Supplementary material to the manuscript:

How well do hydrological models simulate streamflow
extremes and drought-to-flood transitions?

Eduardo Mufioz-Castro™**, Bailey J. Anderson*3, Paul C. Astagneau™*?, Daniel L. Swain*>®,
Pablo A. Mendoza’®, Manuela I. Brunner*23

WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland

2Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland
3Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

4California Institute for Water Resources, University of California Agriculture and Natural Resources, Davis, CA, USA
SInstitute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
6Capacity Center for Climate and Weather Extremes, National Center for Atmospheric Research, Boulder, CO, USA
"Civil Engineering Department, Universidad de Chile, Santiago, Chile

8Advanced Mining Technology Centre (AMTC), Universidad de Chile, Santiago, Chile

Correspondence to: Eduardo Mufioz-Castro (eduardo.munoz-castro@slf.ch)

Contents of this file

This supplementary material file expands on the results of the main manuscript to support - in some cases
generalize - and reinforce the findings presented there. The methodology used to generate the data and
figures presented here is detailed in the main manuscript. The contents of this file are listed below:

e Figure S1: Sensitivity test to explore the effect of the threshold used to define droughts and floods
in the number of events per year.

e Figure S2: Sensitivity test to explore the effect of the threshold used to define droughts and floods
in the model’s performance detecting streamflow extreme events.

e Figure S3: Difference in the CSI by putting no weights (reference) and different weights
(alternative) on the variability term of the KGE for different hydrological models.

e Figure S4: Difference in the CSI by using no weights HiLo case (reference) and different weights
(alternative) on the variability term of the KGE for different hydrological models.

e Figure S5: Spearman’s rank correlation coefficient between catchment attributes and ACSI for
weighted cases with respect to the unweighted reference.

e Figure S6: Performance by using no weights HiLo case with different KGE formulation as
objective function for calibration.

e Figure S7: Bias in hydrological signatures by using no weights HiLo case with different KGE
formulation as objective function for calibration.

e Figure S8: Correlation between observed and simulated variables using no weights HiLo case
with different KGE formulation as objective function for calibration.

e Figure S9: Difference in the CSI by using no weights HiLo case (reference) and different weights
and streamflow transformations (alternative) for different hydrological models.

e Figure S10: Difference in the NSE by using no weights HiLo case (reference) and different
weights and streamflow transformations (alternative) for different hydrological models

e Figure S11: CSI per streamflow extreme, objective function, hydrological model and country.
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e Figure S12: Results of the ANOVA applied to categorical indices and hydrological variables.
e Figure S13: Correlation between CSI and catchment attributes.
o Figure S14: Parameter agreement for the calibrated model.

e Figure S15: Relative importance of parameters explaining the total variance of the critical the CSI
associated with drought, floods, and drought-to-flood transitions.

o Figure S16: Relative importance of bias in hydrological signatures explaining the total variance of
the critical success index (CSl) associated with drought, floods, and drought-to-flood transitions.

e Figure S17: Spearman’s rank correlation between the relative importance of model parameters and
catchment attributes.

e Figure S18: Bias between simulated and observed streamflow extreme events computed at the
event scale.

e Table S1: Hydrological signatures computed.

e Table S2: Catchments and configurations with CSI higher than zero for rapid drought-to-flood
transitions.
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Figure S1: Sensitivity test to explore the role of the threshold used to define droughts and
floods in the number of events per year.
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Figure S1: Number of events per year depending on the threshold used for the definition of droughts and
floods. The notation “dX_fY” refers to the use of the Xth and Yth percentile to define the variable and
fixed threshold required to identify streamflow droughts (d) and floods (f) respectively.
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Figure S2: Sensitivity test to explore the effect of the threshold used to define droughts and
floods in the model’s performance detecting streamflow extreme events.
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Figure S2: Performance of the GR4J, GR5J, GR6J and TUW maodels (in the rows) detecting a) droughts,
b) floods, and c) transitions, according to different thresholds used for the identification of streamflow
extreme events. For each type of extreme event and hydrological model, the results are compared
according to different formulations of KGE (unweighted and HiLo) used as objective functions.
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Figure S3: Difference in the CSI by putting no weights (reference) and different weights

(alternative) on the variability term of the KGE for different hydrological models
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Figure S3: Difference in the Critical Success Index (CSI) for simulations using model calibrations with no
weights (reference) versus different weights (alternative) on the KGE variability term for a) droughts, b)
floods, and c) transitions. Each alternative is compared with its unweighted analog. Differences are
calculated as "reference - alternative” with values above (below) 0 indicating better (worse) performance
of the reference (alternative). Supplementary figure associated to Figure 5a in the main manuscript.
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Figure S4: Difference in the CSI by using no weights HiLo case (reference) and different
weights (alternative) on the variability term of the KGE for different hydrological models
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Figure S4: Difference in the Critical Success Index (CSI) for simulations using model calibrations with no
weights and HiLo transformation (reference) versus different weights and streamflow transformations
(alternative) for a) droughts, b) floods, and c) transitions. Each alternative is compared with its
unweighted analogs and HiLo transformation. Differences are calculated as "reference - alternative™ with
values above (below) O indicating better (worse) performance of the reference (alternative).

Supplementary figure associated to Figure 5b in the main manuscript.

Supplementary material

Mufioz-Castro et al. (2025)

Page 6 of 24



Figure S5: Spearman’s rank correlation coefficient between catchment attributes and ACSI
for weighted cases with respect to the unweighted reference
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Figure S5: Spearman’s rank correlation coefficient between catchment attributes and ACSI in detecting
droughts, floods, and drought-to-flood transitions (rows) when weights are used in the HiLo original KGE
formulations to calibrate the (a) GR4J, (b) GR5J, (¢) GR6J, (d) TUW hydrological models (columns). The
circles with thick outlines indicate statistically significant correlation coefficients at a 5% level. Positive
correlations indicate that the greater the values of the attribute, the unweight case is better in comparison
with the alternatives (i.e., use of weights; x-axis).
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Figure S6: Performance by using no weights HiLo case with different KGE formulation as
objective function for calibration
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Figure S6: NSE computes for high and low flows (i.e., Q and 1/Q), snow water equivalent (SWE), actual
evapotranspiration (ET), and surface soil moisture (SM) for the (a) calibration, and (b) evaluation period.
The modeling results are associated with the GR4J, GR5J, GR6J, and TUW hydrological models
calibrated using no weights Hilo case and different KGE formulations (used as reference in the main
manuscript). The dashed black line represents the optimum value for the assessed metric.
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Figure S7: Bias in hydrological signatures by using no weights HiLo case with different
KGE formulation as objective function for calibration
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Figure S7: Bias in hydrological signatures computes for streamflow for the (a) calibration and (b)
evaluation period. The modeling results are associated with the GR4J, GR5J, GR6J, and TUW
hydrological models calibrated using no weights Hilo case and different KGE formulations (used as
reference in the main manuscript). The dashed black lines represent the optimum values for the assessed
metrics.
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Figure S8: Correlation between observed and simulated variables using no weights HilLo
case with different KGE formulation as objective function for calibration
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Figure S8: Pearson’s correlation coefficient between observed and simulated streamflow (Q), snow water
equivalent (SWE), actual evapotranspiration (ET), and surface soil moisture (SM) computed for the (a)
calibration and (b) evaluation period. The modeling results are associated with the GR4J, GR5J, GR6J,
and TUW hydrological models calibrated using no weights Hilo case and different KGE formulations

(used as reference in the main manuscript). The dashed black lines represent the optimum values for the
assessed metrics.
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Figure S9: Difference in the CSI by using no weights HiLo case (reference) and different
weights and streamflow transformations (alternative) for different hydrological models
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Figure S9: Difference in the Critical Success Index (CSI) for simulations given no weights and HiLo
streamflow transformation (reference) and the application of differences weights and streamflow
transformation (alternative). In a) each alternative is compared with its unweighted HiLo analogue, while
in b) comparisons include both unweighted HiLo analogs and the original KGE formulation as reference.
The difference has been calculated as "reference - alternative" which means that values higher (lower)
than O represent a better (worst) performance of the reference (alternative) simulating high-flows

TUW

low-flows (NSE(1/Q)), snow water equivalent (NSE(SWE)), actual evapotranspiration

(NSE(ET)), and surface soil moisture (NSE(SM)). Supplementary figure associated to Figure 6 in the
main manuscript.
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Figure S10: Difference in the NSE by using no weights HiLo case (reference) and different
weights and streamflow transformations (alternative) for different hydrological models
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Figure S10: Difference in the Nash-Sutcliffe Efficiency (NSE) for simulations given no weights and HiLo
streamflow transformation (reference) and the application of differences weights and streamflow
transformation (alternative). In a) each alternative is compared with its unweighted HiLo analogue, while
in b) comparisons include both unweighted HiLo analogs and the original KGE formulation as reference.
The difference has been calculated as "reference - alternative" which means that values higher (lower)
than O represent a better (worst) performance of the reference (alternative) simulating high-flows
(NSE(Q)), low-flows (NSE(1/Q)), snow water equivalent (NSE(SWE)), actual evapotranspiration
(NSE(ET)), and surface soil moisture (NSE(SM)). Supplementary figure associated to Figure 6 in the
main manuscript.
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Figure S11: CSI per streamflow extreme, objective function, hydrological model and
country
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Figure S11: Critical Success Index (CSI) for a) droughts, b) floods, and c) drought-to-flood transitions,
based on the simulations with GR4J, GR5J, GR6J, and TUW calibrated with different unweighted HiLo
KGE formulations as objective functions for Chile and Switzerland (upper and lower panels respectively).
Supplementary figure associated to Figure 7 in the main manuscript.
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Figure S12: Results of the ANOVA applied to categorical indices and hydrological variables

a) Results of the ANOVA applied to the categorical indices for streamflow extremes
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b) Results of the ANOVA applied to the NSE associate to different hydrological variables
Calibration (2000-2020)

Evaluation (1985-2000)
.

NSE(Q)  NSE{1/Q) NSE(SWE) NSE(ET) NSE(SM) NSE(Q) NSE(1/Q) NSE(SWE) NSE(ET) NSE(SM)

~— 100

@
o

[}
o

B
[=]

S}
(=)

Relative importance (%

Explanatory variable . Residual . Weight . Transformation . KGE formulation I:‘ Hydrological model |:| Catchment

Figure S12: Results of the analysis of variance (ANOVA) applied to a) probability of detection (POD =
H/H+M), false alarm ratio (FAR=F/H+F), frequency bias (fbias = H+F/H+M), critical success index
(CSI=H/H+M+F) for droughts, floods, all drought-flood transitions (i.e., rapid and seasonal), rapid
transitions, and seasonal transitions, and b) the Nash-Sutcliffe Efficiency (NSE) associate to high and low-
flows (Q and 1/Q respectively), snow water equivalent (SWE), actual evapotranspiration (ET), and surface
soil moisture (SM). Supplementary figure associated to Figure 10 in the main manuscript.
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Figure S13: Correlation between CSI and catchment attributes
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Figure S13: Correlation between CSI and catchment attributes based on results associated to different
unweighted HiLo KGE formulations used as objective functions (columns) and streamflow extremes

(rows). Supplementary figure associated to Figure 9 in the main manuscript.
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Figure S14: Parameter agreement for the calibrated model.
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Figure S14: Parameter agreement in a) GR4J, b) GR5J, ¢) GR6J, and d) TUW models. (Lower) Higher
values in the parameter agreement index indicates (dis)agreement in the values of the parameter (i.e., more
dispersion between the optimal parameter sets obtained from different calibration processes). Each
boxplot comprises agreement indices from the 63 catchments included in the study domain. The parameter
agreement index for each parameter and catchment — as well as the overall agreement index - has been
computed using the metric proposed by Mufioz-Castro et al. (2023)*.

! Mufioz-Castro, E., Mendoza, P. A., Vasquez, N., & Vargas, X. (2023). Exploring parameter (dis) agreement due to
calibration metric selection in conceptual rainfall-runoff models. Hydrological Sciences Journal, 68(12), 1754-1768.
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Figure S15: Relative importance of parameters explaining the total variance of the critical
the CSI associated with drought, floods, and drought-to-flood transitions
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Figure S15: Relative importance of parameters for explaining the Critical Success Index (CSI) for models

(@) GR4J, (b) GR5J, (c) GR6J, and (d) TUW based on the results of an analysis of variance (ANOVA).
Extended version of Figure 11 in the main manuscript.
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Figure S16: Relative importance of bias in hydrological signatures explaining the total
variance of the critical success index (CSI) associated with drought, floods, and drought-to-
flood transitions
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Figure S16: Relative importance of bias in hydrological signatures explaining the total variance of the
critical success index (CSI) associated with drought, floods, and drought-to-flood transitions. Q, SWE, ET,
and SM represent streamflow, snow water equivalent, actual evapotranspiration, and surface soil moisture
respectively. Abbreviations used for the hydrological signatures computed are summarized in Table S1.
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Figure S17: Spearman’s rank correlation between the relative importance of model parameters and

catchment attributes.
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Figure S18: Bias between simulated and observed streamflow extreme events computed at

the event scale
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Figure S18: Percentage bias (PBias) between simulated and observed runoff during (a) droughts and (b)
floods identified as independent events, rapid transitions, and seasonal transitions, and classified as hit,
miss, or false depending on the model's ability to capture them. The modeling results are associated with
the GR4J, GR5J, GR6J, and TUW hydrological models calibrated using no weights Hilo case and
different KGE formulations (used as reference in the main manuscript). For each KGE formulation there
are 4 boxes per category, which correspond to the results obtained for the GR4J, GR5J, GR6J and TUW
models respectively. The dashed black lines represent the optimum values for the assessed metrics.
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Table S1: Hydrological signatures computed

Table S1: Hydrological signatures computed (used in Figures S7, S8, and S16).

Hydrological signature

Abbreviation

Temporal dynamic between observed and simulated values

r

Mean of the daily serie mean
Variance of the daily serie var
Skewness of the daily serie skew
Kurtosis of the daily serie kurt

1st percentile of the daily serie Q01

5th percentile of the daily serie Q05

50th percentile of the daily serie Q50

95th percentile of the daily serie Q95

99th percentile of the daily serie Q99

Slope of the mid-segment of the flow duration curve (FDC) FDC_slope_mid
Mean of the annual minima serie mean_amn
Variance of the annual minima serie var_amn
Skewness of the annual minima serie skew_amn
Kurtosis of the annual minima serie kurt_amn
Mean of the annual maxima serie mean_amx
Variance of the annual maxima serie var_amx
Skewness of the annual maxima serie skew_amx
Kurtosis of the annual maxima serie kurt_amx
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Table S2: Catchments and configurations with CSI higher than zero for rapid drought-to-
flood transitions

Table S2: Catchments and configurations where CSI values greater than zero are obtained for rapid
drought-to-flood transitions. Those corresponding to unweighted HilLo, used as reference in the main
manuscript, are highlighted in light blue.

id_gauge | Type | POD | fbias | FAR | CSI Country | Model | OF _name | Case w

Rapid | 1.00 | 2.00 | 0.50 | 0.50 Chile TUW KGE_np Hi la

Rapid | 1.00 | 2.00 | 0.50 | 0.50 Chile TUW KGE_np | HiLo | la

4311001 | Rapid | 1.00 | 2.00 | 0.50 | 0.50 Chile TUW | KGE np | HiLo | 2a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_km | HiLo | 2a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_np Hi 4o

Rapid | 1.00 | 2.00 | 0.50 | 0.50 Chile TUW KGE_np Lo la

4314002 Rapid | 1.00 | 3.00 | 0.67 | 0.33 Chile TUW | KGE_mod2 | Hi 8a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_km Lo 8a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_np | HiLo | 8a

Rapid | 1.00 | 3.00 | 0.67 | 0.33 Chile GR4J KGE_np Hi la

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GR4) | KGE_modl | Hi 4o

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW | KGE_modl | Lo 20

4320001 | Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_km Lo 20

Rapid | 1.00 | 2.00 | 0.50 | 0.50 Chile TUW KGE_np Hi 4o

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_km Lo 4a

Rapid | 1.00 | 3.00 | 0.67 | 0.33 Chile TUW | KGE_modl | HiLo | 8a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GR6J KGE_km | HiLo | 4a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_np Lo la

Rapid | 1.00 | 2.00 | 0.50 | 0.50 Chile TUW KGE Lo 20

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW | KGE_modl | Lo 20,

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW | KGE_mod2 | Lo 20

5716001 Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_km Lo 20
Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_np | HiLo | 2a
Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW | KGE_mod2 | Lo 8a
Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_km Lo 8a
Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE HiLo | 8a
Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GRSJ KGE_km Hi 8a
8358001 | Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GR6J KGE Hi 8a
Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE Lo 20
Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GR4J KGE HiLo | la

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GR4J) | KGE_mod2 | HiLo | 2a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GR4J KGE HiLo | 4a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GR4J) | KGE_mod2 | HiLo | 4a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GR4J KGE HiLo | 8a

9104001 | Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile GR5J | KGE_mod2 | Lo 8a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW | KGE_modl | Lo 20

Rapid | 1.00 | 2.00 | 0.50 | 0.50 Chile TUW KGE Lo 4a

Rapid | 1.00 | 2.00 | 0.50 | 0.50 Chile TUW KGE Lo 8a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW | KGE_mod2 | Lo 8a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW KGE_np Lo 8a
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id_gauge | Type | POD | fbias | FAR | CSI Country | Model | OF _name | Case w
Rapid | 1.00 | 1.00 | 0.00 | 1.00 Chile TUW | KGE_modl | HiLo | 8a

9127001 | Rapid | 1.00 | 2.00 | 0.50 | 0.50 Chile TUW | KGE_km | HiLo | 4a
2606 Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR4J | KGE _mod2 | HiLo | la
2151 Rapid | 1.00 | 3.00 | 0.67 | 0.33 | Switzerland | GR5J | KGE_mod2 | Lo 20,
Rapid | 1.00 | 3.00 | 0.67 | 0.33 | Switzerland | GR5J | KGE_modl | Hi 4o,

Rapid | 1.00 | 1.00 | 0.00 | 1.00 | Switzerland | GR5J | KGE_mod2 | Lo 4a

Rapid | 1.00 | 3.00 | 0.67 | 0.33 | Switzerland | GR5J | KGE_modl | Lo 8a

Rapid | 1.00 | 1.00 | 0.00 | 1.00 | Switzerland | GR5J KGE_km Lo 8a

2029 Rapid | 1.00 | 1.00 | 0.00 | 1.00 | Switzerland | GR5J | KGE _modl | HiLo | 8a
Rapid | 1.00 | 3.00 | 0.67 | 0.33 | Switzerland | GR6J KGE Hi la

Rapid | 1.00 | 1.00 | 0.00 | 1.00 | Switzerland | GR6J KGE_np Lo 20

Rapid | 1.00 | 1.00 | 0.00 | 1.00 | Switzerland | GR6J | KGE modl | Hi 8o

Rapid | 1.00 | 2.00 | 0.50 | 0.50 | Switzerland | GR6J | KGE_mod2 | HiLo | 8a

2110 Rapid | 1.00 | 2.00 | 0.50 | 0.50 | Switzerland | TUW | KGE_km Hi 8a
2099 Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | GR6J KGE Hi 20,
Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR4J KGE_km Hi la

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR4J KGE Hi 20,

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR4J | KGE _mod2 | Hi 20

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR4J KGE_km Hi 20,

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR4J) | KGE_modl | HiLo | 4a

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR5J KGE Hi lo

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR5J | KGE_mod2 | Hi 40,

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR5J KGE_km Hi 8a

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR5J | KGE_modl | Lo 8a

Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | GR6J | KGE_mod2 | Lo la

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR6J KGE_km Hi 20

Rapid | 0.50 | 1.50 | 0.67 | 0.25 | Switzerland | GR6J KGE HiLo | 2a

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR6J | KGE_mod2 | Hi 4o,

Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | GR6J KGE_np Hi 4o,

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | GR6J KGE_km Hi 4a

2018 Rapid | 1.00 | 1.50 | 0.33 | 0.67 | Switzerland | GR6J KGE_np Hi 8a
Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | GR6J KGE HiLo | 8a

Rapid | 0.50 | 1.50 | 0.67 | 0.25 | Switzerland | TUW | KGE modl | Hi la

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW | KGE_mod2 | Hi la

Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW KGE_np Hi la

Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW KGE_np Lo la

Rapid | 1.00 | 1.50 | 0.33 | 0.67 | Switzerland | TUW KGE np | HiLo | la

Rapid | 1.00 | 1.00 | 0.00 | 1.00 | Switzerland | TUW | KGE_km | HiLo | la

Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW KGE Hi 20,

Rapid | 0.50 | 1.50 | 0.67 | 0.25 | Switzerland | TUW | KGE_mod2 | Hi 20,

Rapid | 1.00 | 1.00 | 0.00 | 1.00 | Switzerland | TUW KGE_np Hi 20

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW | KGE_km Hi 20,

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW KGE Lo 20

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW | KGE_modl | Lo 20,

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW | KGE_mod2 | Lo 2a

Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW KGE_np Lo 20,
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id_gauge | Type | POD | fbias | FAR | CSI Country | Model | OF _name | Case w
Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW | KGE_km Lo 20,
Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW | KGE km | HiLo | 2a
Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW KGE Hi 4a
Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW | KGE_modl | Hi 40,
Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW | KGE_mod2 | Hi 40,
Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW KGE_np Hi 4a
Rapid | 0.50 | 1.50 | 0.67 | 0.25 | Switzerland | TUW | KGE_km Hi 40,
Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW | KGE_modl | Lo 4o
Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW KGE_np Lo 4a
Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW KGE HiLo | 4a
Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW | KGE_mod2 | HiLo | 4a
Rapid | 0.50 | 1.00 | 0.50 | 0.33 | Switzerland | TUW KGE Lo 8o
Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW | KGE_modl | HiLo | 8a
Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW | KGE_mod2 | HiLo | 8a
Rapid | 0.50 | 0.50 | 0.00 | 0.50 | Switzerland | TUW KGE_km | HiLo | 8a
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