_obs and 

correspondingly lower contributions of both Fpico_obs and Fnano_obs. A similar but opposite pattern was found in ηobs, with small 235 

ηobs values clearly associated with large Fmicro_obs. This opposite pattern resulted from the fact that small ηobs values represent 

significant contributions of Fmicro_obs essentially associated with high Chlatotal_obs. In addition, Fmicro_obs and Fpico_obs ranged 

between 0.01–0.94 and 0.00–0.80, respectively, suggesting that our dataset covered a wide range of PSCs in the Pacific Arctic. 

According to Eq. (4), the smallest ηobs corresponded to 0.9, 0.09, and 0.01 of Fsize_MDL for micro-, nano-, and pico-

phytoplankton, whereas the largest ηobs corresponded to 0.02, 0.26, and 0.73, respectively.  240 
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Table 3. Summary statistics of primary variables used in this study. Note that these variables were determined by in situ 

observations. Abbreviation: Chla, chlorophyll-a; η, exponent of Chla size distribution (CSD); Fsize, fractional contribution of 

micro-, nano-, and pico-plankton; aph(443) phytoplankton absorption coefficient at 443 nm; aNAP(443), absorption coefficient 

of non-algal particles (NAP) at 443 nm; aCDOM(443), absorption coefficient of colored dissolved organic matter (CDOM) at 

443 nm; and Rrs(443), remote sensing reflectance at 443 nm.  245 
 Chlatotal_obs ηobs Fmicro_obs Fnano_obs Fpico_obs aph_obs(443) aNAP_obs(443) aCDOM_obs(443) Rrs_obs(443) 

 (mg m−3)     (m−1) (m−1) (m−1) (×102 sr−1) 

Mean 0.54 1.02 0.36 0.32 0.32 0.04 0.03 0.09 0.30 

Median 0.40 1.08 0.35 0.32 0.30 0.02 0.01 0.06 0.30 

Std 3.62 0.50 0.27 0.11 0.20 0.05 0.11 0.08 0.11 

Min 0.05 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.05 

Max 18.84 2.24 0.94 0.51 0.80 0.32 1.18 0.40 0.66 

 

Figure 2. Ternary diagrams depicting phytoplankton size composition. Each diagram illustrates fractional contribution of 

micro- (Fmicro_obs), nano- (Fmicro_obs), and picophytoplankton (Fmicro_obs) to total phytoplankton biomass, colored with (a) total 

Chla (Chlatotal_obs) and (b) ηobs, respectively.  

  250 
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Figure 3 illustrates the biomass and fractional contribution to total Chla of phytoplankton taxa determined by phytoclass, with 

respect to ηobs. The pigment ratios used in this study are detailed in Table S1. Diatoms dominated in terms of both biomass and 

fractional contribution for small ηobs values and gradually decreased as the ηobs value increased (p < 0.01). A similar but 

opposite pattern was observed for prymnesiophytes, indicating a gradual increase in the fractional contribution with increasing 

ηobs values (p < 0.01). Interestingly, diatoms and prymnesiophytes were the only taxa that dominated the phytoplankton 255 

communities, while other taxa remained only minor contributors across the ηobs range. More specifically, prasinophytes and 

cryptophytes showed slight increases in their fractional contribution up to >0.30 at ηobs values ranging from 0.70–2.00, while 

their Chla biomass in all cases remained less than 0.20 mg m−3. Other taxa showed negligible variations in biomass, whereas 

their fractional contributions fluctuated in response to reduced Chla for the entire phytoplankton community but was 

statistically insignificant (p ≥ 0.01).   260 
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Figure 3. Variations in major phytoplankton groups with reference to CSD slope. (a) Biomass and (b) fractional contribution 

of each phytoplankton taxa to total phytoplankton biomass (Chla) determined by phytoclass, with respect to ηobs value. Plots 

and vertical bars denote the average and standard deviations of each value within the respective ηobs bins. Abbreviations: 

Chryso, chrysophytes; Dino, dinoflagellates; Prym, prymnesiophytes; Chloro, chlorophytes; Pras, prasinophytes; Crypto, 

cryptophytes; Cyano, cyanobacteria.   265 
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3.2 Phytoplankton absorption and remote sensing reflectance spectra  

Since the Pacific Arctic is characterized as optically complex, i.e., the contributions of different water constituents 

(phytoplankton, NAP, and CDOM) are highly variable, the fractional contribution of each constituent to the total absorption 

by seawater (atotal_obs(λ)) was investigated using in situ data (Figure S4). The ratio of aph_obs(λ) to atotal_obs(λ) was typically <0.30, 

even at wavelengths of maximum pigment absorption (i.e., 443, 469, and 488 nm) and weak pure water absorption (aw(λ)), 270 

whereas aCDOM_obs(λ) comprised 0.66 ± 0.15 (mean ± std) of atotal_obs(412). At longer wavelengths (i.e., 645, 667, and 678 nm), 

aw(λ) contributed significantly to total absorption, with average values of >0.95. Overall, phytoplankton was the dominant 

constituent to atotal_obs(443) for only 30 of the 177 samples, suggesting that estimations of aph(λ) from Rrs(λ) using the QAA 

algorithm are likely to have large uncertainties for the majority of samples due to the significant contributions to absorption 

by other water constituents.  275 

Figure 4 shows spectral variations in Rrs_obs(λ), aph_obs(λ), 𝑅"!"_$%"(𝜆), and 𝑎'&'_$%"(𝜆) at ten MODIS-A bands, with respect to 

ηobs. Larger spectral variations in Rrs_obs(λ), with a distinct peak at green wavelengths (i.e., 531, 547, and 555 nm), were found 

for smaller ηobs values, whereas larger ηobs values corresponded to relatively flat spectral shapes, with only small peaks at 

shorter wavelengths (i.e., 469 and 488 nm). aph_obs(λ) also showed similar differences in spectral shape and magnitude with 

ηobs values, except with peaks at blue wavelengths. In contrast, 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆) emphasize only spectral shape by 280 

normalizing the range of variability in Rrs_obs(λ) and aph_obs(λ) (Figure 6c, d). Regarding 𝑎'&'_$%"(𝜆), sharper peaks at blue 

wavelengths (i.e., 412, 443, and 469 nm) with the maximum value at 443 nm were observed for large ηobs. Moreover, 

𝑎'&'_$%"(𝜆) increased more prominently with increasing wavelength from its minimum near 550 nm at smaller ηobs, whereas 

larger ηobs corresponded to less pronounced increases in 𝑎'&'_$%"(𝜆) over this spectral range. Overall, the spectral features of 

𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆) exhibited clear variations associated with ηobs values, with 𝑅"!"_$%"(𝜆) exhibiting larger variations 285 

associated with ηobs across the wide range of wavelengths compared to 𝑎'&'_$%"(𝜆). 𝑎'&'_$%"(𝜆) also exhibited larger spectral 

variations, but differences associated with ηobs were smaller in magnitude. The performance of the modified QAA for MODIS-

A bands, determined by comparing aph_QAAobs(λ) with aph_obs(λ), is shown in Table S2. According to the validation results, aph(λ) 

values at longer wavelengths (645, 667, and 678 nm) exhibited poor QAA estimation accuracy and were removed from the 

model development based on PCA and ML approaches. It is noteworthy that the MAE for these wavelengths represents 290 

between 25% and 30% of the pure water values (Pope and Fry, 1997). While this might appear large in an absolute sense, the 

red portion of the spectrum contains limited phytoplankton taxonomic information outside of the chlorophyll absorption band 

at 678 nm (Huot et al., 2005).  



16 
 

Figure 4. Spectral variations in key optical properties. Spectral variations in (a) remote sensing reflectance (Rrs_obs(λ)), (b) 

aph_obs(λ), (c) normalized Rrs_obs(λ) (𝑅"!"_$%"(λ)), and (d) normalized aph_obs(λ) (𝑎'&'_$%"(λ)) with respect to ηobs. Vertical bars 295 

represent the standard deviations at each wavelength for each ηobs range. 
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3.4 CSD model development: PCA approach 

The spectral features of 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆) captured by PCA were used to develop the CSD model. Variations in the 

loading factors, which describe how much each variable contributes to a particular principal component at ten wavelengths 300 

(i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm) and seven MODIS-A bands (i.e., 412, 443, 469, 488, 531, 547, 

and 555 nm) for 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆), respectively, are shown in Figures S2 and S3.  

The spectral features captured by PCA demonstrate optical signatures of 𝑅"!"_$%"(𝜆)  and 𝑎'&'_$%"(𝜆) . The regression 

coefficients β0 and βi of the logistic-type function (Eqs. (8) and (9)) were therefore determined by least squares regression 

between the first four PC scores of 𝑅"!"_$%"(𝜆) or 𝑎'&'_$%"(𝜆) and ηobs. The resulting regression coefficients were then used to 305 

compute the model parameter Cj (Eq. (8)). Here, PCA and subsequent procedures for βi and Cj retrievals were conducted 

separately for two sample groups exhibiting either aph(412) ≥ aph(469) or aph(412) < aph(469) regarding 𝑎'&'_$%"(𝜆), whereas 

the procedures for 𝑅"!"_$%"(𝜆) were performed on the entire dataset (unpartitioned) for model training. The partitioning of the 

model parameters for 𝑎'&'_$%"(𝜆) was based on the trial-and-error approach (Waga et al., 2017) because a single combination 

of regression coefficients cannot capture the entire variations in the spectral shape of 𝑎'&'_$%"(𝜆) in response to changing ηobs. 310 

The partitioning sequence aimed to avoid underestimation that was observed for higher ηobs (Waga et al., 2017). Since no 

specific pattern in ηobs estimation was identified for 𝑅"!"_$%"(𝜆) , this study did not exploit the portioning approach for 

𝑅"!"_$%"(𝜆). The resulting model parameters are summarized in Table S3. The resulting PCA-based CSD models for 𝑅"!"_$%"(𝜆) 

and 𝑎'&'_$%"(𝜆) were hereafter denoted as CSD	model?@<-AB()(D) and CSD	model?@<-FG*+(D), respectively. 

3.5 CSD model development: supervised ML approach 315 

Additional CSD models were developed using a supervised ML approach through MATLAB’s Regression Learner App, 

setting 𝑅"!"_$%"(𝜆) or 𝑎'&'_$%"(𝜆) as input and ηobs as output. Performance statistics for the top five and bottom five models are 

presented in Table 4. Comprehensive results for the 28 models appear in Tables S4 (𝑅"!"_$%"(𝜆)) and S5 (𝑎'&'_$%"(𝜆)). The best 

model for 𝑅"!"_$%"(𝜆) was a linear regression with linear preset, whereas that for 𝑎'&'_$%"(𝜆) was a support vector machine 

(SVM) with medium Gaussian preset. These models achieved the best performance on the majority of four statistical metrics 320 

(i.e., RMSE, MSE, r2, and MAE) relative to the other candidates and were thus selected as the ML-based CSD models for 

𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆); hereafter, CSD	modelHI-AB()(D) and CSD	modelJKL-FG*+(D), respectively. The model parameters for 

CSD	modelHI-AB()(D) is reported in Table S6. 

Upon statistical evaluation, we found random patterns in relationships between model performance and regression methods. 

For example, the linear regression with linear interaction preset showed the second worst performance while the standard linear 325 

preset showed the best performance among all 28 models tested with 𝑅"!"_$%"(𝜆) as input. The SVM showed the best (medium 
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Gaussian preset) and worst (cubic preset) performance for 𝑎'&'_$%"(𝜆). The models trained with the neural network method 

tended to show poor estimation accuracy for both 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆). Overall, the performance of the CSD models 

developed by the supervised ML approach varied largely among the regression methods used in the training process, indicating 

that care should be taken when choosing a regression method for model development. 330 



19 
 

Table 4. Training results of the top five and bottom five CSD models based on diverse machine learning approaches (i.e., model type and preset). 

The four statistical metrics, including the root mean square error (RMSE), mean squared error (MSE), coefficient of determination (r2), and mean 

absolute error (MAE), are given as mean ± std derived from ten repeats of five-fold cross-validation.  

Predictor Rank Model type Preset RMSE MSE r2 MAE 
𝑅"!"(λ) 1 Linear Regression Linear 0.16 ± 0.01 0.03 ± 0.00 0.76 ± 0.02 0.12 ± 0.01 

 2 Linear Regression Robust Linear 0.16 ± 0.01 0.03 ± 0.00 0.76 ± 0.02 0.12 ± 0.00 
 3 SVM Linear SVM 0.17 ± 0.01 0.03 ± 0.00 0.74 ± 0.03 0.13 ± 0.00 
 4 Stepwise Linear Regression Stepwise Linear 0.18 ± 0.02 0.03 ± 0.01 0.70 ± 0.08 0.13 ± 0.01 
 5 Efficient Linear Efficient Linear SVM 0.18 ± 0.00 0.03 ± 0.00 0.69 ± 0.01 0.14 ± 0.00 
 ⋮               
 24 Neural Network Medium Neural Network 0.64 ± 0.21 0.45 ± 0.31 -3.09 ± 2.87 0.27 ± 0.03 
 25 SVM Quadratic SVM 0.71 ± 0.41 0.66 ± 0.93 -4.93 ± 8.37 0.25 ± 0.07 
 26 Neural Network Wide Neural Network 0.84 ± 0.36 0.82 ± 0.65 -6.35 ± 5.88 0.32 ± 0.05 
 27 Linear Regression Interactions Linear 3.21 ± 1.26 11.74 ± 9.11 -104.16 ± 80.99 0.55 ± 0.13 
 28 SVM Cubic SVM 24.10 ± 32.60 1537.37 ± 3416.27 -13771.77 ± 30640.37 2.69 ± 3.08 

𝑎(#$(λ) 1 SVM Medium Gaussian SVM 0.13 ± 0.01 0.02 ± 0.00 0.80 ± 0.02 0.10 ± 0.00 
 2 Gaussian Process Regression Squared Exponential GPR 0.13 ± 0.00 0.02 ± 0.00 0.80 ± 0.02 0.10 ± 0.00 
 3 Gaussian Process Regression Matern 5/2 GPR 0.13 ± 0.01 0.02 ± 0.00 0.80 ± 0.02 0.10 ± 0.00 
 4 Gaussian Process Regression Rational Quadratic GPR 0.13 ± 0.01 0.02 ± 0.00 0.79 ± 0.02 0.11 ± 0.00 
 5 Gaussian Process Regression Exponential GPR 0.14 ± 0.00 0.02 ± 0.00 0.78 ± 0.01 0.11 ± 0.00 
 ⋮               
 24 Neural Network Bi-layered Neural Network 0.57 ± 0.28 0.40 ± 0.38 -3.65 ± 4.49 0.26 ± 0.03 
 25 Stepwise Linear Regression Stepwise Linear 0.71 ± 0.26 0.56 ± 0.35 -5.51 ± 4.06 0.21 ± 0.03 
 26 Linear Regression Interactions Linear 1.18 ± 0.36 1.50 ± 0.96 -16.46 ± 11.04 0.27 ± 0.04 
 27 SVM Quadratic SVM 1.35 ± 0.28 1.91 ± 0.76 -21.18 ± 8.92 0.28 ± 0.03 
 28 SVM Cubic SVM 5.10 ± 2.66 32.39 ± 34.40 -376.09 ± 402.63 0.67 ± 0.24 
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3.6 CSD model validation 335 

Validation results of the four CSD models, i.e., CSD	model?@<-AB()(D) , CSD	model?@<-FG*+(D) , CSD	modelHI-AB()(D) , and 

CSD	modelJKL-FG*+(D) are shown in Figure 5, with respect to the fractional contribution of aph_obs(443) to atotal_obs(443). The 

𝑎'&'_$%"(𝜆)-based models performed relatively well for both PCA and ML approaches, whereas, the PCA-based 𝑅"!"_$%"(𝜆) 

model underestimated ηobs, with the range of estimated values (~0.4–1.3) much lower than the measured range (~0.2–2.2). In 

addition, the ML-based models (CSD	modelHI-AB()(D) and CSD	modelJKL-FG*+(D)) showed better performance compared to the 340 

PCA-based models (CSD	model?@<-AB()(D) and CSD	model?@<-FG*+(D)). Overall, the CSD	modelJKL-FG*+(D) performed the best 

among the four CSD models developed in this study. However, satellite retrieval of aph(λ) in optically complex waters amplifies 

uncertainty in retrieving ηMDLsat for the CSD models exploiting aph(λ). Validation results of the CSD model using the 

aph_QAAobs(λ), estimated from Rrs_obs(λ) through the modified QAA, showed diminished performance, especially for the 

CSD	modelJKL-FG*+(D)  (Figure 5f). In this sense, the best-performing model for applications with Rrs_sat(λ) is 345 

CSD	modelHI-AB()(D). The CSD	modelHI-AB()(D) yielded statistical measures of 0.21 and 1.16 for MAE and bias, respectively. 

Out of the 53 samples in the validation dataset, estimates for 44 samples (i.e., 83%) were within ±35% of the in situ measured 

values. The associated average and median percent errors with respect to in situ values were 28.0% and 16.2%, respectively. 
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Figure 5. Validation results of the developed models. Comparison between measured (ηobs) and model-estimated η values 

(ηMDLobs) with respect to the fractional contribution of aph_obs(443) to atotal_obs(443). Upper (a–c) and lower panels (d–f) show 350 

CSD models developed by PCA- and ML-based approaches, respectively. Panels (c) and (f) show the results of the same CSD 

models in panels (b) and (e) but using 𝑎'&'_;<<$%"(𝜆), whereas panels (b) and (c) use 𝑎'&'_$%"(𝜆) determined from in situ 

observations. MAE denotes the median absolute error. 

3.7 CSD slope distribution in the Pacific Arctic 

Seasonal variations in climatological ηMDLsat distribution derived by the CSD	modelHI-AB()(D) from Rrs_sat(λ) in the Pacific Arctic 355 

are shown in Figure 6. The ηMDLsat values were persistently low in the western side of the Bering Strait, whereas those on the 

eastern side were generally high throughout the season. Such west-east contrast was also found on the Bering Sea shelf, with 

low ηMDLsat values in the west and high ηMDLsat values in the east. These spatial dynamics in the ηMDLsat would likely reflect 

current patterns in the Pacific Arctic. Indeed, SST shows coincident patterns with such spatial variations in ηMDLsat values 

(Figure S5), with relatively higher water temperatures tending to contain higher ηMDLsat as well. The climatological mean ηMDLsat 360 

in the Pacific Arctic decreased from 1.88 to 1.52 from July to September (Figure 7), suggesting an overall shift from smaller 

to larger phytoplankton communities over the season. More specifically, the fractional contribution of micro-phytoplankton 

(pico-phytoplankton) to total phytoplankton biomass changed from 0.04 to 0.13 (0.61 to 0.44) between July and September.   
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(e) SVM-âph obs(6)

MAE =0.17
Bias =1.14

0.0 1.0 2.0 3.0
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Figure 6. Monthly climatology of ηMDLsat values in (a) June, (b) July, (c) August, and (d) September in the Pacific Arctic for 

2002–2022 (derived from Rrs_sat(λ) using the CSD	modelHI-AB()(D)). White areas indicate no valid retrievals due to cloud and/or 365 

sea-ice cover. 
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Figure 7. Histograms of monthly climatology of ηMDLsat values in (a) June, (b) July, (c) August, and (d) September in the Pacific 

Arctic for 2002–2022. 

4 Discussion 370 

4.1 Taxonomic composition and size structure of phytoplankton community 

Numerous studies have reported that the size structure of phytoplankton communities has strong linkages with the taxonomic 

composition (Finkel et al., 2010). Diatoms and dinoflagellates are generally classified as micro-phytoplankton; 

prymnesiophytes, chrysophytes, chlorophytes, and cryptophytes are classified as nano-phytoplankton; and prasinophytes and 

cyanobacteria are grouped into pico-phytoplankton. According to pigment-based taxonomic identification, diatoms and 375 

prymnesiophytes were the main phytoplankton taxa contributing to variations in the size structure of the phytoplankton 

communities (Figure 3b). More specifically, a higher fractional contribution of diatoms was associated with smaller ηobs values, 

suggesting a large-sized phytoplankton-dominated condition. In contrast, a higher fractional contribution of prymnesiophytes 

resulted in larger ηobs values, indicating a small-sized phytoplankton dominated condition. Overall, shifts in the relative 

fractions of micro- and nano-size classes drove the change in ηobs, while pico-plankton had less impact.  380 
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4.2 Responses of optical signatures to phytoplankton size structure 

The absolute concentration of phytoplankton pigments in seawater typically affects first-order variability in the magnitude of 

Rrs(λ), with secondary impacts on Rrs(λ) spectral shape associated with diversity in dissolved and particulate properties, such 

as phytoplankton community composition (Ciotti et al., 2002). Therefore, spectral variations in the magnitude-normalized 

𝑅"!"(𝜆) can be reasonably assumed to coincide with changes in the size structure of the phytoplankton community. Indeed, the 385 

spectral shape of 𝑅"!"_$%"(𝜆) showed a transition of the peak wavelength from green to blue with increasing ηobs values (Figure 

4b). Likewise, the magnitude of aph(λ) is related to pigment composition and concentration, whereas size information is 

contained in the shape of the absorption spectrum due to pigment packaging within cells (Bricaud and Morel, 1986b). For 

example, we found a sharp absorption peak in 𝑎'&'_$%"(𝜆) around 443 nm that appeared to be positively correlated with CSD 

slope (Figure 4d). Overall, our study demonstrated strong influences of the size structure of phytoplankton communities on 390 

𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆), as reported in previous studies (Mouw et al., 2017). Although we found clear linkages in the spectral 

shape of 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆) with ηobs, it is important to note that 𝑅"!"_$%"(𝜆) is influenced not solely by phytoplankton 

but also by CDOM and NAP. Since Chla is generally uncorrelated with CDOM and NAP in coastal waters, the combined 

impact of absorption and scattering by all water constituents on water-leaving radiance likely accounts for the somewhat poorer 

performance of the remote sensing-based models compared to the in situ pigment absorption based ML models. 395 

4.3 Comparison of PCA- and ML-based approaches  

The output from PCA consisted of two terms: loading factors and PC scores. Loading factors define the rotations of the axes. 

PC scores are linearly uncorrelated variables that represent the positions of samples in the new rotated axes, and each is the 

linear combination of original spectra with corresponding loading factors (Wang et al., 2015). The PCA-based approach 

adopted here assumes that PC scores are correlated with η values, yet this assumption would not have been necessarily valid 400 

in this study. Indeed, the PCA-based CSD model showed a degraded performance compared to that of the ML-based model 

particularly for 𝑅"!"_$%"(𝜆), suggesting that the PCA could have added uncertainties in the retrieval of η. In fact, simple and 

direct linear regression resulted in better performance of the CSD model in the case of utilizing 𝑅"!"_$%"(𝜆). In addition, the 

first two PC modes explained about 95% of spectral variations in 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆). This fact suggests that the other 

two PC modes (i.e., PC modes 3 and 4) contribute little to explaining the entire spectral variation but may have added 405 

uncertainties, especially considering the relatively small dataset used in the current study. Note that the PCA-based approach 

is a dimensionality reduction method often used to reduce the dimensionality of large data sets by transforming a large set of 

variables into a smaller one that still contains most of the information in the large set (Corte-Real, 2020). In the case of 

hyperspectral data, the input variables can easily be hundreds of wavelengths, which imposes a significant computational cost. 

The PCA can aggregate important spectral features into PC scores and may prove beneficial for developing robust remote 410 

sensing algorithms based on hyperspectral data. However, because we are using multispectral data with limited number of 

predictor variables, this potential benefit of PCA is not realized in our study. 
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While the conventional least square regression has been used for decades in the development of satellite ocean color algorithms 

(Fujiwara et al., 2011; Hirata et al., 2011; O’Reilly et al., 1998; Waga et al., 2017, 2019a), more complex ML methods are 

increasingly being applied and many studies have reported their capability for improved ocean color product retrievals (Chen 415 

et al., 2019; Hu et al., 2021, 2018). The least square regression is a statistical method that fits a pre-defined equation to specific 

data. Due to is relative simplicity, it cannot fully extract hidden patterns in data and/or elicit a deep characterization of intricate 

relationships between a number of interdependent variables (Martens and Dardenne, 1998). However, the ML approach of 

learning relationships between the input values and the corresponding output values without predefined or explicated equations 

requires an extensive dataset that covers complex behaviors in the data and a wide range of environmental conditions (Marzban, 420 

2009). Once trained, ML approaches are powerful tools for the fast and efficient processing of large datasets, such as geospatial 

satellite data (Paul and Huntemann, 2021; Waga et al., 2022).  

One of the key findings of this study is that more complex ML approaches (e.g., support vector machine, ensemble, and neural 

network) do not always produce more effective models than simple ML approaches (e.g., standard linear regression) (Table 

4). While more complex models generally perform better than simpler ones (Makridakis et al., 2022), a complicated or flexible 425 

model will pose challenges for interpretation and can end up overfitting random effects (i.e., noises) that are unique to the 

dataset used for training. If these random effects are not present in new data to which the model is applied, then the model can 

produce incorrect results when it uses relationships developed based on random phenomena in the training dataset. Thus, the 

limited size of our dataset (i.e., only 177 samples) likely contributed to the poor performance of the complex ML models. 

Nonetheless, the CSD model trained with a support vector machine was selected as the best model for 𝑎'&'_$%"(𝜆). This 430 

indicates that the poor performance of complex ML approaches for 𝑅"!"_$%"(𝜆) may also be associated with other regression-

related factors (e.g., number of features, classifier hyper-parameter optimization, and number of cross-validation folds) rather 

than simply the number of samples used for training (Vabalas et al., 2019). One potential explanation for the better performance 

with the simple linear regression approach for 𝑅"!"_$%"(𝜆) is that variance in 𝑅"!"_$%"(𝜆) for each ηobs range was larger compared 

to that of 𝑎'&'_$%"(𝜆) (Figure 4c). Complex ML approaches applied to 𝑅"!"_$%"(𝜆) likely introduced errors related to the variance 435 

in the relationship between the spectral features and ηobs, whereas a simple ML approach captured only predominant features 

with lesser effects of the variance. Finally, we wish to also express that the type of batch approach employed by MATLAB’s 

Machine Learning App is useful for identifying what type of model might perform well for the problem at hand, however it 

should not be taken as canon as more complex ML approaches often require careful customization and model design. 

4.4 Methodological uncertainties and limitations 440 

A major challenge of the ML approach, with some exceptions, such as linear regression, is that it is difficult or impossible to 

derive a mechanistic understanding of the model-predicted relationship between the input and output values (Ray, 2019). For 

this reason, the ML approaches are sometimes called “black boxes.” This lack of transparency can be problematic in 
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interpreting the results generated by the model (Vollmer et al., 2020; Wachter et al., 2017). While ML approaches have been 

employed in numerous fields besides satellite remote sensing, they have not adequately addressed the issue of causality, which 445 

is essential to support wider dissemination and acceptance of the proposed models (Hall et al., 2022). What can be said at this 

point is that the selection of an ML approach carries with it trade-offs between accuracy and interpretability. Establishing 

procedures for interpreting how ML models learn and arrive at answers is crucial to not only selecting the appropriate model 

approach but also for improving reliability and building confidence in the selected approach.  

The superior in-situ performance of aph(λ)-based models reflects a stronger physical coupling between η and aph(λ) (Figure 5). 450 

Our preference for the Rrs(λ)-based model is operational, as it avoids uncertainties due to the inversion of aph(λ) from Rrs(λ) in 

optically complex waters and yields reliable retrievals for satellite applications; it should not be taken as evidence that η is 

more fundamentally linked to Rrs(λ) than to aph(λ). A further explanation for why the aph(λ)-based model performed better than 

the Rrs(λ)-based model pertains to measurement uncertainty related to the temporal and spatial scales of the input observations. 

Field data for the aph(λ)-based model, including pigments and absorption, were derived from analyses of well-mixed water 455 

drawn from relatively small sample volumes of few liters, resulting in high confidence that type and concentration of material 

analyzed for absorption was similar to the material extracted for pigments. By comparison, in situ measurements of radiometry 

for the computation of Rrs(λ) were measured away from the ship to avoid effects on the light field, at times that were often 

offset from water sampling by tens of minutes, and represented signals integrated across thousands of liters of near-surface 

ocean water. Therefore, uncertainty regarding sample similarity was far greater for Rrs_obs(λ) than for aph_obs(λ). 460 

Our outcome metric was η, computed from within-sample size fractions rather than absolute Chla. Prior work (Waga et al., 

2017) showed that η is insensitive to reasonable choices of pore-size boundaries: percent differences in the resulting ηobs were 

under 5% across three different typical Chlasize cutoffs (i.e., >20, 2–20, and <2 um; >10, 2–10, and <2 µm; and >20, 5–20/<5 

µm). Nevertheless, we acknowledge a small residual uncertainty for cruises that used different filters, which could add noise 

in heterogeneous conditions. To assess any such effect, we conducted a sensitivity check that removes cruises with differing 465 

pore-size splits (i.e., 2007, 2009, 2010) and compared model ranking and error metrics on the reduced subset. These results 

are summarized in Table S7, which suggests consistent findings across the entire dataset (Table 4). 

Absolute Chla can differ across analytical methods (Wang et al., 2025), yet our modeling targets a dimensionless outcome 

(i.e., η) computed from within-sample size fractions rather than absolute concentrations. This proportion-based normalization 

places fluorometer and HPLC observations on a common scale and helps mitigate method-specific bias in total Chla. The 470 

HPLC-based Chlasize subset in our compilation is small, which limits our ability to estimate a stable cross-method offset in η 

or to perform a rigorous calibration. Looking ahead, a targeted cross-calibration, paired fluorometer- and HPLC-based Chlasize 

measurements collected contemporaneously across key water masses, would better quantify any residual method dependence 

in the retrieval of Chlasize and further strengthen future assessments. 
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Overall, our dataset is heterogeneous in time, space, and methods, which introduces non-exchangeability among samples and 475 

elevates the risk of biased validation. We used a standard repeated five-fold cross-validation and an external 30% subset to 

validate the performance of the developed models, but these procedures do not fully control for grouping by cruise, pore-size 

scheme, analytical approach, or region. As a result, cross-validated skill may be optimistic if folds inadvertently mix samples 

that are more similar to each other than to the broader population, and the external split may still reflect historical or regional 

structure (Stock, 2022; Stock and Subramaniam, 2022). Our purpose here is model ranking rather than precise absolute skill; 480 

nevertheless, the uncertainty associated with non-stratified resampling should be borne in mind when interpreting differences 

among approaches. A more conservative assessment is to partition the data into discrete “blocks” according to certain criteria, 

which enables the creation of independent training and validation folds using stratified blocking (e.g., temporal and spatial 

blocks) (Zhang et al., 2023). Such cross-validation strategies are preferable for heterogeneous datasets and are recommended 

for future work and community benchmarks.  485 

4.5 Performance of CSD model in optically complex Pacific Arctic waters 

Considering the estimation error associated with the semi-analytical IOP inversion algorithm (i.e., the modified QAA), the 

CSD	modelJKL-FG*+(D)  contains large uncertainties in the retrieval of η (Figure 5). This is primarily because the poor 

performance of the modified QAA in optically complex waters hampered the aph(λ) retrieval (Table S2), and estimation errors 

were propagated to the 𝑎'&'(𝜆)-based CSD model for application to satellite data. In other words, the performance of the 490 

𝑎'&'(𝜆)-based CSD model could be improved if a more accurate IOP inversion algorithm were to be established for optically 

complex waters. Moreover, hyperspectral satellite sensors, such as the NASA Plankton, Aerosol, Cloud, ocean Ecosystem 

(PACE) mission’s primary sensor, the Ocean Color Instrument (OCI), and the planned Surface Biology and Geology (SBG) 

and Geostationary Littoral Imaging Radiometer (GLIMR) sensors will have the capability to capture more detailed spectral 

features of aph(λ) (Dierssen et al., 2023; Werdell et al., 2018), which will greatly benefit satellite-based monitoring of 495 

phytoplankton communities (Isada et al., 2015). 

Considering that the accuracy goal for satellite-derived Chla is defined as within ±35% of the true value (Hooker and McClain, 

2000), and a variety of ocean color products, such as primary productivity (Behrenfeld and Falkowski, 1997), utilize Chla as 

one of the input parameters, we conclude that the CSD model developed in this study performs sufficiently well in the Pacific 

Arctic, presuming adequate correction for atmospheric effects in the satellite data. Since this region receives a large amount 500 

of freshwater containing CDOM and NAP delivered from rivers (Matsuoka et al., 2007), it was expected that the performance 

of the CSD model relying on 𝑅"!"(𝜆) would be influenced by CDOM and NAP, which often dominate the optical properties of 

seawaters in this region (Chaves et al., 2015; Mustapha et al., 2012; Wang and Cota, 2003). However, the validation results 

suggest that the CSD	modelHI-AB()(D) performed with consistent accuracy regardless of the fractional contribution of aph_pbs(λ) 

to atotal_obs(λ) at 443 nm (Figure 5).  505 
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4.6 Distribution of CSD slope in the Pacific Arctic 

The Pacific Arctic, with a large continental shelf extending from the northern Bering Sea to the southern Chukchi Sea and 

northwards, has been characterized by a tight pelagic-benthic coupling (Grebmeier et al., 1988, 1989; Grebmeier and McRoy, 

1989), with up to 70% of primary production ultimately reaching the seafloor (Walsh et al., 1989). The seasonal cycle of sea-

ice formation and melting provides suitable conditions for phytoplankton growth (Stabeno et al., 2010), with large spring 510 

diatom blooms occurring at the marginal ice edge and under the ice (Laney and Sosik, 2014; Waga et al., 2021b). The northern 

Bering and Chukchi Seas are reported to have the highest sinking particulate organic carbon fluxes (0.8–2.5 g C m- 2 d-1) within 

the world ocean, and the particles collected by moored sediment traps consist of aggregates composed of diatoms exclusively 

(O’Daly et al., 2020). On the continental shelves in the Pacific Arctic, much of the organic carbon produced in the euphotic 

layer is directly transported to the seafloor with little or no grazing by zooplankton (Campbell et al., 2009). This strong pelagic-515 

benthic coupling has maintained areas of persistently high benthic biomass, also called benthic hotspots (Grebmeier et al., 

2015a), which serve as important foraging areas for upper trophic level benthivores, such as bearded seals, walrus, gray whales, 

and diving seabirds (Grebmeier, 2006). These hotspots are supported by influxes of organic carbon introduced by vertical 

transport from the overlying water column and lateral advection (Grebmeier et al., 2015b). Regarding the vertical transport of 

organic carbon, Waga et al. (2019a) reported that the size structure of phytoplankton communities has a significant relationship 520 

with Chla concentration in the underlying seafloor sediments, suggesting a connection between phytoplankton cell size and 

benthic macrofaunal biomass in this region. 

We found clear spatial variation in the distribution of ηMDLsat in the Pacific Arctic (Figure 6). For example, on the Bering Sea 

shelf, the Siberian coast exhibited smaller ηMDLsat values, whereas larger values were found along the Alaskan coast. 

Throughout the seasons, there were west-east gradients showing smaller and larger ηMDLsat values on the Siberian and Alaskan 525 

sides of the Bering Strait, respectively. Since a small CSD slope represents a greater proportion of larger-sized phytoplankton, 

this result indicates larger-sized phytoplankton typically dominated along the Siberian coast, and smaller-sized phytoplankton 

dominated along the Alaskan coast. In the Pacific Arctic, three major water masses prevail: i.e., the Alaskan Coastal Water, 

Anadyr Water, and Bering Shelf Water (Coachman et al., 1976; Danielson et al., 2017). The Alaskan Coastal Water is identified 

with relatively high temperatures and low salinity due to freshwater input flows along the western coast of Alaska out to the 530 

Beaufort Sea (Coachman et al., 1976). The Anadyr Water, which flows along the eastern coast of Siberia, has low temperatures 

and high salinity, and supplies large amounts of nutrients to the Bering Sea and Bering Strait (Coachman et al., 1976). The 

Bering Shelf Water flows between Anadyr Water and Alaskan Coastal Water on the Bering Sea shelf and forms as these two 

water masses mix as they pass through the Bering Strait (Grebmeier et al., 1988). In addition to these general current patterns, 

satellite images of SST (Figure S5) show distinct signatures of cold-water outcroppings in the western side of the Bering Strait, 535 

particularly in July and August. Such signatures were associated with friction between the current and the sea floor (Kawaguchi 

et al., 2020) and accompanied by upward nutrient flux to the surface from the nutrient-rich bottom layer of Anadyr Water 

(Nishioka et al., 2021), resulting in smaller ηMDLsat around the Bering Strait. These water mass distributions matched the spatial 
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pattern in the ηMDLsat in the Pacific Arctic, suggesting a tight relationship between nutrient availability and phytoplankton cell 

size (Ko et al., 2020; Suzuki et al., 2021). 540 

The ηMDLsat values in the Pacific Arctic showed clear seasonal changes from June to September (Figure 7). According to 

previous studies in this region (Waga et al., 2021b; Waga and Hirawake, 2020), ice-associated spring blooms mature primarily 

within 20 days after sea-ice retreat and then decay gradually until fall blooms occur. Although the timing and presence/absence 

of spring and fall blooms largely depend on sea-ice conditions and other factors such as wind forcing (Fujiwara et al., 2018; 

Nishino et al., 2015), June and July are generally characterized as the post-bloom period and August and September are the 545 

typical fall bloom period. Such onset and decay of phytoplankton blooms are strongly linked to the size composition of 

phytoplankton communities in the Pacific Arctic (Waga and Hirawake, 2020), as shown in seasonal variations in ηMDLsat values.   

5 Conclusions 

This study developed a CSD model in optically complex Pacific Arctic waters by employing machine learning methods, which 

exploit hidden, complex relationships between optical signatures and phytoplankton size composition. Considering the large 550 

uncertainties in the inversion of aph(λ) from satellite-derived Rrs(λ), we used Rrs(λ) directly as a model input instead of aph(λ), 

though aph(λ) is more directly related to the size composition of phytoplankton communities. Neglecting the estimation errors 

produced from IOP inversion and considering only remotely sensed radiances and phytoplankton absorption spectra from 

water samples, the best-performing model among the four CSD models examined in this study was the ML-based model with 

normalized aph(λ) spectra used as input ( CSD	modelJKL-FG*+(D) ), followed by the ML-based model with Rrs(λ) 555 

(CSD	modelHI-AB()(D)), the PCA-based model with aph(λ) (CSD	model?@<-FG*+(D)), and finally the PCA-based model with Rrs(λ) 

(CSD	model?@<-AB()(D)). Within our dataset, the PCA-based CSD model showed a degraded performance compared to that of 

the ML-based model for both 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆). Although the PCA-based approach assumes that PC scores are 

correlated with η values, this assumption would not have been necessarily valid, particularly for 𝑅"!"_$%"(𝜆). In addition, this 

study utilized the first four PC modes as representative for spectral features of 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆). The first two PC 560 

modes explained about 95% of spectral variations in 𝑅"!"_$%"(𝜆) and 𝑎'&'_$%"(𝜆), whereas the latter two modes contributed little 

to explaining the entire spectral variation but may have added uncertainties associated with the PCA step. Another key finding 

is that more complex ML approaches do not always produce more effective models than standard linear regression. Indeed, 

simple linear regression outperformed other ML approaches for 𝑅"!"_$%"(𝜆), whereas the CSD model developed with support 

vector machine was selected as the best for aph(λ). Overall, we found benefits in using ML tools to modify and improve the 565 

retrieval accuracy of the previously developed CSD model in the Pacific Arctic. Future innovations in machine learning, 

satellite (and airborne) ocean color sensor capabilities, and IOP algorithms can further contribute to robust, synoptic remote 

sensing monitoring of phytoplankton size structure in optically complex waters, such as the Arctic Ocean, where rapid change 
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is altering the dynamics of phytoplankton with cascading effects on higher trophic levels, ecosystem functioning, and marine 

resources.  570 
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