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Abstract. The impacts of floods can be enhanced when they occur shortly after drought. Models can be a useful tool to better

understand the processes and mechanisms driving the response of floods occurring in close succession to streamflow drought.

However, it is yet unclear how well hydrologic models capture these compound extreme events and which modeling decisions

are most important for high model performance. To address this research gap, we calibrated four conceptual bucket-type

hydrological models with different structures (GR4J, GR5J, GR6J, and TUW) for 63 catchments in Chile and Switzerland using5

different calibration strategies. We tested different configurations of the Kling-Gupta efficiency (KGE) formulation for model

calibration to assess their performance in simulating and detecting observed transitions. We assessed the relative importance

of different methodological choices including model structure, streamflow transformation, and KGE formulation and weights.

We demonstrate that model performance as expressed by the KGE or NSE does not guarantee a good performance in terms

of detecting streamflow extremes and their transitions. Furthermore, we show that a model’s performance with respect to10

capturing extreme events primarily depends on how well it captures streamflow timing (i.e., correlation between observations

and simulations) rather than other hydrological signatures or variables such as evapotranspiration or snow water equivalent. Our

results also highlight that model structure and catchment characteristics as well as meteorological forcing play a key role in the

detection of transitions. Specifically, we demonstrate that drought-to-flood transitions are more difficult to capture in semi-arid

high-mountain catchments than in humid low-elevation catchments. Finally, our study provides guidelines for further model15

improvements with respect to drought-to-flood transitions, which can support process understanding related to these compound

events, identifying regions prone to this type of event, and contribute to improved risk management – aspects that will enhance

preparedness.
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1 Introduction

Hydrological extreme events such as streamflow droughts and floods are expected to become more frequent, severe, and per-20

sistent in a warming climate (e.g., Gu et al., 2023; Asadieh and Krakauer, 2017; Martin, 2018; Tabari et al., 2021), with severe

impacts on infrastructure, agriculture, water supply, and hydropower generation (e.g., McClymont et al., 2020; McMartin et al.,

2018; Lehner et al., 2006; Sivakumar, 2011; Wasti et al., 2022), as well as social and political systems (e.g., Doocy et al., 2013;

Hurlbert and Gupta, 2017; Kiem and Austin, 2013; Visconti, 2022). Studies focusing on hydrological extreme events and

their impacts often assume temporal and/or spatial independence between them, neglecting that extremes may be multivariate25

phenomena (Banfi and De Michele, 2022; Brunner, 2023). However, the impacts of floods can be enhanced when they occur

during or shortly after a streamflow drought (e.g., Barendrecht et al., 2024; Swain et al., 2018; He and Sheffield, 2020; Rashid

and Wahl, 2022). For instance, Handwerger et al. (2019) and Valenzuela et al. (2022) have demonstrated an increase in the oc-

currence of landslides in California and Chile due to shifts from drought to intense precipitation. Similarly, Dietze et al. (2022)

have shown that the 2018-2020 drought in Europe has enhanced the debris mobilisation during the 2021 flood in the Eifel30

region of western Germany and Belgium. In 2017, intense precipitation broke the 2012-2016 drought in California and led to

severe flooding, the activation of the emergency spillway of the Lake Oroville dam for the first time in its history, and the dec-

laration of emergency (Griffin and Anchukaitis, 2014; Robeson, 2015; Wang et al., 2017). These examples highlight the need

to integrate droughts and floods within the same analysis framework (e.g., Ward et al., 2020; Quesada-Montano et al., 2018;

Di Baldassarre et al., 2017). Despite this, droughts and floods have been mostly studied as independent events. As a result, the35

occurrence and drivers of drought-to-flood transitions are not completely understood (e.g., Matanó et al., 2022, 2024; Brun-

ner, 2023; Götte and Brunner, 2024). Model experiments are needed to explore the sensitivity of flood properties to drought

occurrence and characteristics.

Hydrological models are useful tools for studying how streamflow - and/or other hydrological fluxes and states - react

to variations in different meteorological and environmental inputs. Models enable insight into the mechanisms which drive40

catchment response to variations, through their representation of hydrological processes (Hrachowitz and Clark, 2017). In

recent decades, efforts have been made to improve hydrological modeling in terms of the representation of spatial variability

(e.g., Dembélé et al., 2020), the simulation of low (e.g., Garcia et al., 2017) and high-flows (e.g., Mizukami et al., 2019),

or the representation of flood-triggering mechanisms and spatiotemporal coherence (e.g., Brunner et al., 2020, 2021), under

current and changing climate conditions (e.g., Fowler et al., 2018). However, modeling hydrological extreme events such45

as droughts and floods is still very challenging (e.g., Mizukami et al., 2019; Bruno et al., 2024). This can be particularly

difficult in contexts where multiple variables are of interest, e.g. when modeling the dependence between flood peaks and

volumes (Brunner and Sikorska-Senoner, 2019) or the spatial dependence of floods happening in different locations (Brunner

et al., 2021). This complexity suggests that capturing consecutive drought-to-flood events might not be trivial either. As model

evaluations targeted at compound extremes have not yet been performed, it is still unclear how well hydrological models can50

in fact capture drought-to-flood transitions.
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Hydrological modeling involves different choices about model structure (i.e., process representation and parametrization),

spatial discretization, meteorological forcing, and calibration approach (e.g., period for calibration/evaluation, hydrological

target variables or signatures used in objective function), which affect hydrological simulations and whose importance might

vary depending on the modeling purpose (e.g., Mendoza et al., 2016; Mizukami et al., 2016; Baez-Villanueva et al., 2021; Guo55

et al., 2017; Melsen et al., 2019). Previous studies have highlighted that such modeling decisions can substantially influence

simulated hydrological extremes and their uncertainties (e.g., Alexander et al., 2023; Melsen and Guse, 2019; Melsen et al.,

2019). They have also shown that among these choices, the choice of objective function for model calibration, model structure,

and spatial discretization (forcings and domain) are the most influential decisions on modeling outcomes. While these previous

studies have focused on analyzing the impacts of modeling decisions on drought and flood attributes (e.g., severity, duration),60

they have not looked at how these decisions influence event detection, i.e. whether or not the model can capture extreme events

below or above a certain threshold. Furthermore, these previous studies have focused on individual extremes instead of looking

at them in a multivariate setting. As such, it is yet unclear how individual modeling decisions might influence the representation

of hydrological transitions.

Hydrological modeling often relies on model calibration to define parameters that minimize discrepancies between obser-65

vations and simulations of a target variable (e.g., streamflow). Calibration uses an objective function to measure the similarity

between observations and simulations. In general, these objective functions are defined based on "least squares" formulations

such as the widely used Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) and Kling-Gupta Efficiency (KGE; Gupta

et al., 2009). However, alternative objective functions have been suggested to improve the robustness of calibrated parameters.

This is especially relevant in the context of a changing climate (e.g., Fowler et al., 2018), and might improve hydrological70

consistency through metrics that better capture the statistical and dynamic properties of hydrological time series (referred in

the literature as hydrological signatures; e.g., Yilmaz et al., 2008; Shafii and Tolson, 2015; McMillan, 2021). While these al-

ternatives are available and concerns regarding the standard options (e.g., Clark et al., 2021; Knoben et al., 2019; Cinkus et al.,

2023) have been noted, KGE and NSE continue to be widely used for model calibration and evaluation (e.g., Klemeš, 1986;

Motavita et al., 2019; Seibert et al., 2019; Beven, 2025).75

The Kling-Gupta Efficiency (KGE), originally proposed by Gupta et al. (2009), is one of the most popular performance

metrics used in hydrology. KGE is more widely used than other well-known metrics, such as the NSE, because of its inter-

pretability and the diagnostic power provided, thanks to the possibility of disaggregating it into its three components, namely

bias, variability, and correlation. It has been applied for many modeling purposes, including studies focused on streamflow

extremes (e.g., Gu et al., 2023; Hirpa et al., 2018). In these studies, calibrations are considered successful if the KGE perfor-80

mance exceeds a certain threshold during both the calibration and evaluation periods (e.g., KGE > 0.4). However, there is often

no explicit evaluation of how drought or flood events are represented at the event scale. Thus, the suitability of KGE - and

alternative formulations (Gupta et al., 2009; Kling et al., 2012; Pool et al., 2018; Tang et al., 2021; Pizarro and Jorquera, 2024)

and adaptations (e.g., transformations and weights; Garcia et al., 2017; Wu et al., 2025; Mizukami et al., 2019) – for calibrat-

ing models aimed at studying streamflow extreme events, and consecutive extremes in particular, has not yet been sufficiently85

evaluated.
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In summary, there exist significant research gaps related to modeling floods which occur in close succession following

droughts, that is, drought-to-flood transitions. In particular, it is unclear how different modeling decisions - such as the choice

of hydrological model, objective function, and streamflow transformations - affect the simulation of transition events. Further-

more, it remains to be explored which modeling choices are most suitable for capturing these compound hydrological extreme90

events without compromising hydrological consistency (i.e., representation of different hydrological processes or properties).

To address these research gaps, our study aims to investigate the extent to which hydrological models can represent consecutive

drought-to-flood transitions and the impact of model complexity and calibration choices on their representation. Specifically,

we investigate the following research questions:

– How suitable is the KGE for calibrating models aimed at jointly simulating streamflow droughts and floods?95

– Which KGE formulations, weights, and streamflow transformations are most suitable for simulating drought-to-flood

transitions?

– To what extent does model structure influence the detection and representation of streamflow transitions?

– Which are the key hydrological processes that have to be captured by models to well simulate drought-to-flood transi-

tions?100

To address these questions, we first calibrate four conceptual bucket-type hydrological models (GR4J, GR5J, GR6J, and

TUW) for 63 diverse catchments in Chile and Switzerland. For this calibration experiment, we tested different configurations

of the Kling-Gupta efficiency (KGE) - listed in Table 1 - to assess their performance in simulating and detecting observed

transitions. These configurations included five KGE formulations (Table 1), two streamflow transformations (i.e., Q and 1/Q)

and their linear combination (i.e., 0.5*KGE(Q)+0.5*KGE(1/Q)), and four different weights applied to the variability term of105

the KGE (c2=1,2,4,8). Second, we assess the relative importance of each of these methodological choices for the detection of

events and ensuring hydrological consistency. Finally, we explore the link between model performance and the representation

of different hydrological fluxes and states during transition events.

This comprehensive assessment of the influence of different modeling decisions on the accuracy of drought-to-flood transi-

tion simulations will enable recommendations on potential future model improvements.110

2 Study domain and data

The study domain encompasses 24 and 39 near-natural catchments in Chile (CL; Figure 1a) and Switzerland (CH; Figure 1b),

respectively. These catchments are selected based on the availability of complete daily streamflow records between 1981 and

2020 for at least 30 years, with a complete year being defined as one in which all months had information for at least 90% of

the days. The selected catchments span a wide range of hydroclimatic characteristics (Figure 1c), from energy to water-limited,115

and different hydrological regimes (Figure 1d), from snowmelt (e.g., p-seasonality < -0.5 and q-seasonality > 0.5) to rainfall-

dominated (e.g., p-seasonality < -0.5 and q-seasonality < -0.5). Some catchments are placed above the water limit (i.e., Q/P
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Figure 1. Study domain and hydroclimatic characteristics computed for the period 1981-2020 using data retrieved from CAMELS Chile (CL)

and Switzerland (CH). Location of catchments across the study domain in (a) Chile and (b) Switzerland, (c) relationship between wetness

index (PET/P), runoff coefficient (Q/P), and mean annual precipitation, and (d) relationship of seasonality of precipitation and streamflow and

fraction of precipitation falling as snow. For p-seasonality and q-seasonality, values near 1 (-1) suggest strongly summer (winter) dominated

precipitation or streamflow, while values close to zero indicate a uniform distribution across the year.

= 1) or below the energy limit (i.e., Q/P = 1 - 1/(P/PET); Figure 1c), which suggests an underestimation of precipitation or a

surplus of streamflow. Consequently, there is a need to adjust the meteorological forcings, e.g. by correcting for precipitation

undercatch (e.g., Newman et al., 2015; Stisen et al., 2012; Hughes et al., 2021).120

The CAMELS Chile (CL; Alvarez-Garreton et al., 2018a) and Switzerland (CH; Höge et al., 2023a) datasets are used to

obtain the meteorological forcings, streamflow records, snow water equivalent (SWE) estimates, and catchment outlines for the

catchments in the study domain. The meteorological forcings of both datasets, CR2Met version 2.5 for Chile (Boisier, 2023)

and RhiresD version 2 for Switzerland (MeteoSwiss, 2023), are based on local gridded observation-based products, while SWE
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products are based on a snow cover model and data assimilation (for more detail refer to Cortés and Margulis, 2017; Magnusson125

et al., 2014). We prefer these local products over global ones such as ERA5 (Hersbach et al., 2020) because of their reliance on

observations and high spatial resolution (approximately 5x5 km for CR2Met and 2x2 km for RhiresD) that allow us to better

represent the meteorology in the complex topography of our study domain. Furthermore, these products have been widely used

in hydrological studies in Chile (e.g., Vásquez et al., 2021; Alvarez-Garreton et al., 2021; Araya et al., 2023) and Switzerland

(e.g., Peleg et al., 2020; Fatichi et al., 2015; Tuel et al., 2022). Streamflow records available through the CAMELS datasets130

were acquired from the national agencies in each country (i.e., the General Directorate of Water of Chile - DGA and the Swiss

Federal Office for the Environment - FOEN). Additionally, we retrieve time series of actual evapotranspiration (ET) and soil

moisture (SM) from the satellite and reanalysis-based GLEAM dataset (Miralles et al., 2011) aggregated to the catchment scale.

We compute topographic characteristics and hypsometric curves - needed to set up the snow routines - using the catchment

outlines from CAMELS and the Multi-Error-Removed Improved-Terrain (MERIT) digital elevation model (Yamazaki et al.,135

2019).

3 Methodological approach

Our methodological approach is illustrated in Figure 2. Four hydrological models are calibrated with data from the CAMELS

datasets and streamflow records, using five different formulations of the Kling-Gupta efficiency (KGE) as objective functions.

In addition, we test three streamflow transformations and four different weights applied to the KGE variability term. This cali-140

bration exercise results in 60 optimal parameter sets per model and catchment (i.e., 5 KGE x 3 Transformations x 4 Weights).

Simulation performance is assessed by comparing observations and model outputs. Specifically, we evaluate model perfor-

mance based on (1) general goodness-of-fit metrics (Legates and McCabe Jr., 1999; Althoff and Rodrigues, 2021), (2) for

extreme events and transitions between them, and (3) for hydrological consistency in different processes related to streamflow,

snow, evapotranspiration, and soil moisture. Event-specific model performance is evaluated at the event scale for droughts,145

floods, and transitions using categorical indices. In this paper, we use the terms ’formulation’ to refer to a specific definition

of the KGE (1), ’case’ to refer to the application of KGE weights or flow transformations, and ’configuration’ to mention the

combination of a KGE formulation and a case using certain weights and a specific streamflow transformation. In addition, the

cases without weights and/or the linear combination between streamflow without (i.e., Q) and with low-flow transformations

(i.e., 1/Q) will be used as a reference for the comparison of the results. The following sections provide a detailed description150

of the different methodological steps.

3.1 Streamflow extremes characterization

We detect droughts, floods, and drought-to-flood transitions using the method proposed by Götte and Brunner (2024). This

method identifies periods of negative streamflow anomalies (droughts) using a daily varying threshold based on a 30 day

rolling percentile of the daily streamflow data, while high streamflow events (floods) are identified using a fixed threshold155

based on a percentile of the annual maximum streamflow values. We further require that all drought events have a minimum
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Figure 2. Overview of the methodological approach. See text for details

duration of 30 days, and we merge drought events which have a gap of 15 days or less between them (Van Loon and Van Lanen,

2012; Fleig et al., 2006; Tallaksen et al., 1997). This is done to limit the detection of minor events.

Rapid (within 14 days) and seasonal transitions (within 90 days) are defined based on the number of days between the end of

the drought to the onset of the flood, as in Götte and Brunner (2024). The thresholds for droughts and floods (associated with160

the 30th and 40th percentile of the smoothed daily flow and the annual maxima series, respectively) were set to ensure roughly

one streamflow extreme event of each type (i.e., drought and flood) per year on average for each catchment. This target was

set in order to identify a number of extreme events that results in a statistically representative sample size comparable to the

sample size that would be obtained by the commonly used annual maximum approach (e.g., Meylan et al., 2012). To identify

those thresholds that met our criteria, we tested different values (see Figure S1 in the Supplementary Material). Figure 3 shows165

the detection of droughts and floods based on the approach adopted for two recorded transitions in two catchments within the

study domain.
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Figure 3. Example of the characterization of streamflow extremes and their transitions for two catchments within the study domain. (a)

Biobio River at Rucalhue in Chile, and (b) Dischma River in Switzerland.

3.2 Modeling approach

3.2.1 Hydrological models

We use four conceptual bucket-style rainfall-runoff hydrological models: GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008),170

GR6J (Pushpalatha et al., 2012), all coupled to the snow accumulation-ablation module CemaNeige (Valéry et al., 2014a, b),

and TUWmodel (Parajka et al., 2007), which is based on the HBV model (Bergström and Forsman, 1973). All models have

been widely used within the hydrological community during the last decades (Seibert and Bergström, 2022). GR4J, GR5J,

and GR6J (with 6, 7, and 8 parameters coupled with CemaNeige, respectively) were chosen to explore how slight changes in

model structure affect simulated streamflow extremes and the TUW model (with 15 parameters) was chosen to explore how175

more complex models, particularly with respect to the snow routine and the representation of the processes occurring in the

production storage, simulate these phenomena. Such simple bucket-type models have the advantage that they enable studying

different processes of the hydrological cycle at a lower computational cost than more complex model structures (e.g., Clark

et al., 2017; Orth et al., 2015; Poncelet et al., 2017).

The GR4J, GR5J, and GR6J models, which we will refer to collectively as GRXJ for simplicity, share the same genealogy,180

meaning that they are based on the same core structure. These models can be coupled to the snow module CemaNeige, where

the precipitation is partitioned between liquid and solid and simulates snow accumulation and melt (rainfall and snowmelt

enter to GRXJ structures). The basic structure of the GRXJ family corresponds to the GR4J model, which includes a parameter

for production storage capacity, representing surface processes, and a parameter for routing storage capacity, representing sub-

surface processes. Additionally, GR4J includes an intercatchment exchange parameter (non-conservative function) and a unit185
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hydrograph parameter that corresponds to the delay between precipitation and streamflow. GR5J adds an additional parame-

ter to the GR4J structure to improve the intercatchment exchange function, while GR6J includes a parameter for exponential

storage in parallel to the routing storage in GR4J and GR5J to improve the representation of groundwater processes (i.e., slow

runoff).

The TUW model consists of a snow, soil, groundwater (subsurface flow), and a routing routine, similar to the HBV model190

(Bergström and Forsman, 1973). The snow routine partitions between liquid and solid precipitation and estimates snow ac-

cumulation and melt. Rainfall and snowmelt enter the soil routine, where actual evaporation, soil moisture, and recharge are

estimated. Then, the recharge flow goes to the groundwater routine, represented by two storages that produce surface runoff and

quick flow (upper), and baseflow (lower). The sum of these flows is delayed in the routing routine using a triangular transfer

function. Unlike GRXJ models, which follow a water balance approach to characterize the production storage, TUW estimates195

evapotranspiration and recharge based on an explicit conceptualization of soil moisture content.

While both CemaNeige and the snow routine implemented in the TUW model follow a degree-day factor approach, there

are some differences mainly in i) the characterization of the precipitation phase (TUW allows the existence of a mixed partition

between rain and snow), ii) the conditions for snowmelt (free-parameter in TUW model and set as 0°C for CemaNeige), and

iii) the presence (or not) of a parameter to correct for snowfall undercatch (not available in CemaNeige). These differences also200

explain the number of parameters that each of the snow routines has (two and five for CemaNeige and the snow routine in the

TUW model, respectively).

Despite their structural differences and conceptualizations (for further details refer to Astagneau et al., 2021b), these models

provide simplified representations of some hydrological states, fluxes, and processes at the catchment scale using precipitation

(P), mean temperature (T), and potential evapotranspiration (PET) at daily time steps as an input. To estimate PET, we use the205

approach proposed by Oudin et al. (2005) which is based on temperature and includes latitude and day of the year as a proxy

for extraterrestrial radiation for its computation. Additionally, as the snow module CemaNeige can be configured in a semi-

distributed way discretizing each catchment into elevation bands of equal area based on the hypsometric curve, we considered

10 elevation bands for all evaluated model structures. To make simulations comparable across model structures, precipitation

and temperature for the TUW model were extrapolated following the approach implemented in the GRXJ models through 10210

elevation bands, based on the orographic gradients defined by Valéry et al. (2010).

In addition to the parameters associated with each hydrological model, two parameters were included in the calibration

process to address issues - such as the catchments placed above the water limit or below the energy limit - pointed out in Figure

1c. Thus, a multiplicative parameter for precipitation and an additive parameter for temperature were included to adjust their

values.215

3.2.2 Calibration strategy

The parameters of each of the four model structures were calibrated using daily streamflow records and the Shuffled Complex

Evolution global optimization algorithm (SCE-UA; Duan et al., 1992) on the period between 2000-2020, defined to capture the

current hydroclimatic conditions in the modeling parameters. Different objective functions based on KGE configuration were
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used to calibrate each model. In its most general form, the KGE (Eq. (1)) compares simulations to a reference based on three220

components, i.e. dynamics (e.g., correlation), variability (e.g., standard deviation), and bias (e.g., mean). KGE values range

from negative infinite to one, with one corresponding to the optimum. How each component is defined depends on which KGE

formulation is used. To the best of our knowledge, there exist five such formulations in the literature (Gupta et al., 2009; Kling

et al., 2012; Pool et al., 2018; Tang et al., 2021; Pizarro and Jorquera, 2024, more details in Table 1). Additionally, different

scaling factors or weights (i.e., c1, c2, and c3 in Eq. (1)) can be used to give more emphasis to some of the components of the225

KGE as well as different streamflow transformations to give more weight to specific parts of the flow distribution, (e.g., Thirel

et al., 2024; Mizukami et al., 2019). To emphasize low flows, for example, flow can be transformed to the inverse of streamflow

(i.e., 1/Q; e.g., Garcia et al., 2017; Wu et al., 2025). Further, linear combinations of the KGE applied to flows without and with

transformation (i.e., Q and 1/Q, respectively) have been presented as a useful objective function to find a good compromise

between high- and low-flows (e.g., Araya et al., 2023; Knoben et al., 2020; Muñoz-Castro et al., 2023).230

KGE = 1−
√

(c1 · (dynamics− 1))2 + (c2 · (variability− 1))2 + (c3 · (bias− 1))2 (1)

For each hydrological model and catchment, 60 different objective functions (OF) are implemented based on the possible

combinations of the following methodological decisions: (i) 5 KGE formulations (Table 1), (ii) 3 streamflow transformation

cases (High, Low, High-Low), and (iii) 4 weights applied to the variability term (i.e., in Eq. (1), c2 = 1, 2, 4, 8). For the

low-flow transformation (Low; i.e., using 1/Q), a constant equal to 1% of the mean streamflow is added to the series to avoid235

zero-flow problems following the recommendations by Pushpalatha et al. (2012). To facilitate the notation associated with the

streamflow transformations tested here, we will refer to the case ’Hi’ (High) when a certain formulation of KGE is applied to

untransformed streamflow (i.e., Q), while ’Lo’ (Low) will refer to the case where a low-flow transformation is applied (i.e.,

1/Q). To the linear combination of both cases (i.e., 0.5*Hi + 0.5*Lo), we will refer to it as the ’HiLo’ case.

3.3 Model performance assessment240

We evaluated model performance with respect to general performance as described by the Nash-Sutcliffe Efficiency (NSE;

Nash and Sutcliffe, 1970) and performance with respect to simulating extreme events as described by the Critical Success Index

(CSI). Following a traditional split-sample test approach (Klemeš, 1986; Beven, 2025), the model performance is assessed over

two time periods defined as (i) calibration (2000-2020), and (ii) evaluation (1985-1999). The following subsections provide a

detailed description of how the model’s performance was evaluated.245

3.3.1 Overall performance and hydrological consistency

To evaluate how different model configurations simulate different hydrological variables, we compute the Nash-Sutcliffe-

Efficiency for different variables including high- and low-flows (i.e., Q and 1/Q), snow water equivalent (SWE), soil moisture

(SM), and actual evapotranspiration (ET). We use the NSE to have a metric easily interpreted and recognized by the hydrolog-

ical community, that allows us to compare results independently across different configurations adopted for model calibration.250
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Table 1. Summary of KGE formulations. In each formulation, the term dynamics stands for the representation of the temporal evolution of

the target variable, while the terms variability and bias aim to characterize its distribution.

KGE formulation Components Description Reference

Original

(KGE)

Dynamics: Pearson correlation coefficient.

Variability: Ratio between the standard deviation of the simulated

and observed values.

Bias: Ratio between the mean of the simulated and observed values.

Meta-objective function, oriented to quantify the Euclidean distance

between the absolute error associated with each component. Proposed

to overcome the problems associated with NSE (e.g., observed mean as

baseline, formulation, which could lead to large volume balance errors

or favor models/parameters sets that underestimate the observed variability).

Gupta et al. (2009)

Modified

(KGE_mod1)

Dynamics: Pearson correlation coefficient.

Variability: Ratio between the coefficient of variation of the simulated

and observed values.

Bias: Ratio between the mean of the simulated and observed values.

Modification in the variability component defined in the original formulation

(i.e., standard deviation ratio) aimed to ensure that the bias and variability ratios

are not cross-correlated.

Kling et al. (2012)

Non-parametric

(KGE_np)

Dynamics: Spearman’s rank correlation coefficient.

Variability: Error between all ranked simulated and observed values

(i.e., flow duration curve) normalized to remove the volume information and

keep only the distribution signal.

Bias: Ratio between the mean of the simulated and observed values.

Reformulation of the variability and correlation terms in a non-parametric way

to address the implicit assumptions of linearity and normality of the data in the

original formulation.

Pool et al. (2018)

Modified v2

(KGE_mod2)

Dynamics: Pearson correlation coefficient.

Variability: Ratio between the standard deviation of the simulated and

observed values.

Bias: Ratio between the mean of the simulated minus the observed values

and the standard deviation of the observed values.

Modification in the bias component defined in the original formulation aimed

to avoid anomalously negative values when the mean value is close to zero.
Tang et al. (2021)

K-Moments

(KGE_km)

Dynamics: Pearson correlation coefficient.

Variability: Ratio between the coefficient of variation of the simulated and

observed values defined from unbiased estimators of non-central K-moments

(alternative formulation for the second moment).

Bias: Ratio between the mean of the simulated and observed values.

Modification in the variability component defined in the original formulation

oriented to make it less sensitive to outliers and non-normal distributions.
Pizarro and Jorquera (2024)

To minimize the influence of biases in ET and SM estimates on the estimates of model performance - due, for example, to

catchment-scale averaging (e.g., Rouholahnejad Freund et al., 2020) or uncertainties related to the GLEAM algorithm (e.g.,

Jahromi et al., 2022) - we only consider the signal (i.e., timing and variability) associated with these variables rather than their

absolute values.

3.3.2 Detection of streamflow extreme events255

To assess model performance with respect to the detection of streamflow extremes and their transitions, we use the critical

success index (CSI; Eq. (2)), which is formulated based on the number of hits (H; events identified both in the reference/ob-

servation and the simulation), misses (M; events only identified in the reference/observation), and false alarm events (F; events

identified only in the simulation). The CSI provides a measure of the overall performance of the simulations in terms of detect-

ing observed events and its values vary between zero and one, with one being the optimum. We define hits as simulated events260

overlapping at least 50% with their observed counterparts. Additionally, for the detection analysis, a tolerance window of 30

and 5 days is defined before the onset and after the end of an observed drought and flood event, respectively. This window

allows for considering the differences of gridded meteorological products with reality and how these can affect the timing of

the simulated events (i.e., early or late compared to the observed streamflows).
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CSI = H/(H + M + F) (2)265

3.4 Assessment of the relative importance of modeling decisions

To assess the relative importance of each modeling decision on the detection of streamflow extremes and their transitions, we

conduct an analysis of variance (ANOVA; Fisher, 1992; Kaufmann and Schering, 2014). The ANOVA allows us to study the

relationship between different modeling decisions (e.g. choice of structure and different decisions related to calibration) and

quantify their relative importance in explaining the total variance in the target variable (e.g., CSI). Thus, by dividing the total270

variance into different groups, genuine sources of variation that are not explained by chance can be identified. We assume

that the total variance (TV) in the target variable could be mainly explained by the differences between catchments (CT),

hydrological models (HM), KGE formulations (KGEf), streamflow transformations (QTR), and KGE component weights (W).

If, for example, weights do not have a significant impact on the detection of streamflow extremes, we would expect a low

value for the term "W", that is a lower relative importance (i.e., W/TV) for explaining the total variance with respect to275

other decisions. Based on this conceptualization and considering a residual term (RS) that groups all the interactions between

decisions and the variance that we cannot explain from them, the ANOVA can be expressed as follows:

TV = CT + HM + KGEf + QTR + W + RS (3)

3.5 Identification of important processes in simulating drought-to-flood transitions

To identify the most important processes in simulating drought-to-flood transitions, we ask what explains the accurate detec-280

tion of events. To address this question, we analyze the relative importance of each model parameter in estimating the CSI

through an ANOVA test applied per catchment. This analysis considers the 60 alternative configurations (i.e., parameter sets)

available per model and catchment and uses the total variance explained by each parameter as a proxy for the importance of

the associated variable/process. In addition, we explore which components of the modeling chain could be improved to better

capture transitions. For this, we perform a similar ANOVA analysis, using the bias associated with different hydrological sig-285

natures instead of model parameters to estimate their relative importance in explaining the total variance of the CSI. Finally,

to identify potential controls on the relative importance of some parameters in our study domain, we compute the Spearman’s

rank correlation coefficient between the most important parameters and a selection of physiographic and hydroclimatic catch-

ment descriptors. The approach used to analyze the relative importance of the parameters explaining the variance of the CSI

may have problems if the parameters do not show enough variation between the different configurations. However, despite290

the similarities in the configurations used for calibration, almost all the parameters show high variability among the calibrated

parameter sets per catchment (see Figure S14 in Supplementary Material).
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4 Results

4.1 Suitability of KGE for calibrating models aimed at simulating drought-to-flood transitions

Model performance described by general performance metrics such as KGE during calibration and evaluation is often used as295

a proxy for how well a model represents streamflow properties such as extreme events. To explore how valid this assumption

is, i.e. how closely general model performance is linked to its capability of representing extreme events, we compare the

performance of the model during the calibration and evaluation period based on the objective function defined for calibration

- the original KGE formulation configured with unweighted HiLo (i.e., c2 = 1 and HiLo = 0.5*KGE(Q) + 0.5*KGE(1/Q)) -

with the performance in detecting droughts, floods and their transitions based on the critical success index (CSI; Figure 4). Our300

comparison clearly shows that while overall performance described by the KGE can potentially be a useful proxy for a model’s

performance in capturing droughts (e.g., CSI ranges from 0.23 to 0.79 for GR4J and from 0.21 to 0.74 for TUW), it is not for

floods and transitions. A high KGE does not necessarily imply a high CSI for these two types of events. Model performance

varies across catchments and different model structures both for KGE and CSI (Figure 4). For droughts and transitions (panels

a.1-b.1 and a.3-b.3, respectively), GR4J and TUW show comparable results both in terms of the median KGE (e.g., 0.85 and305

0.80 in evaluation) and CSI (e.g., 0.59 and 0.51 for droughts) as well as their variability (error bars), but the model performance

decreases when GR5J and GR6J are analyzed. For floods (i.e., panels a.2 and b.2), the GR4J outperforms the other models

tested both in terms of general performance (median KGE is 0.06-0.11 and 0.04-0.18 larger than in other models for calibration

and evaluation period respectively) and the detection of extreme events (median CSI is 0.03-0.13 larger than in other models

depending on the type of event).310

While KGE is not necessarily a good proxy for how well a model captures extreme events (especially floods and transitions),

some specific KGE formulations might be better suited for this task than others. Next, we therefore evaluate to what extent dif-

ferent adjustments in the ’basic’ configuration used for the analyses presented above can (or cannot) improve the performance

in detecting streamflow extreme events and, particularly, drought-to-flood transitions.

4.2 Impacts of KGE configurations on drought-to-flood transition simulations315

4.2.1 KGE weights

To assess the added value of applying weights to the variability term of the KGE for detecting independent extreme events and

their transitions in terms of the critical success index (CSI), we compute the difference between the non-weighted case (refer-

ence) and the application of three different weights (alternative cases) for each KGE formulation and streamflow transformation

(Figure 5a for the GR4J model). This comparison shows that, in general, the use of weights does not consistently improve the320

ability of the models to detect streamflow extreme events or transitions between them (median difference is centered around 0).

While there are some catchments where the introduction of weights improves model performance (catchments with negative

differences), there are as many catchments where the introduction of weights decreases performance (catchments with positive

differences). Figure 5b provides the same comparison but uses as a reference an unweighted HiLo configuration, showing sim-
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Figure 4. Comparison between the Kling-Gupta Efficiency (KGE) for the (a) calibration and (b) evaluation period and the Critical Success

Index (CSI) for (1) droughts, (2) floods, and (3) transitions, based on the simulations with the models GR4J, GR5J, GR6J, and TUW

calibrated with the unweighted HiLo original KGE formulation as the objective function. CSI is calculated for the whole period (i.e., equal

values for both the calibration and evaluation). The error bars are associated with the 10th and 90th percentiles across catchments, while the

central shape is associated with the 50th percentile.

ilar results (i.e., no consistent improvements and median centered around zero). However, there are some differences between325

different streamflow transformations and weights in the representation of floods (panel 2 in Figure 5b), with the unweighted

HiLo being better in approximately 75% of cases compared to the weighted low-flow transformation. This finding generalizes

to the other three model structures (see Figures S3 and S4 in the Supplementary Material).

These results highlight that, in the context of a large-sample study, the use of weights for the variability term of the KGE

is not beneficial as it does not consistently improve the model’s performance in detecting streamflow extremes and their330

transitions, and its usefulness will depend on the characteristics of the study domain (see Figures S5 in the Supplementary

Material). Additionally, our results show that, for the task of modelling drought to flood transitions, an objective function

which puts equal weight on high- and low flows (i.e. HiLo) improves model performance as floods are much better captured in
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Figure 5. Difference in the CSI for GR4J simulations using model calibrations with no weights (reference) versus different weights (alterna-

tive) for (1) droughts, (2) floods, and (3) transitions. In (a), each alternative is compared with its unweighted analog, while in (b) the reference

includes the HiLo transformation. Values above (below) 0 indicate better (worse) performance of the reference compared to the alternative.

this configuration than in configurations which rely on low-flow transformations (i.e., Lo) and equally well represented as in

the configuration without transformation (i.e., Hi).335

4.2.2 Streamflow transformation

Considering the HiLo (i.e., 0.5*KGE(Q) + 0.5*KGE(1/Q)) configuration as a reference (see Figures S6-S8 in the Suplementary

Material for more details about its overall suitability), we assess the role of streamflow transformation on model performance

for simulating high and low flows, snow water equivalent, actual evapotranspiration, and soil moisture (Figure 6a for the GR4J

model as an example). We find that a transformation which puts equal weight on high- and low flows has the best performance340

on average, independently of the KGE formulation adopted for the calibration (different colors) and independent of the vari-

able used for the evaluation (different columns). In particular, the results for high- and low flows (i.e., NSE(Q) and NSE(1/Q),

respectively) highlight the added value of HiLo compared to transformations focusing on high and low flows individually.

Between 50-90% of catchments profit from the HiLo transformation depending on the model and objective function used for

calibration. HiLo improves the performance in simulating low (high) flows in comparison to using only high (low) streamflow345

15

https://doi.org/10.5194/egusphere-2025-781
Preprint. Discussion started: 24 March 2025
c© Author(s) 2025. CC BY 4.0 License.



transformations during model calibration without compromising the model’s ability to adequately represent the opposite flow

type (median difference is centered around 0 for NSE(Q)-Hi and NSE(1/Q)-Lo). For the other variables, besides better per-

formance on average, the added value of HiLo compared to the transformations focusing on high and low flows only is less

clear. Additionally, there exists substantial variability among catchments. These findings again generalize to the other model

structures tested (Figures S9a and S10a in Supplementary material).350

4.2.3 KGE formulation

Figure 6b compares - for the GR4J model as an example - the unweighted HiLo case for all the different KGE formulations

against the original KGE formulation (i.e., Gupta et al., 2009) as a benchmark. We find that using a modified KGE formulation,

rather than the original, does not substantially improve model performance for either of the variables evaluated (i.e., Q, 1/Q,

SWE, ET, and SM). However, there also exists substantial variability across catchments. Some catchments show an improve-355

ment in model performance when using alternative KGE formulations while others show a decrease in model performance.

A small difference in the performance achieved through disparate formulations may be found in the high-flow representation

(i.e., NSE(Q)), for which the original KGE provides slightly better values on average than the alternatives. Similarly, for SWE,

ET, and SM, the added value of the original KGE formulation compared to the alternatives is less clear. In short, the differences

in NSE between model formulations are close to zero, and the changes which do occur are not systematic or consistent. This360

suggests that the choice of the KGE formulation does not play a dominant role in the overall performance of the model over

the study domain. These findings are consistent across other model structures tested (Figures S9b and S10b in Supplementary

material).

4.3 Importance of model structure

Our results show that the detection of low-flow anomalies is typically more reliable than high-flow and transition detection365

(Figure 7). However, there are substantial differences in the detection rate depending on the hydrological model structure

used for simulating extreme events. GR4J overall has the best model performance independently of the KGE formulation

chosen for calibration (median CSI values across KGE formulations around 0.58, 0.26, and 0.31 for droughts, floods, and

transitions, respectively). The performance of the GR5J and GR6J models decreases compared to GR4J (changes between

0.05 and 0.13 depending on the model and type of extreme event). This suggests that increasing model complexity decreases370

rather than increases model performance. However, these decreases in performance cannot be directly attributed to increases

in the complexity of the model because the TUW model shows comparable results to GR4J despite its more complex structure

(median CSI values across KGE formulations around 0.56, 0.19, and 0.28 for droughts, floods, and transitions, respectively). If

model structures are compared for Switzerland and Chile, the same conclusions can be drawn in terms of model performance,

with comparable results between GR4J and TUW and lower performance of the GR5J and GR6J. However, the detection of375

extreme events is more challenging in catchments located in Chile compared to those located in Switzerland, with differences

in the median CSI between countries being around 0.23, 0.02, and 0.13 for droughts, floods, and drought-to-flood transitions,
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Figure 6. Difference in the NSE for GR4J simulations of different hydrological variables in the evaluation period obtained with different

KGE configurations. In (a), each alternative configuration is compared to its unweighted HiLo analog, while in (b) the reference represents the

original KGE formulation. Values higher (lower) than 0 represent a better (worse) performance of the reference compared to the alternative

in simulating high-flows (NSE(Q), first column), low-flows (NSE(1/Q), second column), snow water equivalent (NSE(SWE), third column),

actual evapotranspiration (NSE(ET), fourth column), and surface soil moisture (NSE(SM), fifth column).

respectively (see Figure S11 in Supplementary Material). In summary, the GR4J and TUW models seem to be the models best

suited for simulating droughts and floods among the models considered in this study.

Different model structures can result in similar streamflow simulations even though they represent hydrological fluxes and380

states in different ways. To illustrate this, we compare simulated fluxes obtained for an observed seasonal drought-to-flood

transition in the Dischma river in Switzerland across the four hydrological models (Figure 8). While three out of four mod-

els capture the transition event successfully (GR6J fails in capturing its timing) and show similar temporal patterns of ET,
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Figure 7. Critical Success Index (CSI) for (a) droughts, (b) floods, and (c) drought-to-flood transitions, based on the simulations with GR4J,

GR5J, GR6J, and TUW calibrated with different unweighted HiLo KGE formulations as objective functions (different colors).

snowmelt, and SWE, the contribution of baseflow (presented as a percentage of total runoff) and soil moisture varies strongly

among them. Consequently, the analysis of the drivers associated with such transition events will vary depending on which385

model structure is analyzed. Although there is a high agreement between the models for the detection of the event in this

example case (i.e., 3 out of 4), this is not necessarily the case for all the events and catchments catchment (Figure 4).

4.4 Relative importance of different modeling decisions

Consistent with our earlier findings (Figure 7), the results of the ANOVA analysis show that the most important modeling

decision is the choice of a suitable model structure, followed by the choice of the streamflow transformation, and the differences390

between catchments. In contrast, the choices of KGE formulation and weights do not have a strong impact on the performance

of simulating streamflow extremes. The relative importance of the methodological choices is similar when analyzing other

categorical indices such as probability of detection (POD), false alarm ratio (FAR), and frequency of bias (fbias), as well

as the model performance in simulating high and low flows, SWE, ET, and SM, as evaluated by NSE (see Figure S12 in

Supplementary Material). For rapid transitions, the difference between catchments is more important for explaining the CSI395

values than it is for seasonal transitions. This difference indicates that the detection of rapid transition events may depend on

the catchment attributes (e.g., mean elevation, streamflow regime, etc.).

18

https://doi.org/10.5194/egusphere-2025-781
Preprint. Discussion started: 24 March 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 8. Example of how different hydrological fluxes and states are simulated for an observed drought-to-flood transition in the Dischma

river (Switzerland) with the GR4J, GR5J, GR6J, and TUW hydrological models calibrated with the unweighted HiLo original KGE formu-

lation.
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Figure 9. Results of the analysis of variance (ANOVA) applied to the Critical Success Index (CSI) for droughts, floods, all drought-flood

transitions (i.e., rapid and seasonal), rapid transitions, and seasonal transitions.

4.5 Model performance depends on catchment characteristics

Model performance in simulating extreme hydrological events and their transitions depends on catchment characteristics (Fig-

ure 10). To identify catchments where model performance is better compared to others, we explore the relationship between400

model performance and catchment characteristics using Spearman’s rank correlation coefficient. For this, we focus on the CSI

obtained for the different types of extreme events of interest (droughts, floods, and transitions) generated with the GR4J and

TUW models calibrated with the unweighted Hilo original KGE formulation (Figure 10). Our results show that drought-to-

flood transitions are more difficult to capture in semi-arid (negative correlation between aridity index and CSI), high-mountain

(negative correlation between mean elevation and CSI), and flashy (negative correlation between the slope of the flow duration405

curve and CSI) catchments than in humid low-elevation catchments with high streamflow elasticity to precipitation. This result

is generalizable to the other models and different KGE formulations tested (see Figure S13 in the Supplementary Material).

4.6 Linking model performance to hydrological processes during streamflow extremes

We perform an ANOVA test to analyze the relative importance of different model parameters for the detection of streamflow

extremes and transitions between them (Figure 11; for the extended version see Figure S15 in the Supplementary Material).410

Here, we show that some model parameters are relatively more important than others (e.g., X4 for floods in GRXJ models), but

that the relative importance of a given parameter can vary substantially across catchments. All of the tested hydrological models

show a high importance of the parameters aimed to adjust the forcings (i.e., dP and dT for all the models as well as SCF in TUW

model, which seeks to correct for the snow undercatch), highlighting the need for adequate forcing to improve the estimation

of extreme hydrological events. For the GRXJ models, parameters X3 (routing store capacity) and X4 (unit hydrograph time415

constant) are more important in the simulation of low and high flow compared to the rest of the parameters, which is accentuated

even more when the base structure is made more complex (i.e., GR6J). In the TUW model, which has more parameters than the

GRXJ structures, the relative importance of each of the parameters is more equal and their relative importance is low, except for
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Figure 10. Spearman’s rank correlation coefficient between different catchment attributes and the CSI for (a) droughts, (b) floods, and (c)

drought-to-flood transitions, based on the simulations with GR4J and TUW calibrated using the unweighted HiLo original KGE formulation

as the objective function. The circles with thick outlines indicate statistically significant correlation coefficients at a the 5% significance level.

the parameter k0 (storage coefficient for very fast response) during floods. Additionally, we compare the relative importance

of biases in hydrological signatures in the detection of streamflow extremes and their transitions to identify key processes to be420

captured to better simulate them, finding that model performance is mainly driven by an adequate representation of streamflow

timing (Figure S16 in the Supplementary Material).

The relative importance of the parameters changes depending on the type of streamflow extreme (Figure 11). We select the

most important parameters in each model to explore their relationship with some physiographic and hydroclimatic catchment

descriptors (see Figure S17 in the Supplementary Material). For the GRXJ models we considered CN2 (degree-day melt425

coefficient), X3 (routing store capacity), and X4 (unit hydrograph time constant), and for the TUW model DDF (degree-day

factor), k0 (storage coefficient for very fast response), and bmax (maximum base of the triangular transfer function). Our

results show that while topographic characteristics (i.e., area, mean elevation, slope) show more correlation with the relative

importance of snow and river routing parameters for floods, runoff routing parameters become less important during rapid

transitions depending on land cover and seasonality. In addition, snow and runoff routing parameters play a key role during430

seasonal transitions.
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Figure 11. Relative importance of parameters for explaining the Critical Success Index (CSI) for models (a) GR4J, (b) GR5J, (c) GR6J, and

(d) TUW based on the results of an analysis of variance (ANOVA).

5 Discussion

5.1 Simulation of compounding streamflow extreme events

We find that the hydrological models tested are better at detecting droughts (median CSI across catchments and KGE for-

mulations: 0.45-0.58 depending on the model) than floods (median CSI across catchments and KGE formulations: 0.15-0.26435

depending on the model), and their performance in detecting drought-to-flood transitions is closely related to the performance

in detecting floods (Figure 4). This difference in drought and flood simulation performance can be attributed to the different

timescales during which these two types of extreme events develop: while droughts vary in duration from months to years

(or decades), floods develop, and may also subside, in a matter of days. This is consistent with the poor performance of all
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the models tested in capturing rapid transitions (median CSI equal to zero when rapid and seasonal transitions are analyzed440

separately; not shown). Moreover, only in thirteen basins - based on different configurations - we obtained CSI values greater

than zero for rapid transitions (Table S2 in Supplementary Material). Our analysis highlights that these fast processes are rather

difficult to capture in conceptual models, even when they have been calibrated.

5.2 Good general performance does not imply that extremes are well detected

Our results highlight that a good general model performance as e.g. described by the KGE does not necessarily imply a good445

performance in detecting streamflow extremes. Even models with high KGE values (> 0.6) struggle to capture extreme events,

in particular floods and transitions from droughts to floods (Figure 4). These findings are aligned with previous studies which

discussed the potential of KGE to represent high-flow values or capture flashy dynamics (e.g., Astagneau et al., 2022; Brunner

et al., 2021; Mathevet et al., 2020). For instance, Astagneau et al. (2021a) demonstrated that the relationship between KGE

values and model performance in terms of simulating summer floods is weak. Similarly, Bruno et al. (2024) have shown450

that during extreme low-flows model performance is usually lower than during normal flow conditions. Spieler and Schütze

(2024) showed that by focusing on basic catchment-scale behaviors, the KGE lacks the capacity to provide information about

detailed processes, leading to gaps between model accuracy (i.e., how well a model matches simulations with observations) and

adequacy (i.e., how well a model captures key processes and behaviors of the observed system). These findings suggest that

the traditional evaluation of hydrological models through goodness-of-fit metrics such as KGE or NSE must be accompanied455

by an explicit examination of their capability to simulate and detect streamflow extreme events, e.g. by using metrics such as

the CSI.

5.3 The importance of different modeling decisions for simulating streamflow extremes and their transitions

Our results show that model structure is the most important modeling decision for capturing extreme events and their transitions

(Figure 9). Among the structures tested, the GR4J model is the one that shows the best performance both for the simulation460

of independent extreme events and for transitions (Figure 7). The TUW model shows similar results but with a lower flood

detection performance (median CSI between KGE formulations of 0.19 compared to 0.26 for GR4J). These deficiencies in

flood simulation performance translate to deficiencies in capturing drought-to-flood transitions (Figure 4 and Figure 7). The

lack of an explicit structural component that allows for the simulation of floods that occur under dry conditions with low soil

moisture could explain the poor performance associated with this type of compound event. Astagneau et al. (2022) highlighted465

that conditioning the storages and fluxes of a lumped conceptual hourly-timestep model on rainfall intensities could benefit

model performance in catchments with a fast response to precipitation (i.e., flashy-catchments). For droughts, van Kempen

et al. (2021) have shown that the magnitudes of the low-flow events are significantly affected by alterations in the architecture

of the upper and lower storages, which is consistent with the changes in performance among the GRXJ models, where small

structural modifications lead to important changes in the detection of these events. van Kempen et al. (2021) have shown470

that multiple hydrological processes significantly affect the magnitude of high- and low-flow events, which implies that the
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model structure is an important source of uncertainty. This supports our findings, which show that in the context of studying

streamflow extreme events, the choice of hydrological model is the most important decision (Figure 9).

We demonstrated that the capability to identify streamflow extreme events and their transitions in simulations is model-

dependent. However, the change in performance in detecting extreme events does not necessarily depend on the number of475

parameters or model complexity. We obtained similar performances between GR4J and TUW despite their structural differ-

ences (Figure 7), unlike GR5J and GR6J whose performance declines in comparison with GR4J. Thus, how hydrological

models represent the interactions, flows and states in the hydrological cycle (i.e., model parametrization) could be influenc-

ing their performance (e.g., Knoben et al., 2020; Beven and Chappell, 2021; van Kempen et al., 2021). Several studies have

highlighted that including a more detailed representation of hydrological processes in models does not necessarily imply better480

performance (e.g., Orth et al., 2015; Valéry et al., 2014a). This is because more detailed representations require more infor-

mation to characterize the system of interest, which is not necessarily always available at high quality (e.g., land cover maps,

distributed forcings, high-resolution digital terrain model, soil properties, etc.). Recently, Santos et al. (2025) found that models

with varying complexity can lead to similar robustness issues. Consequently, beyond the complexity of the selected modeling

structure, understanding the extent to which these are useful for studying the phenomenon of interest is key, suggesting the485

need to improve strategies for identifying the suitability of a given structure (e.g., Spieler and Schütze, 2024; Knoben et al.,

2020).

Compared to the choice of model structure, the choice of objective function is less important (Figure 9). However, model

performance can be optimized both in terms of general performance (NSE) and the representation of extreme events (CSI)

under (a) the application of equal weights to all components of the KGE (Figure 5) and (b) the application of a streamflow490

transformation that focuses on both high and low flows (Figure 6a). Our comparison also highlights that the potential benefit

from adjusting these choices (e.g. using other weights or other transformations) varies widely between catchments (Figure 5).

This is in line with the findings of Mizukami et al. (2019), who found that the influence of weights on model performance

depends on model structure and catchments characteristics. While none of the tested modifications in the objective function

consistently improves the simulation of streamflow extremes across all catchments in the study domain, some of the alternative495

KGE formulations could improve the simulation of certain variables. For example, KGE_np (Pool et al., 2018) shows median

differences close to zero when both NSE(Q) and NSE(1/Q) are assessed independently of the flow transformation applied. Its

performance highlights the ability of this formulation to capture the distribution of flows, which can be directly attributed to its

non-parametric conceptualization.

The meteorological forcing used to simulate streamflow extreme events can also have a major impact on the model’s perfor-500

mance (Figure 11). Our results show a high importance of the parameters aimed to adjust the forcings (i.e., dP and dT for all

the models as well as SCF in TUW model, which seeks to correct the snow undercatch) for detecting streamflow extremes and

their transitions. Obtaining reliable meteorological forcing has been highlighted as one of the key challenges in hydrological

modeling studies (e.g., Brunner, 2023; Döll et al., 2016). Several studies have shown that errors in meteorological forcing data

have a large influence on the simulation of snow processes (e.g., Tang et al., 2023; Günther et al., 2019) because of their influ-505

ence on the precipitation phase (Harder and Pomeroy, 2014), or significant impacts on the partitioning between evaporation and
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runoff (e.g., Nasonova et al., 2011). These previous studies and our findings suggest that an improvement in the spatiotemporal

representation of precipitation and temperature, as well as of the potential interactions between these variables could contribute

to improving the representation of compounding streamflow extreme events in hydrological models.

5.4 Limitations and recommendations for future work510

Our model and methods intercomparison focused on the simulation of extreme streamflow events, which required the choice

of specific event definitions. Here, we have defined hydrological droughts and floods using threshold based-approaches. The

thresholds have been adjusted in a way to identify, on average, one event per year and catchment. This methodological choice

does to a certain degree influence the outcomes of the comparison. To describe this influence, we tested different thresholds

for defining streamflow extreme events. The results of this sensitivity analysis show that the use of more relaxed thresholds to515

define droughts (i.e., higher percentiles) can improve the performance of the models in detecting such events. However, we did

not find such an effect for floods and transitions, for which we find similar model performances independently of the thresholds

used (see Figure S2 in Supplementary Material). The improvement in drought detection when the threshold is relaxed can be

explained by the observation that models generally struggle more with more extreme events (e.g., Bruno et al., 2024), which

are relatively less numerous if the threshold is lowered. While our study shows that threshold choice does not substantially520

affect model performance in terms of transition events, the method used to define streamflow extreme events can have a major

impact on the characteristics of the transition events identified.

To support our analysis, we tested four bucket-type hydrological models widely used within the hydrological modeling com-

munity (Addor and Melsen, 2019). Even though these models are at the lower end in terms of model complexity (Hrachowitz

and Clark, 2017), they allowed us to perform a comprehensive analysis of different model structures at a lower computational525

cost than when using models with more complex structures (e.g., Clark et al., 2017; Orth et al., 2015; Poncelet et al., 2017).

Furthermore, previous studies and our study have shown that more complexity does not necessarily imply better performance

(Figure 7; e.g., Li et al., 2015; Merz et al., 2022).

Our results provide some insights on which avenues of future research could benefit drought-to-flood transitions modeling:

exploring the use of modular platforms and a multi-model ensemble approach to quantify model uncertainty and identify more530

suitable model structures (e.g., Saavedra et al., 2022); improving our understanding of the role of the spatial variability of

precipitation for accurate flood simulations (e.g., Macdonald et al., 2025; Astagneau et al., 2022); assessing the benefits of

model runs at a subdaily timestep (e.g., hourly); and exploring alternative data-driven modeling approaches such as long short-

term memory (LSTM) networks (e.g., Frame et al., 2022; Anshuka et al., 2022). Additionally, exploring relationships between

the occurrence or characteristics (e.g., duration, severity) of this type of hydrological extreme events and some large-scale535

climate patterns (Garreaud et al., 2020; Marengo and Espinoza, 2016; Sun et al., 2016; De Luca et al., 2020) could improve

their predictability.
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6 Conclusions

We performed a methods and models intercomparison study to (i) explore to what extent hydrological models can simulate

drought-to-flood transition and (ii) identify suitable modeling choices aimed at capturing these compound extreme events.540

For this intercomparison, we calibrated four conceptual bucket-type hydrological models (GR4J, GR5J, GR6J, and TUW) for

63 catchments in Chile and Switzerland using 60 different configurations of the Kling-Gupta Efficiency (KGE) as objective

functions, based on five KGE formulations, four scaling factors, and three streamflow transformations. Based on the results of

this intercomparison, we draw the following conclusions:

1. Drought events are better captured by hydrological models than flood events. As a consequence, a model’s capability545

in detecting transitions from drought-to-flood events mainly depends on how well it captures flood events. In addition,

model performance with respect to capturing all three event types varies widely between catchments.

2. A satisfactory general model performance as expressed by the KGE or NSE does not guarantee a good performance

in terms of detecting streamflow extremes and their transitions. While KGE can serve as a rough proxy for low-flow

performance, it cannot for high-flows and drought-to-flood transitions. Consequently, assessments of the suitability of550

hydrological models for simulating extreme events and their transitions should be complemented with metrics describing

extreme event detection performance such as the critical success index (CSI).

3. The most important modeling decision when it comes to simulating floods, droughts, and their transitions is the choice

of a suitable model structure. Here, we demonstrate that the GR4J and TUW models have similar performance - with

GR4J being slightly better at detecting floods and transitions - and adding model complexity by increasing the number555

of parameters does not necessarily improve the representation of extreme events.

4. In contrast, the choice of the objective function and its exact configuration are less important. The choice of a suitable

streamflow transformation can improve the simulation of extreme events to a certain degree. Specifically, a joint focus

on high and low flows by equally weighting the two streamflow transformations in the objective function (referred to as

HiLo in our analysis) can improve model performance without compromising its ability to capture streamflow extremes.560

However, the choice of the exact KGE formulation and the use of weights for the variability term of the KGE do not

substantially affect the simulation of extreme events and the direction of this effect depends on the catchment.

5. The model parameters targeted at adjusting the meteorological forcing are relatively more important than other parame-

ters in explaining the CSI variations. This highlights the need for adequate meteorological forcing data that adequately

represent the spatiotemporal properties of precipitation and temperature.565

6. A model’s performance in simulating streamflow extremes and transitions primarily depends on how well it captures

streamflow timing rather than other hydrological signatures or variables such as evapotranspiration or snow water equiv-

alent.
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7. Drought-to-flood transitions are more difficult to capture in semi-arid, high-mountain, and flashy catchments than in

humid low-elevation catchments.570

This methods and model intercomparison highlights that simulating streamflow extremes and their transitions is not a trivial

modeling task and continued research is needed to improve model performance. The results of this intercomparison study sug-

gest that time is best invested when focusing on improving model structures rather than calibration procedures. Specifically,

hydrological model development should focus on improving the representation of processes and components associated with

the temporal dynamics of discharge, such as routing or the soil response to intense snowmelt and rainfall. In addition, the575

strong link between model performance and parameters aimed at correcting precipitation inputs suggests that the representa-

tion of extreme events could also be improved by investing in the quality of meteorological forcing datasets. Investments in

improving the simulation of extreme events and their transitions are crucial because hydrological models can support process

understanding related to compounding streamflow extremes, be used to forecast such events at short time scales, and to project

future changes in the occurrences of drought-to-flood transitions – applications that are strongly needed to ensure society’s580

preparedness for these impactful events.
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