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Abstract. In response to recent advances in satellite ocean color remote sensing, we have developed a chlorophyll-a size
distribution (CSD) model using machine learning (ML) approaches for optically complex Pacific Arctic waters. Previous CSD
models have used principal component analysis (PCA) to retrieve spectral features from satellite-estimated phytoplankton
absorption coefficient (apn(1)) by assuming a strong correlation between the spectral features and phytoplankton size structure
determined from the exponent of the CSD (#). A weakness of such approach is that it relies on satellite retrievals of apn(1),
which can be highly uncertain due to the optical effects of water constituents other than phytoplankton. In this study, we have
developed a method based on ML to use remote sensing reflectance (Ris(1)) for directly retrieving #, thus avoiding uncertainties
due to the inversion of apn(4) from Ris(1). Results show superior performance of the ML-based CSD models compared to the
PCA-based model utilizing both Ris(1) and apn(4) as predictors of 7. For direct Ris(4)-based retrievals, a CSD model based on
multivariable linear regression produced the best performance among all models considered. Nevertheless, models using in-
situ aph(4) yielded better accuracy, reflecting a closer optical linkage between ; and apn(4) than between # and Rrs(4). Our choice
of an Ris(1)-based model for satellite application is therefore practical, motivated by the limitations and uncertainty of aph(4)
inversions in optically complex waters. Another key finding is that more complex ML approaches do not always produce more
effective models than standard linear regression. Indeed, multivariable linear regression outperformed other ML approaches
for retrieving # directly from Ris(1), whereas support vector machine performed the best among diverse ML approaches in the
case of apn(4). Overall, this study found benefits in using Ris(1) with ML to improve the retrieval accuracy of # for Pacific

Arctic waters.
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1  Introduction

Satellite remote sensing is a cost-effective tool that can provide observations across a range of temporal and spatial scales. One
of the primary parameters retrieved from ocean color satellite data is the mass concentration of chlorophyll-a (Chla; see Table
1 for symbols, definitions, and units), the primary pigment associated with photosynthesis and a key indicator of phytoplankton
biomass. Satellite-derived Chla observations have revolutionized our understanding of climate systems, marine ecosystems,
and biogeochemical processes (McClain, 2009). However, Chla alone does not provide a full description of the fundamental
ecosystem functions of phytoplankton, such as nutrient uptake and cycling, energy transfer through marine food webs, deep-

ocean carbon export, and gas exchange with the atmosphere (Mouw et al., 2017).

Due to the significance of phytoplankton community composition in ocean biogeochemical processes, continuous research
and innovation in satellite ocean color techniques have extended our capabilities from routinely estimating Chla concentration
to retrieving phytoplankton functional types (PFTs) (Gordon et al., 1980; Mouw et al., 2017). PFTs are conceptual groupings
of phytoplankton species that have similar biogeochemical functions (e.g., nitrogen fixers, calcifiers, dimethylsulfide
producers, and silicifiers) and other characteristics such as cell size (pico-, nano-, and micro-phytoplankton). PFTs are often
defined based on phytoplankton size class (PSC), phytoplankton taxonomic composition (PTC), or particle size distribution
(PSD), and the choice of partitioning depends on the question at hand (Mouw et al., 2017), with no universally accepted
standard (Reynolds et al., 2002). In particular, PSC serves as a useful index of the trophic state, carbon export efficiency, and

productivity (Hood et al., 2006; Le Quéré et al., 2005) and, therefore, comprises the majority of PFT research.

A wide range of satellite-based methods for global estimations of PFTs have been developed to date (IOCCG, 2014). Mouw
et al. (Mouw et al., 2017) provide a "user guide" for applying remote sensing techniques to monitor PFTs, explaining details
of various PFT algorithms and their associated uncertainties and discussing the advantages and disadvantages of different
approaches. Satellite estimation of PFTs generally exploit spectral features in remote sensing reflectance (Rrs(4)), absorption
coefficient of phytoplankton (a@pn(4)), and/or backscattering coefficient of particles (bvp(1)) caused by variations in PFT
composition (Fujiwara et al., 2011; Kostadinov et al., 2010; Li et al., 2013; Roy et al., 2017). The ocean color variables used
in these spectral approaches are grouped into two categories: apparent optical properties (AOPs, e.g., Ris(1)) and inherent
optical properties (IOPs, e.g., ap(4)). Remotely sensed IOPs are derived from spectral inversion of Ris(1) (Mobley, 1994),

thereby introducing additional uncertainties for IOP-based methods compared to Rrs(4)-based methods.

For global estimation of PSC, Waga et al. (Waga et al., 2017) developed a Chla size distribution (CSD) model that retrieves
the synoptic size structure of the phytoplankton community by determining the exponent of CSD (CSD slope; #). As opposed
to other PSC approaches, 7 represents the size structure of the phytoplankton community with a single value; thus, the output
of the approach can be easily incorporated into ocean biogeochemical models. Akin to the PSD (Kostadinov et al., 2010; Roy

et al., 2017), the arbitrariness of the arrangement of the size range is another advantage of this approach, where other methods
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generally adopt a fixed target group or size class (e.g., <2 pm, 2-20 um, and >20 um for pico-, nano-, and micro-
phytoplankton, respectively). More specifically, once # is determined, fractional contributions of phytoplankton biomass at
diverse size ranges can be estimated from #. Moreover, there is flexibility in computing # with different combinations of size-
fractionated Chla, generating a comparable variable across datasets that often comprise various size ranges of size-fractionated

Chla data.

The spectral features of apn(Z) can reveal specific information regarding variations in the composition and size structure of
phytoplankton assemblage (Bricaud and Morel, 1986a). For example, how pigments are distributed within a phytoplankton
cell affects the magnitude of apn(1), while pigment composition influences the spectral shape of apn(1). Waga et al. (Waga et
al., 2017) applied principal component analysis (PCA) to normalized apn(4) spectra derived from in situ measurements at seven
wavelengths (412, 443, 469, 488, 531, 547, and 555 nm) that are consistent with spectral bands of the Moderate Resolution
Imaging Spectroradiometer (MODIS). This method assumes that PCA captures spectral features of apn(4) as a simpler set of
principal component (PC) scores while still maintaining significant patterns and trends. The relationship between # and the
resulting PC scores was then quantified by ordinary least squares regression, enabling 7 to be estimated from satellite
derivations of apn(4) (Waga et al., 2017). In order to investigate spatiotemporal variations in the size structure of phytoplankton
communities and its impacts on the marine ecosystems in the Pacific Arctic, the CSD model was subsequently optimized for
the Pacific Arctic based on a regional in situ dataset (Waga et al., 2019a). However, in Arctic coastal waters, phytoplankton
absorption is typically low (only 16% of non-water absorption at 443 nm) relative to colored dissolved organic matter (CDOM)
and non-algal particles (NAP) and, as a result, IOP inversion algorithms for estimating apn(4) are characterized by high
uncertainty (Matsuoka et al., 2007). Therefore, direct approaches to estimate # utilizing Ris(4) may be advantageous in Arctic

coastal environments, even though Ri(2) itself is not solely influenced by phytoplankton.

The present study develops the CSD model for the Pacific Arctic utilizing diverse supervised machine learning (ML)
approaches, ranging from simple linear regression to convoluted methods such as neural networks (Chen et al., 2015, 2018; Li
et al., 2020, 2023; Waga et al., 2022), support vector machines (Deng et al., 2019; Selvaraju et al., 2021; Su et al., 2015),
Gaussian processes (Pasolli et al., 2010), and ensemble methods (Bao et al., 2023; Qi et al., 2022; Qiao et al., 2022; Zhang et
al., 2023). A main advantage of ML is the ability to parameterize general relationships from training data without predefined
or explicit equations (Marzban, 2009). To date, a variety of ML models have been used for retrieval of various ocean
parameters, including the diffuse attenuation coefficient (Chen et al., 2015), particle backscattering coefficient (Sauzede et al.,
2016), Chla concentration (Chen et al., 2021; Hu et al., 2021; Kolluru and Tiwari, 2022; Mukonza and Chiang, 2022; Syariz
et al., 2020), and reconstructions of ocean color data (Chen et al., 2019; Fasnacht et al., 2022; Krasnopolsky et al., 2016). The
current study aims to (1) parameterize CSD models for the Pacific Arctic using spectral features of Ris(1) and apn(4), (2) assess
satellite algorithm performance using an in sifu dataset, and (3) compare newly developed models with the previously

developed PCA-based CSD model. The updated CSD model provides accurate estimates of spatiotemporal variations in PSC
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in the Pacific Arctic, providing key information on how recent environmental changes are affecting the foundation of marine

food webs in a changing Arctic.

Table 1. Definitions and units of all symbols used in the text, figures, and equations.

Symbol Definition Units

Chla Chlorophyll-g concentration mgm> (Formatted: Font: Italic
Chlao Chla at reference diameter Do mgm
Chlaotal Total Chla mg m™
Chlasize Size-fractionated Chla in within a size bin from D1 to D: mgm?
Chlasize_obs In situ Chlasize mgm™

n Exponent of the CSD -

Tobs In situ i retrieved from in-situ Chldsize obs -

7]MDLobs Estimated # using the CSD model from in situ data -

7/MDLsat Estimated # using the CSD model from satellite data -

Fize Fractional contribution of pico-, nano-, micro-plankton to Chlatotal -

Flize obs In situ Fsize retrieved from Chlatotar and Chlasize obs -

Flize MpL Estimated Fiize using the CSD model -

Do Reference diameter (0.7 pm) pm

Dinin Lower bound for size integration (0.7 pm) pm

Dhmax Upper bound for size integration (200 pm) um

D Lower size limit of Chlasize pm

D: Upper size limit of Chlasize pm

A Wavelength nm™!

Ris(2) Remote sensing reflectance at 4 sr!

Rrs obs(4) In situ Rrs(2) sr!

Res sat(2) Satellite Rrs(1) sr!

Ry obs(4) In situ Ris(2) normalized with Eq. (5) ¥ (Deleted: st
aph(2) Absorption coefficient of phytoplankton at m!
@ph_obs(4) In situ aph(4) m!
aph_QaA(4) aph(4) estimated using modified QAA m!
Gph_QAAcbs(4) Estimated aph_qaa()) from in situ Rrs(Z) m!
aph_QaAsat(1) Estimated aph_qaa()) from satellite Ris(1) m!

@ph_obs (1) In situ Ris(2) normalized with Eq. (5) % (Deleted: m!
ap(A) Absorption coefficient of particles at 1 m'

ap _obs(4) In situ ap(A) m!

anapr(2) Absorption coefficient of NAP at 1 m!
aNAP_obs(4) In situ anap(A) m!
acpom(4) Absorption coefficient of CDOM at 4 m!
acpoM_obs(4) In situ acpom(4) m!

aw(h) Absorption coefficient of pure water at 4 m!

Sag Spectral slope of the absorption coefficient of combined CDOM and NAP nm™’

Lw(A) Water-leaving radiance at 1 Wm?2sr!nm!
Es(A) Downwelling irradiance above surface at 1 Wm?2nm™!
Po Intercept in PCA-based CSD model -

G Coefficients in PCA-based CSD model at wavelength j -




100 2 Material and methods
An updated CSD model is proposed in this study to enable reasonable estimation of spatiotemporal variations in PSC for

optically complex Pacific Arctic waters. See Section S1-S4 in Supplement for complete materials and methods.

2.1  Insitu data

Multiple research cruises were conducted in the Pacific Arctic during the summer months from 2007 to 2021 (Table 2). A total
105 of 177 open ocean and coastal sampling locations were visited in the sub-Arctic Bering Sea and the west Beaufort Sea,
including the Stefansson Sound near Prudhoe Bay along the northern coast of Alaska (Figure 1). A companion map, color-
coded by cruise year, is provided in Figure S1. At each station, spectral radiometric measurements were made during daylight

hours, and water samples were collected for apn (1) and size-fractionated Chla (hereafter referred to as aph_obs(4) and Chlasize_obs,

respectively).
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110  Figure 1. Sampling locations of in situ data used in this study. Colors of each plot indicate the exponent of chlorophyll-a (Chla)

size distribution (CSD slope; #0bs), whereas background color represent the bathymetry.

Table 2. Details of cruises, number of samples (N) obtained during each cruise, and filter pore sizes used to collect size

fractionated chlorophyll-a samples. Note that the cruise period indicates the date span of in situ data collected.
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Cruise period (mm/dd/yyyy) Cruise ID Vessel N Filter pose size

07/25-08/14/2007 0S180 T/S Oshoro-maru 20 20,5,and 0.7 um
09/11-10/10/2009 MR09-03 R/V Mirai 12 10,5,and 0.7 um
09/04-10/13/2010 MR10-05 R/V Mirai 28  10,5,and 0.7 pm
09/13-10/02/2012 MR12-E03 R/V Mirai 12 20,2,and 0.7 pm
06/06-07/17/2013 08255 T/S Oshoro-maru 34 20,2,and 0.7 pm
08/31-10/04/2013 MR13-06 R/V Mirai 32 20,2,and 0.7 pm
08/30-09/22/2016 MR16-06 R/V Mirai 18 20,2,and 0.7 um
07/09-07/21/2017 0S040 T/S Oshoro-maru 11 20, 2, and 0.7 um
08/13-08/15/2021 PB21 R/V Ukpik 10 20,2,and 0.7 pm

2.1.1  Phytoplankton pigments

Chlasize obs was determined using a 10-AU fluorometer (Turner Designs), except for ten samples from the 2021 cruise in
Prudhoe Bay (PB21), for which Chlasize obs Was determined using high performance liquid chromatography (HPLC). HPLC
analysis provides the concentration of not only Chla but also other major phytoplankton pigments (i.e., fucoxanthin, peridinin,
19’-hexanoyloxyfucoxanthin, 19’-butanoylofucoxanthin, alloxanthin, chlorophyll-b, neoxanthin, prasinoxanthin,
violaxanthin, lutein, and zeaxanthin). At each station in all the cruises, both fractionated and unfractionated (i.e., without
filtration using filters of different pore sizes for size fractionation) samples were collected. Unfractionated HPLC samples were

collected at each station in all the cruises.

2.1.2  Absorption coefficient

Particles in surface seawater samples were collected on a GF/F filter until the filter had sufficient coloration to measure
aph_obs(4). The absorption coefficient of particles (ap_obs(4)) on the filter was measured in the spectral range from 300 to 850 nm
at 1 nm intervals using an MPS-2400 (Shimadzu Corporation), MPS-2450 (Shimadzu Corporation) or Cary 100 (Agilent
Technologies) spectrophotometer. The quantitative filter technique (QFT) was used to determine aph_obs(1) for samples
measured with the MPS-2400 and MPS-2450 instruments (i.e., all cruises but PB21), following the procedure described by
Mitchell (Mitchell, 1990), whereas aph_obs(4) for the PB21 samples was determined with GF/F filters placed inside a 15-cm
integrating sphere connected to the Cary 100 (IOCCG, 2018). Following the measurement for ap obs(1), the absorption
coefficient of NAP (anap obs(1)) was measured after soaking the filter in 95% methanol or sodium hypochlorite, and aph_obs(4)
was finally obtained by subtracting anap obs (1) from ap obs (4). The absorption coefficient of CDOM (acpom obs (1)) at
wavelengths from 250 to 750 nm at 1 nm intervals was measured using the same spectrophotometers as for the particulate
absorption measurements, with the exception of the PB21 samples, which were analyzed using a Cary 300 (Agilent

Technologies) spectrophotometer with 5-cm quartz cuvettes.
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2.1.3  Remote sensing reflectance

In situ spectral radiance and irradiance measurements were acquired using a PRR-800/810 (Biospherical Instruments), C-OPS
(Biospherical Instruments), or HyperPro (Satlantic) spectroradiometer. Each spectroradiometer has different spectral
resolutions and ranges: the PRR-800/810 and C-OPS collected at 17 (380 to 765 nm) and 19 wavelengths (320 to 875 nm),
respectively, whereas the HyperPro acquired data between 400 and 800 nm at approximately 3 nm intervals. Remote sensing
reflectance (Rrs_obs(1)) Was calculated as the ratio of the water-leaving radiance (Lw(4)) to the above-water downward spectral

irradiance (Es(4)):
Res obs(A) = Lw(A) /Es (). O]

Ris_obs(4) was resampled at ten MODIS bands in the visible range (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm)
from the original wavelengths of each instrument using spline interpolation (Wang et al., 2015). Finally, a modified version of
the Quasi-Analytical Algorithm (QAA; (Lee et al., 2002)) for the Pacific Arctic (Fujiwara et al., 2016) was used to estimate
aph(2) (aph_oaa(A)) from in situ Rrs(A) (Ris obs(4)) and satellite Rrs(A) (Ris_sa(4)). Here, aph oaa(4) estimated from Ris obs(1) and
Ris sat(2) is denoted as aph_gaacbs(4) and aph_qaasai(4), respectively. To avoid the retrieval of negative aph_qaa(4), the modified
version of QAA uses an optimized spectral slope of the absorption coefficient of combined CDOM and NAP (S4g) obtained
by reconstructing the Sqe based on a dataset collected in the Pacific Arctic (Fujiwara et al., 2016). The aph_gaabs(4) was used

to validate the performance of the modified version of the QAA by comparing it with @ph_obs(4).

2.14  Pigment-based identification of phytoplankton taxonomic composition

An open-source R software package, phytoclass (ver 1.0.0), was used to determine the Chla biomass of different phytoplankton
groups from their accessory pigments (Hayward et al., 2023). The phytoclass package is a Chla taxonomic partitioning
software package similar to the widely used CHEMTAX software (Mackey et al., 1996). However, phytoclass has been shown
to be more accurate and does not rely on initial assumptions of pigment to Chla ratios for each phytoplankton group (Hayward
et al., 2023). Eight target taxonomic groups (diatoms, chrysophytes, dinoflagellates, prymnesiophytes, chlorophytes,
prasinophytes, cryptophytes, and cyanobacteria) and 11 marker pigments for each taxonomic group (peridinin, 19’-
butanoyloxyfucoxanthin, fucoxanthin, 19’-hexanoyloxyfucoxanthin, neoxanthin, prasinoxanthin, violaxanthin, alloxanthin,
lutein, zeaxanthin, and chlorophyll-b) were selected following (Zhuang et al., 2016), as these groupings have been used

previously for CHEMTAX analysis in the Chukchi Sea shelf region.

2.2 Satellite data
The MODIS sensor onboard NASA's Aqua satellite (MODIS-A), operational since 2002, provides the longest time series
among all currently operational ocean color sensors, which is an attractive advantage for decadal-scale monitoring and

retrospective analyses. Level-3 standard mapped images of 4 km spatial resolution monthly climatological Ris sa(1) at ten
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bands in the visible range (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm) and daytime sea surface temperature
(SST) derived by MODIS-A (version R2022.0) were downloaded from NASA’s Ocean Color website. The Ris_sai(1) data were
then used to compute aph_aasar(4) by using the modified QAA algorithm (Fujiwara et al., 2016).

2.3 Chlorophyll-a size distribution model
The exponent of the CSD (#), representing the size structure of phytoplankton communities, was determined following the
method of Waga et al. (2017). Assuming the CSD follows a Junge-type power law distribution, the total Chla (Chlatotr) and

Chlasize in a size range from D1 to D> can be expressed as follows:

Bmax b V)
Chlayia = J‘ Chla, (D—) ab,
Drin 0
o . ®

D
Chlag;,e =D[ Chla, (D_o) dD,

where Chla, is the Chla at a reference diameter D, (here, 0.7 um). In this study, D, ;, and D,

max Were defined as 0.7 pm and
200 um, respectively. 7 was derived as the slope of the linear regression in log-space computations between the inverse log-
transformed median diameters (from D, to D,), and Chlasize normalized by the bin width. An advantage of the CSD model is

its robustness when using different sets of Chlasiz to retrieve 7 (Waga et al., 2017).

A large 7 indicates a greater contribution of smaller-sized phytoplankton, whereas a small # suggests that larger-sized

phytoplankton dominate. The fraction of Chlasize can be derived using # as follows:

D, D" _ B (C))
o Chlagy,, Jos Chla, (Do) aD B D21 ] —D11 n
S12€ 7 Chlagoal  Dmax D T T 20011 — 0.7
fom Chlas (py) D

In this study, the size ranges for pico-, nano-, and micro-phytoplankton were defined as 0.7-2 pm, 2-20 pum, and 20-200 pm,
respectively. To estimate the fraction of Chla within the size ranges for pico- (Fpico), Nano- (Fnano), and micro-phytoplankton
(Fmicro), D and D, in Eq. (4) were set as the lower and upper limits of each size range. For clarification purposes, the size
fractions determined from in situ Chlasi,c observations are denoted as Fiize obs, Whereas those estimated through a CSD model

with Eq. (4) using 7 were represented as Fsize MpL.
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2.4  Model development
The CSD model was trained using 70% of the entire dataset (i.e., training subset), randomly determined using the MATLAB
randsample function (R2025b), while the remaining 30% was used for final validation (i.e., validation subset). The details of

model development based on the PCA and supervised ML approaches are described in sections 2.4.1 and 2.4.2, respectively.

24.1 PCA approach
The previous version of the CSD model for the Pacific Arctic (Waga et al., 2019a) used the spectral shape of apn(4) to estimate
1. To capture the spectral features of apn(4), PCA was applied to normalized aph_obs(1) (@ph_obs (/1)) at ten MODIS-A bands.

The formula for aphiobs(/l) is:
aph»obs(l) = [aph_obs ()‘) - mean(aph_obs(l))]/Std(aph_obs (/1)): %)

where mean(aph_obs(4)) and std(aph_obs(4)) are the spectral arithmetic mean and standard deviation of individual aph_obs(1) spectra,
respectively. The input values for the PCA comprise a matrix (m x N) composed of aphiobs(/l) values, where m and N are the
number of the wavelengths and number of samples, respectively. Assuming the resulting PC scores correlate with #, n was

estimated as follows:

- (6)

k
Bo+ expzmsi} )

Si= 2}":1 Wi j aph,obs(lj), )

n=

where S; and wi; are the ith PC score and the loading factors for ith PC at wavelength ;. In addition, m and & represent the
number of wavelengths and the number of PCs (k = 4 in this study). The model parameters Sy and f: are the regression

coefficients between 5 and PC scores.
By substituting for the calculation of S; in Eq. (6), we obtained new equations as follows:

®)
n=

m -1
ﬁO + exp Z Cjaph_obs (ﬂ'))‘ ’

G = Zi’c=1 Biwi,ja ©)

where fo and C; are the final model parameters. Once the model parameters were determined based on aph obs(1), the same

coefficients were used in the case of aph Qaacbs(4) and aph Qaasai(4) to produce estimates of #. For the Ris-based models,
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normalized Rrs_obs(2) (Rrs,obs(/l)) was calculated in the same manner as Eq. (5), and 7 was determined by employing Ry ops (A)
in Egs. (6)—(9) in place of aph_obs(/l). Note that 7 determined by Chlasize obs, estimated through the CSD model using in situ
measurements (&pp_obs (/l) or Rys obs (/1)) and satellite products (ﬁph,QAAsat(l) or Rrs’sat(l)) are denoted as 77obs, and #MDLobs

and 7mpLsat, respectively.

2.42  Supervised ML approach

In addition to the PCA approach used in prior work (Waga et al., 2017, 2019a, b, 2021a), CSD models were trained with
various ML approaches. Since we know both the input (i.e., Rrs_obs(l) or aph_obs(l)) and corresponding output (i.e., #obs)
values, supervised ML was used to train CSD models. To this end, we leveraged the Regression Learner App in the MATLAB
Statistics and Machine Learning toolbox, a user-friendly resource that enables simple data exploration, feature selection,
specification of validation schemes, model training, and model evaluation. This application includes commonly used
regression methods, e.g., linear regression models, regression trees, Gaussian process regression models, support vector

machines, kernel approximation models, ensembles of regression trees, and neural network regression models.

To avoid the possibility of missing certain representative samples and/or overfitting the models, repeated five-fold cross-
validation (ten repeats) was carried out by randomly dividing the training subset into five equally sized sets (or five-folds).
Evaluation of the trained models was performed five times, each time excluding one-fold from the training subset and using it
for validation. Each observation in the training subset was assigned to an individual group and stayed in that group for the
duration of the procedure so that each observation was allowed to be used one time for testing and four times for training the
model. Finally, the performance of the trained models was determined as the average of the performance metrics from the five

iterations.

The MATLAB Regression Learner App returns three other statistical metrics besides the coefficient of determination (+?): the
root mean square error (RMSE), mean squared error (MSE), and mean absolute error (MAE) between the observed and

predicted values, defined as:

RMSE = i(xn - yn)Z/N, (10)
N

MSE = " (X, — Yn)Z/N, (11)
ZN

MAE = Z|x,, - y,,|/N, (12)

10
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where X, and Y, represent the n'" observed and predicted values, respectively. Once CSD models based on each ML method
were finalized, the best ML-based CSD model for each predictor (i.e., Rrs_obs(l) and aph_obs(l)) was determined based on
the four aforementioned statistical metrics. Once the best-performing models for Rrs,obs(l) and aphiobs(/l) among diverse

regression methods were determined, they were used for final validation and further analysis.

2.5  Model validation metrics
The performance of the resulting PCA-based CSD models and the best-performing ML-based CSD models were compared
using the validation subset. Bias is a key metric for the performance assessment of satellite products (Seegers et al., 2018),

defined as:

Bias = 10* (EN:(X,[ - Yn)/N) (13)

Following recommended validation procedures for satellite ocean color algorithms (Seegers et al., 2018), the performance of

the CSD models, as well as the modified QAA, was evaluated based on MAE (Eq. (12)) and bias.

3 Results

3.1  Phytoplankton size structure and taxonomic composition

The measured exponent of CSD (#0bs) values ranged from 0 to 2.24 with corresponding Chlaiotal_obs values of 18.84 and 0.05
mg m>, respectively (Table 3). Figure 2 depicts the Chlaiol obs and #70bs values with regard to the relative contributions of
Fisize obs. High Chlarowl obs Was characterized by communities having a predominant contribution of Fmicro obs and
correspondingly lower contributions of both Fpico_obs and Frano_obs. A similar but opposite pattern was found in #obs, with small
7obs values clearly associated with large Fimicro obs. This opposite pattern resulted from the fact that small 7obs values represent
significant contributions of Fmicro obs essentially associated with high Chlatotal obs. In addition, Fiicro obs and Fpico obs ranged
between 0.01-0.94 and 0.00-0.80, respectively, suggesting that our dataset covered a wide range of PSCs in the Pacific Arctic.
According to Eq. (4), the smallest #obs corresponded to 0.9, 0.09, and 0.01 of Fisize MpL for micro-, nano-, and pico-

phytoplankton, whereas the largest #obs corresponded to 0.02, 0.26, and 0.73, respectively.

11



Table 3. Summary statistics of primary variables used in this study. Note that these variables were determined by in situ
observations. Abbreviation: Chla, chlorophyll-a; 5, exponent of Chla size distribution (CSD); Fiize, fractional contribution of
245 micro-, nano-, and pico-plankton; apn(443) phytoplankton absorption coefficient at 443 nm; anar(443), absorption coefficient
of non-algal particles (NAP) at 443 nm; acpom(443), absorption coefficient of colored dissolved organic matter (CDOM) at

443 nm; and Rrs(443), remote sensing reflectance at 443 nm.

Chlauoal obs Tabs Fuicro obs~ Frano obs ~ Fpico obs  @ph_obs(443) anap obs(443)  acpom obs(443) Res 005(443)
(mgm™) (m™) (m™) (m™) (107517
Mean 0.54 1.02 0.36 0.32 0.32 0.04 0.03 0.09 0.30
Median 0.40 1.08 0.35 0.32 0.30 0.02 0.01 0.06 0.30
Std 3.62 0.50 0.27 0.11 0.20 0.05 0.11 0.08 0.11
Min 0.05 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.05
Max 18.84 2.24 0.94 0.51 0.80 0.32 1.18 0.40 0.66

R R N VIR IRV IRV IR
! 02 03 04 05 06 07 08 09 .1 02 03 04 05 06 07 08 09
nano._obs nano._obs
0.1 1.0 10.0 0.0 1.0 2.0 3.0
-3 CSD slope 1
Chla \claliobs(mg m™) P< o

Figure 2. Ternary diagrams depicting phytoplankton size composition. Each diagram illustrates fractional contribution of
250  micro- (Fmicro_obs), Nano- (Fmicro_obs), and picophytoplankton (Fmicro_obs) to total phytoplankton biomass, colored with (a) total
Chla (Chlatotl_obs) and (b) 7obs, respectively.
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Figure 3 illustrates the biomass and fractional contribution to total Chla of phytoplankton taxa determined by phytoclass, with
respect to #obs. The pigment ratios used in this study are detailed in Table S1. Diatoms dominated in terms of both biomass and
fractional contribution for small #obs values and gradually decreased as the #obs value increased (p <0.01). A similar but
opposite pattern was observed for prymnesiophytes, indicating a gradual increase in the fractional contribution with increasing
7obs values (p <0.01). Interestingly, diatoms and prymnesiophytes were the only taxa that dominated the phytoplankton
communities, while other taxa remained only minor contributors across the #obs range. More specifically, prasinophytes and
cryptophytes showed slight increases in their fractional contribution up to >0.30 at #obs values ranging from 0.70-2.00, while
their Chla biomass in all cases remained less than 0.20 mg m>. Other taxa showed negligible variations in biomass, whereas
their fractional contributions fluctuated in response to reduced Chla for the entire phytoplankton community but was

statistically insignificant (p > 0.01).
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Figure 3. Variations in major phytoplankton groups with reference to CSD slope. (a) Biomass and (b) fractional contribution
of each phytoplankton taxa to total phytoplankton biomass (Chla) determined by phytoclass, with respect to #obs value. Plots
and vertical bars denote the average and standard deviations of each value within the respective 7obs bins. Abbreviations:
Chryso, chrysophytes; Dino, dinoflagellates; Prym, prymnesiophytes; Chloro, chlorophytes; Pras, prasinophytes; Crypto,
cryptophytes; Cyano, cyanobacteria.
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3.2 Phytoplankton absorption and remote sensing reflectance spectra

Since the Pacific Arctic is characterized as optically complex, i.e., the contributions of different water constituents
(phytoplankton, NAP, and CDOM) are highly variable, the fractional contribution of each constituent to the total absorption
by seawater (ol obs(4)) Was investigated using in situ data (Figure S4). The ratio of aph_obs(1) t0 atotal_obs(4) Was typically <0.30,
even at wavelengths of maximum pigment absorption (i.e., 443, 469, and 488 nm) and weak pure water absorption (aw(4)),
whereas acpom_obs(4) comprised 0.66 £ 0.15 (mean = std) of @t obs(412). At longer wavelengths (i.e., 645, 667, and 678 nm),
aw() contributed significantly to total absorption, with average values of >0.95. Overall, phytoplankton was the dominant
constituent to aoal obs(443) for only 30 of the 177 samples, suggesting that estimations of apn(Z) from Ris(1) using the QAA
algorithm are likely to have large uncertainties for the majority of samples due to the significant contributions to absorption

by other water constituents.

Figure 4 shows spectral variations in R obs(4), @ph obs(4), Rrs obs (A), and @y, obs (l) at ten MODIS-A bands, with respect to
7obs. Larger spectral variations in Ris obs(4), with a distinct peak at green wavelengths (i.e., 531, 547, and 555 nm), were found
for smaller #obs values, whereas larger 70bs values corresponded to relatively flat spectral shapes, with only small peaks at
shorter wavelengths (i.e., 469 and 488 nm). aph_obs(4) also showed similar differences in spectral shape and magnitude with
7obs values, except with peaks at blue wavelengths. In contrast, Ry obs (/1) and @y, obs (/1) emphasize only spectral shape by
normalizing the range of variability in Res obs(4) and aph_obs(4) (Figure 6¢, d). Regarding aph,obs(l)’ sharper peaks at blue
wavelengths (i.e., 412, 443, and 469 nm) with the maximum value at 443 nm were observed for large 7obs. Moreover,
o obs (A) increased more prominently with increasing wavelength from its minimum near 550 nm at smaller #o0bs, whereas
larger #obs corresponded to less pronounced increases in aph_obs(/l) over this spectral range. Overall, the spectral features of
Rys obs (A) and @pp, obs (A) exhibited clear variations associated with 7obs values, with Ry obs (A) exhibiting larger variations
associated with 770bs across the wide range of wavelengths compared to @y, ops (/1). ﬁph,obs(/l) also exhibited larger spectral
variations, but differences associated with 70bs were smaller in magnitude. The performance of the modified QAA for MODIS-
A bands, determined by comparing aph_Qaaobs(4) With @ph_obs(4), is shown in Table S2. According to the validation results, aph(4)
values at longer wavelengths (645, 667, and 678 nm) exhibited poor QAA estimation accuracy and were removed from the
model development based on PCA and ML approaches. It is noteworthy that the MAE for these wavelengths represents
between 25% and 30% of the pure water values (Pope and Fry, 1997). While this might appear large in an absolute sense, the
red portion of the spectrum contains limited phytoplankton taxonomic information outside of the chlorophyll absorption band

at 678 nm (Huot et al., 2005).
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Figure 4. Spectral variations in key optical properties. Spectral variations in (a) remote sensing reflectance (Rrs obs(4)), (b)

aph_obs(4), (c) normalized Rrs_obs(4) (Rrs_obs(?‘)), and (d) normalized aph obs(4) (@pn_obs (7\)) with respect to #0bs. Vertical bars

represent the standard deviations at each wavelength for each 7obs range.
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3.4  CSD model development: PCA approach

The spectral features of Ry obs (/1) and @ph,obs(/l) captured by PCA were used to develop the CSD model. Variations in the
loading factors, which describe how much each variable contributes to a particular principal component at ten wavelengths
(i.e., 412,443, 469, 488, 531, 547, 555, 645, 667, and 678 nm) and seven MODIS-A bands (i.e., 412, 443, 469, 488, 531, 547,

and 555 nm) for Rrs,obs(/l) and aph,obs(/l): respectively, are shown in Figures S2 and S3.

The spectral features captured by PCA demonstrate optical signatures of Rys ops (A) and aphﬁbs(/l) . The regression
coefficients fo and f: of the logistic-type function (Egs. (8) and (9)) were therefore determined by least squares regression
between the first four PC scores of Rys obs (A) or aphiobs(/l) and #obs. The resulting regression coefficients were then used to
compute the model parameter C; (Eq. (8)). Here, PCA and subsequent procedures for f; and C; retrievals were conducted
separately for two sample groups exhibiting either apn(412) > apn(469) or apn(412) < apn(469) regarding @y ops (l), whereas
the procedures for Rrs’obs(l) were performed on the entire dataset (unpartitioned) for model training. The partitioning of the
model parameters for @y, s (l) was based on the trial-and-error approach (Waga et al., 2017) because a single combination
of regression coefficients cannot capture the entire variations in the spectral shape of e, ops (/1) in response to changing #obs.
The partitioning sequence aimed to avoid underestimation that was observed for higher 7o,s (Waga et al., 2017). Since no
specific pattern in 7obs estimation was identified for Rrs_obs(}‘)’ this study did not exploit the portioning approach for
Rys obs (/1) The resulting model parameters are summarized in Table S3. The resulting PCA-based CSD models for Ry ops (ﬂ)

and aph_obs(/l) were hereafter denoted as CSD modelpc g, (2) and CSD modelpcA,aPh(A), respectively.

3.5 CSD model development: supervised ML approach

Additional CSD models were developed using a supervised ML approach through MATLAB’s Regression Learner App,
setting Rys obs (/1) OT @pyp obs (l) as input and 70bs as output. Performance statistics for the top five and bottom five models are
presented in Table 4. Comprehensive results for the 28 models appear in Tables S4 (Rrs_obs(l)) and S5 (@pn_obs (/1)). The best
model for Rrs_obs(l) was a linear regression with linear preset, whereas that for aph_nbs(l) was a support vector machine

(SVM) with medium Gaussian preset. These models achieved the best performance on the majority of four statistical metrics
(i.e., RMSE, MSE, 12, and MAE) relative to the other candidates and were thus selected as the ML-based CSD models for

Ris obs (A) and @pp obs (A); hereafter, CSD model; g_g, (1) and CSD modelSVM,ath, respectively. The model parameters for

CSD modelyg_g, (1) is reported in Table S6.

Upon statistical evaluation, we found random patterns in relationships between model performance and regression methods.
For example, the linear regression with linear interaction preset showed the second worst performance while the standard linear

preset showed the best performance among all 28 models tested with Ry o (/1) as input. The SVM showed the best (medium
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Gaussian preset) and worst (cubic preset) performance for @y, ops (}L). The models trained with the neural network method
tended to show poor estimation accuracy for both Rrs,obs(/l) and aphiobs(/l). Overall, the performance of the CSD models
developed by the supervised ML approach varied largely among the regression methods used in the training process, indicating

that care should be taken when choosing a regression method for model development.
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Table 4. Training results of the top five and bottom five CSD models based on diverse machine learning approaches (i.e., model type and preset).

The four statistical metrics, including the root mean square error (RMSE), mean squared error (MSE), coefficient of determination (+2), and mean

absolute error (MAE), are given as mean + std derived from ten repeats of five-fold cross-validation.

Predictor  Rank  Model type Preset RMSE MSE r MAE

Ris(Xy 1 Linear Regression Linear 016 =+ 0.01 0.03 =+ 0.00 076 =+ 002 0.12 =+ 0.01
2 Linear Regression Robust Linear 0.16 =+ 0.01 0.03 =+ 0.00 076 =+ 002 012 =+ 0.00

3 SVM Linear SVM 017 =+ 0.01 0.03 =+ 0.00 074 =+ 003 013 =+ 0.00

4 Stepwise Linear Regression Stepwise Linear 0.18 =+ 0.02 0.03 =+ 0.01 0.70 + 0.08 013 =+ 0.01

5 Efficient Linear Efficient Linear SVM 0.18 + 0.00 0.03 =+ 0.00 0.69 + 0.01 0.14 =+ 0.00

24 Neural Network Medium Neural Network 0.64 =+ 0.21 045 =+ 0.31 -3.09 + 287 027 + 0.03

25  SVM Quadratic SVM 071 =+ 0.41 0.66 =+ 0.93 -493 =+ 837 025 + 0.07

26  Neural Network Wide Neural Network 0.84 + 0.36 082 + 0.65 -6.35  * 588 032 £ 005

27  Linear Regression Interactions Linear 321+ 1.26 11.74 = 9.11 -104.16 =+ 80.99 055 =+ 0.13

28 SVM Cubic SVM 2410 + 32.60 153737 + 341627 -13771.77 + 3064037 2.69 + 3.08

aph(Ay 1 SVM Medium Gaussian SVM 0.13 =+ 0.01 0.02 =+ 0.00 0.80 =+ 0.02 010 =+ 0.00
2 Gaussian Process Regression ~ Squared Exponential GPR 013 + 0.00 0.02 =+ 0.00 080 =+ 0.02 0.10 =+ 0.00

3 Gaussian Process Regression ~ Matern 5/2 GPR 013 + 0.01 0.02 =+ 0.00 080 =+ 0.02 0.10 =+ 0.00

4 Gaussian Process Regression  Rational Quadratic GPR 0.13 =+ 0.01 0.02 =+ 0.00 079 =+ 0.02 011 <+ 0.00

5 Gaussian Process Regression  Exponential GPR 0.14 =+ 0.00 0.02 =+ 0.00 078 =+ 0.01 011 =+ 0.00

24 Neural Network Bi-layered Neural Network 057 + 0.28 040 =+ 0.38 2365 + 449 026 =+ 0.03

25  Stepwise Linear Regression Stepwise Linear 071 =+ 0.26 056 =+ 0.35 =551+ 406 021 + 0.03

26  Linear Regression Interactions Linear .18  + 0.36 1.50 =+ 0.96 -16.46  + 11.04 027 + 0.04

27 SVM Quadratic SVM 135 % 0.28 191 =+ 0.76 2118+ 892 028 =+ 0.03

28 SVM Cubic SVM 510 + 2.66 3239 + 34.40 -376.09  + 402.63  0.67 + 0.4
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3.6 CSD model validation

Validation results of the four CSD models, i.e., CSD modelpca_g, 1) CSD modelpCA,aPh(l), CSD model;g_g, (1), and
CSD modelSVM_aph(A) are shown in Figure 5, with respect to the fractional contribution of @ph_obs(443) t0 dtotal_obs(443). The
aph_obs(l)—based models performed relatively well for both PCA and ML approaches, whereas, the PCA-based Rrs_obs(l)
model underestimated 7obs, with the range of estimated values (~0.4-1.3) much lower than the measured range (~0.2-2.2). In
addition, the ML-based models (CSD model g_g, (1) and CSD models\,M,aPh(A)) showed better performance compared to the
PCA-based models (CSD modelpca g, (2) and CSD modelPCA_aphw). Overall, the CSD modelSVM_aPh(A) performed the best
among the four CSD models developed in this study. However, satellite retrieval of apn(2) in optically complex waters amplifies
uncertainty in retrieving nmpLsat for the CSD models exploiting apn(4). Validation results of the CSD model using the
aph_QaAcbs(4), estimated from Ris_obs(4) through the modified QAA, showed diminished performance, especially for the
CSD modelsypm-q,, 2y (Figure 5f). In this sense, the best-performing model for applications with Rrsa(4) is
CSD model; g_g, (2)- The CSD model; g_g, (1) yielded statistical measures of 0.21 and 1.16 for MAE and bias, respectively.
Out of the 53 samples in the validation dataset, estimates for 44 samples (i.e., 83%) were within +35% of the in sifu measured

values. The associated average and median percent errors with respect to in situ values were 28.0% and 16.2%, respectively.
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Figure 5. Validation results of the developed models. Comparison between measured (770bs) and model-estimated # values

(nmpLobs) With respect to the fractional contribution of @ph_obs(443) to d@rotal_obs(443). Upper (a—c) and lower panels (d—f) show
CSD models developed by PCA- and ML-based approaches, respectively. Panels (c) and (f) show the results of the same CSD
models in panels (b) and (e) but using aplLQAAobs(l), whereas panels (b) and (c) use @pp_ops (/1) determined from in situ

observations. MAE denotes the median absolute error.

3.7  CSD slope distribution in the Pacific Arctic

Seasonal variations in climatological 7wpLsa distribution derived by the CSD model; g_g, (z) from Ris_sa(2) in the Pacific Arctic
are shown in Figure 6. The #mprsat values were persistently low in the western side of the Bering Strait, whereas those on the
eastern side were generally high throughout the season. Such west-east contrast was also found on the Bering Sea shelf, with
low 7mpLsat Values in the west and high #mpLsae values in the east. These spatial dynamics in the #mpLsat would likely reflect
current patterns in the Pacific Arctic. Indeed, SST shows coincident patterns with such spatial variations in #mpLsat Values
(Figure S5), with relatively higher water temperatures tending to contain higher #mpLsat as well. The climatological mean 7mpLsat
in the Pacific Arctic decreased from 1.88 to 1.52 from July to September (Figure 7), suggesting an overall shift from smaller
to larger phytoplankton communities over the season. More specifically, the fractional contribution of micro-phytoplankton

(pico-phytoplankton) to total phytoplankton biomass changed from 0.04 to 0.13 (0.61 to 0.44) between July and September.

21



66°N

60°N] ! : L S
i 174°w 168°W 162°W 174°w
(d) September

5

168°W 162°W

: 3 5
174°w 168°W 162°W 174°w

0.0 05 10 is 20 25 3.0
CSD slope 7y
Figure 6. Monthly climatology of #7mpLsat values in (a) June, (b) July, (c) August, and (d) September in the Pacific Arctic for
2002-2022 (derived from Rrs_sai(4) using the CSD model; g_g_ (1)) White areas indicate no valid retrievals due to cloud and/or
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4  Discussion

4.1 Taxonomic composition and size structure of phytoplankton community

Numerous studies have reported that the size structure of phytoplankton communities has strong linkages with the taxonomic
composition (Finkel et al., 2010). Diatoms and dinoflagellates are generally classified as micro-phytoplankton;
prymnesiophytes, chrysophytes, chlorophytes, and cryptophytes are classified as nano-phytoplankton; and prasinophytes and
cyanobacteria are grouped into pico-phytoplankton. According to pigment-based taxonomic identification, diatoms and
prymnesiophytes were the main phytoplankton taxa contributing to variations in the size structure of the phytoplankton
communities (Figure 3b). More specifically, a higher fractional contribution of diatoms was associated with smaller #obs values,
suggesting a large-sized phytoplankton-dominated condition. In contrast, a higher fractional contribution of prymnesiophytes
resulted in larger #obs values, indicating a small-sized phytoplankton dominated condition. Overall, shifts in the relative

fractions of micro- and nano-size classes drove the change in #0bs, While pico-plankton had less impact.
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4.2 Responses of optical signatures to phytoplankton size structure

The absolute concentration of phytoplankton pigments in seawater typically affects first-order variability in the magnitude of
Ris(4), with secondary impacts on Ris(4) spectral shape associated with diversity in dissolved and particulate properties, such
as phytoplankton community composition (Ciotti et al., 2002). Therefore, spectral variations in the magnitude-normalized
R (A) can be reasonably assumed to coincide with changes in the size structure of the phytoplankton community. Indeed, the
spectral shape of Rrs,obs(/l) showed a transition of the peak wavelength from green to blue with increasing #obs values (Figure
4b). Likewise, the magnitude of apn(1) is related to pigment composition and concentration, whereas size information is
contained in the shape of the absorption spectrum due to pigment packaging within cells (Bricaud and Morel, 1986b). For
example, we found a sharp absorption peak in aph,obs()‘) around 443 nm that appeared to be positively correlated with CSD
slope (Figure 4d). Overall, our study demonstrated strong influences of the size structure of phytoplankton communities on
Ry obs (l) and @pp, obs (l), as reported in previous studies (Mouw et al., 2017). Although we found clear linkages in the spectral
shape of Ry obs (/1) and @y, obs (/1) with #obs, it is important to note that Ry 5ps (l) is influenced not solely by phytoplankton
but also by CDOM and NAP. Since Chla is generally uncorrelated with CDOM and NAP in coastal waters, the combined
impact of absorption and scattering by all water constituents on water-leaving radiance likely accounts for the somewhat poorer

performance of the remote sensing-based models compared to the in situ pigment absorption based ML models.

4.3  Comparison of PCA- and ML-based approaches

The output from PCA consisted of two terms: loading factors and PC scores. Loading factors define the rotations of the axes.
PC scores are linearly uncorrelated variables that represent the positions of samples in the new rotated axes, and each is the
linear combination of original spectra with corresponding loading factors (Wang et al., 2015). The PCA-based approach
adopted here assumes that PC scores are correlated with # values, yet this assumption would not have been necessarily valid
in this study. Indeed, the PCA-based CSD model showed a degraded performance compared to that of the ML-based model
particularly for Ry ops (l), suggesting that the PCA could have added uncertainties in the retrieval of #. In fact, simple and
direct linear regression resulted in better performance of the CSD model in the case of utilizing Ry obs (}L). In addition, the
first two PC modes explained about 95% of spectral variations in Ry obs (l) and &pp, obs (A). This fact suggests that the other
two PC modes (i.e., PC modes 3 and 4) contribute little to explaining the entire spectral variation but may have added
uncertainties, especially considering the relatively small dataset used in the current study. Note that the PCA-based approach
is a dimensionality reduction method often used to reduce the dimensionality of large data sets by transforming a large set of
variables into a smaller one that still contains most of the information in the large set (Corte-Real, 2020). In the case of
hyperspectral data, the input variables can easily be hundreds of wavelengths, which imposes a significant computational cost.
The PCA can aggregate important spectral features into PC scores and may prove beneficial for developing robust remote
sensing algorithms based on hyperspectral data. However, because we are using multispectral data with limited number of

predictor variables, this potential benefit of PCA is not realized in our study.
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While the conventional least square regression has been used for decades in the development of satellite ocean color algorithms
(Fujiwara et al., 2011; Hirata et al., 2011; O’Reilly et al., 1998; Waga et al., 2017, 2019a), more complex ML methods are
increasingly being applied and many studies have reported their capability for improved ocean color product retrievals (Chen
etal., 2019; Hu et al., 2021, 2018). The least square regression is a statistical method that fits a pre-defined equation to specific
data. Due to is relative simplicity, it cannot fully extract hidden patterns in data and/or elicit a deep characterization of intricate
relationships between a number of interdependent variables (Martens and Dardenne, 1998). However, the ML approach of
learning relationships between the input values and the corresponding output values without predefined or explicated equations
requires an extensive dataset that covers complex behaviors in the data and a wide range of environmental conditions (Marzban,
2009). Once trained, ML approaches are powerful tools for the fast and efficient processing of large datasets, such as geospatial

satellite data (Paul and Huntemann, 2021; Waga et al., 2022).

One of the key findings of this study is that more complex ML approaches (e.g., support vector machine, ensemble, and neural
network) do not always produce more effective models than simple ML approaches (e.g., standard linear regression) (Table
4). While more complex models generally perform better than simpler ones (Makridakis et al., 2022), a complicated or flexible
model will pose challenges for interpretation and can end up overfitting random effects (i.e., noises) that are unique to the
dataset used for training. If these random effects are not present in new data to which the model is applied, then the model can
produce incorrect results when it uses relationships developed based on random phenomena in the training dataset. Thus, the
limited size of our dataset (i.c., only 177 samples) likely contributed to the poor performance of the complex ML models.
Nonetheless, the CSD model trained with a support vector machine was selected as the best model for @ph,obs(l)- This
indicates that the poor performance of complex ML approaches for R, ops (/1) may also be associated with other regression-
related factors (e.g., number of features, classifier hyper-parameter optimization, and number of cross-validation folds) rather
than simply the number of samples used for training (Vabalas et al., 2019). One potential explanation for the better performance
with the simple linear regression approach for Ry obs ()L) is that variance in Rrs,obs(l) for each 70bs range was larger compared
to that of aph_obs(/l) (Figure 4c). Complex ML approaches applied to Ry ops (A) likely introduced errors related to the variance
in the relationship between the spectral features and #obs, Whereas a simple ML approach captured only predominant features
with lesser effects of the variance. Finally, we wish to also express that the type of batch approach employed by MATLAB’s
Machine Learning App is useful for identifying what type of model might perform well for the problem at hand, however it

should not be taken as canon as more complex ML approaches often require careful customization and model design.
4.4  Methodological uncertainties and limitations

A major challenge of the ML approach, with some exceptions, such as linear regression, is that it is difficult or impossible to
derive a mechanistic understanding of the model-predicted relationship between the input and output values (Ray, 2019). For

this reason, the ML approaches are sometimes called “black boxes.” This lack of transparency can be problematic in
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interpreting the results generated by the model (Vollmer et al., 2020; Wachter et al., 2017). While ML approaches have been
employed in numerous fields besides satellite remote sensing, they have not adequately addressed the issue of causality, which
is essential to support wider dissemination and acceptance of the proposed models (Hall et al., 2022). What can be said at this
point is that the selection of an ML approach carries with it trade-offs between accuracy and interpretability. Establishing
procedures for interpreting how ML models learn and arrive at answers is crucial to not only selecting the appropriate model

approach but also for improving reliability and building confidence in the selected approach.

The superior in-situ performance of aph(4)-based models reflects a stronger physical coupling between # and aph(4) (Figure 5).
Our preference for the Ris(1)-based model is operational, as it avoids uncertainties due to the inversion of apn(1) from Rrs(4) in
optically complex waters and yields reliable retrievals for satellite applications; it should not be taken as evidence that 7 is
more fundamentally linked to Rrs(Z) than to apn(2). A further explanation for why the aph(4)-based model performed better than
the Ris(4)-based model pertains to measurement uncertainty related to the temporal and spatial scales of the input observations.
Field data for the apn(1)-based model, including pigments and absorption, were derived from analyses of well-mixed water
drawn from relatively small sample volumes of few liters, resulting in high confidence that type and concentration of material
analyzed for absorption was similar to the material extracted for pigments. By comparison, in situ measurements of radiometry
for the computation of Ris(1) were measured away from the ship to avoid effects on the light field, at times that were often
offset from water sampling by tens of minutes, and represented signals integrated across thousands of liters of near-surface

ocean water. Therefore, uncertainty regarding sample similarity was far greater for Res_obs(4) than for aph_obs(4).

Our outcome metric was 7, computed from within-sample size fractions rather than absolute Chla. Prior work (Waga et al.,
2017) showed that # is insensitive to reasonable choices of pore-size boundaries: percent differences in the resulting #0bs were
under 5% across three different typical Chlasize cutoffs (i.e., >20, 2-20, and <2 um; >10, 2-10, and <2 pm; and >20, 5-20/<5
um). Nevertheless, we acknowledge a small residual uncertainty for cruises that used different filters, which could add noise
in heterogeneous conditions. To assess any such effect, we conducted a sensitivity check that removes cruises with differing
pore-size splits (i.e., 2007, 2009, 2010) and compared model ranking and error metrics on the reduced subset. These results

are summarized in Table S7, which suggests consistent findings across the entire dataset (Table 4).

Absolute Chla can differ across analytical methods (Wang et al., 2025), yet our modeling targets a dimensionless outcome
(i.e., n) computed from within-sample size fractions rather than absolute concentrations. This proportion-based normalization
places fluorometer and HPLC observations on a common scale and helps mitigate method-specific bias in total Chla. The
HPLC-based Chlasize subset in our compilation is small, which limits our ability to estimate a stable cross-method offset in 5
or to perform a rigorous calibration. Looking ahead, a targeted cross-calibration, paired fluorometer- and HPLC-based Chlasize
measurements collected contemporaneously across key water masses, would better quantify any residual method dependence

in the retrieval of Chlasize and further strengthen future assessments.
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Overall, our dataset is heterogeneous in time, space, and methods, which introduces non-exchangeability among samples and
elevates the risk of biased validation. We used a standard repeated five-fold cross-validation and an external 30% subset to
validate the performance of the developed models, but these procedures do not fully control for grouping by cruise, pore-size
scheme, analytical approach, or region. As a result, cross-validated skill may be optimistic if folds inadvertently mix samples
that are more similar to each other than to the broader population, and the external split may still reflect historical or regional
structure (Stock, 2022; Stock and Subramaniam, 2022). Our purpose here is model ranking rather than precise absolute skill;
nevertheless, the uncertainty associated with non-stratified resampling should be borne in mind when interpreting differences
among approaches. A more conservative assessment is to partition the data into discrete “blocks” according to certain criteria,
which enables the creation of independent training and validation folds using stratified blocking (e.g., temporal and spatial
blocks) (Zhang et al., 2023). Such cross-validation strategies are preferable for heterogeneous datasets and are recommended

for future work and community benchmarks.

4.5  Performance of CSD model in optically complex Pacific Arctic waters
Considering the estimation error associated with the semi-analytical IOP inversion algorithm (i.e., the modified QAA), the

CSD m(’delsvm—aphm contains large uncertainties in the retrieval of 5 (Figure 5). This is primarily because the poor

performance of the modified QAA in optically complex waters hampered the apn(2) retrieval (Table S2), and estimation errors
were propagated to the aph(l)—based CSD model for application to satellite data. In other words, the performance of the
aph(l)—based CSD model could be improved if a more accurate IOP inversion algorithm were to be established for optically
complex waters. Moreover, hyperspectral satellite sensors, such as the NASA Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE) mission’s primary sensor, the Ocean Color Instrument (OCI), and the planned Surface Biology and Geology (SBG)
and Geostationary Littoral Imaging Radiometer (GLIMR) sensors will have the capability to capture more detailed spectral
features of apn(1) (Dierssen et al., 2023; Werdell et al., 2018), which will greatly benefit satellite-based monitoring of
phytoplankton communities (Isada et al., 2015).

Considering that the accuracy goal for satellite-derived Chla is defined as within £35% of the true value (Hooker and McClain,
2000), and a variety of ocean color products, such as primary productivity (Behrenfeld and Falkowski, 1997), utilize Chla as
one of the input parameters, we conclude that the CSD model developed in this study performs sufficiently well in the Pacific
Arctic, presuming adequate correction for atmospheric effects in the satellite data. Since this region receives a large amount
of freshwater containing CDOM and NAP delivered from rivers (Matsuoka et al., 2007), it was expected that the performance
of the CSD model relying on R.¢ ()L) would be influenced by CDOM and NAP, which often dominate the optical properties of
seawaters in this region (Chaves et al., 2015; Mustapha et al., 2012; Wang and Cota, 2003). However, the validation results
suggest that the CSD model; g_g, (1) performed with consistent accuracy regardless of the fractional contribution of @ph pbs(4)

tO arotal_obs(4) at 443 nm (Figure 5).
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4.6  Distribution of CSD slope in the Pacific Arctic

The Pacific Arctic, with a large continental shelf extending from the northern Bering Sea to the southern Chukchi Sea and
northwards, has been characterized by a tight pelagic-benthic coupling (Grebmeier et al., 1988, 1989; Grebmeier and McRoy,
1989), with up to 70% of primary production ultimately reaching the seafloor (Walsh et al., 1989). The seasonal cycle of sea-
ice formation and melting provides suitable conditions for phytoplankton growth (Stabeno et al., 2010), with large spring
diatom blooms occurring at the marginal ice edge and under the ice (Laney and Sosik, 2014; Waga et al., 2021b). The northern
Bering and Chukchi Seas are reported to have the highest sinking particulate organic carbon fluxes (0.8-2.5 g C m"2 d!) within
the world ocean, and the particles collected by moored sediment traps consist of aggregates composed of diatoms exclusively
(O’Daly et al., 2020). On the continental shelves in the Pacific Arctic, much of the organic carbon produced in the euphotic
layer is directly transported to the seafloor with little or no grazing by zooplankton (Campbell et al., 2009). This strong pelagic-
benthic coupling has maintained areas of persistently high benthic biomass, also called benthic hotspots (Grebmeier et al.,
2015a), which serve as important foraging areas for upper trophic level benthivores, such as bearded seals, walrus, gray whales,
and diving seabirds (Grebmeier, 2006). These hotspots are supported by influxes of organic carbon introduced by vertical
transport from the overlying water column and lateral advection (Grebmeier et al., 2015b). Regarding the vertical transport of
organic carbon, Waga et al. (2019a) reported that the size structure of phytoplankton communities has a significant relationship
with Chla concentration in the underlying seafloor sediments, suggesting a connection between phytoplankton cell size and

benthic macrofaunal biomass in this region.

We found clear spatial variation in the distribution of #mpLsa in the Pacific Arctic (Figure 6). For example, on the Bering Sea
shelf, the Siberian coast exhibited smaller #mprsa: values, whereas larger values were found along the Alaskan coast.
Throughout the seasons, there were west-east gradients showing smaller and larger #mpLsat values on the Siberian and Alaskan
sides of the Bering Strait, respectively. Since a small CSD slope represents a greater proportion of larger-sized phytoplankton,
this result indicates larger-sized phytoplankton typically dominated along the Siberian coast, and smaller-sized phytoplankton
dominated along the Alaskan coast. In the Pacific Arctic, three major water masses prevail: i.e., the Alaskan Coastal Water,
Anadyr Water, and Bering Shelf Water (Coachman et al., 1976; Danielson et al., 2017). The Alaskan Coastal Water is identified
with relatively high temperatures and low salinity due to freshwater input flows along the western coast of Alaska out to the
Beaufort Sea (Coachman et al., 1976). The Anadyr Water, which flows along the eastern coast of Siberia, has low temperatures
and high salinity, and supplies large amounts of nutrients to the Bering Sea and Bering Strait (Coachman et al., 1976). The
Bering Shelf Water flows between Anadyr Water and Alaskan Coastal Water on the Bering Sea shelf and forms as these two
water masses mix as they pass through the Bering Strait (Grebmeier et al., 1988). In addition to these general current patterns,
satellite images of SST (Figure S5) show distinct signatures of cold-water outcroppings in the western side of the Bering Strait,
particularly in July and August. Such signatures were associated with friction between the current and the sea floor (Kawaguchi
et al., 2020) and accompanied by upward nutrient flux to the surface from the nutrient-rich bottom layer of Anadyr Water

(Nishioka et al., 2021), resulting in smaller #mpLsat around the Bering Strait. These water mass distributions matched the spatial
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pattern in the #mpLsat in the Pacific Arctic, suggesting a tight relationship between nutrient availability and phytoplankton cell
size (Ko et al., 2020; Suzuki et al., 2021).

The nmpLsae values in the Pacific Arctic showed clear seasonal changes from June to September (Figure 7). According to
previous studies in this region (Waga et al., 2021b; Waga and Hirawake, 2020), ice-associated spring blooms mature primarily
within 20 days after sea-ice retreat and then decay gradually until fall blooms occur. Although the timing and presence/absence
of spring and fall blooms largely depend on sea-ice conditions and other factors such as wind forcing (Fujiwara et al., 2018;
Nishino et al., 2015), June and July are generally characterized as the post-bloom period and August and September are the
typical fall bloom period. Such onset and decay of phytoplankton blooms are strongly linked to the size composition of

phytoplankton communities in the Pacific Arctic (Waga and Hirawake, 2020), as shown in seasonal variations in #7mpLsat values.

5  Conclusions

This study developed a CSD model in optically complex Pacific Arctic waters by employing machine learning methods, which
exploit hidden, complex relationships between optical signatures and phytoplankton size composition. Considering the large
uncertainties in the inversion of aph(4) from satellite-derived Rrs(1), we used Ris(1) directly as a model input instead of apn(4),
though apn(1) is more directly related to the size composition of phytoplankton communities. Neglecting the estimation errors
produced from IOP inversion and considering only remotely sensed radiances and phytoplankton absorption spectra from
water samples, the best-performing model among the four CSD models examined in this study was the ML-based model with
normalized apn(4) spectra used as input ( CSD mOdeISVM—aph(Z.) ), followed by the ML-based model with Ris(2)
(CSD model; g_g, (1)), the PCA-based model with aph(4) (CSD modelPCA_“pha)), and finally the PCA-based model with Ris(h)
(CSD modelpca_g, (1)) Within our dataset, the PCA-based CSD model showed a degraded performance compared to that of
the ML-based model for both Rrsﬁbs(/l) and @ph,ubs(l)- Although the PCA-based approach assumes that PC scores are
correlated with # values, this assumption would not have been necessarily valid, particularly for Rrs_obs(l). In addition, this
study utilized the first four PC modes as representative for spectral features of Ry ons(4) and @pp ops(4). The first two PC
modes explained about 95% of spectral variations in Ry ops (A) and @pp, obs (A), whereas the latter two modes contributed little
to explaining the entire spectral variation but may have added uncertainties associated with the PCA step. Another key finding
is that more complex ML approaches do not always produce more effective models than standard linear regression. Indeed,
simple linear regression outperformed other ML approaches for Rrsiobs(/l), whereas the CSD model developed with support
vector machine was selected as the best for apn(4). Overall, we found benefits in using ML tools to modify and improve the
retrieval accuracy of the previously developed CSD model in the Pacific Arctic. Future innovations in machine learning,
satellite (and airborne) ocean color sensor capabilities, and IOP algorithms can further contribute to robust, synoptic remote

sensing monitoring of phytoplankton size structure in optically complex waters, such as the Arctic Ocean, where rapid change
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is altering the dynamics of phytoplankton with cascading effects on higher trophic levels, ecosystem functioning, and marine

resources.
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Author contribution. Conceptualization of the study was done by HW; the methodology was established by HW, AF, and TH;
validation was done by HW; formal analysis of the data was done by HW; in situ data were collected by HW, AF, SGA, DK,
KT, AM, and TH; the original draft was prepared by HW; review and editing was done by all authors; visualization of the
results was done by HW; project administration was done by WIM, TH, KS, SIS; funding acquisition was done by HW, WIM,
DK, TH, KS, and SIS.

Competing interests. Koji Suzuki is a member of the editorial board of Biogeosciences. The authors declare that they have no

other conflict of interest.

Acknowledgements. We sincerely acknowledge the captains and crews of the T/S Oshoro-maru, R/V Mirai, and R/V Ukpik
for their expert guidance and cooperation during the cruises. We also express our gratitude to the staff of JAMSTEC, Marine
Work Japan, Ltd., and NASA Goddard Space Flight Center (GSFC), for their support in obtaining and analyzing the data. We
appreciate the NASA Distributed Active Archive Center (DAAC) for producing and distributing ocean color data.

Financial support. This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan
(MEXT) through the Green Network of Excellence (GRENE) and the Arctic Challenges for Sustainability (ArCS). This
research was also supported by NASA Ocean Biology and Biogeochemistry programs 80NSSC22K1055 and
80NSSC25K7431, European Union’s Horizon 2020 research and innovation program (Marie Sktodowska-Curie grant
agreement no. 101034309), Grant-in-Aids for JSPS Early-Career Scientists 21K 14894, and JST CREST JPMJCR23J4.

References

Bao, S., Zhang, R., Wang, H., Yan, H., Chen, J., and Wang, Y.: Correction of Satellite Sea Surface Salinity Products Using
Ensemble Learning Method, IEEE Access, 11, 17870-17881, https://doi.org/10.1109/ACCESS.2021.3057886, 2023.

Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol.
Oceanogr., 42, 1-20, https://doi.org/10.4319/10.1997.42.1.0001, 1997.

Bricaud, A. and Morel, A.: Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling, Appl. Opt., 25,
571, https://doi.org/10.1364/20.25.000571, 1986a.

Bricaud, A. and Morel, A.: Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling, Appl. Opt., AO,
25, 571-580, https://doi.org/10.1364/A0.25.000571, 1986b.

30



600

605

610

615

620

625

630

635

640

Campbell, R. G., Sherr, E. B., Ashjian, C. J., Plourde, S., Sherr, B. F., Hill, V., and Stockwell, D. A.: Mesozooplankton prey
preference and grazing impact in the western Arctic Ocean, Deep-Sea Res. II, 56, 1274-1289,
https://doi.org/10.1016/j.dsr2.2008.10.027, 2009.

Chaves, J. E., Werdell, P. J., Proctor, C. W., Neeley, A. R., Freeman, S. A., Thomas, C. S., and Hooker, S. B.: Assessment of
ocean color data records from MODIS-Aqua in the western Arctic Ocean, Deep-Sea Res. II, 118, 32-43,
https://doi.org/10.1016/j.dsr2.2015.02.011, 2015.

Chen, J., Zhu, Y., Wu, Y., Cui, T., Ishizaka, J., and Ju, Y.: A Neural Network Model for K(}) Retrieval and Application to
Global Kpar Monitoring, PLoS One, 10, e0127514, https://doi.org/10.1371/journal.pone.0127514, 2015.

Chen, J., Chen, S., Fu, R., Wang, C., Li, D., Peng, Y., Wang, L., Jiang, H., and Zheng, Q.: Remote sensing estimation of
chlorophyll-A in case-II waters of coastal areas: Three-band model versus genetic algorithm—artificial neural networks model,
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 3640-3658, https://doi.org/10.1109/jstars.2021.3066697, 2021.

Chen, N., Li, W., Gatebe, C., Tanikawa, T., Hori, M., Shimada, R., Aoki, T., and Stamnes, K.: New neural network cloud
mask  algorithm based on radiative transfer simulations, Remote Sens. Environ., 219, 62-71,
https://doi.org/10.1016/j.rse.2018.09.029, 2018.

Chen, S., Hu, C., Barnes, B. B., Xie, Y., Lin, G., and Qiu, Z.: Improving ocean color data coverage through machine learning,
Remote Sens. Environ., 222, 286302, https://doi.org/10.1016/j.rse.2018.12.023, 2019.

Ciotti, A. M., Lewis, M. R., and Cullen, J. J.: Assessment of the relationships between dominant cell size in natural
phytoplankton communities and the spectral shape of the absorption coefficient, Limnol. Oceanogr., 47, 404-417,
https://doi.org/10.4319/10.2002.47.2.0404, 2002.

Coachman, L. K., Aagaard, K., and Tripp, R. B.: Bering strait: Regional physical oceanography, University of Washington
Press, Washington, D.C., DC, 172 pp., 1976.

Corte-Real, N. M. F.: Bioinformatic Tools to Decipher Biological Patterns in the Cytoskeleton of Nervous System Cells,
Master Thesis, Universidade do Porto, Portugal, 2020.

Danielson, S. L., Eisner, L., Ladd, C., Mordy, C., Sousa, L., and Weingartner, T. J.: A comparison between late summer 2012
and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas, Deep-
Sea Res. 11, 135, 7-26, 2017.

Deng, L., Zhou, W., Cao, W., Zheng, W., Wang, G., Xu, Z., Li, C., Yang, Y., Hu, S., and Zhao, W.: Retrieving Phytoplankton
Size Class from the Absorption Coefficient and Chlorophyll A Concentration Based on Support Vector Machine, Remote
Sens., 11, 1054, https://doi.org/10.3390/rs11091054, 2019.

Dierssen, H. M., Gierach, M., Guild, L. S., Mannino, A., Salisbury, J., Schollaert Uz, S., Scott, J., Townsend, P. A., Turpie,
K., Tzortziou, M., Urquhart, E., Vandermeulen, R., and Werdell, P. J.: Synergies between NASA’s hyperspectral aquatic
missions PACE, GLIMR, and SBG: Opportunities for new science and applications, J. Geophys. Res. Biogeosci., 128,
https://doi.org/10.1029/2023jg007574, 2023.

Fasnacht, Z., Joiner, J., Haffner, D., Qin, W., Vasilkov, A., Castellanos, P., and Krotkov, N.: Using machine learning for timely

estimates of ocean color information from hyperspectral satellite measurements in the presence of clouds, aerosols, and
sunglint, Frontiers in Remote Sensing, 3, 2022.

Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V., and Raven, J. A.: Phytoplankton in a changing world: cell
size and elemental stoichiometry, J. Plankton Res., 32, 119-137, https://doi.org/10.1093/plankt/fbp098, 2010.

Fujiwara, A., Hirawake, T., Suzuki, K., and Saitoh, S. I.: Remote sensing of size structure of phytoplankton communities using
optical properties of the Chukchi and Bering Sea shelf region, Biogeosciences, 8, 3567-3580, 2011.

Fujiwara, A., Hirawake, T., Suzuki, K., Eisner, L., Imai, 1., Nishino, S., Kikuchi, T., and Saitoh, S. I.: Influence of timing of
sea ice retreat on phytoplankton size during marginal ice zone bloom period on the Chukchi and Bering shelves,
Biogeosciences, 13, 115131, https://doi.org/10.5194/bg-13-115-2016, 2016.

31



650

655

660

665

670

675

680

Fujiwara, A., Nishino, S., Matsuno, K., Onodera, J., Kawaguchi, Y., Hirawake, T., Suzuki, K., Inoue, J., and Kikuchi, T.:
Changes in phytoplankton community structure during wind-induced fall bloom on the central Chukchi shelf, Polar Biol., 41,
12791295, https://doi.org/10.1007/s00300-018-2284-7, 2018.

Gordon, H. R., Clark, D. K., Mueller, J. L., and Hovis, W. A.: Phytoplankton pigments from the nimbus-7 coastal zone color
scanner: comparisons with surface measurements, Science, 210, 63—66, https://doi.org/10.1126/science.210.4465.63, 1980.

Grebmeier, J. M.: A major ecosystem shift in the northern Bering Sea, Science, 311, 1461-1464,
https://doi.org/10.1126/science.1121365, 2006.

Grebmeier, J. M. and McRoy, C. P.: Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. 111 Benthic
food supply and carbon cycling, Mar. Ecol. Prog. Ser., 53, 79-91, https://doi.org/10.3354/meps053079, 1989.

Grebmeier, J. M., McRoy, C. P., and Feder, H. M.: Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi
Seas. 1. Food supply source and benthic bio-mass, Mar. Ecol. Prog. Ser., 48, 57-67, 1988.

Grebmeier, J. M., Feder, H. M., and McRoy, C. P.: Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi
Seas. II. Benthic community structure, Mar. Ecol. Prog. Ser., 51, 253-268, 1989.

Grebmeier, J. M., Bluhm, B. A., Cooper, L. W., Danielson, S. L., Arrigo, K. R., Blanchard, A. L., Clarke, J. T., Day, R. H.,
Frey, K. E., Gradinger, R. R., Kedra, M., Konar, B., Kuletz, K. J., Lee, S. H., Lovvorn, J. R., Norcross, B. L., and Okkonen,
S. R.: Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory
in the Pacific Arctic, Prog. Oceanogr., 136, 92—114, https://doi.org/10.1016/j.pocean.2015.05.006, 2015a.

Grebmeier, J. M., Bluhm, B., Cooper, L., Denisenko, S., Iken, K., Kedra, M., and Serratos, C.: Time-Series Benthic
Community Composition and Biomass and Associated Environmental Characteristics in the Chukchi Sea During the
RUSALCA 20042012 Program, Oceanography, 28, 116-133, 2015b.

Hall, O., Ohlsson, M., and Rognvaldsson, T.: A review of explainable Al in the satellite data, deep machine learning, and
human poverty domain, Patterns Prejudice, 3, 100600, https://doi.org/10.1016/j.patter.2022.100600, 2022.

Hayward, A., Pinkerton, M. H., and Gutierrez-Rodriguez, A.: phytoclass: A pigment-based chemotaxonomic method to
determine  the biomass of phytoplankton  classes, Limnol.  Oceanogr. Methods, 21, 220-241,
https://doi.org/10.1002/lom3.10541, 2023.

Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka,
T., Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships between surface Chlorophyll-a and diagnostic pigments
specific to phytoplankton functional types, Biogeosciences, 8, 311-327, https://doi.org/10.5194/bg-8-311-2011, 2011.

Hood, R. R., Laws, E. A., Armstrong, R. A., Bates, N. R., Brown, C. W., Carlson, C. A., Chai, F., Doney, S. C., Falkowski, P.
G., Feely, R. A., Friedrichs, M. A. M., Landry, M. R., Keith Moore, J., Nelson, D. M., Richardson, T. L., Salihoglu, B.,
Schartau, M., Toole, D. A., and Wiggert, J. D.: Pelagic functional group modeling: Progress, challenges and prospects, Deep-
Sea Res. II, 53, 459-512, https://doi.org/10.1016/j.dsr2.2006.01.025, 2006.

Hooker, S. B. and McClain, C. R.: The calibration and validation of SeaWiFS data, Prog. Oceanogr., 45, 427465, 2000.

Hu, C., Feng, L., and Guan, Q.: A Machine Learning Approach to Estimate Surface Chlorophyll a Concentrations in Global
Oceans  From  Satellite ~ Measurements, IEEE  Trans. Geosci.  Remote Sens., 59, 45904607,
https://doi.org/10.1109/TGRS.2020.3016473, 2021.

Hu, S., Liu, H., Zhao, W., Shi, T., Hu, Z., Li, Q., and Wu, G.: Comparison of Machine Learning Techniques in Inferring
Phytoplankton Size Classes, Remote Sens., 10, 191, https://doi.org/10.3390/rs10030191, 2018.

Huot, Y., Brown, C. A, and Cullen, J. J.: New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison
with present data products, Limnol. Oceanogr. Methods, 3, 108—130, https://doi.org/10.4319/lom.2005.3.108, 2005.

IOCCG: Phytoplankton functional types from space, edited by: Sathyendranath, S., International Ocean Colour Coordinating
Group (IOCCG), Dartmouth, Canada, https://doi.org/10.25607/OBP-106, 2014.

32



685

690

695

700

705

710

715

720

IOCCG: Ocean optics and biogeochemistry protocols for satellite ocean colour sensor validation; Volume 1.0. Inherent optical
property measurements and protocols: Absorption coefficient, edited by: Neeley, A. R. and Mannino, A., International Ocean
Colour Coordinating Group (IOCCG), Dartmouth, NS, Canada, https://doi.org/10.25607/OBP-119, 2018.

Isada, T., Hirawake, T., Kobayashi, T., Nosaka, Y., Natsuike, M., Imai, L., Suzuki, K., and Saitoh, S.-I.: Hyperspectral optical
discrimination of phytoplankton community structure in Funka Bay and its implications for ocean color remote sensing of
diatoms, Remote Sens. Environ., 159, 134—151, https://doi.org/10.1016/j.rse.2014.12.006, 2015.

Kawaguchi, Y., Nishioka, J., Nishino, S., Fujio, S., Lee, K., Fujiwara, A., Yanagimoto, D., Mitsudera, H., and Yasuda, I.: Cold
Water Upwelling Near the Anadyr Strait: Observations and Simulations, J. Geophys. Res. Oceans, 125, ¢2020JC016238,
https://doi.org/10.1029/2020JC016238, 2020.

Ko, E., Gorbunov, M. Y., Jung, J., Joo, H. M., Lee, Y., Cho, K.-H., Yang, E. J., Kang, S.-H., and Park, J.: Effects of Nitrogen
Limitation on Phytoplankton Physiology in the Western Arctic Ocean in Summer, J. Geophys. Res. Oceans, 125,
€2020JC016501, https://doi.org/10.1029/2020JC016501, 2020.

Kolluru, S. and Tiwari, S. P.: Modeling ocean surface chlorophyll-a concentration from ocean color remote sensing reflectance
in global waters using machine learning, Sci. Total Environ., 844, 157191, https://doi.org/10.1016/j.scitotenv.2022.157191,
2022.

Kostadinov, T. S., Siegel, D. A., and Maritorena, S.: Global variability of phytoplankton functional types from space:
assessment via the particle size distribution, Biogeosciences, 7, 3239-3257, 2010.

Krasnopolsky, V., Nadiga, S., Mehra, A., Bayler, E., and Behringer, D.: Neural networks technique for filling gaps in satellite

measurements:  Application to ocean color observations, Comput. Intell. Neurosci, 2016, 6156513,
https://doi.org/10.1155/2016/6156513, 2016.

Laney, S. R. and Sosik, H. M.: Phytoplankton assemblage structure in and around a massive under-ice bloom in the Chukchi
Sea, Deep-Sea Res. 11, 105, 3041, https://doi.org/10.1016/j.dsr2.2014.03.012, 2014.

Le Quéré, C., Harrison, S. P., Prentice, I. C., Buitenhuis, E. T., Aumont, O., Bopp, L., Claustre, H., Da Cunha, L. C., Geider,
R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Manizza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J.,
Watson, A. J., and Gladrow, D. W.: Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry
models, Glob. Chang. Biol., 11, 2016-2040, 2005.

Lee, Z. P., Carder, K. L., and Arnone, R. A.: Deriving inherent optical properties from water color: a multiband quasi-analytical
algorithm for optically deep waters, Appl. Opt., 41, 5755-5772, https://doi.org/10.1364/A0.41.005755, 2002.

Li, X., Bellerby, R. G. J., Wallhead, P., Ge, J., Liu, J., Liu, J., and Yang, A.: A neural network-based analysis of the seasonal
variability of surface total alkalinity on the east China Sea shelf, Frontiers in Marine Science, 7, 2020.

Li, X., Yang, Y., Ishizaka, J., and Li, X.: Global estimation of phytoplankton pigment concentrations from satellite data using
a deep-learning-based model, Remote Sens. Environ., 294, 113628, https://doi.org/10.1016/j.rse.2023.113628, 2023.

Li, Z., Li, L., Song, K., and Cassar, N.: Estimation of phytoplankton size fractions based on spectral features of remote sensing
ocean color data, J. Geophys. Res. Oceans, 118, 1445-1458, https://doi.org/10.1002/jgrc.20137, 2013.

Mackey, M. D., Mackey, D. J., Higgins, H. W., and Wright, S. W.: CHEMTAX - a program for estimating class abundances
from chemical markers:application to HPLC measurements of phytoplankton, Mar. Ecol. Prog. Ser., 144, 265-283, 1996.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V.: M5 accuracy competition: Results, findings, and conclusions, Int. J.
Forecast., 38, 1346-1364, https://doi.org/10.1016/j.ijforecast.2021.11.013, 2022.

Martens, H. A. and Dardenne, P.: Validation and verification of regression in small data sets, Chemometrics Intellig. Lab.
Syst., 44, 99—121, https://doi.org/10.1016/S0169-7439(98)00167-1, 1998.

33



725

730

735

740

745

750

755

760

765

Marzban, C.: Basic statistics and basic Al: Neural networks, in: Artificial Intelligence Methods in the Environmental Sciences,
edited by: Haupt, S. E., Pasini, A., and Marzban, C., Springer Netherlands, Dordrecht, 1547, https://doi.org/10.1007/978-1-
4020-9119-3 2, 2009.

Matsuoka, A., Huot, Y., Shimada, K., Saitoh, S.-I., and Babin, M.: Bio-optical characteristics of the western Arctic Ocean:
implications for ocean color algorithms, Can. J. Remote Sens., 33, 503-518, 2007.

McClain, C. R.: A decade of satellite ocean color observations, Ann. Rev. Mar. Sci, 1, 19-42,
https://doi.org/10.1146/annurev.marine.010908.163650, 2009.

Mitchell, B. G.: Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter
technique, in: Ocean Optics X, 137-148, https://doi.org/10.1117/12.21440, 1990.

Mobley, C. D.: Light and water, Academic Press, San Diego, CA, 608 pp., 1994.

Mouw, C. B., Hardman-Mountford, N. J., Alvain, S., Bracher, A., Brewin, R. J. W., Bricaud, A., Ciotti, A. M., Devred, E.,
Fujiwara, A., Hirata, T., Hirawake, T., Kostadinov, T. S., Roy, S., and Uitz, J.: A consumer’s guide to satellite remote sensing
of multiple phytoplankton groups in the global ocean, Frontiers in Marine Science, 4, 497, 2017.

Mukonza, S. S. and Chiang, J.-L.: Quantifying cross-validation uncertainties for linear regression machine learning algorithm
used to estimate chlorophyll-a in mundan water reservoir based on Landsat derived spectral indices, in: 2022 IEEE
Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), 2022 IEEE Mediterranean and
Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Istanbul, Turkey, 2022/3/7-2022/3/9,
https://doi.org/10.1109/m2garss52314.2022.9840135, 2022.

Mustapha, S. B., Bélanger, S., and Larouche, P.: Evaluation of ocean color algorithms in the southeastern Beaufort Sea,
Canadian Arctic: New parameterization using SeaWiFS, MODIS, and MERIS spectral bands, Can. J. Remote Sens./J. Can.
Teledetect., 38, 535-556, https://doi.org/10.5589/m12-045, 2012.

Nishino, S., Kawaguchi, Y., Inoue, J., Hirawake, T., Fujiwara, A., Futsuki, R., Onodera, J., and Aoyama, M.: Nutrient supply
and biological response to wind-induced mixing, inertial motion, internal waves, and currents in the northern Chukchi Sea, J.
Geophys. Res. Oceans, 120, 1975-1992, https://doi.org/10.1002/2014JC010407, 2015.

Nishioka, J., Hirawake, T., Nomura, D., Yamashita, Y., Ono, K., Murayama, A., Shcherbinin, A., Volkov, Y. N., Mitsudera,
H., Ebuchi, N., Wakatsuchi, M., and Yasuda, I.: Iron and nutrient dynamics along the East Kamchatka Current, western Bering
Sea Basin and Gulf of Anadyr, Prog. Oceanogr., 198, 102662, https://doi.org/10.1016/j.pocean.2021.102662, 2021.

O’Daly, S. H., Danielson, S. L., Hardy, S. M., Hopcroft, R. R., Lalande, C., Stockwell, D. A., and McDonnell, A. M. P.:
Extraordinary carbon fluxes on the shallow pacific arctic shelf during a remarkably warm and low sea ice period, Front. Mar.
Sci., 7, https://doi.org/10.3389/fmars.2020.548931, 2020.

O’Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., and McClain, C.: Ocean
color chlorophyll algorithms for SeaWiFS, J. Geophys. Res. Oceans, 103, 24937-24953, https://doi.org/10.1029/98JC02160,
1998.

Pasolli, L., Melgani, F., and Blanzieri, E.: Gaussian Process Regression for Estimating Chlorophyll Concentration in
Subsurface Waters From Remote Sensing Data, IEEE Geoscience and Remote Sensing Letters, 7, 464468,
https://doi.org/10.1109/LGRS.2009.2039191, 2010.

Paul, S. and Huntemann, M.: Improved machine-learning-based open-water—sea-ice—cloud discrimination over wintertime
Antarctic sea ice using MODIS thermal-infrared imagery, The Cryosphere, 15, 1551-1565, https://doi.org/10.5194/tc-15-
1551-2021, 2021.

Pope, R. M. and Fry, E. S.: Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements, Appl. Opt.,
36, 87108723, 1997.

Qi,J., Liu, C., Chi, J., Li, D., Gao, L., and Yin, B.: An Ensemble-Based Machine Learning Model for Estimation of Subsurface
Thermal Structure in the South China Sea, Remote Sens., 14, 3207, https://doi.org/10.3390/rs14133207, 2022.

34



770

780

785

790

795

800

805

Qiao, B., Wu, Z., Ma, L., Zhou, Y., and Sun, Y.: Effective ensemble learning approach for SST field prediction using attention-
based PredRNN, Frontiers of Computer Science, 17, 171601, https://doi.org/10.1007/s11704-021-1080-7, 2022.

Ray, S.: A quick review of machine learning algorithms, in: 2019 International Conference on Machine Learning, Big Data,
Cloud and Parallel Computing (COMITCon), 2019 International Conference on Machine Learning, Big Data, Cloud and
Parallel Computing (COMITCon), Faridabad, India, 2019/2/14-2019/2/16, https://doi.org/10.1109/comitcon.2019.8862451,
2019.

Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., and Melo, S.: Towards a functional classification of the freshwater
phytoplankton, J. Plankton Res., 24, 417-428, https://doi.org/10.1093/plankt/24.5.417, 2002.

Roy, S., Sathyendranath, S., and Platt, T.: Size-partitioned phytoplankton carbon and carbon-to-chlorophyll ratio from ocean
colour by an  absorption-based  bio-optical  algorithm, Remote  Sens.  Environ., 194, 177-189,
https://doi.org/10.1016/j.rs¢.2017.02.015, 2017.

Sauzéde, R., Claustre, H., Uitz, J., Jamet, C., Dall’Olmo, G., D’Ortenzio, F., Gentili, B., Poteau, A., and Schmechtig, C.: A
neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth:
Retrieval of the particulate backscattering coefficient, J. Geophys. Res. Oceans, 121, 2552-2571, 2016.

Seegers, B. N., Stumpf, R. P., Schaeffer, B. A., Loftin, K. A., and Werdell, P. J.: Performance metrics for the assessment of
satellite data products: an ocean color case study, Opt. Express, 26, 7404-7422, https://doi.org/10.1364/0E.26.007404, 2018.

Selvaraju, S., Jancy, P. L., Vinod Kumar, D., Prabha, R., Karthikeyan, and Babu, D. V.: Support Vector Machine based Remote
Sensing using Satellite Data Image, in: 2021 2nd International Conference on Smart Electronics and Communication
(ICOSEC), 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2021/10/7-
2021/10/9, https://doi.org/10.1109/icosec51865.2021.9591631, 2021.

Stabeno, P., Napp, J., Mordy, C., and Whitledge, T.: Factors influencing physical structure and lower trophic levels of the
eastern Bering Sea shelf in 2005: Sea ice, tides and winds, Prog. Oceanogr., 85, 180-196, 2010.

Stock, A.: Spatiotemporal distribution of labeled data can bias the validation and selection of supervised learning algorithms:
A marine  remote sensing example, ISPRS J. Photogramm. Remote Sens., 187, 46-60,
https://doi.org/10.1016/j.isprsjprs.2022.02.023, 2022.

Stock, A. and Subramaniam, A.: Iterative spatial leave-one-out cross-validation and gap-filling based data augmentation for
supervised learning applications in marine remote sensing, Glsci Remote Sens., 59, 1281-1300,
https://doi.org/10.1080/15481603.2022.2107113, 2022.

Su, H., Wu, X,, Yan, X.-H., and Kidwell, A.: Estimation of subsurface temperature anomaly in the Indian Ocean during recent
global surface warming hiatus from satellite measurements: A support vector machine approach, Remote Sens. Environ., 160,
63-71, 2015.

Suzuki, K., Yoshino, Y., Nosaka, Y., Nishioka, J., Hooker, S. B., and Hirawake, T.: Diatoms contributing to new production
in surface waters of the northern Bering and Chukchi Seas during summer with reference to water column stratification, Prog.
Oceanogr., 199, 102692, https://doi.org/10.1016/j.pocean.2021.102692, 2021.

Syariz, M. A., Lin, C.-H., Van Nguyen, M., Jaelani, L. M., and Blanco, A. C.: WaterNet: A Convolutional Neural Network
for Chlorophyll-a Concentration Retrieval, Remote Sens., 12, 1966, https://doi.org/10.3390/rs12121966, 2020.

Vabalas, A., Gowen, E., Poliakoff, E., and Casson, A. J.: Machine learning algorithm validation with a limited sample size,
PLoS One, 14, 0224365, https://doi.org/10.1371/journal.pone.0224365, 2019.

Vollmer, S., Mateen, B. A., Bohner, G., Kiraly, F. J., Ghani, R., Jonsson, P., Cumbers, S., Jonas, A., McAllister, K. S. L.,
Myles, P., Granger, D., Birse, M., Branson, R., Moons, K. G. M., Collins, G. S., loannidis, J. P. A., Holmes, C., and
Hemingway, H.: Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency,
replicability, ethics, and effectiveness, BMJ, 368, 16927, https://doi.org/10.1136/bm;j.16927, 2020.

35



810

820

825

830

835

840

845

850

Wachter, S., Mittelstadt, B., and Russell, C.: Counterfactual explanations without opening the black box: Automated decisions
and the GDPR, SSRN Electron. J., https://doi.org/10.2139/ssrn.3063289, 2017.

Waga, H. and Hirawake, T.: Changing occurrences of fall blooms associated with variations in phytoplankton size structure in
the Pacific Arctic, Frontiers in Marine Science, 7, 2020.

Waga, H., Hirawake, T., Fujiwara, A., Kikuchi, T., Nishino, S., Suzuki, K., Takao, S., and Saitoh, S.-I.: Differences in Rate
and Direction of Shifts between Phytoplankton Size Structure and Sea Surface Temperature, Remote Sens., 9, 222,
https://doi.org/10.3390/rs9030222, 2017.

Waga, H., Hirawake, T., Fujiwara, A., Grebmeier, J. M., and Saitoh, S.-I.: Impact of spatiotemporal variability in
phytoplankton size structure on benthic macrofaunal distribution in the Pacific Arctic, Deep-Sea Res. II, 162, 114-126,
https://doi.org/10.1016/j.dsr2.2018.10.008, 2019a.

Waga, H., Hirawake, T., and Ueno, H.: Impacts of Mesoscale Eddies on Phytoplankton Size Structure, Geophys. Res. Lett.,
46, 13191-13198, https://doi.org/10.1029/2019GL085150, 2019b.

Waga, H., Hirawake, T., and Nakaoka, M.: Influences of size structure and post-bloom supply of phytoplankton on body size
variations in a common Pacific Arctic bivalve (Macoma calcarea), Polar Sci., 27, 100554,
https://doi.org/10.1016/j.polar.2020.100554, 2021a.

Waga, H., Eicken, H., Hirawake, T., and Fukamachi, Y.: Variability in spring phytoplankton blooms associated with ice retreat
timing in the Pacific Arctic from 2003-2019, PLoS One, 16, €0261418, https://doi.org/10.1371/journal.pone.0261418, 2021b.

Waga, H., Eicken, H., Light, B., and Fukamachi, Y.: A neural network-based method for satellite-based mapping of sediment-
laden sea ice in the Arctic, Remote Sens. Environ., 270, 112861, https://doi.org/10.1016/j.rse.2021.112861, 2022.

Walsh, J. J., McRoy, C. P., Coachman, L. K., Goering, J. J., Nihoul, J. J., Whitledge, T. E., Blackburn, T. H., Parker, P. L.,
Wirick, C. D., Shuert, P. G., Grebmeier, J. M., Springer, A. M., Tripp, R. D., Hansell, D. A., Djenidi, S., Deleersnijder, E.,
Henriksen, K., Lund, B. A., Andersen, P., Muller-Karger, F. E., and Dean, K.: Carbon and nitrogen cycling within the
Bering/Chukchi Seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean, Prog. Oceanogr., 22,
277-359, 1989.

Wang, J. and Cota, G. F.: Remote-sensing reflectance in the Beaufort and Chukchi seas: observations and models, Appl. Opt.,
42,2754-2765, 2003.

Wang, J., Kong, F., Niu, Z., and Yu, R.: Selection of protocols for phytoplankton pigment analysis: a comparative study, J.
Oceanol. Limnol., 43, 817-830, https://doi.org/10.1007/s00343-024-4025-9, 2025.

Wang, S., Ishizaka, J., Hirawake, T., Watanabe, Y., Zhu, Y., Hayashi, M., and Yoo, S.: Remote estimation of phytoplankton
size fractions using the spectral shape of light absorption, Opt. Express, 23, 10301, https://doi.org/10.1364/0OE.23.010301,
2015.

Werdell, P. J., McKinna, L. I. W., Boss, E., Ackleson, S. G., Craig, S. E., Gregg, W. W., Lee, Z., Maritorena, S., Roesler, C.
S., Rousseaux, C. S., Stramski, D., Sullivan, J. M., Twardowski, M. S., Tzortziou, M., and Zhang, X.: An overview of
approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing, Prog. Oceanogr.,
160, 186-212, https://doi.org/10.1016/j.pocean.2018.01.001, 2018.

Zhang, Y., Shen, F., Sun, X., and Tan, K.: Marine big data-driven ensemble learning for estimating global phytoplankton
group  composition  over two  decades  (1997-2020), Remote  Sens.  Environ., 294, 113596,
https://doi.org/10.1016/j.rse.2023.113596, 2023.

Zhuang, Y., Jin, H., Li, H., Chen, J., Lin, L., Bai, Y., Ji, Z., Zhang, Y., and Gu, F.: Pacific inflow control on phytoplankton
community in the Eastern  Chukchi  Shelf during summer, Cont. Shelf Res., 129, 23-32,
https://doi.org/10.1016/j.csr.2016.09.010, 2016.

36



