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Abstract. Isoprene, a volatile organic compound (VOC) emitted by plants, plays a significant role in atmospheric chemistry 

and climate. The Amazon rainforest is a globally-relevant source of atmospheric isoprene. We report isoprene emissions 

inferred from a full-physics retrieval of isoprene columns from the Cross-track Infrared Sounder (CrIS) and the local 

sensitivities between isoprene emissions and isoprene columns determined by the GEOS-Chem chemical transport model. 15 

Compared with the MEGAN isoprene emissions, the isoprene emission estimates inferred from CrIS have different spatial 

and seasonal distributions with generally lower emission rates but with higher emission rates over the northern Amazon 

basin and southeast Brazil. The observed mean isoprene concentration at the Amazon Tall Tower Observatory (ATTO), 

March—December 2019, is 3.0 ± 2.2 ppbv, which is reproduced better by the GEOS-Chem model driven by isoprene 

emissions inferred from CrIS (2.8 ± 1.4 ppbv) than by the MEGAN inventory (4.1±1.3 ppbv). Isoprene emission estimates 20 

inferred from CrIS generally agree better than MEGAN with in situ observations of seasonal isoprene fluxes over the 

Amazon. GEOS-Chem model formaldehyde (HCHO) columns, corresponding to isoprene emissions inferred from CrIS, are 

generally more consistent with TROPOMI data (normalized mean error, NME = 43%) than the HCHO columns 

corresponding to MEGAN isoprene emissions (NME = 50%), as expected. CrIS inferred isoprene emission rates can vary by 

± 20% considering potential model biases in nitrogen oxide emissions. Our results provide confidence that we can use CrIS 25 

data to examine future impacts of anthropogenic activities on isoprene emissions from the Amazon.  

 

1 Introduction 

Tropical South America, including the Amazon rainforest, hosts important ecosystems that influence the global carbon and 

water cycles. Amazonia is also a significant but uncertain source of biogenic volatile compounds (BVOCs), dominated by 30 

mass by isoprene (Guenther et al., 2006), that influence atmospheric chemical composition on local to global scales 
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(Wiedinmyer et al., 2006; Yáñez-Serrano et al., 2015; Millet et al., 2016; Gomes Alves et al., 2023; Mayhew et al., 2023; 

Ringsdorf et al., 2023; Ferracci et al., 2024). Isoprene has an e-folding lifetime of ~1 hour against oxidation by hydroxyl 

radical (OH) and plays a role in ozone chemistry (Atkinson, 2000; Saunier et al., 2020), production of secondary organic 

aerosol (Claeys et al., 2004; Kroll et al., 2005, 2006; Carlton et al., 2009), and by modifying the levels of OH (Lelieveld et 35 

al., 2008; Hofzumahaus et al., 2009; Fuchs et al., 2013; Millet et al., 2016; Nölscher et al., 2016; Hansen et al., 2017; 

Pfannerstill et al., 2021). Isoprene also influences the lifetimes of other pollutants, e.g. carbon monoxide (Miyoshi et al., 

1994) and methane (Feng et al., 2023). Evidence suggests that plants emit isoprene to protect leaf biochemistry under 

environmental stress (Sharkey et al., 2007; Monson et al., 2013; Zeinali et al., 2016), which is also seen as a key plant trait 

that determines species responses to rising temperature and drought (Taylor et al., 2018; Werner et al., 2021; Byron et al., 40 

2022). Changes in isoprene emissions due to deforestation, rising levels of atmospheric CO2, and climate change induced 

land use and land cover changes will also play an important role in controlling future changes in biogenic emissions and 

thereby atmospheric composition (Fini et al., 2017; Chen et al., 2018; Yáñez-Serrano et al., 2020; Sahu et al., 2023).  

 

Isoprene emissions are typically described in atmospheric chemistry transport models and chemistry-climate models using a 45 

bottom-up models. The Model of Emissions of Gases and Aerosols form Nature (MEGAN) (Guenther et al., 2006, 2012)  is 

a commonly-used bottom-up emission model, which we use in this study, so it is instructive to use it to explain the general 

approach. Basal emission rates, indicative of standard environmental conditions and specific genera, are grouped into a 

comparatively small set of plant functional types (PFT) that describe a group of plants with similar characteristics. These 

standardised emission rates are then adjusted using empirical scaling factors that describe environmental changes, e.g., 50 

temperature, photosynthetic active radiation. Large uncertainties remain for these basal isoprene emission rates (Arneth et 

al., 2008) and for the empirical parameterizations of how different plants respond to their environment (Jiang et al., 2018; 

Seco et al., 2022; Bourtsoukidis et al., 2024). As such, these uncertainties compounded with other uncertainties with time-

dependent inputs, e.g., landcover, can compromise model performance. Uncertainties from leaf-level phenological traits, 

such as leaf age or ecosystem-level plant biodiversity, which also influence isoprene emissions are difficult to measure, with 55 

very few observational sites, but can be partially addressed with satellite-based observations of optical wavelengths (Li et al., 

2024; Lian et al., 2024). Limitations of satellite remote sensing data results in uncertainties in the inferred maps of 

vegetation, including coarse resolution and PFTs mapping, which subsequently introduces uncertainties to isoprene emission 

estimates (Chen et al., 2018; Opacka et al., 2021). Direct evaluation of these emission models is difficult, particularly over 

tropical ecosystems where there are very few data. An alternative indirect approach is to compare the emissions model with 60 

atmospheric data in which an atmospheric chemistry transport model acts an intermediary between the emissions and the 

corresponding atmospheric concentrations of isoprene and its oxidation products, e.g. formaldehyde (HCHO). Studies have 

reported significant discrepancies between MEGAN isoprene emission estimates, used as an input to a chemistry transport 

model, and observations of atmospheric isoprene determined by in situ and satellite data, particularly over tropical 

ecosystems (Warneke et al., 2010; Bauwens et al., 2016; Wang et al., 2017; Gomes Alves et al., 2023).  65 
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Satellite observations of HCHO have for the last 20 years helped to supplement sparse ground-based observations of 

isoprene (Abbot et al., 2003; Palmer et al., 2003; Shim et al., 2005; Wiedinmyer et al., 2005; Palmer et al., 2006, 2007; 

Barkley et al., 2008; Millet et al., 2008; Müller et al., 2008; Barkley et al., 2009; Stavrakou et al., 2009; Kaiser et al., 2018; 

Surl et al., 2018; Opacka et al., 2021; Feng et al., 2024; Opacka et al., 2024). Formaldehyde is a high yield product of 70 

isoprene oxidation by OH and because HCHO has a lifetime of typically only several hours, observed changes in HCHO can 

be linked to emissions of the parent hydrocarbon (Palmer et al., 2003). Irrespective of the sophistication of the inverse 

method that is used to translate observed changes in HCHO to isoprene emission estimates (Shim et al., 2005; Kaiser et al., 

2018) some form of atmospheric chemistry model is needed, typically a global 3-D model that includes atmospheric 

transport, so we remain reliant on the assumed a priori emission inventories (e.g. Guenther et al, 2006), the chemical 75 

mechanism and their respective uncertainties. For example, there remain substantial uncertainties associated with the 

production of HCHO from isoprene oxidation at low nitrogen oxide levels, which are found over the tropics away from 

biomass burning and urban centres (Lelieveld et al., 2008). Interpreting HCHO in terms of BVOC emissions also requires 

careful attention to discard data influenced by biomass burning (Barkley et al., 2008; Gonzi et al., 2011). HCHO can also be 

produced from sources other than isoprene, such as alkanes, alkenes, and monoterpene, resulting in uncertainties in HCHO 80 

inferred isoprene emissions (Marvin et al., 2017; Surl et al., 2018). Some studies have highlighted a positive model bias for 

MEGAN over the tropics compared with isoprene emission estimates inferred from satellite observations of HCHO (Marais 

et al., 2012; Barkley et al., 2013; Stavrakou et al., 2014; Worden et al., 2019), while others have found a negative bias when 

compared with ground based or aircraft measurements (Gu et al., 2017; DiMaria et al., 2023). Development of isoprene 

retrievals (Fu et al., 2019; Palmer et al., 2022; Wells et al., 2020, 2022) using data collected by the Cross-track Infrared 85 

Sounder (CrIS) has resulted in a new and independent capability to determine isoprene emissions more directly. Different 

approaches have been adopted to retrieve isoprene from CrIS data. Fu et al. (2019) developed the first direct retrieval of 

isoprene using infrared radiance measurements from CrIS, using the MUSES algorithm which follows optimal estimation 

principles, while others have adopted other optimal estimation retrieval approaches (Palmer et al., 2022). In more recent 

work, others have developed an innovative machine learning approach (Wells et al, 2022), building on Fu et al. (2019). Here 90 

we use data retrieved using optimal estimation.   

 

In this study, we use a nested version of the GEOS-Chem chemical transport model to investigate the consistency of isoprene 

emission estimates inferred from CrIS isoprene retrievals and the bottom-up MEGAN isoprene emission inventory over 

tropical South America during 2019, and compare the a posteriori isoprene concentrations with in situ measurements 95 

collected from the Amazon Tall Tower Observatory (ATTO), located in the pristine rainforest. Section 2 describes the nested 

GEOS-Chem model configuration we use to interpret the satellite and in situ tall tower data, including the MEGAN isoprene 

emissions model; the TROPOMI and CrIS satellite data and the tall tower data; and the methods we use to translate the 

column data into emission estimates. In Sect. 3, we report our results. We compare our satellite-based emission estimates for 
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isoprene with the inventory estimates from the MEGAN model and evaluate our CrIS derived estimates against the in situ 100 

tall tower atmospheric isoprene measurements. We also evaluate the CrIS derived isoprene emission estimates by comparing 

the corresponding model HCHO columns simulated with HCHO columns retrieved from TROPOMI, using the GEOS-Chem 

model as an intermediary.  To examine the robustness of our isoprene emission estimates from CrIS data, we report the 

results from a series of sensitivity tests that use assume different soil NOx emission rates. We conclude our study in Sect. 4. 

2 Data and Methods 105 

Here we describe the GEOS-Chem atmospheric chemistry model that relates surface emissions of BVOCs, including 

isoprene, and atmospheric columns of isoprene and HCHO. We describe the satellite observations of isoprene from CrIS and 

HCHO from TROPOMI, and the tall tower measurements of atmospheric isoprene collected in central Amazonia that we use 

to evaluate the model. We also describe the methods that we use to translate these data into estimates of isoprene emission.  

2.1 GEOS-Chem simulations 110 

We use GEOS-Chem v14.1.0 atmospheric chemical transport model (https://geoschem.github.io, last access: 5 Dec 2024). 

GEOS-Chem is driven by Goddard Earth Observing System-forward processing (GEOS-FP) assimilated meteorological 

analyses from the NASA Global Modelling and Assimilation Office at NASA Goddard Earth Observing System. Nested 

model simulations are conducted at a horizontal resolution of 0.25º × 0.3125º using 47 vertical levels, of which 30-35 are 

within the troposphere, over a spatial domain centred over tropical South America:  35º S—15º N, 85ºW—30º W. A buffer 115 

zone of 3º is applied along each of the four lateral boundaries of the nested domain. We generate lateral boundary conditions 

for the nested model using a self-consistent global model run at a horizontal resolution of 2º × 2.5º, following a one year 

spin-up from Jan 2018 through December 2019.  

 

We use the complex secondary organic aerosol (SOA) and semi-volatile primary organic aerosol (SVPOA) mechanism, 120 

which includes the full-chemistry “tropchem” mechanism to describe gas-phase reactions (Eastham et al., 2014) and the 

photochemical production of SOA and SVPOA with up-to-date isoprene mechanisms (Bates and Jacob, 2019). The 

“complex–SOA_SVPOA” mechanism uses a combination of explicit aqueous uptake mechanisms (Marais et al., 2016) with 

a standard volatility basis set scheme (Pye et al., 2010).   

 125 

We use the standard Harvard-NASA Emissions Component (HEMCO) configuration, including biogenic emissions from the 

MEGAN v2.1 inventory (Guenther et al., 2012). To test the isoprene emissions inferred from the satellite data, we use offline 

BVOC emissions at 0.25º × 0.3125º horizontal resolution which are pre-computed using MEGAN v2.1 using LAI estimates 

from the MODerate-resolution Imaging Spectroradiometer (MODIS) (Yuan et al., 2011) and GEOS-FP meteorological 

reanalyses to modify the emission rates. MEGAN uses an empirical CO2 inhibition scheme to calculate isoprene emission 130 
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factors (Possell and Hewitt, 2011; Tai et al., 2013). The MEGAN extension in HEMCO does not include soil moisture effect 

for isoprene, so our current model configuration does not account for the impact of drought on isoprene emission. Pyrogenic 

emissions are from the Global Fire Emissions Database version 4.1 that includes small fire correction (Van Der Werf et al., 

2017). The GFED inventory provides monthly dry matter emissions based on satellite observations of fire activity and 

vegetation coverage from MODIS. Anthropogenic emissions, including fossil and biofuel sources, are from the Community 135 

Emissions Data System inventory (CEDS v2), which provides CMIP6 historical anthropogenic emissions data from 1750 to 

2019 mapped to a 0.5º global grid (Hoesly et al., 2018). Offline soil NOx emission estimates used in this study (Hudman et 

al., 2012) are generated using consistent GEOS-FP meteorological analyses.   

 

To compare model simulations with satellite retrievals, GEOS-Chem simulated profiles are sampled at the satellite 140 

overpassing time and location of each measurement for both TROPOMI and CrIS. We then interpolate model profiles to the 

vertical levels of satellite retrievals. For consistency between satellite and GEOS-Chem simulated vertical profiles, we also 

apply scene-dependent averaging kernels that describe the instrument vertical sensitivity to changes in a trace gas, replacing 

any a priori information assumed by the retrieval, and then integrate from the surface up to the tropopause to calculate 

column values.  145 

2.2 CrIS isoprene retrievals 

We use CrIS isoprene column average retrievals from RAL’s Infrared and Microwave Sounding (IMS) scheme (Palmer et 

al., 2022). CrIS is a Fourier transform spectrometer covering three IR spectral regions spanning 650–2550 cm-1 launched 

onboard the Suomi-National Polar-orbiting Partnership (S-NPP) satellite in October 2011, NOAA-20 in November 2017, 

and NOAA-21 in 2022 into sun-synchronous low Earth orbits with overpass times of 01:30 and 13:30 local time. CrIS has 150 

comparatively low noise in the spectral region in which isoprene features occur which, together with more favourable 

thermal structure at ~13:30 than 9:30 make detection of isoprene feasible for CrIS. Other than instrumental noise, uncertainty 

in CrIS retrieved isoprene column averages principally concerns the adopted vertical profile shape, which is a constant 

volume mixing ratio, and CrIS vertical sensitivity, which is accounted for explicitly in the analysis by applying vertical 

averaging kernels to the model profiles. Although the a priori constraint on the retrieval is weak, this is also accounted for. 155 

As in Palmer et al (2022), CrIS isoprene data are filtered to exclude scenes with extensive thick or high cloud and retrievals 

with a high cost function (i.e., poor spectral fit). Due to the simple, adopted profile shape and decrease in sensitivity near 

surface level in absence of significant surface-air temperature contrast, IMS column averages tend to be lower than those 

derived from surface-based observations where surface level concentrations are high as expected, which does not necessarily 

indicate a low bias from RAL IMS product. The sensitivity of infrared spectra to trace gases is generally lowest near the 160 

ground because of the small temperature difference between the atmosphere and the surface, particularly at night. In this 

study, we use daytime satellite retrieved isoprene columns which correspond with peak isoprene emissions.  
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2.3 TROPOMI column retrievals of HCHO and NO2 

TROPOMI was launched onboard of the Copernicus Sentinel-5 Precursor (S5P) satellite on 13 October 2017 into a low-

Earth polar orbit with an equatorial local overpass time of 13:30 (Veefkind et al., 2012). TROPOMI is a nadir viewing 165 

instrument that collects data at ultraviolet, visible, near infrared, and shortwave infrared wavelengths. TROPOMI has a 

horizontal swath of 2600 km that is divided into 450 across-track rows. The spatial resolution of TROPOMI at nadir is 3.5×7 

km2 (across-track × along-track) which was later refined to 3.5×5.5 km2 in August 2019 due to an adjustment to the along 

track integration time. TROPOMI NO2 retrievals use wavelengths from 400 to 496 nm and HCHO retrievals using 

wavelengths from 320 to 405nm. We refer the reader to dedicated reported on these retrieved data products for further details 170 

(De Smedt et al., 2018; Van Geffen et al., 2022). We use the operational offline TROPOMI level 2 quality control retrievals 

for HCHO and NO2 columns. To remove retrievals with substantial errors or those influenced by clouds or snow/ice cover 

we use the retrieval quality assurance (QA) flag provided by the data products. We discard data with QA flags > 0.75 for 

NO2 and > 0.5 for HCHO, following recommendations (De Smedt et al., 2020; Eskes and Eichmann, 2022)  

 175 

TROPOMI has a better signal-to-noise ratio compared to Ozone Monitoring Instrument (OMI) but the HCHO observations 

still have a bias against ground-based multi-axis differential optical absorption spectroscopy instruments (De Smedt et al., 

2021). TROPOMI retrievals of HCHO were found to underestimate high columns and overestimate low columns in previous 

studies (Vigouroux et al., 2020; Müller et al., 2024). Noting that biases for OMI and TROPOMI HCHO columns are 

expected to be similar (De Smedt et al., 2021), we have applied a bias-correction formula recently proposed for HCHO 180 

columns from OMI, which has previously been evaluated using observations over South America (Müller et al., 2024): 

WHCHO,BC = (WHCHO – 2.5x1015)/0.655, where WHCHO,BC denotes the bias-corrected HCHO columns (molec cm-2). We find that 

applying this bias does not change the conclusions of our paper. 

2.4 Amazon Tall Tower Observatory (ATTO)  

We use data collected at the Amazon Tall Tower Observatory (ATTO, 2º8’S, 59º0’W) site located in central Amazonia 185 

(Gomes Alves et al., 2023) to independently evaluate the GEOS-Chem model. The characteristics of this site have been 

described extensively in Andreae et al. (2015). The anthropogenic influence from the closest city Manaus (150 km southwest 

of ATTO) is negligible and the site has been established to represent pristine tropical forest conditions throughout the year. 

The tropical climate at this broader geographical region includes a dry season (July – October) and a wet season (December 

– May) associated with seasonal rainfall amounts of less than 100 mm and over 200 mm, respectively (Botía et al., 2022). 190 

We use air measurements that were collected at 80m, 150m and 320m respectively from March to December 2019. The 

measurements were made using a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS Ionicon 

Austria) as described by Ringsdorf et al. (2023). For the purposes of comparison with the model, we calculate the mean 

hourly observed isoprene concentrations from these three levels. Modelled isoprene mixing ratios from the corresponding 
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first three levels from the surface are sampled at the day and time when observations are available, and then averaged over 195 

the same time period.  

2.5 Method to infer satellite-derived isoprene emission inventory  

We use CrIS retrievals of isoprene column (Wisop), described above, to derive the isoprene emission rates that we use within 

the GEOS-Chem model. To understand the relationships of these isoprene columns to isoprene emissions, we use a linear 

model to regress MEGAN isoprene emission rates Eisop,GC (kg m-2 s-1) and the corresponding GEOS-Chem model Wisop. To 200 

determine monthly isoprene emission rates from satellite retrievals from CrIS, we rearrange the regression model and insert 

the observed columns: Eisop,sat = (Wsat – B)/S, where Eisop,sat is the isoprene emission estimate inferred by satellite data, Wsat 

refers to the CrIS column data. The intercept B refers to the isoprene background, while the slope S refers to the isoprene 

column corresponding to the isoprene emission rates which is mainly determined by isoprene lifetime. We use a similar 

approach to relate TROPOMI HCHO columns (WHCHO) to isoprene emission estimates. For the analysis of HCHO data, the S 205 

in the regression model is determined by the HCHO yield from isoprene oxidation and by the HCHO lifetime.  

 

We first compute the linear regression relationships within each grid for each month using daily MEGAN isoprene emission 

estimates and the corresponding model values for WHCHO and Wisop sampled at the equatorial overpass time of the satellite, 

2018—2020, inclusively. We then use these grid-based regressions models to infer monthly isoprene emission estimates for 210 

2019. For model grid boxes for which emission rates cannot be estimated, e.g., p-value > 0.05 or missing data, we use data 

from the immediately adjacent grids (nearest neighbours) to recalculate the regression models, as described above. The 

magnitude of satellite inferred isoprene emission rates for 2019 is scaled by the ratio of monthly MEGAN emission rates in 

2019 relative to the 2018-2020 monthly mean. We then relate the monthly Eisop,sat values, representative of the approximate 

13:30 local overpass time of CrIS and TROPOMI, to the diurnal variation in isoprene emission rates by using scaling factors 215 

derived from diurnal and day-to-day variations in the offline MEGAN isoprene emission rates for 2019. Given the lifetime 

of isoprene against oxidation by OH and the mean wind speed we estimate that most of the isoprene lost and the associated 

HCHO production is on a scale shorter than a 2º × 2.5º grid box but typically longer than an individual 0.25º × 0.3125º grid 

box. Consequently, to remove this potential “smearing effect” on the finer horizontal resolution, we calculate our regression 

model using a horizontal resolution of 2º × 2.5º, following recent studies (Wells et al., 2020, 2022).  220 

 

To remove the influence of biomass burning on the HCHO regressions models, we discard data for which there are fire 

counts identified by the NASA Fire Information for Resource Management System (FIRMS) active daily fire data acquired 

by the MODIS sensors (https://firms.modaps.eosdis.nasa.gov/, last access: 15 Nov, 2024). These fire counts are determined 

by thermal IR anomalies by the MODIS sensors aboard Aqua and Terra satellites at a 1km horizontal resolution. We select 225 

https://firms.modaps.eosdis.nasa.gov/
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daytime fire counts with a high confidence level, i.e., higher than or equal to 80% as recommended in the MODIS user’s 

guide (Giglio et al., 2020).  

3 Results and discussion 

3.1 CrIS inferred isoprene emissions 

Figure 1 compares monthly mean CrIS and GEOS-Chem (MEGAN) isoprene columns for year 2019. GEOS-Chem model 230 

fields are screened where CrIS data are absent or do not pass the quality thresholds. Both GEOS-Chem and CrIS show a 

strong seasonal cycle, with a peak monthly mean Wisop in August. GEOS-Chem (MEGAN) and CrIS report the lowest 

monthly Wisop in April and November, respectively. The best agreement between GEOS-Chem (MEGAN) and CrIS for 2019 

is found mainly during dry months, from June to August, with Pearson correlation coefficients R=0.59—0.73, p < 0.05, and 

with normalized mean biases (NMB) of 20% to 38%. The largest discrepancies between GEOS-Chem and CrIS typically 235 

occur during relatively wet months (regional mean total precipitation > 5mm day-1). GEOS-Chem (MEGAN) has a positive 

bias with respect to CrIS (NMB > 100%) over the Amazon Basin throughout the year with the highest positive biases over 

the western Amazon basin as shown in Fig.1. Despite the overall positive biases, the model underestimates Wisop over 

southeast Brazil where it is dominated by savanna, with the largest negative biases during the dry season. These seasonal and 

regional model biases have also been found in previous studies (e.g., Wells et al., 2020). Hotspots of Wisop during the wet 240 

season are mainly observed to the north of the Amazon basin, on the borders between Columbia, Venezuela, and Brazil, 

where the land cover is dominated by tropical rainforest. In contrast, GEOS-Chem (MEGAN) shows regional hotspots along 

the east of the Andes, over western Brazil, and eastern Peru. Elevated values of CrIS Wisop over northern Amazonia has been 

independently observed by aircraft measurements (Gu et al., 2017), suggesting possible negative model bias where the 

tropical plant species distributions may not be well represented by the model.  245 

 

Previous studies have reported significant spatial differences between bottom-up emission inventories of isoprene and 

satellite column observations of isoprene (Fu et al., 2019; Wells et al., 2022; J.-F. Müller et al., 2024). To understand these 

differences, we calculate top-down values of Eisop using satellite column retrievals of isoprene and HCHO to compare with 

the MEGAN bottom-up inventory for Eisop. We use the relationships between isoprene emissions and isoprene columns 250 

described in GEOS-Chem to derive Eisop from CrIS Wisop, and we also calculate Eisop derived from TROPOMI WHCHO to 

compare with CrIS derived Eisop. For those model grids where the Eisop ~ Wsat linear relationships are not significant (p-value 

> 0.05), or satellite inferred isoprene emissions are negative, we assume no isoprene emissions within these grids so that any 

differences in modelled biases are caused by CrIS derived Eisop that have been modified in this study. This approach can 

cause an underestimation of Eisop in some areas. Figure 1 also shows the monthly location of fires identified by MODIS data. 255 

It clearly shows that for large parts of the Amazon, isoprene emission estimates inferred from HCHO are compromised by 
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fire (Barkley et al., 2008, 2011) and for these locations we remove days with fire incidents when computing Eisop ~ Wsat linear 

relationships. 

 
Figure 1: Monthly mean (a) CrIS and (b) GEOS-Chem isoprene columns (1015 molec cm-2) driven by MEGAN emissions sampled 260 
at the CrIS local overpass time of 13:30 for 2019. GEOS-Chem model columns include scene-dependent CrIS averaging kernels. 

Blue boxes in (b) indicate fire intensities and locations from MODIS.  

Figure 2a shows monthly total isoprene emission estimates from MEGAN and with estimates inferred from CrIS isoprene 

and TROPOMI HCHO column data over the spatial domain showed in Fig. 1 where monthly isoprene emission rates can be 

inferred from both CrIS and TROPOMI data. TROPOMI and CrIS inferred isoprene emission estimates peak in September, 265 

same with MEGAN. TROPOMI derived isoprene emission estimates are 12~72% lower than MEGAN. CrIS is about 2~49% 

lower than MEGAN except for July. We remove WHCHO values that coincide with MODIS detected fires, resulting in lower 

TROPOMI WHCHO derived isoprene emissions during the months where isoprene hotspots are collocated with fire incidents 

as shown in Fig. 1. Recent work also found that OMI HCHO based isoprene emissions were significantly lower than the 

CrIS-derived emissions (from a different CrIS retrieval scheme) over South America, with the largest discrepancies over 270 
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Brazil (Müller et al, 2024). Figure 2b shows the spatial distribution of monthly mean isoprene emission rates for year 2019, 

inferred from the IMS CrIS isoprene column data. The corresponding monthly isoprene emission estimates from MEGAN 

and inferred from TROPOMI HCHO columns are shown in Fig. S1.  

 
Figure 2: (a) Monthly mean MEGAN and satellite derived isoprene emission rates (1011 molec cm-2 s-1) from MEGAN and as 275 
derived from CrIS isoprene and TROPOMI HCHO observations across tropical South America for 2019. (b) Monthly spatial 

distribution of the CrIS derived isoprene emission rates over tropical South America for 2019.  
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3.2 Evaluation of CrIS inferred isoprene emission 

Evaluation with ATTO data 

We conducted nested model simulations at a horizontal resolution of 0.25º × 0.3125º, driven by MEGAN and our CrIS 280 

derived isoprene emission estimates and compared the resulting hourly isoprene mixing ratios sampled at nearest grid boxes 

(Fig. 3a) to the ATTO tower. We acknowledge that the CrIS Eisop inferred at a horizontal resolution of 2º × 2.5º (Fig. 1), as 

described above, can only represent the mean isoprene emissions over that area. Figure 3a shows annual mean values for the 

enhanced vegetation index (EVI) from the MODIS instrument, which provide information about the greenness of vegetation. 

The highest values of EVI over the Amazon Basin are associated with tropical rainforests that have a comparatively small 285 

seasonal variation. Measurements collected at the ATTO site should by design be representative of the surrounding 

rainforest within Amazon basin. As such, we assume that model isoprene mixing ratios over grid cells adjacent to ATTO, 

dominated by upland tropical rainforest with similar biome types, are comparable to the monthly isoprene concentrations 

observed at ATTO. We compare the model predicted isoprene mixing ratios averaged over the grid where the site is located 

together with all the adjacent grid boxes (9 grid boxes in total from nested simulations).  290 

 
Figure 3: (a) Annual mean values of enhanced vegetation index (EVI) from MODIS. The ATTO site is marked by an orange 

triangle. (b) Model and observed monthly mean isoprene mixing ratios (ppbv) at ATTO site during March-December 2019. Model 

values are driven by MEGAN and by values determined by the CrIS satellite data. Vertical lines denote the standard deviations of 

the monthly means. Blue triangles denote CrIS isoprene columns at the ATTO site.  295 

Figure 3b shows the comparison of observed monthly mean isoprene mixing ratios at ATTO and the GEOS-Chem model 

during March to December 2019. The monthly satellite retrieved isoprene columns generally follow the observed monthly 

variations at ATTO. GEOS-Chem (MEGAN) reproduces the monthly mean ATTO data, with an annual mean isoprene mole 

fraction of 4.1 ± 1.3 ppbv compared with the observed annual mean value of 3.0 ± 2.2 ppbv. June and November are 

transitioning months between wet (December-May) and dry season (July-October). Here we classify June as wet month and 300 
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November as dry month based on mean monthly root soil moisture at ATTO in 2019. The model (MEGAN) overestimates 

ATTO data by 77% during the wet months (March-June, December), 4.6 ± 1.4 ppbv versus 2.6 ± 1.9 ppbv, but is much 

closer during the dry months (July-November), 3.7 ± 1.1 ppbv versus 3.5 ± 2.5 ppbv. Isoprene emission estimates inferred 

from CrIS result in an annual mean of 2.8 ± 1.4 ppbv, with 2.3 ± 1.0 ppbv and 3.3 ± 1.9 ppbv during the dry (July-

November) and wet (March-June, December) months, respectively. The top-down isoprene emissions underestimate the 305 

observed values from October to December partly because of low satellite observed isoprene columns as shown in Fig. 2b 

and because some of the grid boxes near the observational tower are set to zero emission rates where the regression 

relationship is not significant (p-value > 0.05), which may lower the mean simulated isoprene mole fractions at ATTO. 

Despite the discrepancies between model and site observations, isoprene emission estimates using CrIS isoprene retrievals 

can generally reproduce the magnitudes of isoprene mole fractions for most months and can better capture months with peak 310 

isoprene concentrations (March and September) compared with model using MEGAN.  

 

We use isoprene flux measurements from the Amazon basin collected in previous years to extend our model evaluation and 

report the mean statistics for each site, following a previous study (Barkley et al., 2008) (see Table S1 in Supplement). 

Different sampling methods (e.g., technical approach, sampling height, sampling hours) can affect the magnitude of 315 

measured isoprene fluxes, and that the model isoprene fluxes are for 2019 and not from the same year as the flux 

measurements. We compare model isoprene fluxes during the same month and daytime hours for each flux measurement 

collected at different observational sites. The mean observed isoprene flux during dry months is about 3 mg m-2 h-1, which is 

generally higher than that during wet months (~1 mg m-2 h-1). MEGAN has higher isoprene fluxes for both seasons with 4.2 

and 2.9 mg m-2 h-1 for dry and wet season, respectively. Satellite based isoprene flux estimates generally better reproduce the 320 

magnitudes of observed seasonal isoprene fluxes, with about 3 mg m-2 h-1 and 1.7  mg m-2 h-1 during dry and wet months, 

respectively. Previous studies have found that MEGAN typically overestimates isoprene fluxes over the Amazon (Bauwens 

et al., 2016; Gomes Alves et al., 2023). We find that CrIS-based isoprene flux estimates can potentially reduce the positive 

model biases in the tropical rainforest regions.  

Evaluation using TROPOMI HCHO data 325 

We evaluate the CrIS inferred isoprene emission rates by comparing model WHCHO with TROPOMI WHCHO. GEOS-Chem 

simulated WHCHO depends largely on isoprene emissions over the studied region, so that any reduced biases in model HCHO 

can be attributed to the CrIS isoprene emission estimates.  
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Figure 4: TROPOMI (first column) and GEOS-Chem monthly mean HCHO columns (1015 molec cm-2) for Jan, April, and Aug in 330 
2019. The GEOS-Chem model columns driven by MEGAN (second column) and by CrIS derived isoprene emission estimates 

(fourth column). Difference between TROPOMI and model values are shown in third and fifth columns. Shown inset of panels in 

the third and fifth columns are the normalized mean biases (NMB), normalized mean error (NME), and the Pearson correlation 

coefficients (R).  

Figure 4 shows a monthly comparison between TROPOMI HCHO columns and GEOS-Chem driven by MEGAN and 335 

satellite-based CrIS derived isoprene emissions. The model generally captures the spatial distribution of monthly HCHO 

columns (R = 0.61 – 0.92).  The model has a positive bias over most forested regions throughout the year, with a negative 

bias found over the tropical grasslands of the Colombia-Venezuelan plains to the north of the Amazon basin during March 

and April, as well as over the cropland to the southeast of the basin during the dry season. The CrIS derived isoprene 

emission inventory reduces the annual normalised mean error (NME) from 50% to 43% and reduces the NME from 58% to 340 

47% during the wet season (December – May) and from 36% to 33% for the dry season (July – October). Over the 

Amazonian region (50~75ºW, 15ºS~ 5ºN), NME is reduced from 54% to 45% annually, and from 37% to 31 during dry 

season, from 65% to 53% during wet season.  Table 1 shows the monthly comparison statistics between TROPOMI and 
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GEOS-Chem HCHO columns. We find an overall reduction in model biases, but the spatial correlation between GEOS-

Chem and TROPOMI for most months is not improved significant by using CrIS-inferred isoprene emissions. The spatial 345 

distribution of HCHO is also strongly affected by non-biogenic sources such as wildfires and anthropogenic emissions. 

Improvement in the description of the biogenic source alone does not significantly improve the overall biases. Because we 

assume zero isoprene emissions where the satellite data cannot be used to derive emission rates, this approach can potentially 

increase the model bias.    

 350 
Table 1: Monthly normalized mean biases (NMB), normalized mean error (NME), and the Pearson correlation coefficients (R) 

between GEOS-Chem simulated HCHO columns and TROPOMI HCHO columns for year 2019. For all the correlation 

coefficients here p-value < 0.05.   

Isoprene 

emission 

input 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

MEGAN 

2.1 

NMB (%) 44 47 27 51 73 59 45 21 11 21 26 58 

NME (%) 49 54 41 62 80 69 57 34 24 30 35 62 

R 0.78 0.71 0.72 0.62 0.61 0.65 0.71 0.90 0.92 0.82 0.72 0.66 

CrIS 

inferred 

NMB (%) 32 30 19 41 65 65 54 21 3 –4 11 25 

NME (%) 40 41 35 54 74 72 60 29 21 24 30 38 

R 0.78 0.71 0.75 0.64 0.54 0.69 0.78 0.92 0.91 0.82 0.69 0.72 

 

3.3 Sensitivity of isoprene emission estimates to assumed NOx emissions 355 

Previous studies have found large scale NOx biases, likely due to underestimated soil NOx emissions, over Amazonia (Liu et 

al., 2016; Wells et al., 2020). NOx plays an important role in the oxidation of isoprene and thus isoprene lifetime (Atkinson, 

2000; Barket et al., 2004; Lelieveld et al., 2008). The assumed model chemistry of isoprene underpins the isoprene emission 

estimates determined by CrIS data. A shorter isoprene lifetime will result in lower isoprene columns and consequently a 

smaller slope for ΩGC = SEisop,MEGAN +B, and a higher CrIS-based isoprene emission estimate (Eisop,sat = (Ωsat – B)/S).  To 360 

examine the uncertainties from model biases in NOx emissions, we present isoprene emission estimates corresponding to a 

series of sensitivity tests and scale the NOx emissions by 0.25, 0.5, 0.75, 1.25, 1.5, 2, and 10. All sensitivity cases use a 

resolution of 2º × 2.5º. Other settings are the same as described in Sect. 2.1.  

 

We first compare monthly GEOS-Chem simulated NO2 columns with TROPOMI retrievals and find similar negative biases 365 

in model NO2 (see Fig. S2 in Supplement). The comparison between GEOS-Chem and TROPOMI reflect the model bias at 

the satellite overpassing time. We find GEOS-Chem underestimated NO2 (NMB = –16~–28%) over the Amazonian region 
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(50~75ºW, 15ºS~ 5ºN) during wet season (December ~ May) compared with TROPOMI. However, we find that GEOS-

Chem overestimates NO2 (NMB = 21~77%) during the dry season (July ~ October) in 2019 over the southern parts of 

Amazon, primarily due to fires. Table 2 shows the percentage changes in GEOS-Chem monthly mean NO2 columns (ΔNO2) 370 

over tropical South America from our sensitivity tests compared with our base case during wet and dry months. ΔNO2 over 

the Amazon is shown in Table S2. We find that near to source regions, NOx emissions mostly affect the lower troposphere, 

as expected. GEOS-Chem ΔNO2 is typically lower during wet months due to stronger convections and to higher loss rates 

during wet season, particularly from deposition and atmospheric chemistry.  

 375 
Table 2: Mean relative changes (%) in simulated NO2 columns under different NOx emission levels compared with the default case 
(EmisScale_NO = 1) during wet and dry season.  

  EmisScale_NO 

  0.25 0.5 0.75 1.25 1.5 1.75 2 10 

ΔNO2 
Wet –57% –37% –18% +18% +35% +51% +68% +678% 

Dry –68% –44% –22% +21% +42% +63% +84% +1132% 

 

We derive CrIS based isoprene emission estimates for all sensitivity cases, using the method described in Sect. 2.5, to 

examine their sensitivity to potential biases in NOx emissions. We find that monthly spatial distributions of Eisop generally do 380 

not vary significantly with different scaling factors (See Fig. S3 in Supplement). Table 3 summarises the relative changes in 

CrIS derived emission estimates (ΔEisop) for wet and dry seasons, under different NOx emission levels. We include the dry-

to-wet and wet-to-dry months to calculate the annual mean ΔEisop. Satellite predicted values of Eisop increase (decrease) with 

higher (lower) NOx emissions. Figure 5b summarises the monthly Eisop and the corresponding isoprene lifetimes from all 

model grids over tropical South America, showing that lower NOx emissions (EmisScale_NO < 1) generally have longer 385 

isoprene lifetimes and lower predicted isoprene emission estimates. Underestimated NOx emissions over the Amazon can 

lead to higher isoprene lifetime and thus lower predicted isoprene emission rates.  

 
Table 3: Mean relative changes (%) in monthly CrIS derived isoprene emission rates under different NOx emission levels 

compared with the default case (EmisScale_NO = 1) during wet and dry season.  390 

  EmisScale_NO 

  0.25 0.5 0.75 1.25 1.5 1.75 2 10 

ΔEisop 

Wet –13% –7% –0.1% +8% +9% +17% +21% +96% 

Dry –25% –15% –6% +7% +13% +20% +26% +146% 

Annual –19% –10% –1% +10% +13% +21% +26% +118% 
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To compensate for the NO2 column model negative bias (NMB = –16~–28%) over the Amazon during wet season and the 

NO2 column model positive bias (NMB = 21~77%) during the dry season over the southern Amazon, we use scale factors of 

1.25 (ΔNO2 = +18% for wet season) and 0.25 (ΔNO2 = –68% for dry season) to estimate CrIS based isoprene emission 

estimates. The predicted satellite based emission rates would be increased by ~8% during the wet months, and be reduced by 395 

~25% during dry months, accordingly (Table 3). Figure 5a shows the monthly mean CrIS isoprene emission estimates 

corresponding to our sensitivity cases over the Amazon. We find that the seasonal variation of the isoprene emissions 

estimates that correspond to the NOx sensitivity experiments follow our base case (Fig. 3). Considering the potential model 

biases in NOx emissions, satellite based isoprene emission rates can vary by about ± 20% annually.  

 400 
Figure 5: (a) Monthly mean CrIS based isoprene emission rates rates (Eisop, 1011 molec cm-2 s-1) over the Amazonian region under 

different NOx emission levels. Black line indicates monthly mean with standard deviations of the default case (EmisScale_NO = 1). 
(b) Annual mean CrIS derived isoprene emission rates vs. isoprene midday lifetime under different NO2 emission levels over 

tropical South America. Default CrIS isoprene emission rates is shown in black. 

 405 
Figure 6 shows monthly isoprene emission rates inferred from CrIS isoprene column data for which grid-dependent NOx 

emissions are scaled using TROPOMI tropospheric NO2 columns. These grid-dependent scaling factors are determined by 

monthly NO2 column differences between GEOS-Chem and TROPOMI (Fig. S2). For example, for a model grid where the 

monthly TROPOMI NO2 column is 75% lower than the corresponding GEOS-Chem value, we scale the model NOx 

emissions by a factor of 0.25 (EmisScale_NO = 0.25). Using this approach, we account for the spatial distribution of model 410 

biases in NOx emissions. As a caveat, scaling the NOx emissions in the model in this way does not necessarily reflect the real 

emission biases. For example, the influence of convection and advection are not considered in the distribution of 

atmospheric NOx. Moreover, these scaling factors are calculated at the satellite overpass time and consequently do not 
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represent any time-dependence in model bias. We examine the monthly simulated isoprene mole fractions with scaled NOx 

emissions at the ATTO site. The scaling factor is 1.25 for March to May, 0.75 for July to September, and 1 for June and 415 

October to December based on the monthly differences between model and satellite NO2 columns at ATTO. The resulting 

model bias is reduced for wet and dry months. For wet months (March~May), the mean model isoprene mole fraction is 

reduced from 4.2 to 3.8 ppbv, corresponding to higher NOx emission levels, compared with the observed value of 2.9 ppbv. 

For dry months (July~September), the mean model isoprene mole fraction is increased from 3.2 to 3.6 ppbv, corresponding 

to lower NOx emission levels, closer to the observed value of 3.6 ppbv.  420 

 
Figure 6: Monthly CrIS derived isoprene emission rates over tropical South America for 2019 using grid-dependent scaled NOx 

emissions.  

4 Concluding Remarks 

Using the GEOS-Chem atmospheric chemistry transport model, we derived top-down isoprene emissions over tropical South 425 

America for 2019 using isoprene columns retrieved from CrIS on the NOAA-20 satellite. We found that isoprene emission 

estimates inferred from CrIS data result in very different spatial and seasonal distributions of isoprene columns over tropical 

South America than when we use the MEGAN isoprene emission inventory.   

 

We evaluated our CrIS derived isoprene emissions by comparing the corresponding isoprene concentrations with 430 

observations collected at the Amazon Tall Tower Observatory, March-December 2019, and found the CrIS derived isoprene 

emissions reproduce the magnitude of the seasonal cycle better than MEGAN, with smaller monthly biases. The CrIS 

derived isoprene emission inventory was evaluated by comparing modelled HCHO distributions based on itself against 

TROPOMI HCHO. We found that this isoprene emission inventory reduced the annual normalised mean error from 50% to 

0 1 2 3 4 5 6 7
Eisop (1011 molec cm-2 s-1) 
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43%, relative to MEGAN, and reduced the NME from 58% to 47% during the wet season (December – May) and from 36% 435 

to 33% for the dry season (July – October). We find that the satellite-derived isoprene emission estimates improve the model 

ability describe monthly variations, with individual monthly values varying by about ± 20% with model NOx emission 

biases. We find that accounting for model biases in NOx emissions using satellite retrieved NO2 columns can potentially 

improve the satellite derived isoprene emissions.  

  440 

More accurate estimates of isoprene are of great importance for understanding the relative contribution of anthropogenic and 

biogenic sources to the formation of ozone and secondary organic aerosol in the upper troposphere (Palmer et al., 2022; 

Curtius et al., 2024; Shen et al., 2024). Human induced land use and land cover changes have been found to strongly 

influence isoprene emissions during recent decades compared with those induced by climate change (Chen et al., 2018). 

Satellite retrievals of isoprene columns, interpreted using state-of-the-art atmospheric chemistry transport models, can help 445 

understand some of the impacts on atmospheric composition from, for example, continuing deforestation, widespread 

drought, and heatwaves. Recent work has shown that these data can also track changes in atmospheric oxidation over 

forested regions (Shutter et al., 2024). Tracking changes in isoprene over tropical rainforests, in the context of wider land 

surface quantities, provides a way to check on the health of these remote ecosystems. The Amazon basin has suffered from 

severe droughts in recent years, associated with deforestation and changes in climate (Bottino et al., 2024; Espinoza et al., 450 

2024). The El Niño-Southern Oscillation has also contributed to droughts in Amazonia, and is predicted to induce more 

extreme heatwaves and floods over this region in the future (Marengo and Espinoza, 2016). At a time when we are 

witnessing such extensive and widespread environmental change, particularly across the tropics, it is essential we sustain 

these important environment datasets (Millet et al., 2024) because they may be one of the first harbingers of an emerging 

feedback (Spracklen and Coelho, 2023). 455 
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