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Abstract.

Air pollution, particularly exposure to ultrafine particles (UFPs) with diameters below 100 nm, poses significant health risks,

yet their spatial and temporal variability complicates impact assessments. This study explores the potential of machine learn-

ing (ML) techniques in enhancing the accuracy of a global aerosol-climate model’s outputs through statistical downscaling to

better represent observed data at specific sites. Specifically, the study focuses on the particle number size distributions from5

the global aerosol-climate model ECHAM-HAMMOZ. The coarse horizontal resolution of ECHAM-HAMMOZ (approx. 200

km) makes modeling sub-gridscale phenomena, such as UFP concentrations, highly challenging. Data from three European

measurement stations (Helsinki, Leipzig, and Melpitz) were used as target of downscaling, covering nucleation, Aitken, and

accumulation particle size ranges during years 2016—2018. Six different ML methods (Random Forest, XGBoost, Neural

Networks, Support Vector Machine, Gaussian Process Regression and Generalized Linear Model) were employed, with hyper-10

parameter optimization and feature selection integrated for model improvement. A separate ML model was trained for each of

the sites and size ranges. Results showed a notable improvement in prediction accuracy for all particle sizes compared to the

original global model outputs, particularly for the accumulation subrange. Challenges remained particularly in downscaling

the nucleation subrange, likely due to its high variability and the discrepancy in spatial scale between the climate model repre-

sentation and the underlying processes. Additionally, the study revealed that the choice of downscaling method requires careful15

consideration of spatial and temporal dimensions as well as the characteristics of the target variable, as different particle size

ranges or variables in other studies may necessitate tailored approaches. The study demonstrates the feasibility of ML-based

downscaling for enhancing air quality assessments. This approach could support future epidemiological studies and inform

policies on pollutant exposure. Future integration of ML models dynamically into global climate model frameworks could

further refine climate predictions and health impact studies.20
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1 Introduction

Air pollution is considered one of the leading global health risks, in terms of both associated premature deaths and disability

(GBD 2019 Risk Factors Collaborators, 2020). Fine particulate matter (PM2.5, particle diameter < 2.5 µm) has been found to

be especially harmful; a recent report from the Global Burden of Disease study identifies it as the most important environmental

health risk factor (McDuffie et al., 2021). Although PM2.5 has undergone extensive study, exposure to and health impacts of25

smaller particle sizes, such as ultrafine particles (UFPs) with diameters below 100 nm, remain less well understood (Fuzzi

et al., 2015; Vogli et al., 2023). Different sized particles contribute to different aspects of the ambient particle concentration —

UFPs mainly control the concentrations in terms of number, while coarser particles control the concentrations in terms of mass

(PM2.5). The size of aerosol particles influences, for example, their deposition in the human respiratory tract and their reactive

surface area, which in turn can affect their potential to cause health problems (Kreyling et al., 2004; Schraufnagel, 2020).30

According to epidemiological and toxicological studies, UFPs can more easily enter the alveoli in the lungs, and from there

reach other organs (Kreyling et al., 2004; Schraufnagel, 2020). Compared to larger particles, they can thus potentially contribute

to, for example, diabetes (Bai et al., 2018), cancer (Pagano et al., 1996), and ischemic cardiovascular disease (Downward et al.,

2018; Li et al., 2017; Ostro et al., 2015) more strongly. However, due to their high spatial and temporal variability, estimating

exposure to UFPs is challenging, leading to uncertain or even conflicting conclusions regarding their health impacts (Vachon35

et al., 2024a; Schraufnagel, 2020). Currently, both the World Health Organization (World Health Organization, 2010) and the

European Union (European Council, 2008) provide guidelines on safe exposure limits for PM2.5 and PM10 (diameter < 10

µm), but no such limits exist for UFP. Indeed, according to a recent review of the topic (Schraufnagel, 2020), UFPs are, in

many ways, "at the frontier of air pollution research".

As the availability of exposure data limits the potential to conduct epidemiological UFP studies (Vachon et al., 2024a),40

various approaches have been used to gain more information on UFP number concentrations. To study exposure to pollutants,

observations from a scarce network of sites have typically been expanded to cover the study area, such as a city, through

methods like land use regression (LUR) (Venuta et al., 2024; Amini et al., 2024; Wolf et al., 2017) or interpolation (Jung et al.,

2023). Sometimes, more measurements are done in relatively short campaigns to improve the spatial coverage (Vogli et al.,

2023; Downward et al., 2018), or satellite-based observations are added as inputs to LUR models to more accurately represent45

spatial or temporal variability of pollutants (Zani et al., 2020; Jung et al., 2023; Stafoggia et al., 2019). However, most such

studies are focused on pollutants other than UFPs (Lin et al., 2022). In recent years, machine learning (ML) has also been a

common tool in improving the accuracy of LUR models, often outperforming traditional statistical methods (Vachon et al.,

2024b).

While improved spatial characterization of present-day air quality is valuable for understanding its health implications, pre-50

dicting how air quality may evolve in the future is also important. Actions taken to mitigate climate change might significantly

affect the emissions of pollutants or their precursors, thus hindering the prediction ability of LUR models. Furthermore, since

these models are purely descriptive and not integrated with physics-based tools, they cannot be used for studying air quality

under varying emission scenarios.
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Besides the said statistical methods, local-scale air quality is commonly represented using deterministic models that simulate,55

for example, the emissions, transport, and transformation of pollutants (Sofiev et al., 2006; Johansson et al., 2022). As the

inputs of these models can in principle be modified based on the climate change scenario of interest, they could be suitable for

long-term air quality prediction. However, many physics-based models simulate only gaseous pollutants such as NOx (Pepe

et al., 2016) and O3 (Sharma et al., 2013); aerosols, if supported, may be limited to larger particle sizes (Friberg et al., 2017),

omitting UFP. Additionally, running simulations can be computationally expensive and always requires boundary conditions60

from global climate models, further increasing computational costs. The physics-based air quality models are also not ideal for

all sites, as accounting for urban infrastructure or complex terrain requires detailed information about local topography, which

is often either unavailable or not accurately captured by local-scale models. (Hinestroza-Ramirez et al., 2023).

Compared to air quality models, global-scale climate models generally produce more output variables, potentially also

containing size-resolved representations of aerosols. Simulating long-term global changes in aerosol concentrations is possible65

with climate models, as they incorporate a broader range of atmospheric processes and feedback mechanisms compared to

regional climate models. Since global-scale models are already necessary to generate boundary conditions for regional models,

using them directly for generating air quality estimates might seem practical. However, for local-scale air quality estimation,

the resolution of current climate models is far too coarse, typically ranging from tens to hundreds of kilometers horizontally

and tens to hundreds of meters vertically (Turnock et al., 2020). Particularly for UFPs, the challenge arises from their number70

concentrations being governed by processes such as primary emissions and secondary formation and growth, which occur both

in multiple scales. The initial cluster formation occurs in sub-grid spatial scales and it is highly spatially variable (Dada et al.,

2023), including a contribution from traffic as well (Rönkkö et al., 2017), while the growth to Aitken and accumulation mode

sizes (see Section 3) takes place in synoptical scale (Petäjä et al., 2022). All of this makes the particle size distribution of the

nucleation mode highly variable in space and time.75

An approach known as downscaling can be applied to the low-resolution outputs of global climate models, with the aim

of improving their accuracy in the local scale. In this context, the nested approach of initializing regional climate models

with boundary conditions from global simulations is called dynamical downscaling (Maraun and Widmann, 2018). Another

technique, statistical downscaling, instead aims to find a statistical dependence between coarse-resolution outputs and local

observations of the quantity of interest. This dependence can later be used for output correction as a post-processing step.80

The benefit of statistical downscaling lies in its computational efficiency compared to the computationally much more costly

dynamical downscaling (Xu et al., 2020). Most of the literature on downscaling focuses on correcting meteorological variables

such as temperature (Li et al., 2020; Goyal et al., 2011; Kim and Villarini, 2024) and precipitation (Xu et al., 2020; Vandal et al.,

2017; Sachindra et al., 2018). Some recent studies have applied statistical downscaling to air quality variables (Miinalainen

et al., 2023; Gouldsbrough et al., 2024; Ivatt and Evans, 2020) but only a few to UFP number concentrations (Kohl et al., 2023).85

Although the statistical methods for downscaling have typically been simple bias corrections or linear regressions (Maraun and

Widmann, 2018), many downscaling studies from the past few years have instead utilized ML methods with promising results

(Xu et al., 2020; Sachindra et al., 2018; Miinalainen et al., 2023; Gouldsbrough et al., 2024). To our knowledge, however, none

so far has applied ML methods to UFP downscaling.
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In this study, using various ML methods, we have downscaled aerosol particle number size distributions produced by a global90

aerosol-climate model to better match observations from three measurement stations. We used data from two urban stations

(Helsinki, Finland and Leipzig, Germany) and from one rural background measurement station (Melpiz, Germany). The size

distribution was represented by three size ranges, the so-called nucleation, Aitken, and accumulation subranges. We have opted

to avoid calling these subranges “modes”, as the subranges do not exactly match the conventional mode definitions due to

limitations in the size resolution of the climate model representation. Based on these subranges, we categorized the simulated95

and observed daily average particle number concentrations (PNCs). All three subranges overlap with the UFP size range (< 100

nm), with the nucleation subrange being barely above molecular cluster size and a part of the accumulation subrange exceeding

100 nm. A broad selection of ML methods, six in total, was used and is further described in Section 4.4. Moreover, ML model

hyperparameters were optimized and feature selection performed, to obtain optimal model configurations for the task. Finally,

a glimpse into the inner workings of the black box ML models was provided by a game theoretical method, SHAP, that aims100

to explain the usage of features by these models. The objective of the study is to act as a proof of concept, showcasing the

potential of ML methods in improving predicted PNCs in different parts of the UFP size range. Additionally, comparing the

performance of ML methods can help determine whether some of them could be particularly recommended. Ultimately, such

ML-based downscaling of UFP could serve to study air quality simultaneously with other aspects of climate change, helping

improve policy-making by accounting for more diverse consequences. Past air quality datasets could also be expanded using105

this method for studying UFP health effects. A new air quality directive of the European Union (European Council, 2024)

includes a mandate to measure UFP concentrations throughout urban and rural supersites in Europe. In the next decade, this is

expected to enhance the availability of UFP data for health studies. Our approach could provide additional insights into UFP

number concentrations already before the new measurements are implemented.

2 Global aerosol-climate model simulation110

We conducted the global climate model simulation with the aerosol-climate model ECHAM6.3-HAM2.3 (ECHAM-HAMMOZ)

(Schultz et al., 2018; Tegen et al., 2019; Neubauer et al., 2019). ECHAM-HAMMOZ includes the general circulation model

ECHAM (Stevens et al., 2013), the aerosol module HAM (Tegen et al., 2019; Neubauer et al., 2019) and also the chemistry

module MOZART (Schultz et al., 2018). We use the aerosol microphysics module SALSA2.0 (Kokkola et al., 2018), which

discretizes the aerosol size distribution into ten size classes and treats a soluble and an insoluble sub-population separately.115

A more detailed description of the SALSA module is presented in Kokkola et al. (2018). The size classes range from 3 nm

to 10 µm, from which we have selected the seven smallest classes (3 nm to 700 nm) as a basis of the nucleation, Aitken,

and accumulation subranges that will constitute the target variables of our study, which are compared against measurements

(see Section 3 for more details). Additionally, all ten size classes are included as input variables in the ML models, along

with the other simulated variables on which the downscaling is based (see Table S1). In the aerosol module HAM, the aerosol120

compounds treated are black carbon (BC), sulfate (SU), organic aerosol (OA), sea salt (SS), and mineral dust (DU). The grid

resolution that was used in our simulation was T63L47, corresponding approximately 1.9◦× 1.9◦ horizontal resolution. The

4



grid extends vertically to 0.01 hPa (∼80km) and there are 47 vertical hybrid layers. The layer nearest to surface has a height

of approximately 65 meters. The chemistry module MOZART was not included in our setup, but instead a simplified scheme

for sulfur chemistry was used (Feichter et al., 1996; Stier et al., 2005).125

The simulation was performed using prescribed sea surface temperature and sea ice cover from data from the Atmospheric

Model Intercomparison Project (AMIP) of the Program for Climate Model Diagnosis and Intercomparison (PCDMI) (Taylor

et al., 2012). In addition, large-scale meteorological fields, wind and surface pressure, were nudged towards ERA5 reanalysis

data (Hersbach et al., 2020, 2017). Temperature and free static energy were allowed to evolve freely (Zhang et al., 2014).

The anthropogenic aerosol emissions were prescribed as monthly averages from the ECLIPSE V6b emission inventory (Stohl130

et al., 2015; IIASA, 2024). A more detailed description of the aerosol emission input fields can be found from Miinalainen

et al. (2023).

3 Aerosol measurements

Measurement data used in this study consist of atmospheric measurements from three stations (Fig. 1), spanning years 2016–

2018. Specifically, particle number size distribution data measured with the DMPS/SMPS (Differential/Scanning Mobility135

Particle Sizer) instruments were obtained from the stations. The data are openly available from SmartSMEAR (SmartSMEAR,

2025; Junninen et al., 2009, Helsinki) and EBAS databases (EBAS, 2025, Leipzig and Melpitz). These sites were chosen

because of the relatively long and continuous time series of aerosol size distributions available. In this section, we focus on

providing short descriptions of the stations’ locations and regional representativeness, relevant for interpreting the results. More

detailed information about the measuring stations can be found in the references of their short descriptions in the paragraphs140

below.

The size distribution data have been reformulated into number concentrations of three subranges, nucleation (< 7.7 nm),

Aitken (7.7–50 nm), and accumulation (50–700 nm). These size ranges were selected to correspond to the SALSA bins 1a1

for nucleation, 1a2–1a3 for Aitken, and 2a1–2a4 for accumulation. The three subranges that constitute the target variables of

the study were formed by summation over the relevant bins. The hourly number concentrations of the three subranges have145

then been averaged to one-day time resolution. These data processing steps were performed by Leinonen et al. (2022), and

are further discussed there. However, in our study, days with fewer than eight hours of measurements were also removed

from the dataset to ensure representativeness. No other conversions or postprocessing steps were performed. Daily averaged

number concentrations of the subranges, which act as the target variables in our study, are presented together with simulated

ECHAM-HAMMOZ concentrations in Fig. 2.150

The Helsinki station (60°12′ N 24°58′ E) is situated in Helsinki, Finland (see Hussein et al. (2008) and Järvi et al. (2009)

for details). Helsinki is the largest city in Finland (approx. 675 000 inhabitants), and more than 1.5 million inhabitants live in

the Helsinki metropolitan area. The station is classified as an urban station. In Helsinki, the particle number size distribution is

measured with DMPS (TSI), with size range of 3 nm to 1 µm. All three subranges were available from the site.
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Figure 1. Measurement site locations marked on the map of north-eastern Europe. M, L, and H refer to the Melpitz, Leipzig, and Helsinki

sites, respectively. The grid lines show the coarse output resolution of ECHAM-HAMMOZ. As can be seen, Leipzig and Melpitz are located

in the same grid cell. Coordinates have been rounded to one decimal place.

The Melpitz station (51°32′ N 12°54′ E) is situated in Germany, in the southwest of the small town of Torgau (approx. 20155

000 inhabitants), immediately west of the village of Melpitz (Hamed et al., 2010). It is classified as a rural background station

(Birmili et al., 2016). Particle number size distribution is measured with SMPS (TSI) with size range of 5 nm to 800 nm. All

three subranges were also available from the Melpitz station.

The Leipzig station (51°21′ N 12°26′ E) is situated in the city of Leipzig, Germany (approx. 590 000 inhabitants), about 4

km east of the city center (more detailed description in Birmili et al. (2016)). It is classified as an urban background station.160

Aitken and accumulation subrange number concentrations are available from this site. The measured particle size range was

between 10 nm and 800 nm (using DMPS), and for this reason, the number concentration of the nucleation subrange is not

available.

4 Analysis methods

4.1 Downscaling workflow165

Statistical downscaling, in this application, refers specifically to finding and utilizing a relationship between the large number

of ECHAM-HAMMOZ output variables and the observed particle number concentrations (PNCs) at the three sites with the

aid of ML methods. If the ML models can learn this dependence, they no longer need the measurement data to function, but

can predict the PNC based purely on the climate simulation. In other words, the outputs of the ECHAM simulation constitute

the inputs of the ML models, and the output of the ML models is the number concentration of a specific size subrange. The170

ML output is also referred to as the target variable, while the input variables are commonly called features. The inputs are
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Figure 2. Daily averages of measured and simulated PNCs per subrange of particle size distribution (rows) at each of the three sites (columns),

from 2016 to 2018. The black bars represent missing data. Partitioning of the data into training, validation, and testing subsets is shown by

the dashed vertical lines. Acc, Ait, and Nuc refer to the accumulation, Aitken, and nucleation subranges, respectively.

properly introduced in Section 4.2 and listed exhaustively in Table S1. The downscaling is site-specific, that is, the ML models

are trained separately for each station and size subrange.

As the first step of the ML pipeline, the dataset consisting of simulated features (i.e., the simulation outputs of ECHAM-

HAMMOZ) and measured PNC was split into three subsets, known as training, validation, and testing sets (see Section 4.2).175

Next, the number of input variables was reduced through feature selection (Section 4.3), the hyperparameters of the models

were tuned (Section 4.5), and the models were trained, while evaluating the models’ performance at each step where necessary.

In ML terminology, hyperparameters refer to the tunable parameters of the ML algorithms. This is in contrast to the internal

parameters, such as linear model coefficients or neural network weights, which are not controlled by the user but automatically

selected by the algorithms. After the optimized, trained models were obtained, further analysis and comparison was done.180

On each iteration step of the hyperparameter optimization, an ML model with particular hyperparameter values was fit to

the training data, and the trained model was then tested on the validation data to obtain a measure of its goodness-of-fit. The

purpose of this common approach is to avoid overfitting the model to the training data, which would impair its generalizability.

A separate validation set was used instead of k-fold cross-validation to avoid temporal leakage of information, where future

data is used for training and past for testing (Fraga et al., 2023). Rolling variants of k-fold cross-validation that retain the185

ordering of the data were considered, but initial tests showed poor generalization across folds, possibly due to the seasonality

inherent in the data. Thus, k-fold cross-validation was not used in this study.

When the optimization was finished, the combination of hyperparameters leading to the best validation performance was

selected, and the ML model with this configuration was retrained on the combined training and validation subsets. Then, the
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model was applied to the testing subset to evaluate its performance on completely unseen data. This was done because there190

could be a slight, optimistic bias in the validation score when the hyperparameters have been selected to be optimal for the

validation subset. Because some of the ML methods (RF and the NNs, see Section 4.4) utilize randomness as part of their

algorithms, and therefore depend on the initialization of the random number generator, the retraining part was repeated with

50 different seed numbers. In the results, the mean performance is shown for these methods. Finally, the SHAP method (see

Section 4.6) was applied to the trained models to investigate their use of input variables.195

4.2 Data preparation

For each station, we used ECHAM-HAMMOZ data from only one ECHAM grid cell, which contained the station coordinates

and altitude. The ECHAM-HAMMOZ data with a vertical dimension were interpolated to correspond to the station altitude.

This was done by utilizing the CDO command line tool (Schulzweida, 2023), and by using the nearest layer to the surface

as well as the second lowest layer. Thus, the global scale simulation data were matched with the point measurements. Both200

the observed and simulated data were then averaged to daily resolution. We selected 93 variables directly from ECHAM-

HAMMOZ data as input variables, covering meteorology, aerosol composition and size distribution. Additional variables were

created to replace or complement the existing simulated variables. The u and v components of wind were transformed into two

cyclic directional components (north-south, wind_ns and east-west, wind_ew, both varying between -1 and 1) and one variable

for the absolute magnitude of the wind vector (wind_speed). Finally, time of the year was represented by time_ws (winter–205

summer variability) and time_sa (spring–autumn variability). These were also formed cyclically (and thus vary between -1 and

1) to avoid a large difference between the value of the last day of the year and the first of the next year, which occurs when

using linear time and can disrupt the ML models. In practice, transforming a variable into two cyclic components was done

by applying sinusoidal functions (sine and cosine) to the proportion of the variable’s current value relative to its maximum

(for example, time_ws = cos([day number]/[days in year]). In our naming convention for all four cyclic features, the positive210

direction is referenced first (i.e., wind_ns = 1 means northerly wind and time_ws = 1 means New Year). All in all, these

changes resulted in 100 input variables to be considered for the ML models (see Table S1). These variables were chosen for

their potential relevance for aerosol formation, transport or removal, or because they represent properties of the particle size

distribution in the climate model.

The three years of data were split into three subsets used for training, validation, and testing of the ML models. Because215

of missing data, not all subsets could cover a full year (See Fig. 2). The last year of data (2018) was reserved for testing to

prioritize the completeness of the test results, while the rest of the data were split equally between training and validation.

The difference in the number of samples between the subsets therefore depended on the measurement site. As atmospheric

phenomena often show strong seasonality, it was deemed beneficial to have data from throughout the year in all subsets, even

if increasing the size of the training subsets could also have been useful.220

As most of the ML methods used in this study benefit from feature normalization, the input data were normalized to zero

mean and one standard deviation, computed from the training set. No other preprocessing techniques were applied. For all
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parts of the ML procedure that utilize randomness, the random number generator was initialized with an arbitrary seed number

(1024858913).

4.3 Feature selection225

Reducing the number of input variables by removing redundant or less impactful ones can improve the performance of ML

models, as well as mitigate unnecessary computational costs. Simpler models are also easier to interpret. Therefore, a feature

selection scheme was applied before feeding the simulation data into the ML models. A typical way to drop redundant variables

is to see if some of the inputs correlate strongly, and only retain non-correlating ones (up to some threshold value). Dependence

between each feature and the target variable, on the other hand, can be an indicator of the feature’s relevance. Each criterion230

alone, however, provides only a partial view and could result either in an ineffective selection or the removal of important

information. In addition, as feature selection is still often performed manually rather than in a data-driven manner, these issues

could be further exacerbated by human error.

In this study, these ideas were combined to take both redundancy and relevance into account through a data-driven approach.

First, a threshold for redundancy (hereafter red_thresh) was selected based on the methods described in Section 4.5.1. For235

each feature, the number of high-correlation pairs (correlations larger than red_thresh) that included the feature was counted.

The feature participating in the largest number of such pairs was then dropped. This was repeated until no pair of features

exceeded the threshold. In case the number of high-correlation cases was equal for two or more features, the magnitudes of the

correlations were compared, and the one with the larger sum of correlations was dropped. If only two highly correlated features

remain and the sums are thus equal, we have removed the one that appears earlier in the column order of the input data. After240

this, another threshold was set for relevance (later rel_thresh), and each feature whose correlation with the target fell below this

threshold was also dropped. Both relevance and redundancy were measured by Spearman’s correlation coefficient to account

for nonlinear dependencies.

The two threshold values were optimized along the model-specific hyperparameters for each ML method and dataset to

ensure optimal choice of features. Our approach was inspired by the more commonly used minimum redundancy — maximum245

relevance (mRMR) method (Ding and Peng, 2005), which we also initially compared to both our approach and a more typical

correlation-based selection procedure (not presented here). As further motivation for our approach, it is worth noting that

mRMR does not offer a mechanism to adjust the relative weighting of relevance and redundancy, which could be beneficial in

certain cases.

Naturally, removing any feature during selection entails a trade-off: the model loses some amount of information, even if that250

information appears redundant or insignificant in the training data. While feature selection is based on observed correlations

and redundancy, it is still possible that a removed feature could improve predictions in future scenarios—particularly for out-

of-distribution data. To mitigate this risk, we combined feature selection and model-specific hyperparameter optimization using

cross-validation on a holdout validation set, allowing the process to account for generalization performance. Additionally, as a

robustness check, we repeated the model training using all available input features (i.e., without applying feature selection), to255

compare performance and ensure that potentially valuable information was not systematically excluded.

9



4.4 Machine learning methods

In this study, the downscaling task is performed using six different statistical methods. Unless mentioned otherwise, all methods

were implemented by the Python package scikit-learn version 1.1.1 (Pedregosa et al., 2011). The implementations feature a

varying number of hyperparameters, some of which were optimized (listed in Tables S2–S8), while others were either left to260

their default values or given some other constant value. If some non-default constant value was used, it is mentioned in this

section. For more detailed information on the effects of the hyperparameters, readers are referred to the documentation of the

methods.

Random Forest (RF) and XGBoost (further abbreviated XGB in figures) are based on different approaches to an ensemble of

decision trees. RF takes advantage of randomness to reduce the dependence between individual trees in the ensemble, thereby265

reducing the ensemble’s total variance (Breiman, 2001; Hastie et al., 2009). XGBoost, belonging to the class of gradient

boosting methods, generally builds smaller trees with less initial variance and aims to reduce the total bias of the ensemble by

sequentially adding trees that correct the errors made by the preceding trees (Friedman, 2001). Unlike the other five methods,

XGBoost was implemented by the standalone XGBoost library version 2.0.3 for Python (Chen and Guestrin, 2016). The

RandomForestRegressor function from scikit-learn was used for RF.270

Neural networks (NN), in their most basic form, are made of layers of interconnected nodes that each produce a linear

combination of the incoming signals, which is then transformed by a non-linear activation function (Alpaydin, 2014). The first

layer is composed of the inputs, while the last layer produces the output(s). The layers between them are referred to as hidden

layers. Such simple feedforward NNs are also known as multilayer perceptrons (MLP). The scikit-learn function MLPRegres-

sor was used as our NN, and two different versions were trained separately: one with one hidden layer (NN1), and another with275

two hidden layers (NN2). These model architectures were also considered distinct from the point of view of our comparison,

increasing the number of methods in the results section from six to seven. Before optimization, two hyperparameters were

given constant values based on preliminary tests: batch size was set to 32 and solver to "Adam".

Instead of fitting a complex non-linear function to the training data, the Support Vector Machine (SVM) transforms the data

into a higher dimension, where it then fits a linear model to it (Cortes and Vapnik, 1995). In practice, this computationally280

demanding coordinate transformation can be replaced by a kernel operation by choosing suitable basis functions (Alpaydin,

2014). Additionally, if a data point’s distance to the fitted hyperplane were smaller than a specified amount, the point would be

ignored by the fit. This way, the model’s tolerance to minor errors can be controlled (Alpaydin, 2014). A function called SVR

from scikit-learn was used to implement the SVM model. Before optimization, the upper limit for solver iterations (max_iter)

was set to 10000, as some unsuitable hyperparameter combinations could cause the iteration to become stuck. Concurrently,285

the SVM’s cache size hyperparameter was increased from the default 200 MB to 1000 MB to avoid issues with insufficient

memory.

Gaussian Processes (GP) take a Bayesian approach to ML by conditioning a prior distribution, again represented by a kernel

function, on the training data. The mean of the resulting posterior process can then be used as a prediction (Rasmussen and

Williams, 2005). GaussianProcessRegressor from scikit-learn was used for this study. Most of its hyperparameters were set290
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before the optimization, leaving alpha as the only optimizable parameter. The number of restarts was set to nine (meaning ten

runs in total), and normalize_y was set to True, as recommended for zero-mean, unit-variance priors in the documentation.

Additionally, copy_X_train was set to False, as the training inputs are not changed during the optimization and thus do not

need to be saved. An RBF (Radial Basis Function) kernel with length scale bounds (1e-10, 1e2) was selected as the covariance

function of the GP. The length scale of the kernel is optimized internally by GaussianProcessRegressor, and not as part of the295

hyperparameter optimization procedure.

The sixth method in the comparison was the Generalized Linear Model (GLM). It generalizes, and improves upon, linear

regression by allowing a non-Gaussian error distribution, and enabling a nonlinear relationship between the inputs and the target

through a so-called link function (McCullagh and Nelder, 1989). Nevertheless, GLM does not utilize interactions between

inputs unless they are explicitly defined, making it considerably simpler compared to the other methods. Because of its relative300

simplicity, GLM is not always considered a pure ML method. In scikit-learn, GLM is implemented by the TweedieRegressor

function.

4.5 Hyperparameter optimization

4.5.1 Optimization methods

Finding the hyperparameter values that result in a model configuration with the highest predictive performance can be seen305

as an optimization problem, where the objective function to be optimized takes the hyperparameters as inputs and produces

as output some measure of the goodness-of-fit of the corresponding ML model. Each evaluation of the objective therefore

involves training an ML model and testing it against observations, which can make a brute force search through hyperparameter

combinations extremely slow. To minimize the number of evaluations, the Bayesian optimization (BO) approach aims to

approximate the expensive-to-evaluate objective through a surrogate function, such as a Gaussian Process (Brochu et al.,310

2010). The surrogate function is updated every time a new point is evaluated, and can be used to strategically select the next

point either in a region of uncertainty (favoring exploration) or closer to previously found extrema (favoring exploitation). An

acquisition function determines which points should be evaluated, and can often be tuned to balance the trade-off between

exploration and exploitation.

In this study, a BO algorithm from the Python package bayesian-optimization version 1.4.3 was used to search for315

optimal values of the hyperparameters and feature selection thresholds (Nogueira, 2014). This implementation uses a GP as

the surrogate function. The default kernel for the GP is the Matérn kernel, which has a parameter ν controlling the smoothness

of the sampled functions. Another tunable parameter of the optimizer is the noise level α of the GP itself. For the acquisition

function, the package’s default option is the Upper Confidence Bound (UCB) function

UCB(x) = µ(x)+κσ(x) (1)320

where κ controls how much weight should be given to the posterior’s standard deviation σ(x) relative to its mean µ(x) at

some point x of the hyperparameter space. That is, a higher κ favors exploration, focusing the search on regions of higher uncer-

11



tainty. We have generally used the default settings for both the acquisition function and the GP, apart from some customization

that is described next.

Many of the hyperparameters in ML models are either integer-valued (e.g. number of estimators in an ensemble) or cat-325

egorical (e.g. choice of activation function in NNs), while the GP of the BO algorithm utilized in this study only supports

optimization of hyperparameters with continuous values. A common solution to this is to take the point suggested by the ac-

quisition function, and either round the hyperparameters to the closest integer or one-hot-encode the categorical ones before

evaluating the objective, depending on which one is needed. As demonstrated by Garrido-Merchán and Hernández-Lobato

(2020), this approach causes the GP to ignore that an interval around an integer becomes known when one point is evaluated330

in the interval, as all values in that interval are rounded to the same integer value. This can lead to unnecessary evaluations

and thus slow down the iteration. In the worst case, the algorithm can even become stuck on one point. Therefore, the authors

propose that the transformation (i.e., rounding and encoding) of the hyperparameters should be done inside the kernel function,

so that the acquisition function gains accurate information about the posterior when evaluating a new point. We have applied

this approach to the default Matérn kernel, keeping it otherwise unchanged.335

As the range of the hyperparameters can be wide and the general location of the optimum can be uncertain, it can be useful to

optimize some hyperparameters logarithmically. This is not supported by the BO package by default, but it is easy to implement

by transforming, at the beginning of the objective function, the hyperparameter x in question to 10x, effectively optimizing the

value of the exponent. This transformation was applied to many hyperparameters in almost all ML models, and is also indicated

differently in Tables S2–S8.340

In addition to BO, the optimization of the hyperparameters was also done using a randomized search (RS), which would

be expected to perform worse, as long as the BO iteration proceeds properly. As there are multiple parameters to tune for the

optimizer itself that can significantly affect its performance (Snoek et al., 2012), a suboptimal selection could potentially make

the BO method inferior to a purely random procedure. In our application, where a large number of models are optimized, it

would be highly impractical to inspect every model individually to make sure the BO iteration has succeeded, especially with345

the limited options for visualization available. Visualizing aspects of the optimization process can make it easier to verify that

the parameter space has been thoroughly explored and that fitting the GP has been successful. Due to these limitations, both

BO and RS were used. While the models and datasets of this study are relatively small and thus a complex method like BO may

not lead to major computational gains, the same methodology could be applied in future studies with more computationally

intensive problems. These could be, for example, downscaling of a longer or higher resolution time series, training a single350

model on data from a large number of sites, or using large deep learning models.

4.5.2 Optimization procedure

The selected optimization method, either BO or RS, was executed for 300 iterations. In the case of BO, the first 30 points were

also sampled randomly to have sufficient data for the acquisition function to operate on. Another case, called "pure BO" in the

results section, was run without sampling these initial points. As for the parameters of the optimizer itself, the ν of the Matérn355

kernel was set to 1.5 (making the samples from the GP once differentiable), while the α of the GP was set to 1e-2 when the
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model had categorical hyperparameters, and left to the default 1e-6 otherwise. Three options (1, 2.5 and 10) were tried for the

κ parameter of the acquisition function to account for different needs for exploration and exploitation.

In addition to these five cases (RS, pure BO, and BO with three different values of κ), two more cases were formed by not

optimizing the feature selection (FS) parameters as part of either RS or BO (with κ= 2.5). Hence, all 100 input variables were360

included in the models. These two cases are called "RS & no FS" and "No FS", respectively. It should be noted that without

feature selection, the only hyperparameter of the GP model is α, and therefore it would not make much sense to use BO to

optimize it, as it is also based on fitting a GP. In this case, RS was used instead, meaning that "RS & no FS" and "No FS" refer

to the same procedure when GP is concerned.

4.6 Evaluation of model performance365

To assess model performance, we employed five complementary evaluation metrics. In addition to the commonly used mean

absolute error (MAE), root mean squared error (RMSE), and Pearson’s correlation coefficient (r), we also used the coefficient

of determination (ρ2) and the scaled MAE (sMAE), defined as:

ρ2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2)

sMAE(y, ŷ) =
MAE
ȳ

=
1

ȳ
· 1
n

n∑
i=1

|yi − ŷi| (3)370

Here, y denotes the vector of observed values, ŷ the predicted values, and ȳ their mean.

The coefficient of determination, ρ2, measures the proportion of variance in the observations explained by the model. While

often referred to as R2, we use ρ2 to emphasize that in non-linear models this value can be negative, unlike in unconstrained

linear regression where R2 is bounded between 0 and 1. A perfect match between predictions and observations yields ρ2 = 1.

The scaled MAE (sMAE), applied e.g. in Mikkonen et al. (2020), normalizes MAE by the mean of the observed values.375

This allows for better comparability across datasets of differing magnitudes, such as the particle size distribution subranges

examined here. As the mean PNC is strictly positive, sMAE remains well-defined throughout.

RMSE and MAE are expressed in the same units as the target variable (1/cm3 in this case), with RMSE penalizing large

errors more heavily. Pearson’s r, in turn, quantifies the association between predicted and observed values and is insensitive to

the scale of errors, making it useful for assessing rank consistency.380

For model selection during hyperparameter optimization, ρ2 was used as the primary criterion of goodness-of-fit.

In addition to numerical evaluation, we applied a game-theoretical interpretation method, SHAP (SHapley Additive exPla-

nations), to assess the influence of individual input features on model predictions (Lundberg and Lee, 2017; Molnar, 2022).

SHAP assigns a contribution value to each feature per prediction, indicating the direction and magnitude of its effect relative

to the average prediction. Positive (negative) SHAP values imply that the feature increased (decreased) the model’s output.385
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We used the shap Python package (v0.40.0) with the permutation explainer applied to the test data (Lundberg and Lee,

2017). The results were aggregated across all test days and visualized using beeswarm plots, which show both the distribution

and strength of feature effects. In these plots, a consistent increase (or decrease) in SHAP values with rising feature values

suggests a positive (or negative) association with the target variable.

The SHAP analysis helps identify which input variables the models depend on most and whether these dependencies align390

with known atmospheric processes. This interpretability is especially valuable when evaluating black-box models such as

neural networks or ensemble methods.

5 Results and discussion

5.1 Comparison of ML models

In Figure 3, we present a comparison of all seven downscaling methods across the eight datasets. The performance of the395

methods varied depending on the dataset: all methods were among the best in at least one of the datasets, but most of them also

failed in some cases, yielding ρ2s close to, or even less than, zero. Only RF and GP showcased stable performance, as they

never resulted in a ρ2 less than 0.1, and were never among the worst performing methods. On average, XGBoost had the highest

ρ2 (0.263), followed by SVM (0.250). XGBoost was also the best method for four out of the eight datasets. It only failed in

the nucleation dataset of Helsinki, where it had a lower ρ2 than any other model (see also Table S4 for hyperparameters, some400

of which are atypical). However, this dataset turned out to be difficult for all methods, as none of them were able to reach a

ρ2 above 0.15. Generally, the differences between methods were smaller than the differences between datasets, and in many

cases, multiple methods were nearly equal in performance. Only some datasets had one method that clearly outperformed the

others; this was XGBoost in the nucleation and accumulation datasets of Melpitz and in the Aitken dataset of Helsinki, and

GLM in the accumulation dataset of Leipzig. Additionally, XGBoost and SVM were the two best methods for all subranges405

from Melpitz, indicating some commonality between these datasets.

Overall, other ML methods have a slight advantage over GLM, as its average ρ2 is the lowest across datasets (0.176). There

is, however, strong variance in its performance, as it is among the best methods in both Leipzig’s accumulation dataset and

Helsinki’s nucleation dataset, but among the worst in the six remaining datasets. In three of the six datasets, it is strictly

the weakest, and in the other three, only two methods (NN2 and SVM) perform slightly worse. Particularly, the previously410

mentioned RF and GP were never outperformed by GLM, except in Leipzig’s accumulation dataset. Moreover, GLM results

in negative ρ2 (-0.126) in the Aitken dataset of Helsinki, a drastic difference to all other methods.

For RF and the two neural networks, a mean ρ2 from 50 different initializations is shown in both the table and the graph in

Fig. 3. The magnitude of the 2σ confidence intervals, given in parentheses, indicates that randomness had a relatively minor

effect on the performance of these models, except for those models that performed poorly to begin with. It is also interesting415

to compare the two variations of the neural network. In all datasets from Helsinki, adding another layer to the neural network

was beneficial. The simpler one-layer network yielded better results in all other datasets. This could be linked to a higher

complexity in modeling the particle number size distribution in Helsinki compared to the other sites. This complexity may also
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Figure 3. Test set performances (ρ2) of the optimized models for all eight datasets. For the methods that are affected by randomness, the

2σ confidence intervals computed from 50 different initializations are also shown in the table. The background colors in the table represent

the optimization method used. The methods and the abbreviations are explained in Sections 4.5.1 and 4.5.2. In the cases where multiple

optimization methods produced the exact same result, the background is left blank. These cases were Helsinki Ait (Pure BO, κ= 1, and

κ= 2.5) and Helsinki Acc (κ= 1,κ= 2.5,κ= 10, and RS). The downscaling method(s) that achieved the highest ρ2 for a given dataset are

shown in bold (differences of less than 0.025 are disregarded).

be reflected in the qualities of the optimized models: the three best models developed for Helsinki’s subranges utilize all 100

features, while at least some amount of feature selection was beneficial for all of the other datasets’ best models (see Section420

4.3 for a description of feature selection, and Tables S2–S8 for optimization results). Conversely, the accumulation subrange

of Leipzig seems to have been a less complex target for downscaling, as the optimal number of features for it was lower than

for other datasets, both when considering the best method (GLM, 19 features) and the average of all methods (28 features).

In this case, interactions between features were not needed either, as GLM does not utilize those, unlike the other methods.

It is of course possible that having access to more training data or an even wider range of input variables would reveal some425

interactions that were not found by our current procedure. In that sense, the simplicity of the best model might only indicate

that something, like outliers in the training data, confused the more complex methods while not affecting the linear model to

the same extent.
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Figure 4. Daily average particle number concentrations per subrange in 2018 (test set), for all three sites. Measurements are shown in blue,

ECHAM-HAMMOZ outputs in green, and the results of downscaling by the best model for each dataset (i.e., the bolded cells in Figure 3)

in purple. Goodness-of-fit metrics are reported in the top left corners of each figure, first for the downscaling and then, in parentheses, for

ECHAM-HAMMOZ.

5.2 Downscaling performance

Figure 4 shows the PNC results of the most successful downscaling methods for the test subset (2018) of each of the eight430

datasets. In all cases, a clear improvement is observed compared to the original subranges simulated by ECHAM-HAMMOZ,

both visually and based on the five metrics shown in the figures. XGBoost achieved the highest ρ2 for all subranges from

Melpitz and the Aitken subrange from Helsinki. Gaussian process regression resulted in the best model for Leipzig’s Aitken

subrange and Helsinki’s nucleation subrange, support vector machine for Helsinki’s accumulation subrange, and the general-

ized linear model for Leipzig’s accumulation subrange. Generally, the downscaling of the accumulation subrange was most435
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successful, whereas the nucleation subrange seems to have been more difficult to downscale, resulting in relatively low ρ2s in

both Helsinki and Melpitz. All three downscaled accumulation subranges have higher ρ2s, correlations, and sMAEs than any

of the other datasets, even though many peaks and troughs are still estimated incorrectly. The downscaling model trained on

the accumulation subrange of Melpitz performs best out of the three, producing a ρ2 of 0.56 and sMAE of 0.24.

The original ECHAM-simulated nucleation subranges differ significantly from the measured ones, likely contributing to the440

relatively poor performance of the downscaling models for that subrange. In Melpitz, the ρ2 of the original is lowest among all

subranges (-14.53), and the sMAE is highest (3.36). The strongly negative ρ2 indicates that the large-scale approximation of the

size distribution in ECHAM is a poor representation of the nucleation subrange at this site. In wintertime, the simulation repre-

sents the measurements reasonably well, but a strong overestimation is apparent from spring to autumn. Similarly in Helsinki,

the correlation between the simulated and measured nucleation subranges is almost nonexistent (0.03) before downscaling. The445

simulation is unable to predict the high peaks in number concentration during spring and early summer, but instead predicts

peaks for autumn, when the measured concentrations are relatively low. By downscaling, these differences can be greatly re-

duced: sMAE drops from 1.01 to 0.56 in Helsinki and from 3.36 to 0.74 in Melpitz, and the previously negligible correlation in

Helsinki increases to 0.38. Thus, even though the performance metrics of the downscaled nucleation subrange are worse even

when compared to the non-downscaled ECHAM-simulation of the accumulation subrange in Melpitz, the improvements are450

significant considering the starting point. Additionally, it should be noted that arithmetic means instead of medians were used

in the daily averaging to preserve the highly variable nature of the data. Using medians would smooth the time series, which,

while possibly improving downscaling results, would also depict the nucleation subrange less realistically.

The representation of new particle formation and nucleation–sized particles is, on many occasions, not sufficient in global

climate models (Williamson et al., 2019). This can be due to, for instance, errors in estimating nucleation rates. As a study by455

Laakso et al. (2022) shows, ECHAM-SALSA tends to favor partitioning of sulfuric acid to the particle phase due to nucle-

ation over condensation, which may lead to overestimation of nucleation subrange particles. Kokkola et al. (2018) compared

ECHAM-SALSA number size distributions to observation data, and their results revealed that at some measurement stations,

ECHAM-SALSA overestimates the nucleation mode number concentrations. Furthermore, ECHAM-SALSA does not model

new particle formation due to nitrates, which may cause differences between modelled and measured nucleation subrange460

number concentrations. The representation of nucleation-sized aerosols could be enhanced by including a volatility basis set

(VBS) scheme (Donahue et al., 2011), which can improve the representation of secondary organic aerosols. In addition to

limitations in representing the nucleation mode, other input variables can also contribute to challenges in downscaling. The

coarse spatial resolution of global-scale models naturally limits their ability to accurately capture processes other than just new

particle formation.465

A strong variability can be seen in both the simulated and measured Aitken subranges at the German sites (Melpitz and

Leipzig), although the peaks and troughs match poorly. In winter, the simulated concentrations decrease more than they should.

The downscaling methods are generally able to bring the concentrations to a more realistic level, but they fail to capture the

true variability in the data. Compared to the subranges simulated by ECHAM-HAMMOZ, the downscaled concentrations

no longer fluctuate as rapidly, but instead seem to more carefully follow an average level between the peaks and troughs of470
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the measured time series. This can be acceptable when the main focus of a study is on long-term averages, and not on e.g.

maximum daily exposures. Regardless, an improvement compared to the original is seen in all reported metrics. For the Aitken

subrange from Helsinki, the original simulated concentration is mostly too low, and has a less drastic summertime variability

compared to the German sites. The downscaling by XGBoost fixes the underestimation and brings the variability closer to that

of the measurements. Based on the metrics, the results are quite similar to the other Aitken subrange datasets. The increase475

in the correlation coefficient from 0.12 to 0.53 is largest out of all datasets, and the improvements in sMAE and ρ2 are also

among the largest.

To summarize, downscaling was generally more effective for larger particle sizes than for smaller ones, and for the rural

Melpitz site compared to the urban sites. The eight datasets were further examined through statistical tests comparing the

means of the training, validation and testing subsets of the measured PNC (not shown). These tests found significant differences480

between the years for most subranges and sites, amounting to five out of eight cases in total. If the subsets differ substantially,

ML models may struggle to generalize from one dataset to another. To potentially reduce the variation between subsets, the

temporal dimension of the data could be expanded beyond three years, thereby enlarging each subset. Training the models

with more than one year of data, in particular, could enhance generalization performance. Therefore, we recommend collecting

more data for future studies, if possible.485

We can compare our results to previous studies to place them in a broader context, although no directly comparable studies

exist. For example, Ivatt and Evans (2020) trained an XGBoost model to improve the ozone predictions of a chemistry transport

model, and achieved an improvement in Pearson’s r of 0.36 (from 0.48 to 0.84). This is similar, though in most cases slighty

higher, to the improvement achieved by our models. In addition to a different target variable, their higher time resolution and

lower spatial resolution (mean of multiple sites) complicate the comparison. XGBoost was also the most successful model490

in the study by Venuta et al. (2024), which produced spatiotemporal UFP predictions (logarithm of PNC) with a daily time

resolution. Their ρ2 of about 0.72 was significantly higher than ours, though a direct comparison is again difficult due to

the smoothing effect of the log-transform combined with data trimming they performed. Additionally, they used observational

weather data instead of climate simulations to train the models. As our models can in theory be used to predict far into the future

and produce non-transformed estimates of UFP concentrations, the seemingly lower metrics are still competitive, especially495

considering the substantial improvement over the ECHAM predictions.

5.3 Notes on optimization

In the table of Figure 3, the method of hyperparameter optimization that resulted in the best model is represented by the color

of the cell’s background. In the cases where the background of the table is white, multiple optimization methods yielded the

exact same hyperparameter values and hence also ρ2. This means that the hyperparameters resulting in the highest ρ2 were500

discovered either during the initial random steps of the iterations (which were now deterministic due to the fixed seed number),

or by the convergence of the BO algorithm to the same hyperparameter values during the non-random steps. The latter was the

case for the RF model trained on the Aitken data from Helsinki. This makes sense given that one of the equally performing

optimization methods was "Pure BO", which didn’t utilize random iterations. For the NN2 model trained on Helsinki’s accu-
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mulation subrange, on the other hand, the optimum was found from among the initially sampled points in all four identically505

performing cases.

It can be seen that for most models, the BO methods were superior to RS. However, it is surprising that in some cases

randomized search (RS) led to higher ρ2. The number of iterations for both approaches was the same, and BO searches the

parameter space more methodically, so it should have been able to find a better combination of hyperparameter values. In these

situations, it is possible that the hyperparameters don’t have a clear optimum, and therefore a reasonably good combination510

can be found randomly. Then, RS could work slightly better than BO purely by chance. Another possibility is that the few

alternatives which were tried for the parameters of the optimizer itself (e.g. kappa, alpha, and nu) were suboptimal for that

specific model and dataset. Selecting the parameters correctly can be challenging when the number of different models and

datasets is large, and when the options for visualization are limited, such as in high-dimensional spaces. Finally, it is possible

that the optimization algorithm itself didn’t fully work as intended in these cases, or even got stuck without actually converging515

on a solution, possibly due to the additional complexity in the acquisition function caused by the treatment of discrete-valued

and categorical hyperparameters, as mentioned in Nguyen et al. (2020). This problem could be difficult to diagnose in a

comprehensive model comparison study, when every result cannot feasibly be individually inspected.

Simultaneously with the model hyperparameters, feature selection was also optimized through two threshold parameters for

redundancy and relevance (see Sections 4.3 and 4.5.2). For the GP models trained on the datasets of Helsinki, both "No FS"520

and "RS & no FS" involved using RS and were thus identical, for reasons discussed in Section 4.5.2. It is also interesting to

note that if optimized correctly, our feature selection method could have resulted in practically no selection (i.e., full set of

features) by setting the thresholds for redundancy and relevance to 0.99 and 0, respectively. Therefore, it should theoretically

always be equal or superior to the "No FS" cases where all 100 features were used without any selection procedure. However,

this might be further complicated by the effect of an increased number of hyperparameters on the capability of the optimization525

algorithm to find the optimum.

In conclusion, BO can improve the results of hyperparameter tuning relative to a randomized search, but can be significantly

affected by the selection of the BO parameters and therefore requires careful analysis of the optimization process. Due to this

tradeoff between the simplicity of RS and the (generally) improved optimization performance of BO, BO may be preferable

when developing one computationally expensive ML model. However, when the number of models under optimization is530

large, the interpretability and ease of implementation of RS can make it a more practical choice. Other Python packages

that implement similar optimization methods, though not only Bayesian, also exist and could alternatively be utilized. Some

examples are Hyperopt (Bergstra et al., 2013), Optuna (Akiba et al., 2019), and SMAC3 (Lindauer et al., 2022).

5.4 Interpreting the models

The SHAP method, described in Section 4.6, was used to analyze the features in the ML models. Figure 5 shows a summary of535

the most important features across all models. The height of the bars relates to how many models were strongly influenced by

the corresponding feature, defined by the feature being among the ten highest when ranked by mean absolute SHAP value. For

example, the north-south directional component of wind was among the ten most important in 46 models out of the total 56.
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Figure 5. Most important input variables across all eight datasets, measured by mean absolute SHAP values. All seven ML models were

analyzed for each dataset. Hence, the upper limit for the height of the bars is 56. Bars with height less than ten are not shown.

In general, the wind-related features are seen to be important for the prediction of all subranges of the size distribution, though

less so for the nucleation subrange. Solar radiation is also one of the most important variables. ML models for the smallest540

two size ranges seem to utilize emissions of organic carbon, whereas accumulation subrange is connected to sulfur dioxide

(SO2) and sulfate (SO4), according to the SHAP values. Interestingly, the feature for geopotential height is mainly used by the

Helsinki models.

The modewise summaries of the SHAP explanations (given in Figures S1–S3) can be examined for additional insights.

Figure S1 shows that also variables related to dust and black carbon, which are not present in the summary figure (Fig. 5), are545

contributing to many of the ML models for accumulation subrange. Variables used for downscaling Aitken subrange (Fig. S2)

do not substantially differ from the ones shown in the summary of Fig. 5. In general, we recommend refraining from using

SHAP to interpret weakly performing models, such as most of the ones for nucleation subrange (Fig. S3), as any conclusions

made are likely to be misleading.

The best-performing ML models were studied in detail using SHAP (Figures S4–S15). These model explanations can be550

compared to experimental studies from the sites to see how well the statistical relationships found by the models correspond

to the physical characteristics of the locations. The Helsinki station can be taken as an example. In previous research (Järvi

et al., 2009), the surrounding area has been subdivided into three distinct land use sectors, of which the road sector to the

southeast has been found to be the largest contributor to the accumulation mode (100–1000 nm), especially during springtime.

In addition to the road itself, long-range transport from the east is hypothesized to contribute to this sector’s accumulation555

mode. On the other hand, an increased concentration of ultrafine particles (3–100 nm) has been associated roughly equally

with the road sector and the urban sector to the north. The vegetation sector to the west remains a direction of slightly less
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polluted air throughout the year. These findings are in line with the effects of wind direction in our models: Figures S4–S8 for

Helsinki show that the east-west wind component is important in all models, and that its effect is positive (i.e., easterly wind is

connected to increased pollutant concentrations). The two best models for Helsinki’s accumulation subrange (Figures S4–S5)560

both also include the north-south component, which has a negative effect on PNC. This means that the models predict higher

concentrations when wind is blowing from the south. Järvi et al. (2009) point out that ship emissions from the harbor, located

approximately in this direction, can affect accumulation mode PNC. Moreover, the springtime increase is also captured by

these two models. It is interesting to note that NN2 has almost the same ρ2 as SVM, despite using far fewer features (18 and

100, respectively; see Table S9).565

As the models for Helsinki’s nucleation subrange (Figures S7–S8) are quite weak, and therefore unlikely to capture the

relevant effects, we compare the UFP of Järvi et al. (2009) only to our Aitken subrange downscaling model (Fig. S6). The

positive effect of northerly wind and the negative effect of temperature on the Aitken subrange PNC seem realistic, as wood

combustion in the urban sector is a significant source of pollutants in the area. Importance of the variables boundary layer

height and atmospheric pressure might also be related to the same phenomenon.570

Likely, some (or even most) of the features shown in the SHAP plots are only deemed important in terms of their contribution

to the downscaling because they correlate with some physically relevant quantity, and not because they themselves cause

changes in PNC. For example, this is probably the case with the sea salt variable in Figures S13 and S15, as Melpitz is located

nowhere near marine environments. In the ECHAM-HAMMOZ data, PM25_SS is highly correlated with certain variables

(num_2a6, num_2a7, WAT_2a6, and WAT_2a7) that might more realistically be connected to PNC in Melpitz, however. Hence,575

when employing SHAP values to assess feature importance, it is important to note that SHAP explains how specific models

operate and is not to be interpreted as a tool for causal inference of physical systems.

In this analysis, it should naturally be recognized that all features originate from a simulation of large-scale climate, and

therefore do not necessarily represent the immediate surroundings of the measurement sites. Additionally, SHAP is known

to be sensitive to correlated features (Aas et al., 2021), which most of our models include; if accurate explanations of the580

models are crucial, care should be taken to remove all (even somewhat) correlating features before training or use more robust

explanation methods.

5.5 Performance considerations

Although our results indicate that some of the ML methods may on average result in higher goodness-of-fit metrics, there

are other aspects that might affect the choice of downscaling method. For example, the training and inference durations for585

different ML methods can vary differently as a function of the dimensionality of input data. In our study, the computational

performance of the methods was not considered important, as the downscaling was done as a post-processing step. However,

if the downscaling was included as an online correction in the climate model itself, speed of the method would be critical. We

have compared the computational performance of the seven model architectures separately for the training, optimization, and

inference steps (Fig. S16). There is significant variation in performance: in terms of training, GLM and SVM are by far the590

fastest, while the NN architectures take longest to train on average. When applying the models for inference, however, NNs
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are among the fastest, along with GLM. This might make them preferable in applications where computing time is costly. In

the optimization phase, the BO algorithm itself takes relatively long to iterate through, reducing the difference in total duration

between most methods; still, NNs are the slowest, though there was large variation depending on the number of NN nodes.

Adding a layer to the NNs slowed their training substantially. These findings are naturally only indicative of how the methods595

perform computationally, and may not apply to datasets of different size. Moreover, parallel computation of the training or

inference algorithms can yield additional speedups, which could be another advantage of the methods capable of being paral-

lelized. Of our six methods, RF and NN training can be run in parallel, as the trees in RF can be trained independently, and the

NN training can be split into independent batches. Parts of the XGBoost algorithm can also be parallelized, though the trees of

the ensemble must still be trained successively (Chen and Guestrin, 2016). Another advantage of NNs is that their structure is600

ideal for multi-target regression, i.e., the number of target variables can be freely chosen. This way, all three subranges of the

size distribution could be downscaled with a single NN. Using the other ML methods, a separate model needs to be trained for

each individual output variable.

6 Conclusions

This study provides a proof of concept for using ML methods to improve the site-specific accuracy of aerosol particle number605

size distributions derived from global-scale climate models. By employing six ML methods, optimized through feature selec-

tion and hyperparameter tuning, significant improvements were observed in the simulated particle concentrations, especially

for accumulation and Aitken subranges. Among the methods, XGBoost demonstrated, on average, superior performance across

various datasets. Despite these advances, the nucleation subrange proved more challenging to downscale, likely due to high

spatial variability and limitations in the underlying large-scale climate model outputs, particularly in the processes contributing610

to new particle formation.

The findings underscore the potential of ML-enhanced downscaling as a computationally efficient alternative to traditional

methods, offering robust applications in air quality and epidemiological studies. It was observed that downscaling methods

can significantly enhance model accuracy at individual measurement sites. However, the selection of a suitable downscaling

method requires precision and depends on the target variable’s characteristics, as well as spatial and, assumably, temporal615

dimensions. For example, while particle size ranges were the focus here, the same methods could be applied to other variables

as well. Future research should focus on expanding the geographical scope of measurement data, integrating additional features

to capture local-scale variations, and exploring dynamic downscaling during climate simulations. Additionally, deep learning

methods specialized for time series regression, such as Long Short-Term Memory NNs (Hochreiter and Schmidhuber, 1997),

might further improve the downscaling performance by accounting for temporal dependencies in the observed and simulated620

data (if training data with no missing values were available). These advancements could enhance the predictive accuracy of

particle size distributions in coarse-scale climate models, contributing to better assessments of climate change impacts and

health outcomes.
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