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Abstract.

Air pollution, particularly exposure to ultrafine particles (UFPs) with diameters below 100 nm, poses significant health risks,

yet their spatial and temporal variability complicates impact assessments. This study explores the potential of machine learning

(ML) techniques in enhancing the accuracy of a global aerosol-climate model’s outputs through statistical downscaling to better

represent observed data
::
at

::::::
specific

::::
sites. Specifically, the study focuses on the particle number size distributions from the global5

aerosol-climate model ECHAM-HAMMOZ. The coarse horizontal resolution of ECHAM-HAMMOZ (approx. 200 km) makes

modeling sub-gridscale phenomena, such as UFP concentrations, highly challenging. Data from three European measurement

stations
::::::::
(Helsinki,

:::::::
Leipzig,

:::
and

::::::::
Melpitz) were used as target of downscaling, covering nucleation, Aitken, and accumulation

particle size modes.
:::::
ranges

::::::
during

:::::
years

:::::::::::
2016—2018. Six different ML methods

::::::::
(Random

::::::
Forest,

::::::::
XGBoost,

::::::
Neural

:::::::::
Networks,

::::::
Support

::::::
Vector

::::::::
Machine,

::::::::
Gaussian

:::::::
Process

:::::::::
Regression

::::
and

::::::::::
Generalized

::::::
Linear

::::::
Model)

:
were employed, with hyperparameter10

optimization and feature selection integrated for model improvement.
:
A

:::::::
separate

::::
ML

:::::
model

::::
was

::::::
trained

:::
for

::::
each

:::
of

:::
the

::::
sites

:::
and

::::
size

::::::
ranges.

:
Results showed a notable improvement in prediction accuracy for all particle modes

::::
sizes

:
compared to the

original global model outputs, particularly for accumulation mode, which achieved the highest fit indices
::
the

::::::::::::
accumulation

:::::::
subrange. Challenges remained

:::::::::
particularly in downscaling the nucleation mode

:::::::
subrange, likely due to its high variability and

the discrepancy in spatial scale between the climate model representation and the underlying processes. Additionally, the study15

revealed that the choice of downscaling method requires careful consideration of spatial and temporal dimensions as well as

the characteristics of the target variable, as different particle size modes
:::::
ranges

:
or variables in other studies may necessitate

tailored approaches. The study demonstrates the feasibility of ML-based downscaling for enhancing air quality assessments.

This approach could support future epidemiological studies and inform policies on pollutant exposure. Future integration of
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ML models dynamically into global climate model frameworks could further refine climate predictions and health impact20

studies.

1 Introduction

Air pollution is considered one of the leading global health risks, in terms of both associated premature deaths and disability

(GBD 2019 Risk Factors Collaborators, 2020). Fine particulate matter (PM2.5, particle diameter < 2.5 µm) has been found to

be especially harmful; a recent report from the Global Burden of Disease study identifies it as the most important environmental25

health risk factor (McDuffie et al., 2021). Although PM2.5 has undergone extensive study, exposure to and health impacts of

smaller particle sizes, such as ultrafine particles (UFPs) with diameters below 100 nm, remain less well understood (Fuzzi

et al., 2015; Vogli et al., 2023).
:::::::
Different

:::::
sized

:::::::
particles

:::::::::
contribute

::
to

:::::::
different

::::::
aspects

:::
of

::
the

:::::::
ambient

:::::::
particle

:::::::::::
concentration

:::
—

::::
UFPs

::::::
mainly

:::::::
control

::
the

:::::::::::::
concentrations

::
in

:::::
terms

::
of

:::::::
number,

:::::
while

::::::
coarser

:::::::
particles

::::::
control

:::
the

::::::::::::
concentrations

::
in

:::::
terms

::
of

:::::
mass

:::::::
(PM2.5). The size of aerosol particles influences, for example, their deposition in the human respiratory tract and their reactive30

surface area, which in turn can affect their potential to cause health problems (Kreyling et al., 2004; Schraufnagel, 2020).

According to epidemiological and toxicological studies, UFPs can more easily enter the alveoli in the lungs, and from there

reach other organs (Kreyling et al., 2004; Schraufnagel, 2020). Compared to larger particles, they can thus potentially contribute

to, for example, diabetes (Bai et al., 2018), cancer (Pagano et al., 1996), and ischemic cardiovascular disease (Downward et al.,

2018; Li et al., 2017; Ostro et al., 2015) more strongly. However, due to their high spatial and temporal variability, estimating35

exposure to UFPs is challenging, leading to uncertain or even conflicting conclusions regarding their health impacts (Vachon

et al., 2024a; Schraufnagel, 2020). Currently, both the World Health Organization (World Health Organization, 2010) and the

European Union (European Council, 2008) provide guidelines on safe exposure limits for PM2.5 and PM10 (diameter < 10

µm), but no such limits exist for UFP. Indeed, according to a recent review of the topic (Schraufnagel, 2020), UFPs are, in

many ways, "at the frontier of air pollution research".40

As the availability of exposure data limits the potential to conduct epidemiological UFP studies (Vachon et al., 2024a),

various approaches have been used to gain more information on UFP
::::::
number concentrations. To study exposure to pollutants,

observations from a scarce network of sites have typically been expanded to cover the study area, such as a city, through

methods like land use regression (LUR) (Venuta et al., 2024; Amini et al., 2024; Wolf et al., 2017) or interpolation (Jung et al.,

2023). Sometimes, more measurements are done in relatively short campaigns to improve the spatial coverage (Vogli et al.,45

2023; Downward et al., 2018), or satellite-based observations are added as inputs to LUR models to more accurately represent

spatial or temporal variability of pollutants (Zani et al., 2020; Jung et al., 2023; Stafoggia et al., 2019). Most
:::::::
However,

:::::
most

such studies are focused on pollutants other than UFPs , however (Lin et al., 2022). In recent years, machine learning (ML)

has also been a common tool in improving the accuracy of LUR models, often outperforming traditional statistical methods

(Vachon et al., 2024b).50

While improved spatial characterization of present-day air quality is valuable for understanding its health implications, pre-

dicting how air quality may evolve in the future is also important. Actions taken to mitigate climate change might significantly
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affect the emissions of pollutants or their precursors, thus hindering the prediction ability of LUR models. Furthermore, since

these models are purely descriptive and not integrated with physics-based tools, they cannot be used for studying air quality

under varying emission scenarios.55

Besides the said statistical methods, local-scale air quality is commonly represented using deterministic models that simulate,

for example, the emissions, transport, and transformation of pollutants (Sofiev et al., 2006; Johansson et al., 2022). As the

inputs of these models can in principle be modified based on the climate change scenario of interest, they could be suitable for

long-term air quality prediction. However, many physics-based models simulate only gaseous pollutants such as NOx (Pepe

et al., 2016) and O3 (Sharma et al., 2013); aerosols, if supported, may be limited to larger particle sizes (Friberg et al., 2017),60

omitting UFP. Additionally, running simulations can be computationally expensive and always requires boundary conditions

from global climate models, further increasing computational costs. The physics-based air quality models are also not ideal for

all sites, as accounting for urban infrastructure or complex terrain requires detailed information about local topography, which

is often either unavailable or not accurately captured by local-scale models. (Hinestroza-Ramirez et al., 2023).

Compared to air quality models, global-scale climate models generally produce more output variables, potentially also65

containing size-resolved representations of aerosols. Simulating long-term global changes in aerosol concentrations is possible

with climate models, as they incorporate a broader range of atmospheric processes and feedback mechanisms compared to

regional climate models. Since global-scale models are already necessary to generate boundary conditions for regional models,

using them directly for generating air quality estimates might seem practical. However, for local-scale air quality estimation,

the resolution of current climate models is far too coarse, typically ranging from tens to hundreds of kilometers horizontally70

and tens to hundreds of meters vertically (Turnock et al., 2020). Particularly for UFPs, the challenge arises from their
::::::
number

concentrations being governed by processes such as primary emissions and secondary formation and growth, which occur both

in multiple scales. The initial cluster formation occurs in sub-grid spatial scales and it is highly spatially variable (Dada et al.,

2023), including a contribution from traffic as well (Rönkkö et al., 2017), while the growth to Aitken and accumulation mode

sizes (see Section 3) takes place in synoptical scale (Petäjä et al., 2022). All of this makes the particle size distribution of the75

nucleation mode highly variable in space and time.

An approach known as downscaling can be applied to the low-resolution outputs of global climate models, with the aim

of improving their accuracy in the local scale. In this context, the nested approach of initializing regional climate models

with boundary conditions from global simulations is called dynamical downscaling (Maraun and Widmann, 2018). Another

technique, statistical downscaling, instead aims to find a statistical dependence between coarse-resolution outputs and local80

observations of the quantity of interest. This dependence can later be used for output correction as a post-processing step.

The benefit of statistical downscaling lies in its computational efficiency compared to the computationally much more costly

dynamical downscaling (Xu et al., 2020). Most of the literature on downscaling focuses on correcting meteorological variables

such as temperature (Li et al., 2020; Goyal et al., 2011; Kim and Villarini, 2024) and precipitation (Xu et al., 2020; Vandal et al.,

2017; Sachindra et al., 2018). Some recent studies have applied statistical downscaling to air quality variables (Miinalainen85

et al., 2023; Gouldsbrough et al., 2024; Ivatt and Evans, 2020) but only a few to UFP
::::::
number

:
concentrations (Kohl et al., 2023).

Although the statistical methods for downscaling have typically been simple bias corrections or linear regressions (Maraun and
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Widmann, 2018), many downscaling studies from the past few years have instead utilized ML methods with promising results

(Xu et al., 2020; Sachindra et al., 2018; Miinalainen et al., 2023; Gouldsbrough et al., 2024). To our knowledge, however, none

so far has applied ML methods to UFP downscaling.90

In this study, using various ML methods, we have downscaled aerosol particle number size distributions produced by a global

aerosol-climate model to better match observations from three measurement stations. We used data from two urban stations

(Helsinki, Finland and Leipzig, Germany) and from one rural background measurement station (Melpiz, Germany). The size

distribution was represented by three size modes
:::::
ranges, the so-called nucleation, Aitken, and accumulation modes

:::::::::
subranges.

:::
We

::::
have

:::::
opted

:::
to

:::::
avoid

::::::
calling

:::::
these

:::::::::
subranges

::::::::
“modes”,

:::
as

:::
the

:::::::::
subranges

:::
do

:::
not

::::::
exactly

::::::
match

:::
the

:::::::::::
conventional

::::::
mode95

::::::::
definitions

::::
due

::
to

::::::::::
limitations

::
in

:::
the

::::
size

::::::::
resolution

:::
of

:::
the

:::::::
climate

:::::
model

::::::::::::
representation. Based on these

::::::::
subranges, we cat-

egorized the simulated and observed daily average particle number concentrations (PNCs). All three modes
::::::::
subranges

:
overlap

with the UFP size range (< 100 nm), with the nucleation mode
:::::::
subrange

:
being barely above molecular cluster size and a part

of the accumulation mode
::::::::
subrange exceeding 100 nm. A broad selection of ML methods, six in total, was used and is further

described in Section 4.4. Moreover, ML model hyperparameters were optimized and feature selection performed, to obtain100

optimal model configurations for the task. Finally, a glimpse into the inner workings of the black box ML models was provided

by a game theoretical method, SHAP, that aims to explain the usage of features by these models. The objective of the study

is to act as a proof of concept, showcasing the potential of ML methods in improving predicted PNCs in different parts of the

UFP size range. Additionally, comparing the performance of ML methods can help determine whether some of them could

be particularly recommended. Ultimately, such ML-based downscaling of UFP could serve to study air quality simultaneously105

with other aspects of climate change, helping improve policy-making by accounting for more diverse consequences. Past air

quality datasets could also be expanded using this method for studying UFP health effects. A new air quality directive of the

European Union (European Council, 2024) includes a mandate to measure UFP concentrations throughout urban and rural su-

persites in Europe. In the next decade, this is expected to enhance the availability of UFP data for health studies. Our approach

could provide additional insights into UFP
::::::
number concentrations already before the new measurements are implemented.110

2
::::::
Global

:::::::::::::
aerosol-climate

::::::
model

:::::::::
simulation

3 Climate simulation

We conducted the global climate model simulations
::::::::
simulation

:
with the aerosol-climate model ECHAM6.3-HAM2.3 (ECHAM-

HAMMOZ) (Schultz et al., 2018; Tegen et al., 2019; Neubauer et al., 2019). ECHAM-HAMMOZ includes the general circu-

lation model ECHAM (Stevens et al., 2013), the aerosol module HAM (Tegen et al., 2019; Neubauer et al., 2019) and also115

the chemistry module MOZART (Schultz et al., 2018). We use the aerosol microphysics module SALSA2.0 (Kokkola et al.,

2018), which discretizes the aerosol size distribution into ten size classes and treats a soluble and an insoluble sub-population

separately. A more detailed description of the SALSA module is presented in Kokkola et al. (2018).
:::
The

::::
size

::::::
classes

::::
range

:::::
from

:
3
:::
nm

::
to

:::
10

:::
µm,

:::::
from

:::::
which

:::
we

::::
have

:::::::
selected

:::
the

:::::
seven

:::::::
smallest

::::::
classes

::
(3

:::
nm

:::
to

:::
700

::::
nm)

::
as

:
a
:::::
basis

::
of

:::
the

:::::::::
nucleation,

:::::::
Aitken,

:::
and

:::::::::::
accumulation

:::::::::
subranges

:::
that

::::
will

:::::::::
constitute

:::
the

:::::
target

::::::::
variables

::
of

:::
our

:::::
study,

::::::
which

:::
are

::::::::
compared

:::::::
against

::::::::::::
measurements120
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:::
(see

:::::::
Section

::
3

:::
for

::::
more

::::::::
details).

:::::::::::
Additionally,

::
all

::::
ten

:::
size

:::::::
classes

:::
are

:::::::
included

:::
as

:::::
input

:::::::
variables

:::
in

:::
the

::::
ML

:::::::
models,

:::::
along

::::
with

:::
the

::::
other

::::::::
simulated

::::::::
variables

:::
on

:::::
which

:::
the

:::::::::::
downscaling

:
is
:::::
based

::::
(see

:::::
Table

::::
S1). In the aerosol module HAM, the aerosol

compounds treated are black carbon (BC), sulfate (SU), organic aerosol (OA), sea salt (SS), and mineral dust (DU). The grid

resolution that was used in our simulations
:::::::::
simulation was T63L47, corresponding approximately 1.9◦× 1.9◦ horizontal res-

olution. The grid extents
::::::
extends

:
vertically to 0.01 hPa (∼80km) and there are 47 vertical hybrid layers. The layer nearest to125

surface has a height of approximately 65 meters. The chemistry module MOZART was not included in our setup, but instead

a simplified scheme for sulfur chemistry was used (Feichter et al., 1996; Stier et al., 2005).

The simulations were
::::::::
simulation

::::
was performed using prescribed sea surface temperature and sea ice cover from data from

the Atmospheric Model Intercomparison Project (AMIP) of the Program for Climate Model Diagnosis and Intercomparison

(PCDMI) (Taylor et al., 2012). In addition, large-scale meteorological fields, wind and surface pressure, were nudged towards130

ERA5 reanalysis data (Hersbach et al., 2020, 2017). Temperature and free static energy were allowed to evolve freely (Zhang

et al., 2014). The anthropogenic aerosol emissions were prescribed as monthly averages from the ECLIPSE V6b emission

inventory (Stohl et al., 2015; IIASA, 2024). A more detailed description of the aerosol emission input fields can be found from

Miinalainen et al. (2023).

3 Aerosol measurements135

Measurement data used in this study consist of atmospheric measurements from three stations (Fig. 1), spanning years 2016–

2018. Specifically, particle number size distribution data measured with the DMPSdevice
:::::
/SMPS

:::::::::::::::::::
(Differential/Scanning

:::::::
Mobility

::::::
Particle

:::::
Sizer)

::::::::::
instruments

:
were obtained from the stations. The data are openly available from SmartSMEAR (SmartSMEAR,

2025; Junninen et al., 2009, Helsinki) and EBAS databases (EBAS, 2025, Leipzig and Melpitz). These sites were chosen

because of the relatively long and continuous time series of aerosol size distributions available. In this section, we focus on140

providing short descriptions of the stations’ locations and regional representativeness, relevant for interpreting the results. More

detailed information about the measuring stations can be found in the references of their short descriptions in the paragraphs

below.

The size distribution data have been reformulated into number concentrations of three modes
::::::::
subranges, nucleation (< 7.7

nm), Aitken (7.7–50 nm), and accumulation (50–700 nm). These size ranges
::::
were

:::::::
selected

::
to

:
correspond to the SALSA145

bins 1a1 for nucleation, 1a2–1a3 for Aitken, and 2a1–2a3 for accumulationmode. The
:::::::
2a1–2a4

::
for

::::::::::::
accumulation.

::::
The

:::::
three

::::::::
subranges

::::
that

::::::::
constitute

::::
the

:::::
target

::::::::
variables

::
of

::::
the

:::::
study

::::
were

:::::::
formed

:::
by

:::::::::
summation

:::::
over

:::
the

:::::::
relevant

:::::
bins.

::::
The

:
hourly

number concentrations of the three modes
::::::::
subranges have then been averaged to one-day time resolution. These data processing

steps were performed by Leinonen et al. (2022), and are further discussed there. However, in our study, days with fewer

than eight hours of measurements were also removed from the dataset to ensure representativeness.
:::
No

::::
other

::::::::::
conversions

:::
or150

::::::::::::
postprocessing

::::
steps

:::::
were

:::::::::
performed.

:
Daily averaged number concentrations of the modes

::::::::
subranges, which act as the target

variables in our study, are presented together with simulated ECHAM-HAMMOZ concentrations in Fig. 2.
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Figure 1. Measurement site locations marked on the map of north-eastern Europe. M, L, and H refer to the Melpitz, Leipzig, and Helsinki

sites, respectively. The grid lines show the coarse output resolution of ECHAM-HAMMOZ. As can be seen, Leipzig and Melpitz are located

in the same grid cell. Coordinates have been rounded to one decimal place.

The Helsinki station (60°12′ N 24°58′ E) is situated in Helsinki, Finland (see Hussein et al. (2008) and Järvi et al. (2009)

for details). Helsinki is the largest city in Finland (approx. 675 000 inhabitants), and more than 1.5 million inhabitants live in

the Helsinki metropolitan area. The Helsinki station is classified as an urban station. All three modes
:
In

::::::::
Helsinki,

:::
the

:::::::
particle155

::::::
number

::::
size

::::::::::
distribution

:
is
:::::::::
measured

::::
with

::::::
DMPS

:::::
(TSI),

::::
with

::::
size

:::::
range

::
of

::
3

:::
nm

::
to

::
1

:::
µm.

:::
All

:::::
three

:::::::::
subranges were available

from Helsinki station
::
the

::::
site.

The Melpitz station (51°32′ N 12°54′ E) is situated in Germany, in the southwest of the small town of Torgau (approx. 20 000

inhabitants), immediately west of the village of Melpitz (Hamed et al., 2010). The station
:
It
:
is classified as a rural background

station (Birmili et al., 2016). All three modes
::::::
Particle

:::::::
number

:::
size

::::::::::
distribution

::
is

::::::::
measured

::::
with

::::::
SMPS

:::::
(TSI)

::::
with

::::
size

:::::
range160

::
of

:
5
:::
nm

::
to

::::
800

:::
nm.

:::
All

:::::
three

::::::::
subranges

:
were also available from the Melpitz station.

The Leipzig station (51°21′ N 12°26′ E) is situated in the city of Leipzig, Germany (approx. 590 000 inhabitants), about 4

km east from the center of Leipzig
:
of

:::
the

::::
city

::::::
center (more detailed description in Birmili et al. (2016)). The Leipzig station

:
It
:
is classified as an urban background station. Aitken and accumulation mode

:::::::
subrange

:
number concentrations are available

from the Leipzig station. At the Leipzig station, the particle size distribution started at
:::
this

::::
site.

::::
The

::::::::
measured

:::::::
particle

::::
size165

::::
range

::::
was

:::::::
between

:
10 nm

:::
and

:::
800

:::
nm

::::::
(using

:::::::
DMPS), and for this reason, the number concentration of nucleation mode

:::
the

::::::::
nucleation

::::::::
subrange

:
is not availablefrom the Leipzig station.

6



0

1000

2000

3000

4000

Nu
c 

PN
C 

(c
m

3 )

Melpitz Helsinki

0

2500

5000

7500

10000

Ai
t P

NC
 (c

m
3 )

Leipzig

01/1605/1609/1601/1705/1709/1701/1805/1809/1801/19
0

2000

4000

6000

8000

Ac
c 

PN
C 

(c
m

3 )

01/1605/1609/1601/1705/1709/1701/1805/1809/1801/1901/1605/1609/1601/1705/1709/1701/1805/1809/1801/19

Measurements
ECHAM-HAMMOZ

Figure 2. Daily averages of measured and simulated PNCs per mode
::::::
subrange

:
of particle size distribution (rows) at each of the three sites

(columns), from 2016 to 2018. The black bars represent missing data. Partitioning of the data into training, validation, and testing subsets is

shown by the dashed vertical lines. Acc, Ait, and Nuc refer to the accumulation, Aitken, and nucleation modes
::::::::
subranges, respectively.

4 Analysis methods

4.1 Downscaling workflow

Statistical downscaling, in this application, refers specifically to finding and utilizing a relationship between the large number170

of ECHAM-HAMMOZ output variables and the observed particle number concentrations (PNCs) at the three sites with the

aid of ML methods. If the ML models can learn this dependence, they no longer need the measurement data to function, but

can predict the PNC based purely on the climate simulation. In other words, the outputs of the ECHAM simulation constitute

the inputs of the ML models, and the output of the ML models is the number concentration of a specific size mode
:::::::
subrange.

The ML output is also referred to as the target variable, while the input variables are commonly called features.
:::
The

::::::
inputs

:::
are175

:::::::
properly

:::::::::
introduced

::
in

::::::
Section

:::
4.2

::::
and

::::
listed

:::::::::::
exhaustively

::
in

:::::
Table

:::
S1.

:::
The

:::::::::::
downscaling

::
is

::::::::::
site-specific,

::::
that

::
is,

:::
the

:::
ML

:::::::
models

::
are

::::::
trained

:::::::::
separately

:::
for

::::
each

::::::
station

:::
and

::::
size

::::::::
subrange.

:

As the first step of the ML pipeline, the dataset consisting of simulated features (i.e., the simulation outputs of ECHAM-

HAMMOZ) and measured PNC was split into three subsets, known as training, validation, and testing sets (see Section 4.2).

Next, the number of input variables was reduced through feature selection (Section 4.3), the hyperparameters of the models180

were tuned (Section 4.5), and the models were trained, while evaluating the models’ performance at each step where necessary.

In ML terminology, hyperparameters refer to the tunable parameters of the ML algorithms. This is in contrast to the internal

parameters, such as linear model coefficients or neural network weights, which are not controlled by the user but automatically

selected by the algorithms. After the optimized, trained models were obtained, further analysis and comparison was done.
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On each iteration step of the hyperparameter optimization, an ML model with particular hyperparameter values was fit to185

the training data, and the trained model was then tested on the validation data to obtain a measure of its goodness-of-fit. The

purpose of this common approach is to avoid overfitting the model to the training data, which would impair its generalizability.

A separate validation set was used instead of k-fold cross-validation to avoid temporal leakage of information, where future

data is used for training and past for testing (Fraga et al., 2023). Rolling variants of
:::::
k-fold

:
cross-validation that retain the

ordering of the data were considered, but initial tests showed poor generalization across folds, possibly due to the seasonality190

inherent in the data.
:::::
Thus,

:::::
k-fold

:::::::::::::
cross-validation

::::
was

:::
not

::::
used

::
in
::::
this

:::::
study.

When the optimization was finished, the combination of hyperparameters leading to the best validation performance was

selected, and the ML model with this configuration was retrained on the combined training and validation subsets. Then, the

model was applied to the testing subset to evaluate its performance on completely unseen data. This was done because there

could be a slight, optimistic bias in the validation score when the hyperparameters have been selected to be optimal for the195

validation subset. Because some of the ML methods (RF and the NNs, see Section 4.4) utilize randomness as part of their

algorithms, and therefore depend on the initialization of the random number generator, the retraining part was repeated with

50 different seed numbers. In the results, the mean performance is shown for these methods. Finally, the SHAP method (see

Section 4.6) was applied to the trained models to investigate their use of input variables.

4.2 Data preparation200

For each station, we used ECHAM-HAMMOZ data from only one ECHAM grid cell, which contained the station coordinates

and altitude.
:::
The

:::::::::::::::::
ECHAM-HAMMOZ

::::
data

::::
with

::
a
::::::
vertical

:::::::::
dimension

:::::
were

::::::::::
interpolated

::
to

::::::::::
correspond

::
to

:::
the

::::::
station

:::::::
altitude.

::::
This

:::
was

:::::
done

:::
by

:::::::
utilizing

:::
the

:::::
CDO

::::::::
command

::::
line

::::
tool

:::::::::::::::::
(Schulzweida, 2023)

:
,
:::
and

:::
by

:::::
using

:::
the

::::::
nearest

:::::
layer

::
to

:::
the

:::::::
surface

::
as

::::
well

::
as

:::
the

::::::
second

::::::
lowest

:::::
layer.

:
Thus, the global scale simulation data were matched with the point measurements. Both

the observed and simulated data were then averaged to daily resolution. We selected 93 variables directly from ECHAM-205

HAMMOZ data as input variables, covering meteorology, aerosol composition and size distribution. Additional variables were

created to replace or complement the existing simulated variables. The u and v components of wind were transformed into two

cyclic directional components (north-south, wind_ns and east-west, wind_ew, both varying between -1 and 1) and one variable

for the absolute magnitude of the wind vector (wind_speed). Finally, time of the year was represented by time_ws (winter–

summer variability) and time_sa (spring–autumn variability). These were also formed cyclically
:::
(and

::::
thus

::::
vary

:::::::
between

::
-1

::::
and210

::
1) to avoid a large difference between the value of the last day of the year and the first of the next year, which occurs when

using linear time and can disrupt the ML models. In
:::::::
practice,

:::::::::::
transforming

::
a

:::::::
variable

:::
into

::::
two

:::::
cyclic

:::::::::::
components

:::
was

:::::
done

::
by

::::::::
applying

::::::::
sinusoidal

:::::::::
functions

::::
(sine

::::
and

::::::
cosine)

::
to

:::
the

::::::::::
proportion

::
of

:::
the

::::::::
variable’s

:::::::
current

:::::
value

::::::
relative

::
to
:::

its
:::::::::
maximum

:::
(for

::::::::
example,

:::::::
time_ws

:
=

::::
cos([

:::
day

:::::::
number]

:
/[

:::
days

::
in
:::::

year]
:
).
:::
In our naming convention for all four cyclic features, the positive

direction is referenced first (i.e., wind_ns = 1 means northerly wind
:::
and

:::::::
time_ws

:
=
::

1
::::::
means

::::
New

:::::
Year). All in all, these215

changes resulted in 100 input variables to be considered for the ML models (see Table S1). These variables were chosen for

their potential relevance for aerosol formation, transport or removal, or because they represent properties of the particle size

distribution in the climate model.
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The three years of data were split into three subsets used for training, validation, and testing of the ML models. Because

of missing data, not all subsets could cover a full year (See Fig. 2). The last year of data (2018) was reserved for testing to220

prioritize the completeness of the test results, while the rest of the data were split equally between training and validation.

The difference in the number of samples between the subsets therefore depended on the measurement site. As atmospheric

phenomena often show strong seasonality, it was deemed beneficial to have data from throughout the year in all subsets, even

if increasing the size of the training subsets could also have been useful.

As most of the ML methods used in this study benefit from feature normalization, the input data were normalized to zero225

mean and one standard deviation, computed from the training set.
::
No

:::::
other

::::::::::::
preprocessing

:::::::::
techniques

:::::
were

:::::::
applied. For all

parts of the ML procedure that utilize randomness, the random number generator was initialized with an arbitrary seed number

(1024858913).

4.3 Feature selection

Reducing the number of input variables by removing redundant or less impactful ones can improve the performance of ML230

models, as well as mitigate unnecessary computational costs. Simpler models are also easier to interpret. Therefore, a feature

selection scheme was applied before feeding the simulation data into the ML models. A typical way to drop redundant variables

is to see if some of the inputs correlate strongly, and only retain non-correlating ones (up to some threshold value). Dependence

between each feature and the target variable, on the other hand, can be an indicator of the feature’s relevance.
::::
Each

::::::::
criterion

:::::
alone,

::::::::
however,

:::::::
provides

::::
only

::
a
::::::
partial

::::
view

::::
and

:::::
could

:::::
result

:::::
either

:::
in

::
an

:::::::::
ineffective

::::::::
selection

:::
or

:::
the

:::::::
removal

::
of

:::::::::
important235

::::::::::
information.

::
In

::::::::
addition,

::
as

::::::
feature

:::::::
selection

::
is
::::
still

::::
often

:::::::::
performed

::::::::
manually

:::::
rather

::::
than

::
in

:
a
::::::::::
data-driven

:::::::
manner,

::::
these

::::::
issues

::::
could

:::
be

::::::
further

::::::::::
exacerbated

::
by

::::::
human

:::::
error.

:

In this study, these ideas were combined to take both redundancy and relevance into account
:::::::
through

:
a
:::::::::
data-driven

::::::::
approach.

First, a threshold for redundancy (hereafter red_thresh) was selected based on the methods described in Section 4.5.1. For

each feature, the number of times the correlation of the feature with some other feature was
:::::::::::::
high-correlation

::::
pairs

:::::::::::
(correlations240

larger than red_threshwas counted, and the feature with the largest count was
:
)
::::
that

:::::::
included

:::
the

:::::::
feature

:::
was

::::::::
counted.

::::
The

::::::
feature

::::::::::
participating

::
in

:::
the

::::::
largest

::::::
number

:::
of

::::
such

::::
pairs

::::
was

:::
then

:
dropped. This was repeated until no pair of features exceeded

the threshold. In case the count
::::::
number

::
of
::::::::::::::

high-correlation
:::::
cases was equal for two

:
or

:::::
more

:
features, the

:::::::::
magnitudes

:::
of

:::
the

:::::::::
correlations

:::::
were

:::::::::
compared,

:::
and

:::
the one with the larger sum of correlations was dropped.

::
If

::::
only

:::
two

::::::
highly

::::::::
correlated

:::::::
features

::::::
remain

:::
and

:::
the

:::::
sums

:::
are

:::
thus

::::::
equal,

:::
we

::::
have

:::::::
removed

:::
the

::::
one

:::
that

:::::::
appears

:::::
earlier

:::
in

:::
the

::::::
column

:::::
order

::
of

:::
the

:::::
input

::::
data.

:
After245

this, another threshold was set for relevance (later rel_thresh), and each feature whose correlation with the target fell below this

threshold was also dropped. Both relevance and redundancy were measured by Spearman’s correlation coefficient to account

for nonlinear dependencies.

The two threshold values were optimized along the model-specific hyperparameters for each ML method and dataset to

ensure optimal choice of features.
:::
Our

::::::::
approach

::::
was

:::::::
inspired

::
by

:::
the

:::::
more

:::::::::
commonly

::::
used

::::::::
minimum

::::::::::
redundancy

::
—

:::::::::
maximum250

::::::::
relevance

:::::::
(mRMR)

:::::::
method

:::::::::::::::::::
(Ding and Peng, 2005),

::::::
which

::
we

::::
also

:::::::
initially

::::::::
compared

::
to

::::
both

::::
our

:::::::
approach

::::
and

:
a
:::::
more

::::::
typical

::::::::::::::
correlation-based

::::::::
selection

::::::::
procedure

::::
(not

:::::::::
presented

:::::
here).

:::
As

::::::
further

::::::::::
motivation

:::
for

:::
our

:::::::::
approach,

::
it

::
is

:::::
worth

::::::
noting

::::
that
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::::::
mRMR

::::
does

:::
not

:::::
offer

:
a
::::::::::
mechanism

::
to

:::::
adjust

:::
the

::::::
relative

:::::::::
weighting

::
of

::::::::
relevance

:::
and

:::::::::::
redundancy,

:::::
which

:::::
could

::
be

:::::::::
beneficial

::
in

:::::
certain

::::::
cases.

::::::::
Naturally,

::::::::
removing

:::
any

::::::
feature

::::::
during

:::::::
selection

::::::
entails

:
a
::::::::
trade-off:

:::
the

::::::
model

::::
loses

:::::
some

::::::
amount

::
of

:::::::::::
information,

::::
even

:
if
::::
that255

:::::::::
information

:::::::
appears

:::::::::
redundant

::
or

::::::::::
insignificant

:::
in

:::
the

::::::
training

:::::
data.

:::::
While

:::::::
feature

:::::::
selection

::
is
:::::
based

:::
on

::::::::
observed

::::::::::
correlations

:::
and

::::::::::
redundancy,

::
it
::

is
::::

still
:::::::
possible

::::
that

::
a
::::::::
removed

::::::
feature

:::::
could

::::::::
improve

:::::::::
predictions

:::
in

:::::
future

::::::::::::::::::::
scenarios—particularly

:::
for

:::::::::::::::
out-of-distribution

::::
data.

:::
To

:::::::
mitigate

:::
this

::::
risk,

:::
we

:::::::::
combined

::::::
feature

:::::::
selection

::::
and

::::::::::::
model-specific

:::::::::::::
hyperparameter

:::::::::::
optimization

::::
using

:::::::::::::
cross-validation

:::
on

:
a
:::::::
holdout

::::::::
validation

:::
set,

::::::::
allowing

::
the

:::::::
process

::
to

::::::
account

:::
for

::::::::::::
generalization

:::::::::::
performance.

:::::::::::
Additionally,

::
as

:
a
:::::::::
robustness

:::::
check,

:::
we

:::::::
repeated

:::
the

::::::
model

::::::
training

:::::
using

::
all

::::::::
available

::::
input

:::::::
features

::::
(i.e.,

:::::::
without

:::::::
applying

::::::
feature

:::::::::
selection),260

::
to

:::::::
compare

:::::::::::
performance

:::
and

::::::
ensure

:::
that

:::::::::
potentially

:::::::
valuable

::::::::::
information

::::
was

:::
not

::::::::::::
systematically

::::::::
excluded.

:

4.4 Machine learning methods

In this study, the downscaling task is performed using six different statistical methods. Unless mentioned otherwise, all methods

were implemented by the Python package scikit-learn version 1.1.1 (Pedregosa et al., 2011). The implementations feature a

varying number of hyperparameters, some of which were optimized (listed in Tables S2–S8), while others were either left to265

their default values or given some other constant value. If some non-default constant value was used, it is mentioned in this

section. For more detailed information on the effects of the hyperparameters, readers are referred to the documentation of the

methods.

Random Forest (RF) and XGBoost (further abbreviated XGB in figures) are based on different approaches to an ensemble of

decision trees. RF takes advantage of randomness to reduce the dependence between individual trees in the ensemble, thereby270

reducing the ensemble’s total variance (Breiman, 2001; Hastie et al., 2009). XGBoost, belonging to the class of gradient

boosting methods, generally builds smaller trees with less initial variance and aims to reduce the total bias of the ensemble by

sequentially adding trees that correct the errors made by the preceding trees (Friedman, 2001). Unlike the other five methods,

XGBoost was implemented by the standalone XGBoost library version 2.0.3 for Python (Chen and Guestrin, 2016). The

RandomForestRegressor function from scikit-learn was used for RF.275

Neural networks (NN), in their most basic form, are made of layers of interconnected nodes that each produce a linear

combination of the incoming signals, which is then transformed by a non-linear activation function (Alpaydin, 2014). The first

layer is composed of the inputs, while the last layer produces the output(s). The layers between them are referred to as hidden

layers. Such simple feedforward NNs are also known as multilayer perceptrons (MLP). The scikit-learn function MLPRegres-

sor was used as our NN, and two different versions were trained separately: one with one hidden layer (NN1), and another with280

two hidden layers (NN2). These model architectures were also considered distinct from the point of view of our comparison,

increasing the number of methods in the results section from six to seven. Before optimization, two hyperparameters were

given constant values based on preliminary tests: batch size was set to 32 and solver to "Adam".

Instead of fitting a complex non-linear function to the training data, the Support Vector Machine (SVM) transforms the data

into a higher dimension, where it then fits a linear model to it (Cortes and Vapnik, 1995). In practice, this computationally285

demanding coordinate transformation can be replaced by a kernel operation by choosing suitable basis functions (Alpaydin,
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2014). Additionally, if a data point’s distance to the fitted hyperplane were smaller than a specified amount, the point would be

ignored by the fit. This way, the model’s tolerance to minor errors can be controlled (Alpaydin, 2014). A function called SVR

from scikit-learn was used to implement the SVM model. Before optimization, the upper limit for solver iterations (max_iter)

was set to 10000, as some unsuitable hyperparameter combinations could cause the iteration to become stuck. Concurrently,290

the SVM’s cache size hyperparameter was increased from the default 200 MB to 1000 MB to avoid issues with insufficient

memory.

Gaussian Processes (GP) take a Bayesian approach to ML by conditioning a prior distribution, again represented by a kernel

function, on the training data. The mean of the resulting posterior process can then be used as a prediction (Rasmussen and

Williams, 2005). GaussianProcessRegressor from scikit-learn was used for this study. Most of its hyperparameters were set295

before the optimization, leaving alpha as the only optimizable parameter. The number of restarts was set to nine (meaning ten

runs in total), and normalize_y was set to True, as recommended for zero-mean, unit-variance priors in the documentation.

Additionally, copy_X_train was set to False, as the training inputs are not changed during the optimization and thus do not

need to be saved. An RBF (Radial Basis Function) kernel with length scale bounds (1e-10, 1e2) was selected as the covariance

function of the GP. The length scale of the kernel is optimized internally by GaussianProcessRegressor, and not as part of the300

hyperparameter optimization procedure.

The sixth method in the comparison was the Generalized Linear Model (GLM). It generalizes, and improves upon, linear

regression by allowing a non-Gaussian error distribution, and enabling a nonlinear relationship between the inputs and the target

through a so-called link function (McCullagh and Nelder, 1989). Nevertheless, GLM does not utilize interactions between

inputs unless they are explicitly defined, making it considerably simpler compared to the other methods. Because of its relative305

simplicity, GLM is not always considered a pure ML method. In scikit-learn, GLM is implemented by the TweedieRegressor

function.

4.5 Hyperparameter optimization

4.5.1 Optimization methods

Finding the hyperparameter values that result in a model configuration with the highest predictive performance can be seen as310

an optimization problem, where the objective function to be optimized takes the hyperparameters as inputs and produces as

output some measure of the goodness-of-fit of the corresponding ML model. Each evaluation of the objective therefore involves

training a
:
an

:
ML model and testing it against observations, which can make a brute force search through hyperparameter

combinations extremely slow. To minimize the number of evaluations, the Bayesian optimization (BO) approach aims to

approximate the expensive-to-evaluate objective through a surrogate function, such as a Gaussian Process (Brochu et al.,315

2010). The surrogate function is updated every time a new point is evaluated, and can be used to strategically select the next

point either in a region of uncertainty (favoring exploration) or closer to previously found extrema (favoring exploitation). An

acquisition function determines which points should be evaluated, and can often be tuned to balance the trade-off between

exploration and exploitation.
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In this study, a BO algorithm from the Python package bayesian-optimization
:::::::::::::::::::::::::
bayesian-optimization version 1.4.3320

was used to search for optimal values of the hyperparameters and feature selection thresholds (Nogueira, 2014). This imple-

mentation uses a GP as the surrogate function. The default kernel for the GP is the Matérn kernel, which has a parameter ν

controlling the smoothness of the sampled functions. Another tunable parameter of the optimizer is the noise level α of the GP

itself. For the acquisition function, the package’s default option is the Upper Confidence Bound (UCB) function

UCB(x) = µ(x)+κσ(x) (1)325

where κ controls how much weight should be given to the posterior’s standard deviation σ(·)
::::
σ(x)

:
relative to its mean

µ(·)
::::
µ(x)

::
at

:::::
some

::::
point

::
x
::
of

:::
the

:::::::::::::
hyperparameter

:::::
space. That is, a higher κ favors exploration, focusing the search on regions of

higher uncertainty. We have generally used the default settings for both the acquisition function and the GP, apart from some

customization that is described next.

Many of the hyperparameters in ML models are either integer-valued (e.g. number of estimators in an ensemble) or cat-330

egorical (e.g. choice of activation function in NNs), while the GP of the BO algorithm utilized in this study only supports

optimization of hyperparameters with continuous values. A common solution to this is to take the point suggested by the ac-

quisition function, and either round the hyperparameters to the closest integer or one-hot-encode the categorical ones before

evaluating the objective, depending on which one is needed. As demonstrated by Garrido-Merchán and Hernández-Lobato

(2020), this approach causes the GP to ignore that an interval around an integer becomes known when one point is evaluated335

in the interval, as all values in that interval are rounded to the same integer value. This can lead to unnecessary evaluations

and thus slow down the iteration. In the worst case, the algorithm can even become stuck on one point. Therefore, the authors

propose that the transformation (i.e., rounding and encoding) of the hyperparameters should be done inside the kernel function,

so that the acquisition function gains accurate information about the posterior when evaluating a new point. We have applied

this approach to the default Matérn kernel, keeping it otherwise unchanged.340

As the range of the hyperparameters can be wide and the general location of the optimum can be uncertain, it can be useful to

optimize some hyperparameters logarithmically. This is not supported by the BO package by default, but it is easy to implement

by transforming, at the beginning of the objective function, the hyperparameter x in question to 10x, effectively optimizing the

value of the exponent. This transformation was applied to many hyperparameters in almost all ML models, and is also indicated

differently in Tables S2–S8.345

In addition to BO, the optimization of the hyperparameters was also done using a randomized search (RS), which would

be expected to perform worse, as long as the BO iteration proceeds properly. As there are multiple parameters to tune for the

optimizer itself that can significantly affect its performance (Snoek et al., 2012), a suboptimal selection could potentially make

the BO method inferior to a purely random procedure. In our application, where a large number of models are optimized, it

would be highly impractical to inspect every model individually to make sure the BO iteration has succeeded, especially with350

the limited options for visualization available. Visualizing aspects of the optimization process can make it easier to verify that

the parameter space has been thoroughly explored and that fitting the GP has been successful. Due to these limitations, both
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BO and RS were used.
:::::
While

:::
the

::::::
models

::::
and

::::::
datasets

::
of
::::
this

:::::
study

::
are

::::::::
relatively

:::::
small

:::
and

::::
thus

::
a

:::::::
complex

::::::
method

::::
like

:::
BO

::::
may

:::
not

::::
lead

::
to

:::::
major

::::::::::::
computational

:::::
gains,

:::
the

:::::
same

:::::::::::
methodology

:::::
could

:::
be

::::::
applied

:::
in

:::::
future

::::::
studies

::::
with

:::::
more

::::::::::::::
computationally

:::::::
intensive

:::::::::
problems.

:::::
These

:::::
could

:::
be,

:::
for

::::::::
example,

:::::::::::
downscaling

::
of

::
a

:::::
longer

:::
or

:::::
higher

:::::::::
resolution

::::
time

::::::
series,

:::::::
training

:
a
::::::
single355

:::::
model

::::
on

::::
data

:::::
from

:
a
:::::
large

::::::
number

::
of

:::::
sites,

::
or

:::::
using

::::
large

:::::
deep

:::::::
learning

::::::
models.

:

4.5.2 Optimization procedure

The selected optimization method, either BO or RS, was executed for 300 iterations. In the case of BO, the first 30 points were

also sampled randomly to have sufficient data for the acquisition function to operate on. Another case, called "pure BO" in the

results section, was run without sampling these initial points. As for the parameters of the optimizer itself, the ν of the Matérn360

kernel was set to 1.5 (making the samples from the GP once differentiable), while the α of the GP was set to 1e-2 when the

model had categorical hyperparameters, and left to the default 1e-6 otherwise. Three options (1, 2.5 and 10) were tried for the

κ parameter of the acquisition function to account for different needs for exploration and exploitation.

In addition to these five cases (RS, pure BO, and BO with three different values of κ), two more cases were formed by not

optimizing the feature selection (FS) parameters as part of either RS or BO (with κ= 2.5). Hence, all 100 input variables were365

included in the models. These two cases are called "RS & no FS" and "No FS", respectively. It should be noted that without

feature selection, the only hyperparameter of the GP model is α, and therefore it would not make much sense to use BO to

optimize it, as it is also based on fitting a GP. In this case, RS was used instead, meaning that "RS & no FS" and "No FS" refer

to the same procedure when GP is concerned.

4.6 Evaluation of model performance370

To represent the results of the model evaluation, we have used five metrics, each with a slightly different purpose
:::::
assess

::::::
model

:::::::::::
performance,

:::
we

::::::::
employed

::::
five

:::::::::::::
complementary

:::::::::
evaluation

:::::::
metrics. In addition to the commonly used mean absolute error

(MAE), root mean squared error (RMSE)and Spearman’s rank ,
::::
and

::::::::
Pearson’s

:
correlation coefficient (r), two more metrics

were used :

ρ2(y, ŷ)= 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
375

sMAE(y, ŷ)=
MAE

ȳ
=

n−1
∑n

i=1 |yi − ŷi|
ȳ

.

These are, respectively,
::
r),

:::
we

::::
also

::::
used

:
the coefficient of determination (ρ2, often denoted by R2) and scaled

:
)
::::
and

:::
the

:::::
scaled MAE (sMAE), as presented by Mikkonen et al. (2020). In the equations

::::::
defined

:::
as:
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ρ2(y, ŷ)
::::::

= 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
::::::::::::::::::

(2)

sMAE(y, ŷ)
:::::::::

=
MAE
ȳ

=
1

ȳ
· 1
n

n∑
i=1

|yi − ŷi|
:::::::::::::::::::::::

(3)380

::::
Here, y stands for

::::::
denotes

:
the vector of observations and

:::::::
observed

::::::
values,

:
ŷ for the predictions, and the bar above signifies

meanover the vector’s elements. We have chosen not to use the common R2 notation for the
::
the

::::::::
predicted

::::::
values,

::::
and

::̄
y

::::
their

:::::
mean.

:::
The

:
coefficient of determinationto emphasize its differing behavior between linear and

:
,
:::
ρ2,

::::::::
measures

:::
the

:::::::::
proportion

:::
of

:::::::
variance

::
in

:::
the

::::::::::
observations

:::::::::
explained

::
by

:::
the

::::::
model.

::::::
While

::::
often

:::::::
referred

::
to

::
as

::::
R2,

:::
we

:::
use

::
ρ2

::
to
:::::::::
emphasize

::::
that

::
in

:
non-linear385

models . In unconstrained linear models,
:::
this

:::::
value

::::
can

::
be

::::::::
negative,

::::::
unlike

::
in

::::::::::::
unconstrained

:::::
linear

:::::::::
regression

::::::
where R2 is

equivalent to the square of the correlation coefficient, ensuring it is always positive. However, for other types of models that

can deviate substantially from
:::::::
bounded

:::::::
between

::
0
:::
and

::
1.

::
A

::::::
perfect

:::::
match

:::::::
between

::::::::::
predictions

:::
and

:::::::::::
observations

:::::
yields

::::::
ρ2 = 1.

:

:::
The

::::::
scaled

:::::
MAE

::::::::
(sMAE),

::::::
applied

::::
e.g.

::
in

:::::::::::::::::::
Mikkonen et al. (2020)

:
,
:::::::::
normalizes

:::::
MAE

:::
by the mean of the observations, the

coefficient of determination can take on negative values
:::::::
observed

::::::
values.

:::::
This

:::::
allows

:::
for

:::::
better

::::::::::::
comparability

::::::
across

:::::::
datasets390

::
of

:::::::
differing

::::::::::
magnitudes,

:::::
such

::
as

:::
the

::::::
particle

::::
size

::::::::::
distribution

::::::::
subranges

:::::::::
examined

::::
here.

:::
As

:::
the

:::::
mean

::::
PNC

::
is
::::::
strictly

::::::::
positive,

:::::
sMAE

:::::::
remains

:::::::::::
well-defined

:::::::::
throughout.

:

:::::
RMSE

::::
and

:::::
MAE

:::
are

:::::::::
expressed

::
in

:::
the

::::
same

:::::
units

::
as

:::
the

:::::
target

:::::::
variable

:::::::
(1/cm3

::
in

::::
this

:::::
case),

::::
with

::::::
RMSE

:::::::::
penalizing

:::::
large

:::::
errors

::::
more

:::::::
heavily.

::::::::
Pearson’s

::
r,

::
in

::::
turn,

:::::::::
quantifies

::
the

::::::::::
association

:::::::
between

::::::::
predicted

:::
and

::::::::
observed

::::::
values

:::
and

::
is

:::::::::
insensitive

::
to

::
the

:::::
scale

::
of

::::::
errors,

::::::
making

::
it

:::::
useful

:::
for

::::::::
assessing

::::
rank

::::::::::
consistency.

:
395

:::
For

:::::
model

::::::::
selection

::::::
during

:::::::::::::
hyperparameter

::::::::::
optimization, as shown in the equation above. Regardless of the model type, its

maximum value remains one, achieved when predictions perfectly match observations. Along with serving as a comparative

metric, ρ2 was also used to evaluate the goodness-of-fit of the models during optimization. That is, model architectures

maximizing ρ2 were selected
:::
was

:::::
used

::
as

:::
the

:::::::
primary

:::::::
criterion

::
of

:::::::::::::
goodness-of-fit.

Like400

::
In

:::::::
addition

::
to

::::::::
numerical

:::::::::
evaluation,

:::
we

::::::
applied

:
a
::::::::::::::
game-theoretical

:::::::::::
interpretation

:::::::
method,

::::::
SHAP

::::::::
(SHapley

:::::::
Additive

::::::::::::
exPlanations),

::
to

:::::
assess

::::
the

::::::::
influence

::
of

:::::::::
individual

:::::
input

:::::::
features

:::
on

::::::
model

::::::::::
predictions

:::::::::::::::::::::::::::::::::
(Lundberg and Lee, 2017; Molnar, 2022)

:
.
::::::
SHAP

::::::
assigns

:
a
:::::::::::

contribution
:::::
value

::
to

:::::
each

::::::
feature

:::
per

::::::::::
prediction,

::::::::
indicating

::::
the

::::::::
direction

:::
and

:::::::::
magnitude

:::
of

::
its

::::::
effect

::::::
relative

:::
to

::
the

:::::::
average

:::::::::
prediction.

:::::::
Positive

:::::::::
(negative)

:::::
SHAP

::::::
values

:::::
imply

:::
that

:::
the

::::::
feature

::::::::
increased

::::::::::
(decreased)

:::
the

:::::::
model’s

::::::
output.

:

:::
We

::::
used

::
the

::::::
shap

::::::
Python

:::::::
package

:::::::
(v0.40.0)

::::
with

:::
the

::::::::::
permutation

::::::::
explainer

::::::
applied

::
to

:::
the

:::
test

::::
data

:::::::::::::::::::::
(Lundberg and Lee, 2017)405

:
.
:::
The

::::::
results

::::
were

::::::::::
aggregated

:::::
across

:::
all

:::
test

::::
days

::::
and

:::::::::
visualized

:::::
using

::::::::
beeswarm

:::::
plots,

::::::
which

::::
show

::::
both

::::
the

:::::::::
distribution

::::
and

::::::
strength

:::
of

::::::
feature

::::::
effects.

::
In

::::
these

:::::
plots,

::
a

::::::::
consistent

:::::::
increase

:::
(or

::::::::
decrease)

::
in

:::::
SHAP

::::::
values

::::
with

:::::
rising

::::::
feature

:::::
values

::::::::
suggests

:
a
:::::::
positive

::
(or

::::::::
negative)

::::::::::
association

::::
with

:::
the

:::::
target

:::::::
variable.

:
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:::
The

::::::
SHAP

:::::::
analysis

:::::
helps

::::::
identify

::::::
which

::::
input

::::::::
variables

:::
the

::::::
models

:::::::
depend

::
on

:::::
most

:::
and

:::::::
whether

:::::
these

:::::::::::
dependencies

:::::
align

::::
with

::::::
known

::::::::::
atmospheric

:::::::::
processes.

::::
This

:::::::::::::
interpretability

::
is
:::::::::
especially

:::::::
valuable

::::::
when

:::::::::
evaluating

::::::::
black-box

:::::::
models

::::
such

:::
as410

:::::
neural

::::::::
networks

::
or

::::::::
ensemble

::::::::
methods.

5
::::::
Results

::::
and

:::::::::
discussion

5.1
::::::::::
Comparison

::
of

::::
ML

::::::
models

::
In

::::::
Figure

::
3,

:::
we

::::::
present

::
a
::::::::::
comparison

::
of

:::
all

:::::
seven

:::::::::::
downscaling

:::::::
methods

::::::
across

:::
the

:::::
eight

::::::::
datasets.

:::
The

:::::::::::
performance

:::
of

:::
the

:::::::
methods

:::::
varied

:::::::::
depending

:::
on

:::
the

:::::::
dataset:

::
all

::::::::
methods

::::
were

::::::
among

:::
the

::::
best

::
in
:::

at
::::
least

:::
one

:::
of

:::
the

:::::::
datasets,

:::
but

:::::
most

::
of

:::::
them415

:::
also

:::::
failed

:::
in

::::
some

::::::
cases,

:::::::
yielding

:
ρ2, RMSE penalizes larger deviations relatively more compared to smaller ones. RMSE,

however, might be easier to interpret, as it has the units of the variable being considered - in this case, 1/cm3. MAE similarly

has units of 1/cm3, but is less sensitive to outliers. To make it easier to compare the performance of models across datasets

with different scales, such as s
:::::
close

:::
to,

::
or

::::
even

:::
less

:::::
than,

::::
zero.

:::::
Only

:::
RF

:::
and

:::
GP

:::::::::
showcased

::::::
stable

:::::::::::
performance,

::
as

::::
they

:::::
never

::::::
resulted

::
in
::
a
::
ρ2

::::
less

::::
than

:::
0.1,

::::
and

::::
were

:::::
never

::::::
among

:::
the

:::::
worst

::::::::::
performing

:::::::
methods.

:::
On

:::::::
average,

:::::::::
XGBoost

:::
had

:::
the

::::::
highest

:::
ρ2420

::::::
(0.263),

::::::::
followed

:::
by

::::
SVM

:::::::
(0.250).

:::::::::
XGBoost

:::
was

::::
also

:::
the

::::
best

::::::
method

:::
for

::::
four

:::
out

:::
of the modes of the size distribution, we

have scaled MAE by the mean of the observations and included the resulting sMAE as a performance metric. In the case of a

long-term time series of PNC,
::::
eight

:::::::
datasets.

::
It

::::
only

:::::
failed

::
in

:::
the

:::::::::
nucleation

::::::
dataset

::
of

::::::::
Helsinki,

::::::
where

:
it
::::
had

:
a
:::::
lower

:::
ρ2

::::
than

:::
any

:::::
other

:::::
model

::::
(see

::::
also

:::::
Table

::
S4

:::
for

:::::::::::::::
hyperparameters,

:::::
some

::
of

:::::
which

:::
are

::::::::
atypical).

:::::::::
However,

:::
this

::::::
dataset

::::::
turned

:::
out

::
to

:::
be

::::::
difficult

:::
for

:::
all

:::::::
methods,

::
as
:::::
none

::
of

::::
them

:::::
were

::::
able

::
to

:::::
reach

:
a
::
ρ2

:::::
above

:::::
0.15.

:::::::::
Generally,

:::
the

:::::::::
differences

:::::::
between

:::::::
methods

:::::
were425

::::::
smaller

::::
than

:::
the

:::::::::
differences

::::::::
between

:::::::
datasets,

::::
and

::
in

:::::
many

:::::
cases,

:::::::
multiple

::::::::
methods

::::
were

::::::
nearly

:::::
equal

::
in

:::::::::::
performance.

:::::
Only

::::
some

:::::::
datasets

::::
had

:::
one

:::::::
method

::::
that

::::::
clearly

:::::::::::
outperformed

::::
the

::::::
others;

:::
this

::::
was

::::::::
XGBoost

:::
in

:::
the

:::::::::
nucleation

:::
and

::::::::::::
accumulation

::::::
datasets

:::
of

:::::::
Melpitz

:::
and

:::
in

:::
the

::::::
Aitken

::::::
dataset

:::
of

::::::::
Helsinki,

:::
and

:::::
GLM

:::
in

:::
the

:::::::::::
accumulation

:::::::
dataset

::
of

::::::::
Leipzig.

:::::::::::
Additionally,

::::::::
XGBoost

:::
and

:::::
SVM

::::
were

:::
the

::::
two

::::
best

:::::::
methods

:::
for

:::
all

::::::::
subranges

:::::
from

:::::::
Melpitz,

:::::::::
indicating

:::::
some

:::::::::::
commonality

:::::::
between

:::::
these

:::::::
datasets.430

::::::
Overall,

:::::
other

::::
ML

:::::::
methods

::::
have

:
a
:::::
slight

:::::::::
advantage

::::
over

:::::
GLM,

:::
as

::
its

:::::::
average

::
ρ2

::
is

:::
the

:::::
lowest

::::::
across

:::::::
datasets

:::::::
(0.176).

:::::
There

::
is,

::::::::
however,

:::::
strong

::::::::
variance

::
in

::
its

::::::::::::
performance,

::
as

::
it

::
is

::::::
among

:::
the

::::
best

:::::::
methods

::
in

:::::
both

::::::::
Leipzig’s

:::::::::::
accumulation

::::::
dataset

::::
and

::::::::
Helsinki’s

:::::::::
nucleation

:::::::
dataset,

:::
but

::::::
among

:::
the

:::::
worst

::
in

:::
the

:::
six

:::::::::
remaining

:::::::
datasets.

:::
In

::::
three

::
of

:::
the

:::
six

::::::::
datasets,

::
it

::
is

::::::
strictly

:::
the

:::::::
weakest,

:::
and

:::
in

:::
the

::::
other

:::::
three,

:::::
only

:::
two

::::::::
methods

:::::
(NN2

:::
and

::::::
SVM)

:::::::
perform

:::::::
slightly

:::::
worse.

:::::::::::
Particularly, the mean is always

strictly positive, so the problems of dividing by zero or changing the sign are avoided.
::::::::
previously

:::::::::
mentioned

:::
RF

:::
and

:::
GP

:::::
were435

::::
never

::::::::::::
outperformed

::
by

::::::
GLM,

:::::
except

:::
in

::::::::
Leipzig’s

:::::::::::
accumulation

::::::
dataset.

:::::::::
Moreover,

:::::
GLM

::::::
results

::
in

:::::::
negative

:::
ρ2

:::::::
(-0.126)

::
in

:::
the

:::::
Aitken

::::::
dataset

:::
of

:::::::
Helsinki,

::
a
::::::
drastic

::::::::
difference

::
to

:::
all

::::
other

::::::::
methods.

:

In addition to analyzing the predictive performance of the final models,

:::
For

:::
RF

:::
and

:::
the

::::
two

:::::
neural

:::::::::
networks,

:
a
:::::
mean

::
ρ2

:::::
from

::
50

::::::::
different

:::::::::::
initializations

::
is

::::::
shown

::
in

::::
both

:::
the

::::
table

::::
and

:::
the

:::::
graph

::
in

:::
Fig.

::
3.

::::
The

:::::::::
magnitude

::
of

:::
the

:::
2σ

:::::::::
confidence

::::::::
intervals,

:::::
given

::
in
:::::::::::

parentheses,
::::::::
indicates

:::
that

::::::::::
randomness

::::
had

:
a
::::::::
relatively

::::::
minor440

:::::
effect

::
on

:::
the

:::::::::::
performance

::
of

:::::
these

::::::
models,

::::::
except

:::
for

:::::
those

::::::
models

::::
that

:::::::::
performed

::::::
poorly

::
to

:::::
begin

::::
with.

::
It
::
is

::::
also

:::::::::
interesting
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Figure 3.
:::

Test
::
set

::::::::::
performances

::::
(ρ2)

::
of

:::
the

::::::::
optimized

:::::
models

:::
for

::
all

::::
eight

:::::::
datasets.

:::
For

:::
the

:::::::
methods

:::
that

:::
are

::::::
affected

::
by

::::::::::
randomness,

:::
the

::
2σ

::::::::
confidence

:::::::
intervals

::::::::
computed

::::
from

::
50

::::::
different

:::::::::::
initializations

::
are

::::
also

:::::
shown

::
in

:::
the

::::
table.

:::
The

:::::::::
background

:::::
colors

::
in

:::
the

::::
table

:::::::
represent

::
the

::::::::::
optimization

::::::
method

::::
used.

::::
The

::::::
methods

::::
and

::
the

:::::::::::
abbreviations

::
are

::::::::
explained

::
in

:::::::
Sections

::::
4.5.1

:::
and

:::::
4.5.2.

::
In

:::
the

::::
cases

:::::
where

:::::::
multiple

:::::::::
optimization

:::::::
methods

:::::::
produced

:::
the

::::
exact

:::::
same

:::::
result,

::
the

:::::::::
background

::
is
:::
left

:::::
blank.

:::::
These

:::::
cases

::::
were

::::::
Helsinki

:::
Ait

:::::
(Pure

:::
BO,

::::::
κ= 1,

:::
and

::::::
κ= 2.5)

:::
and

:::::::
Helsinki

:::
Acc

::::::::::::::::::
(κ= 1,κ= 2.5,κ= 10,

:::
and

::::
RS).

:::
The

::::::::::
downscaling

:::::::
method(s)

:::
that

:::::::
achieved

:::
the

:::::
highest

:::
ρ2

::
for

:
a
:::::
given

:::::
dataset

:::
are

:::::
shown

::
in

:::
bold

:::::::::
(differences

::
of

:::
less

::::
than

::::
0.025

:::
are

::::::::::
disregarded).

::
to

:::::::
compare

:::
the

:::
two

:::::::::
variations

::
of

:::
the

::::::
neural

:::::::
network.

::
In

:::
all

:::::::
datasets

::::
from

::::::::
Helsinki,

::::::
adding

:::::::
another

::::
layer

::
to

:::
the

::::::
neural

:::::::
network

:::
was

:::::::::
beneficial.

::::
The

:::::::
simpler

::::::::
one-layer

:::::::
network

:::::::
yielded

:::::
better

::::::
results

:::
in

::
all

:::::
other

::::::::
datasets.

::::
This

:::::
could

:::
be

::::::
linked

::
to

:
a game

theoretical method known as SHAP (SHapley Additive exPlanations) was applied to study which input variables are used

by the models, and how they generally affect the predictions. Details on the theoretical basis of the method can be found in445

Lundberg and Lee (2017) and Molnar (2022). SHAP is used as an efficient way to compute Shapley values, which give an

indication of the magnitude and sign of each variable’s effect on the prediction (Shapley, 1953). The Shapley values of each

prediction (in this case, each day) can be analyzed individually to study particularly interesting data points, or aggregated to

see what kind of effects the variables have on average. For an individual prediction, a positive (negative ) Shapley value of

a feature implies that the feature’s current value has led the model to predict an increase (decrease) in the target variable,450

relative to the average prediction. In this study, the aggregated values were considered using so-called beeswarm plots that
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additionally show the individual instances to give a better idea of the distribution of the feature effects. In a beeswarm plot, if

the Shapley values generally become larger (smaller)
:::::
higher

:::::::::
complexity

:::
in

::::::::
modeling

:::
the

::::::
particle

:::::::
number

::::
size

::::::::::
distribution

::
in

:::::::
Helsinki

::::::::
compared

::
to

:::
the

:::::
other

::::
sites.

::::
This

::::::::::
complexity

::::
may

::::
also

::
be

:::::::
reflected

:::
in

::
the

::::::::
qualities

::
of

:::
the

::::::::
optimized

:::::::
models:

:::
the

:::::
three

:::
best

:::::::
models

::::::::
developed

:::
for

:::::::::
Helsinki’s

:::::::::
subranges

:::::
utilize

:::
all

::::
100

:::::::
features,

:::::
while

::
at

::::
least

:::::
some

:::::::
amount

::
of

::::::
feature

::::::::
selection

::::
was455

::::::::
beneficial

:::
for

::
all

:::
of

:::
the

::::
other

::::::::
datasets’

::::
best

::::::
models

::::
(see

:::::::
Section

:::
4.3

:::
for

:
a
::::::::::
description

::
of

::::::
feature

:::::::::
selection,

:::
and

::::::
Tables

::::::
S2–S8

::
for

:::::::::::
optimization

:::::::
results).

::::::::::
Conversely,

::::
the

:::::::::::
accumulation

::::::::
subrange

:::
of

::::::
Leipzig

::::::
seems

::
to
:::::

have
::::
been

::
a
::::
less

:::::::
complex

::::::
target

:::
for

:::::::::::
downscaling, as the feature value is increased, it would indicate a positive (negative)dependence between the feature and the

target. The Python package shap version 0.40.0 was used to implement the method (Lundberg and Lee, 2017). To compute the

Shapley values, the explainer function using the permutation algorithm was applied to the test set
::::::
optimal

:::::::
number

::
of

:::::::
features460

::
for

::
it
::::
was

:::::
lower

::::
than

:::
for

:::::
other

::::::::
datasets,

::::
both

:::::
when

::::::::::
considering

:::
the

::::
best

:::::::
method

::::::
(GLM,

::
19

::::::::
features)

::::
and

:::
the

:::::::
average

::
of

:::
all

:::::::
methods

:::
(28

::::::::
features).

::
In

:::
this

:::::
case,

::::::::::
interactions

:::::::
between

::::::
features

:::::
were

:::
not

::::::
needed

:::::
either,

:::
as

::::
GLM

:::::
does

:::
not

:::::
utilize

:::::
those,

::::::
unlike

::
the

:::::
other

::::::::
methods.

::
It

::
is

::
of

::::::
course

:::::::
possible

::::
that

::::::
having

:::::
access

::
to
:::::
more

:::::::
training

::::
data

::
or

:::
an

::::
even

:::::
wider

:::::
range

::
of

:::::
input

::::::::
variables

:::::
would

:::::
reveal

:::::
some

::::::::::
interactions

::::
that

::::
were

:::
not

::::::
found

::
by

::::
our

::::::
current

:::::::::
procedure.

::
In

::::
that

:::::
sense,

:::
the

:::::::::
simplicity

::
of

:::
the

::::
best

::::::
model

:::::
might

::::
only

:::::::
indicate

:::
that

::::::::::
something,

:::
like

:::::::
outliers

::
in

:::
the

:::::::
training

::::
data,

::::::::
confused

:::
the

::::
more

::::::::
complex

:::::::
methods

:::::
while

:::
not

::::::::
affecting465

::
the

:::::
linear

::::::
model

::
to

:::
the

:::::
same

:::::
extent.

6 Results and discussion

5.1 Downscaling performance

Figure 4 shows the PNC results of the most successful downscaling methods for
::
the

:::
test

::::::
subset

::::::
(2018)

::
of

:
each of the eight

datasets. In all cases, a clear improvement is observed compared to the original modes
::::::::
subranges

:
simulated by ECHAM-470

HAMMOZ, both visually and based on the five metrics shown in the figures. XGBoost achieved the highest ρ2 for all modes

::::::::
subranges

:
from Melpitz and the Aitken mode

:::::::
subrange

:
from Helsinki. Gaussian process regression resulted in the best model

for Leipzig’s Aitken mode
:::::::
subrange and Helsinki’s nucleation mode

:::::::
subrange, support vector machine for Helsinki’s accumu-

lation mode
::::::::
subrange, and the generalized linear model for Leipzig’s accumulation mode

:::::::
subrange. Generally, the downscaling

of the accumulation mode
:::::::
subrange

:
was most successful, whereas the nucleation mode

:::::::
subrange

:
seems to have been more475

difficult to downscale, resulting in relatively low ρ2s in both Helsinki and Melpitz. All three downscaled accumulation modes

::::::::
subranges

:
have higher ρ2s, correlations, and sMAEs than any of the other datasets, even though many peaks and troughs are

still estimated incorrectly. The downscaling model trained on the accumulation mode
:::::::
subrange

:
of Melpitz performs best out of

the three, producing a ρ2 of 0.56 and sMAE of 0.24.

The original ECHAM-simulated nucleation modes
::::::::
subranges differ significantly from the measured ones, likely contributing480

to the relatively poor performance of the downscaling models for that mode
:::::::
subrange. In Melpitz, the ρ2 of the original is lowest

among all modes
::::::::
subranges

:
(-14.53), and the sMAE is highest (3.36). The strongly negative ρ2 indicates that the large-scale

approximation of the size distribution in ECHAM is a poor representation of the nucleation mode
::::::::
subrange at this site. In

wintertime, the simulation represents the measurements reasonably well, but a strong overestimation is apparent from spring
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Figure 4. Daily average particle number concentrations per mode
::::::
subrange

:
in 2018

:::
(test

:::
set), for all three sites. Measurements are shown

in blue, ECHAM-HAMMOZ outputs in green, and the results of downscaling by the best model for each dataset
::::
(i.e.,

::
the

::::::
bolded

::::
cells in

orange
:::::
Figure

::
3)

::
in

:::::
purple. Goodness-of-fit metrics are reported in the top left corners of each figure, first for the downscaling and then, in

parentheses, for ECHAM-HAMMOZ.

to autumn. Similarly in Helsinki, the correlation between the simulated and measured nucleation modes
::::::::
subranges is almost485

nonexistent (0.03) before downscaling. The simulation is unable to predict the high peaks in number concentration during

spring and early summer, but instead predicts peaks for autumn, when the measured concentrations are relatively low. By

downscaling, these differences can be greatly reduced: sMAE drops from 1.01 to 0.56 in Helsinki and from 3.36 to 0.74 in

Melpitz, and the previously negligible correlation in Helsinki increases to 0.38. Thus, even though the performance metrics

of the downscaled nucleation mode
::::::::
subrange are worse even when compared to the non-downscaled ECHAM-simulation of490

the accumulation mode
::::::::
subrange in Melpitz, the improvements are significant considering the starting point. Additionally, it

should be noted that arithmetic means instead of medians were used in the daily averaging to preserve the highly variable
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nature of the data. Using medians would smooth the time series, which, while possibly improving downscaling results, would

also depict the nucleation mode
:::::::
subrange

:
less realistically.

:::
The

::::::::::::
representation

::
of

::::
new

:::::::
particle

::::::::
formation

::::
and

::::::::::::::
nucleation–sized

:::::::
particles

::
is,

:::
on

:::::
many

:::::::::
occasions,

:::
not

::::::::
sufficient

::
in

::::::
global495

::::::
climate

::::::
models

:::::::::::::::::::::
(Williamson et al., 2019).

::::
This

::::
can

::
be

:::
due

:::
to,

:::
for

:::::::
instance,

::::::
errors

::
in

:::::::::
estimating

::::::::
nucleation

:::::
rates.

:::
As

:
a
:::::
study

:::
by

::::::::::::::::
Laakso et al. (2022)

::::::
shows,

:::::::::::::::
ECHAM-SALSA

::::
tends

::
to

:::::
favor

::::::::::
partitioning

::
of

::::::
sulfuric

::::
acid

::
to

:::
the

:::::::
particle

:::::
phase

:::
due

::
to

:::::::::
nucleation

:::
over

::::::::::::
condensation,

:::::
which

::::
may

::::
lead

::
to

::::::::::::
overestimation

::
of

:::::::::
nucleation

:::::::
subrange

::::::::
particles.

::::::::::::::::::
Kokkola et al. (2018)

::::::::
compared

::::::::::::::
ECHAM-SALSA

::::::
number

::::
size

::::::::::
distributions

::
to
::::::::::
observation

:::::
data,

:::
and

::::
their

::::::
results

:::::::
revealed

::::
that

::
at

:::::
some

:::::::::::
measurement

:::::::
stations,

:::::::::::::::
ECHAM-SALSA

:::::::::::
overestimates

:::
the

::::::::
nucleation

:::::
mode

:::::::
number

::::::::::::
concentrations.

:::::::::::
Furthermore,

:::::::::::::::
ECHAM-SALSA

::::
does

:::
not

:::::
model

::::
new

::::::
particle

::::::::
formation500

:::
due

::
to

:::::::
nitrates,

:::::
which

::::
may

:::::
cause

:::::::::
differences

:::::::
between

::::::::
modelled

:::
and

:::::::::
measured

::::::::
nucleation

::::::::
subrange

:::::::
number

::::::::::::
concentrations.

::::
The

:::::::::::
representation

::
of

::::::::::::::
nucleation-sized

:::::::
aerosols

:::::
could

::
be

::::::::
enhanced

::
by

::::::::
including

:
a
::::::::
volatility

::::
basis

:::
set

::::::
(VBS)

::::::
scheme

::::::::::::::::::
(Donahue et al., 2011)

:
,
:::::
which

:::
can

:::::::
improve

:::
the

::::::::::::
representation

::
of

:::::::::
secondary

::::::
organic

::::::::
aerosols.

::
In

:::::::
addition

::
to

:::::::::
limitations

:::
in

::::::::::
representing

:::
the

:::::::::
nucleation

:::::
mode,

:::::
other

:::::
input

:::::::
variables

::::
can

::::
also

:::::::::
contribute

::
to

:::::::::
challenges

::
in
::::::::::::

downscaling.
:::
The

::::::
coarse

::::::
spatial

:::::::::
resolution

::
of

:::::::::::
global-scale

::::::
models

:::::::
naturally

:::::
limits

:::::
their

:::::
ability

::
to

:::::::::
accurately

::::::
capture

:::::::::
processes

::::
other

::::
than

:::
just

::::
new

:::::::
particle

:::::::::
formation.505

A strong variability can be seen in both the simulated and measured Aitken modes
::::::::
subranges

:
at the German sites (Melpitz

and Leipzig), although the peaks and troughs match poorly. In winter, the simulated concentrations decrease more than they

should. The downscaling methods are generally able to bring the concentrations to a more realistic level, but they fail to

capture the true variability in the data. Compared to the modes
::::::::
subranges simulated by ECHAM-HAMMOZ, the downscaled

concentrations no longer fluctuate as rapidly, but instead seem to more carefully follow an average level between the peaks and510

troughs of the measured time series. This can be acceptable when the main focus of a study is on long-term averages, and not

on e.g. maximum daily exposures. Regardless, an improvement compared to the original is seen in all reported metrics. For the

Aitken mode
:::::::
subrange from Helsinki, the original simulated concentration is mostly too low, and has a less drastic summertime

variability compared to the German sites. The downscaling by XGBoost fixes the underestimation and brings the variability

closer to that of the measurements. Based on the metrics, the results are quite similar to the other Aitken mode
:::::::
subrange515

datasets. The increase in the correlation coefficient from 0.12 to 0.53 is largest out of all datasets, and the improvements in

sMAE and ρ2 are also among the largest.

To summarize, downscaling was generally more effective for larger particle sizes than for smaller ones, and for the rural

Melpitz site compared to the urban sites. The eight datasets were further examined through statistical tests comparing the means

of the training, validation and testing subsets of the measured PNC
:::
(not

::::::
shown). These tests found significant differences520

between the years for most modes
::::::::
subranges

:
and sites, amounting to five out of eight cases in total. If the subsets differ

substantially, ML models may struggle to generalize from one dataset to another. To potentially reduce the variation between

subsets, the temporal dimension of the data could be expanded beyond three years, thereby enlarging each subset. Training the

models with more than one year of data, in particular, could enhance generalization performance. Therefore, we recommend

collecting more data for future studies, if possible.525

5.2 Comparison of ML models
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In Figure 3, a comparison of all seven downscaling methods across the eight datasets can be seen. The performance of the

methods varied depending on the dataset: all methods were among the best in at least one of the datasets, but most of them

also failed in some cases, yielding ρ2s close to , or even less than, zero. Only RF and GP showcased stable performance, as

they never resulted in a ρ2 less than 0.1, and were never among the worst performing methods. On average, XGBoost had the530

highest ρ2 (0.263) , followed by SVM (0.250)
:::
We

:::
can

:::::::
compare

:::
our

::::::
results

::
to

:::::::
previous

::::::
studies

::
to

:::::
place

::::
them

::
in

:
a
:::::::
broader

:::::::
context,

:::::::
although

:::
no

::::::
directly

::::::::::
comparable

::::::
studies

:::::
exist.

:::
For

::::::::
example,

:::::::::::::::::::
Ivatt and Evans (2020)

::::::
trained

::
an

::::::::
XGBoost

::::::
model

::
to

:::::::
improve

:::
the

:::::
ozone

:::::::::
predictions

:::
of

:
a
:::::::::
chemistry

:::::::
transport

:::::::
model,

:::
and

::::::::
achieved

::
an

::::::::::::
improvement

::
in

::::::::
Pearson’s

:
r

::
of

::::
0.36

:::::
(from

::::
0.48

::
to
::::::

0.84).

::::
This

:
is
:::::::
similar,

::::::
though

::
in

::::
most

:::::
cases

::::::
slighty

::::::
higher,

::
to

::
the

:::::::::::
improvement

::::::::
achieved

::
by

:::
our

:::::::
models.

::
In

:::::::
addition

::
to

::
a

:::::::
different

:::::
target

:::::::
variable,

::::
their

::::::
higher

:::
time

:::::::::
resolution

:::
and

:::::
lower

::::::
spatial

::::::::
resolution

::::::
(mean

::
of

:::::::
multiple

::::
sites)

::::::::::
complicate

::
the

::::::::::
comparison. XGBoost535

was also the best method for four out of the eight datasets. It only failed in the nucleation dataset of Helsinki, where it had a

lower
::::
most

:::::::::
successful

:::::
model

::
in

:::
the

:::::
study

:::
by

::::::::::::::::
Venuta et al. (2024),

::::::
which

::::::::
produced

::::::::::::
spatiotemporal

::::
UFP

::::::::::
predictions

:::::::::
(logarithm

::
of

:::::
PNC)

::::
with

::
a

::::
daily

::::
time

::::::::::
resolution.

:::::
Their ρ2 than any other model. However, this dataset turned out to be difficult for all

methods, as none of them were able to reach a ρ2 above 0.15. Generally, the differences between methods were smaller than

the differences between datasets, and in many cases, multiple methods were nearly equal in performance. Only some datasets540

had one method that clearly outperformed the others; this was XGBoost in the nucleation and accumulation datasets of Melpitz

and in the Aitken dataset of Helsinki, and GLM in the accumulation dataset of Leipzig
::
of

:::::
about

::::
0.72

::::
was

::::::::::
significantly

::::::
higher

:::
than

:::::
ours,

::::::
though

::
a

:::::
direct

::::::::::
comparison

::
is

:::::
again

::::::
difficult

::::
due

::
to

:::
the

:::::::::
smoothing

:::::
effect

:::
of

:::
the

:::::::::::
log-transform

:::::::::
combined

::::
with

::::
data

:::::::
trimming

::::
they

:::::::::
performed. Additionally, XGBoost and SVM were the two best methods for all modes from Melpitz, indicating

some commonality between these datasets.
:::
they

::::
used

::::::::::::
observational

:::::::
weather

::::
data

::::::
instead

:::
of

::::::
climate

::::::::::
simulations

::
to

:::::
train

:::
the545

::::::
models.

:::
As

::::
our

::::::
models

:::
can

:::
in

:::::
theory

:::
be

::::
used

:::
to

::::::
predict

:::
far

::::
into

:::
the

:::::
future

::::
and

:::::::
produce

::::::::::::::
non-transformed

::::::::
estimates

::
of

:::::
UFP

::::::::::::
concentrations,

:::
the

:::::::::
seemingly

:::::
lower

::::::
metrics

:::
are

::::
still

::::::::::
competitive,

:::::::::
especially

::::::::::
considering

:::
the

:::::::::
substantial

:::::::::::
improvement

::::
over

:::
the

:::::::
ECHAM

::::::::::
predictions.

:

Overall, other ML methods have a slight advantage over GLM, as its average ρ2 is the lowest across datasets (0.176). There

is, however, strong variance in its performance, as it is among the best methods in both Leipzig’s accumulation dataset and550

Helsinki’s nucleation dataset, but among the worst in the six remaining datasets. In three of the six datasets, it is strictly

the weakest, and in the other three, only two methods (NN2 and SVM) perform slightly worse. Particularly, the previously

mentioned RF and GP were never outperformed by GLM, except in Leipzig’s accumulation dataset. Moreover, GLM results

in negative ρ2 (-0.126) in the Aitken dataset of Helsinki, a drastic difference to all other methods.

5.2
::::

Notes
:::
on

:::::::::::
optimization555

Test set performances (ρ2) of the optimized models for all eight datasets. For the methods that are affected by randomness, the

2σ confidence intervals computed from 50 different initializations are also shown in the table. The background colors in the

table represent the optimization method used. The methods and the abbreviations are explained in Sections 4.5.1 and 4.5.2. In

the cases where multiple optimization methods produced the exact same result, the background is left blank. These cases were
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Helsinki Ait (Pure BO, κ= 1, and κ= 2.5) and Helsinki Acc (κ= 1,κ= 2.5,κ= 10, and RS). The downscaling method(s)560

that achieved the highest ρ2 for a given dataset are shown in bold (differences of less than 0.025 are disregarded).

For RF and the two neural networks, a mean
::
In

:::
the

:::::
table

::
of

::::::
Figure

::
3,
::::

the
::::::
method

:::
of

:::::::::::::
hyperparameter

:::::::::::
optimization

::::
that

::::::
resulted

::
in
:::
the

::::
best

::::::
model

::
is

:::::::::
represented

:::
by

:::
the

::::
color

:::
of

:::
the

::::
cell’s

:::::::::::
background.

::
In

:::
the

:::::
cases

:::::
where

:::
the

::::::::::
background

::
of

:::
the

:::::
table

:
is
::::::
white,

:::::::
multiple

:::::::::::
optimization

:::::::
methods

::::::
yielded

:::
the

:::::
exact

:::::
same

:::::::::::::
hyperparameter

:::::
values

::::
and

:::::
hence

::::
also

:::
ρ2.

::::
This

:::::
means

::::
that

:::
the

:::::::::::::
hyperparameters

::::::::
resulting

::
in

:::
the

::::::
highest

:
ρ2 from 50 different initializations is shown in both the table and the graph in Fig. 3.565

The magnitude of
:::
were

::::::::::
discovered

:::::
either

:::::
during

:::
the

:::::
initial

:::::::
random

::::
steps

::
of

:::
the

::::::::
iterations

::::::
(which

:::::
were

:::
now

:::::::::::
deterministic

::::
due

::
to

the 2σ confidence intervals, given in parentheses, indicates that randomness had a relatively minor effect on the performance of

these models, except for those models that performed poorly to begin with. It is also interesting to compare the two variations

of the neural network. In all datasets from Helsinki, adding another layer to the neural network was beneficial. The simpler

one-layer network yielded better results in all other datasets. This could be linked to a higher complexity in modeling the570

particle number size distribution in Helsinki compared to the other sites. This complexity may also be reflected in the qualities

of the optimized models: the three best models developed for Helsinki’s modes utilize all 100 features, while at least some

amount of feature selection was beneficial for all of the other datasets’ best models (see Tables S2–S8). Conversely, the

accumulation mode of Leipzig seems to have been a less complex target for downscaling, as the optimal numberof features for

it was lower than for other datasets, both when considering the best method (GLM, 19 features)and the average of all methods575

(28 features). In this case, interactions between features were not needed either, as GLM does not utilize those, unlike the other

methods. It is of course possible that having access to more training data or an even wider range of input variables would reveal

some interactions that were not found by our current procedure. In that sense, the simplicity of the best model might only

indicate that something, like outliers in the training data, confused the more complex methods while not affecting the linear

model to the same extent.
::::
fixed

::::
seed

::::::::
number),

::
or

:::
by

:::
the

::::::::::
convergence

:::
of

:::
the

:::
BO

::::::::
algorithm

::
to
:::
the

:::::
same

:::::::::::::
hyperparameter

::::::
values580

:::::
during

:::
the

:::::::::::
non-random

:::::
steps.

:::
The

:::::
latter

::::
was

:::
the

::::
case

:::
for

:::
the

:::
RF

:::::
model

::::::
trained

:::
on

:::
the

::::::
Aitken

::::
data

::::
from

::::::::
Helsinki.

::::
This

::::::
makes

::::
sense

:::::
given

::::
that

:::
one

:::
of

:::
the

::::::
equally

::::::::::
performing

::::::::::
optimization

::::::::
methods

:::
was

:::::
"Pure

:::::
BO",

::::::
which

:::::
didn’t

::::::
utilize

::::::
random

:::::::::
iterations.

:::
For

:::
the

::::
NN2

::::::
model

::::::
trained

::
on

:::::::::
Helsinki’s

:::::::::::
accumulation

:::::::::
subrange,

::
on

:::
the

:::::
other

:::::
hand,

:::
the

:::::::
optimum

::::
was

:::::
found

:::::
from

::::::
among

:::
the

::::::
initially

:::::::
sampled

::::::
points

::
in

::
all

::::
four

:::::::::
identically

::::::::::
performing

:::::
cases.

5.3 Notes on optimization585

In the table of Figure 3, the method of hyperparameter optimization that resulted in the best model is represented by the color

of the cell’s background. It can be seen that for most models, the BO methods were superior to RS. However, it is surprising

that in some cases randomized search (RS) led to higher ρ2. The number of iterations for both approaches was the same, and

BO searches the parameter space more methodically, so it should have been able to find a better combination of hyperparameter

values. In these situations, it is possible that the hyperparameters don’t have a clear optimum, and therefore a reasonably good590

combination can be found randomly. Then, RS could work slightly better than BO purely by chance. Another possibility is that

the few alternatives which were tried for the parameters of the optimizer itself (e.g. kappa, alpha, and nu) were suboptimal for

that specific model and dataset. Selecting the parameters correctly can be challenging when the number of different models
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and datasets is large, and when the options for visualization are limited, such as in high-dimensional spaces. Finally, it is

possible that the optimization algorithm itself didn’t fully work as intended in these cases, or even got stuck without actually595

converging on a solution, possibly due to the additional complexity in the acquisition function caused by the treatment of

discrete-valued and categorical hyperparameters, as mentioned in Nguyen et al. (2020). This problem could be difficult to

diagnose in a comprehensive model comparison study, when every result cannot feasibly be individually inspected.

::::::::::::
Simultaneously

::::
with

:::
the

::::::
model

::::::::::::::
hyperparameters,

::::::
feature

::::::::
selection

:::
was

::::
also

:::::::::
optimized

::::::
through

::::
two

::::::::
threshold

:::::::::
parameters

:::
for

:::::::::
redundancy

::::
and

::::::::
relevance

::::
(see

:::::::
Sections

:::
4.3

::::
and

:::::
4.5.2).

:
For the GP models trained on the datasets of Helsinki, both "No FS"600

and "RS & no FS" involved using RS and were thus identical, for reasons discussed in Section 4.5.2. In the cases where the

background of the table is white, multiple optimization methods yielded the exact same hyperparameter values and hence also

ρ2. This means that the hyperparameters resulting in the highest ρ2 were discovered either during the initial random steps of

the iterations (which were now deterministic due to the fixed seed number), or by the convergence of the BO algorithm to

the same hyperparameter values during the non-random steps. The latter was the case for the RF model trained on the Aitken605

data from Helsinki. This makes sense given that one of the equally performing optimization methods was "Pure BO", which

didn’t utilize random iterations. For the NN2 model trained on Helsinki’s accumulation mode, on the other hand, the optimum

was found from among the initially sampled points in all four identically performing cases. It is also interesting to note that

if optimized correctly, our feature selection method could have resulted in practically no selection (i.e., full set of features) by

setting the thresholds for redundancy and relevance to 0.99 and 0, respectively. Therefore, it should theoretically always be610

equal or superior to the "No FS" cases where all 100 features were used without any selection procedure. However, this might

be further complicated by the effect of an increased number of hyperparameters on the capability of the optimization algorithm

to find the optimum.

In conclusion, BO can improve the results of hyperparameter tuning relative to a randomized search, but can be significantly

affected by the selection of the BO parameters and therefore requires careful analysis of the optimization process. Due to this615

tradeoff between the simplicity of RS and the (generally) improved optimization performance of BO, BO may be preferable

when developing one computationally expensive ML model. However, when the number of models under optimization is

large, the interpretability and ease of implementation of RS can make it a more practical choice. Other Python packages

that implement similar optimization methods, though not only Bayesian, also exist and could alternatively be utilized. Some

examples are Hyperopt (Bergstra et al., 2013), Optuna
::::::::::
Hyperopt

:::::::::::::::::
(Bergstra et al., 2013),

::::::::
Optuna (Akiba et al., 2019), and620

SMAC3
::::::
SMAC3 (Lindauer et al., 2022).

5.3 Interpreting the models

The SHAP method, described in Section 4.6, was used to analyze the features in the ML models. Figure 5 shows a summary of

the most important features across all models. The height of the bars relates to how many models were strongly influenced by

the corresponding feature, defined by the feature being among the ten highest when ranked by mean absolute SHAP value. For625

example, the north-south directional component of wind was among the ten most important in 46 models out of the total 56.

In general, the wind-related features are seen to be important for the prediction of all modes
::::::::
subranges of the size distribution,
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Figure 5. Most important input variables across all eight datasets, measured by mean absolute SHAP values. All seven ML models were

analyzed for each dataset. Hence, the upper limit for the height of the bars is 56. Bars with height less than ten are not shown.

though less so for the nucleation mode
:::::::
subrange. Solar radiation is also one of the most important variables. ML models for the

smallest two size modes
:::::
ranges seem to utilize emissions of organic carbon, whereas accumulation mode

:::::::
subrange

:
is connected

to sulfur dioxide (SO2) and sulfate (SO4), according to the SHAP values. Interestingly, the feature for geopotential height is630

mainly used by the Helsinki models.

The modewise summaries of the SHAP explanations (given in Figures S1–S3) can be examined for additional insights.

Figure S1 shows that also variables related to dust and black carbon, which are not present in the summary figure (Fig. 5),

are contributing to many of the ML models for accumulation mode
::::::::
subrange. Variables used for downscaling Aitken mode

:::::::
subrange

:
(Fig. S2) do not substantially differ from the ones shown in the summary of Fig. 5. In general, we recommend635

refraining from using SHAP to interpret weakly performing models, such as most of the ones for nucleation mode
:::::::
subrange

(Fig. S3), as any conclusions made are likely to be misleading.

The best-performing ML models were studied in detail using SHAP (Figures S4–S15). These model explanations can be

compared to experimental studies from the sites to see how well the statistical relationships found by the models correspond

to the physical characteristics of the locations. The Helsinki station can be taken as an example. In previous research (Järvi640

et al., 2009), the surrounding area has been subdivided into three distinct land use sectors, of which the road sector to the

southeast has been found to be the largest contributor to the accumulation mode (100–1000 nm), especially during springtime.

In addition to the road itself, long-range transport from the east is hypothesized to contribute to this sector’s accumulation

mode. On the other hand, an increased concentration of ultrafine particles (3–100 nm) has been associated roughly equally

with the road sector and the urban sector to the north. The vegetation sector to the west remains a direction of slightly less645

polluted air throughout the year. These findings are in line with the effects of wind direction in our models: Figures S4–S8 for
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Helsinki show that the east-west wind component is important in all models, and that its effect is positive (i.e., easterly wind

is connected to increased pollutant concentrations). The two best models for Helsinki’s accumulation mode
::::::::
subrange (Figures

S4–S5) both also include the north-south component, which has a negative effect on PNC. This means that the models predict

higher concentrations when wind is blowing from the south. Järvi et al. (2009) point out that ship emissions from the harbor,650

located approximately in this direction, can affect accumulation mode PNC. Moreover, the springtime increase is also captured

by these two models. It is interesting to note that NN2 has almost the same ρ2 as SVM, despite using far fewer features (18

and 100, respectively
:
;
:::
see

::::
Table

:::
S9).

As the models for Helsinki’s nucleation mode
:::::::
subrange

:
(Figures S7–S8) are quite weak, and therefore unlikely to capture

the relevant effects, we compare the UFP of Järvi et al. (2009) only to our Aitken mode
:::::::
subrange downscaling model (Fig. S6).655

The positive effect of northerly wind and the negative effect of temperature on the Aitken mode
:::::::
subrange

:
PNC seem realistic,

as wood combustion in the urban sector is a significant source of pollutants in the area. Importance of the variables boundary

layer height and atmospheric pressure might also be related to the same phenomenon.

Likely, some (or even most) of the features shown in the SHAP plots are only deemed important
::
in

::::
terms

::
of
:::::
their

::::::::::
contribution

::
to

:::
the

:::::::::::
downscaling because they correlate with some physically relevant quantity, and not because they themselves cause660

changes in PNC. For example, this is probably the case with the sea salt variable in Figures S13 and S15, as Melpitz is located

nowhere near marine environments. In the ECHAM-HAMMOZ data, PM25_SS is highly correlated with certain variables

(num_2a6, num_2a7, WAT_2a6, and WAT_2a7) that might more realistically be connected to PNC in Melpitz, however.
::::::
Hence,

::::
when

:::::::::
employing

::::::
SHAP

::::::
values

::
to

::::::
assess

::::::
feature

::::::::::
importance,

::
it

:
is
:::::::::

important
::
to

::::
note

::::
that

:::::
SHAP

::::::::
explains

::::
how

::::::
specific

:::::::
models

::::::
operate

:::
and

::
is

:::
not

::
to

:::
be

:::::::::
interpreted

::
as

:
a
::::
tool

:::
for

:::::
causal

::::::::
inference

::
of

::::::::
physical

:::::::
systems.665

In this analysis, it should naturally be recognized that all features originate from a simulation of large-scale climate, and

therefore do not necessarily represent the immediate surroundings of the measurement sites. Additionally, SHAP is known

to be sensitive to correlated features (Aas et al., 2021), which most of our models include; if accurate explanations of the

models are crucial, care should be taken to remove all (even somewhat) correlating features before training or use more robust

explanation methods.670

5.4 Performance considerations

Although our results indicate that some of the ML methods may on average result in higher goodness-of-fit metrics, there

are other aspects that might affect the choice of downscaling method. For example, the training and inference durations for

different ML methods can vary differently as a function of the dimensionality of input data. In our study, the computational

performance of the methods was not considered important, as the downscaling was done as a post-processing step. However,675

if the downscaling was included as an online correction in the climate model itself, speed of the method would be critical. We

have compared the computational performance of the seven model architectures separately for the training, optimization, and

inference steps (Fig. S16). There is significant variation in performance: in terms of training, GLM and SVM are by far the

fastest, while the NN architectures take longest to train on average. When applying the models for inference, however, NNs

are among the fastest, along with GLM. This might make them preferable in applications where computing time is costly. In680
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the optimization phase, the BO algorithm itself takes relatively long to iterate through, reducing the difference in total duration

between most methods; still, NNs are the slowest, though there was large variation depending on the number of NN nodes.

Adding a layer to the NNs slowed their training substantially. These findings are naturally only indicative of how the methods

perform computationally, and may not apply to datasets of different size. Moreover, parallel computation of the training or

inference algorithms can yield additional speedups, which could be another advantage of the methods capable of being paral-685

lelized. Of our six methods, RF and NN training can be run in parallel, as the trees in RF can be trained independently, and the

NN training can be split into independent batches. Parts of the XGBoost algorithm can also be parallelized, though the trees of

the ensemble must still be trained successively (Chen and Guestrin, 2016). Another advantage of NNs is that their structure is

ideal for multi-target regression, i.e., the number of target variables can be freely chosen. This way, all three modes
::::::::
subranges

of the size distribution could be downscaled with a single NN. Using the other ML methods, a separate model needs to be690

trained for each individual output variable.

6 Conclusions

This study provides a proof of concept for using ML methods to improve the spatial
:::::::::
site-specific

:
accuracy of aerosol parti-

cle number size distributions derived from global-scale climate models. By employing six ML methods, optimized through

feature selection and hyperparameter tuning, significant improvements were observed in the simulated particle concentrations,695

especially for accumulation and Aitken modes
::::::::
subranges. Among the methods, XGBoost demonstrated, on average, superior

performance across various datasets. Despite these advances, the nucleation mode
:::::::
subrange proved more challenging to down-

scale,
::::::

likely due to high spatial variability and limitations in the underlying large-scale climate model outputs
:
,
::::::::::
particularly

::
in

::
the

:::::::::
processes

::::::::::
contributing

::
to

::::
new

::::::
particle

:::::::::
formation.

The findings underscore the potential of ML-enhanced downscaling as a computationally efficient alternative to traditional700

methods, offering robust applications in air quality and epidemiological studies. It was observed that downscaling methods can

significantly enhance model accuracy at individual measurement sites. However, the selection of a suitable downscaling method

requires precision and depends on the target variable’s characteristics, as well as spatial and, assumably, temporal dimensions.

For example, while particle size modes
::::::
ranges were the focus here, the same methods could be applied to other variables as

well. Future research should focus on expanding the geographical scope of measurement data, integrating additional features705

to capture local-scale variations, and exploring dynamic downscaling during climate simulations.
::::::::::
Additionally,

:::::
deep

:::::::
learning

:::::::
methods

:::::::::
specialized

:::
for

::::
time

:::::
series

::::::::::
regression,

::::
such

::
as

:::::
Long

::::::::::
Short-Term

:::::::
Memory

::::
NNs

::::::::::::::::::::::::::::::
(Hochreiter and Schmidhuber, 1997)

:
,

:::::
might

::::::
further

:::::::
improve

:::
the

::::::::::
downscaling

:::::::::::
performance

:::
by

:::::::::
accounting

:::
for

::::::::
temporal

:::::::::::
dependencies

::
in

:::
the

::::::::
observed

:::
and

:::::::::
simulated

:::
data

:::
(if

:::::::
training

::::
data

::::
with

::
no

:::::::
missing

::::::
values

:::::
were

::::::::
available).

:
These advancements could enhance the predictive accuracy of

particle size distributions in coarse-scale climate models, contributing to better assessments of climate change impacts and710

health outcomes.

25



Financial support. This research has been funded by the UEF Doctoral school and supported by following Research Council of Finland

(RCoF) grants: Competitive funding to strengthen university research profiles (PROFI) for the University of Eastern Finland (grant nos.

325022 and 352968), The Atmosphere and Climate Competence Center (ACCC) Flagship (grant nos. 337549, 357902, 359340, 337550,

357904, 359341, 359342, and 359343), Flagship of Advanced Mathematics for Sensing Imaging and Modelling (grant no. 359196), RESE-715

MON project (grant nos. 330165 and 337552), and ClimAirPathways (grant no. 355531). Additionally, financial support from University of

Helsinki via ACTRIS-HY and European Commission via RI-URBANS (101036245) is gratefully acknowledged.

Code and data availability. The particle number size distribution measurement data are openly available in the EBAS (https://ebas.nilu.no/,

last access: 24 January 2025) and SmartSMEAR (https://smear.avaa.csc.fi/, last access: 24 January 2025) databases. Codes will be opened at

the time of final publication. Until the publication of the article, they can be requested from the corresponding author.720

The ECHAM6-HAMMOZ model is made available to the scientific community under the HAMMOZ Software License Agreement, which

defines the conditions under which the model can be used. The license can be retrieved from https://redmine.hammoz.ethz.ch/attachments/

291/License_ECHAM-HAMMOZ_June2012.pdf (last access: 27 January 2025). The model data can be reproduced using ECHAM-HAMMOZ

model revision 6588 from the repository https://redmine.hammoz.ethz.ch/projects/hammoz/ (HAMMOZ consortium, 2025).

Author contributions. AV: conceptualization; methodology; investigation; validation; formal analysis; writing - original draft; visualization.725

SM: conceptualization; methodology; supervision; writing – review and editing. VL: methodology; investigation; writing – review and

editing. TP: investigation; writing - review and editing; data curation. AW: investigation; writing - review and editing; data curation. TK:

conceptualization; writing - review and editing. TM: conceptualization; methodology; supervision; writing – review and editing.

Competing interests. One author is a member of the editorial board of journal "Atmospheric Measurement Techniques"

Acknowledgements. We are grateful to Dr Leena Järvi from University of Helsinki (INAR / Physics & HELSUS) for administration of the730

SMEAR III station in Helsinki.

26

https://redmine.hammoz.ethz.ch/attachments/291/License_ECHAM-HAMMOZ_June2012.pdf
https://redmine.hammoz.ethz.ch/attachments/291/License_ECHAM-HAMMOZ_June2012.pdf
https://redmine.hammoz.ethz.ch/attachments/291/License_ECHAM-HAMMOZ_June2012.pdf
https://redmine.hammoz.ethz.ch/projects/hammoz/


References

Aas, K., Jullum, M., and Løland, A.: Explaining individual predictions when features are dependent: More accurate approximations to

Shapley values, Artificial Intelligence, 298, 103 502, https://doi.org/10.1016/j.artint.2021.103502, 2021.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A Next-Generation Hyperparameter Optimization Framework, in: The735

25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631, 2019.

Alpaydin, E.: Introduction to Machine Learning, MIT Press, Cambridge, MA, 3 edn., ISBN 978-0-262-02818-9, 2014.

Amini, H., Bergmann, M. L., Taghavi Shahri, S. M., Tayebi, S., Cole-Hunter, T., Kerckhoffs, J., Khan, J., Meliefste, K., Lim, Y.-H.,

Mortensen, L. H., Hertel, O., Reeh, R., Gaarde Nielsen, C., Loft, S., Vermeulen, R., Andersen, Z. J., and Schwartz, J.: Harnessing AI

to unmask Copenhagen’s invisible air pollutants: A study on three ultrafine particle metrics, Environmental Pollution, 346, 123 664,740

https://doi.org/10.1016/j.envpol.2024.123664, 2024.

Bai, L., Chen, H., Hatzopoulou, M., Jerrett, M., Kwong, J., Burnett, R., Donkelaar, A., Copes, R., Martin, R., Van Ryswyk, K., Lu, H.,

Kopp, A., and Weichenthal, S.: Exposure to Ambient Ultrafine Particles and Nitrogen Dioxide and Incident Hypertension and Diabetes,

Epidemiology, 29, 1, https://doi.org/10.1097/EDE.0000000000000798, 2018.

Bergstra, J., Yamins, D., and Cox, D.: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for745

Vision Architectures, in: Proceedings of the 30th International Conference on Machine Learning, edited by Dasgupta, S. and McAllester,

D., vol. 28 of Proceedings of Machine Learning Research, pp. 115–123, PMLR, Atlanta, Georgia, USA, https://proceedings.mlr.press/

v28/bergstra13.html, 2013.

Birmili, W., Weinhold, K., Rasch, F., Sonntag, A., Sun, J., Merkel, M., Wiedensohler, A., Bastian, S., Schladitz, A., Löschau, G., Cyrys,

J., Pitz, M., Gu, J., Kusch, T., Flentje, H., Quass, U., Kaminski, H., Kuhlbusch, T. A. J., Meinhardt, F., Schwerin, A., Bath, O.,750

Ries, L., Gerwig, H., Wirtz, K., and Fiebig, M.: Long-term observations of tropospheric particle number size distributions and equiv-

alent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN), Earth System Science Data, 8, 355–382,

https://doi.org/10.5194/essd-8-355-2016, 2016.

Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010950718922, 2001.

Brochu, E., Cora, V. M., and de Freitas, N.: A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active755

User Modeling and Hierarchical Reinforcement Learning, https://arxiv.org/abs/1012.2599, 2010.

Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, p. 785–794, Association for Computing Machinery, ISBN 9781450342322,

https://doi.org/10.1145/2939672.2939785, 2016.

Cortes, C. and Vapnik, V.: Support-vector networks, Machine Learning, 20, 273–297, https://doi.org/10.1007/BF00994018, 1995.760

Dada, L., Okuljar, M., Shen, J., Olin, M., Wu, Y., Heimsch, L., Herlin, I., Kankaanrinta, S., Lampimäki, M., Kalliokoski, J., Baalbaki, R.,

Lohila, A., Petäjä, T., Maso, M. D., Duplissy, J., Kerminen, V.-M., and Kulmala, M.: The synergistic role of sulfuric acid, ammonia and

organics in particle formation over an agricultural land, Environ. Sci.: Atmos., 3, 1195–1211, https://doi.org/10.1039/D3EA00065F, 2023.

Ding, C. and Peng, H.: Minimum redundancy feature selection from microarray gene expression data, Journal of Bioinformatics and Com-

putational Biology, 3, 185–205, https://doi.org/10.1142/s0219720005001004, 2005.765

Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set: 1. organic-aerosol mixing

thermodynamics, Atmospheric Chemistry and Physics, 11, 3303–3318, https://doi.org/10.5194/acp-11-3303-2011, 2011.

27

https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.1016/j.envpol.2024.123664
https://doi.org/10.1097/EDE.0000000000000798
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.5194/essd-8-355-2016
https://doi.org/10.1023/A:1010950718922
https://arxiv.org/abs/1012.2599
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/BF00994018
https://doi.org/10.1039/D3EA00065F
https://doi.org/10.1142/s0219720005001004
https://doi.org/10.5194/acp-11-3303-2011


Downward, G., Nunen, E., Kerckhoffs, J., Vineis, P., Brunekreef, B., Boer, J., Messier, K., Roy, A., Verschuren, W., Schouw, Y., Sluijs, I.,

Gulliver, J., Hoek, G., and Vermeulen, R.: Long-Term Exposure to Ultrafine Particles and Incidence of Cardiovascular and Cerebrovascular

Disease in a Prospective Study of a Dutch Cohort, Environmental Health Perspectives, 126, 127 007, https://doi.org/10.1289/EHP3047,770

2018.

EBAS: EBAS database, https://ebas.nilu.no/, last access 24 January 2025, 2025.

European Council: On Ambient Air Quality and Cleaner Air for Europe 2008/50/EC, Off. J. Eur. Union, 1, 1–44, https://eur-lex.europa.eu/

legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en, last access 24 January 2025, 2008.

European Council: On Ambient Air Quality and Cleaner Air for Europe 2024/2881, Off. J. Eur. Union, 1, 1–70, https://eur-lex.europa.eu/eli/775

dir/2024/2881/oj/eng, last access 12 February 2025, 2024.

Feichter, J., Kjellström, E., Rodhe, H., Dentener, F., Lelieveldi, J., and Roelofs, G.-J.: Simulation of the tropospheric sulfur cycle in a global

climate model, Atmospheric Environment, 30, 1693–1707, https://doi.org/10.1016/1352-2310(95)00394-0, joint 8th CAGCP and 2nd

IGAC Conference on Global Atmospheric Chemistry, 1996.

Fraga, R. P., Kang, Z., and Axthelm, C. M.: Effect of Machine Learning Cross-validation Algorithms Considering Human Partic-780

ipants and Time-series: Application on Biometric Data Obtained from a Virtual Reality Experiment, vol. 67, p. 2162 – 2167,

https://doi.org/10.1177/21695067231192258, 2023.

Friberg, M. D., Kahn, R. A., Holmes, H. A., Chang, H. H., Sarnat, S. E., Tolbert, P. E., Russell, A. G., and Mulholland, J. A.: Daily ambient

air pollution metrics for five cities: Evaluation of data-fusion-based estimates and uncertainties, Atmospheric Environment, 158, 36–50,

https://doi.org/10.1016/j.atmosenv.2017.03.022, 2017.785

Friedman, J. H.: Greedy function approximation: A gradient boosting machine., The Annals of Statistics, 29, 1189 – 1232,

https://doi.org/10.1214/aos/1013203451, 2001.

Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann,

U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., Williams, M., and

Gilardoni, S.: Particulate matter, air quality and climate: lessons learned and future needs, Atmospheric Chemistry and Physics, 15, 8217–790

8299, https://doi.org/10.5194/acp-15-8217-2015, 2015.

Garrido-Merchán, E. C. and Hernández-Lobato, D.: Dealing with categorical and integer-valued variables in Bayesian Optimization with

Gaussian processes, Neurocomputing, 380, 20–35, https://doi.org/10.1016/j.neucom.2019.11.004, 2020.

GBD 2019 Risk Factors Collaborators: Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis

for the Global Burden of Disease Study 2019, The Lancet, 396, 1223–1249, https://doi.org/10.1016/S0140-6736(20)30752-2, 2020.795

Gouldsbrough, L., Hossaini, R., Eastoe, E., Young, P. J., and Vieno, M.: A machine learning approach to downscale EMEP4UK: analysis of

UK ozone variability and trends, Atmospheric Chemistry and Physics, 24, 3163–3196, https://doi.org/10.5194/acp-24-3163-2024, 2024.

Goyal, M., Burn, D., and Ojha, C.: Evaluation of machine learning tools as a statistical downscaling tool: Temperatures projections for

multi-stations for Thames River Basin, Canada, Theoretical and Applied Climatology, 108, 519–534, https://doi.org/10.1007/s00704-011-

0546-1, 2011.800

Hamed, A., Birmili, W., Joutsensaari, J., Mikkonen, S., Asmi, A., Wehner, B., Spindler, G., Jaatinen, A., Wiedensohler, A., Korhonen, H.,

Lehtinen, K. E. J., and Laaksonen, A.: Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing

SO2 emissions between 1996 and 2006, Atmospheric Chemistry and Physics, 10, 1071–1091, https://doi.org/10.5194/acp-10-1071-2010,

2010.

28

https://doi.org/10.1289/EHP3047
https://ebas.nilu.no/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en
https://eur-lex.europa.eu/eli/dir/2024/2881/oj/eng
https://eur-lex.europa.eu/eli/dir/2024/2881/oj/eng
https://eur-lex.europa.eu/eli/dir/2024/2881/oj/eng
https://doi.org/10.1016/1352-2310(95)00394-0
https://doi.org/10.1177/21695067231192258
https://doi.org/10.1016/j.atmosenv.2017.03.022
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.5194/acp-15-8217-2015
https://doi.org/10.1016/j.neucom.2019.11.004
https://doi.org/10.1016/S0140-6736(20)30752-2
https://doi.org/10.5194/acp-24-3163-2024
https://doi.org/10.1007/s00704-011-0546-1
https://doi.org/10.1007/s00704-011-0546-1
https://doi.org/10.1007/s00704-011-0546-1
https://doi.org/10.5194/acp-10-1071-2010


Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition,805

Springer New York, ISBN 9780387848587, https://books.google.fi/books?id=tVIjmNS3Ob8C, 2009.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.and Peubey, C., Radu, R., Schepers, D.,

Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,

P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R., Hólm, E.,

Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,810

J.-N.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate: Copernicus Climate Change

Service (C3S) Data Store (CDS), https://doi.org/10.24381/cds.143582cf, last access 3 July 2024, 2017.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-

mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,

P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,815

Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Vil-

laume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/10.1002/qj.3803, 2020.

Hinestroza-Ramirez, J. E., Lopez-Restrepo, S., Yarce Botero, A., Segers, A., Rendon-Perez, A. M., Isaza-Cadavid, S., Heemink, A., and

Quintero, O. L.: Improving Air Pollution Modelling in Complex Terrain with a Coupled WRF–LOTOS–EUROS Approach: A Case Study820

in Aburrá Valley, Colombia, Atmosphere, 14, https://doi.org/10.3390/atmos14040738, 2023.

Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Computation, 9, 1735–1780,

https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Hussein, T., Martikainen, J., Junninen, H., Sogacheva, L., Wagner, R., Maso, M. D., Riipinen, I., Aalto, P. P., and Kulmala, M.: Observation

of regional new particle formation in the urban atmosphere, Tellus B: Chemical and Physical Meteorology, 60, 509–521, 2008.825

IIASA: ECLIPSE V6b, https://iiasa.ac.at/models-tools-data/global-emission-fields-of-air-pollutants-and-ghgs, retrieved on the 3rd July,

2024, 2024.

Ivatt, P. D. and Evans, M. J.: Improving the prediction of an atmospheric chemistry transport model using gradient-boosted regression trees,

Atmospheric Chemistry and Physics, 20, 8063–8082, https://doi.org/10.5194/acp-20-8063-2020, 2020.

Johansson, L., Karppinen, A., Kurppa, M., Kousa, A., Niemi, J. V., and Kukkonen, J.: An operational urban air quality830

model ENFUSER, based on dispersion modelling and data assimilation, Environmental Modelling & Software, 156, 105 460,

https://doi.org/10.1016/j.envsoft.2022.105460, 2022.

Jung, C.-R., Chen, W.-T., Young, L.-H., and Hsiao, T.-C.: A hybrid model for estimating the number concentration of ultrafine particles based

on machine learning algorithms in central Taiwan, Environment International, 175, 107 937, https://doi.org/10.1016/j.envint.2023.107937,

2023.835

Junninen, H., Lauri, A., Keronen, P., Aalto, P., Hiltunen, V., Hari, P., and Kulmala, M.: Smart-SMEAR: on-line data exploration and visu-

alization tool for SMEAR stations, Boreal Environment Research, 14, 447–457, https://smear.avaa.csc.fi/, last access 24 January, 2025,

2009.

Järvi, L., Hannuniemi, H., Hussein, T., Junninen, H., Aalto, P., Keronen, P., Kulmala, M., Keronen, P., Hillamo, R., Mäkelä, T., Siivola, E.,

and Vesala, T.: The urban measurement station SMEAR III: Continuous monitoring of air pollution and surface-atmosphere interactions840

in Helsinki, Finland, Boreal Environment Research, 14, 1797–2469, 2009.

29

https://books.google.fi/books?id=tVIjmNS3Ob8C
https://doi.org/10.24381/cds.143582cf
https://doi.org/10.1002/qj.3803
https://doi.org/10.3390/atmos14040738
https://doi.org/10.1162/neco.1997.9.8.1735
https://iiasa.ac.at/models-tools-data/global-emission-fields-of-air-pollutants-and-ghgs
https://doi.org/10.5194/acp-20-8063-2020
https://doi.org/10.1016/j.envsoft.2022.105460
https://doi.org/10.1016/j.envint.2023.107937
https://smear.avaa.csc.fi/


Kim, T. and Villarini, G.: Projected changes in daily precipitation, temperature and wet-bulb temperature across Arizona using statistically

downscaled CMIP6 climate models, International Journal of Climatology, 44, 1994 – 2010, https://doi.org/10.1002/joc.8436, cited by: 3;

All Open Access, Hybrid Gold Open Access, 2024.

Kohl, M., Lelieveld, J., Chowdhury, S., Ehrhart, S., Sharma, D., Cheng, Y., Tripathi, S. N., Sebastian, M., Pandithurai, G., Wang, H., and845

Pozzer, A.: Numerical simulation and evaluation of global ultrafine particle concentrations at the Earth’s surface, Atmospheric Chemistry

and Physics, 23, 13 191–13 215, https://doi.org/10.5194/acp-23-13191-2023, 2023.

Kokkola, H., Kühn, T., Laakso, A., Bergman, T., Lehtinen, K. E. J., Mielonen, T., Arola, A., Stadtler, S., Korhonen, H., Ferrachat, S.,

Lohmann, U., Neubauer, D., Tegen, I., Siegenthaler-Le Drian, C., Schultz, M. G., Bey, I., Stier, P., Daskalakis, N., Heald, C. L., and

Romakkaniemi, S.: SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0,850

Geoscientific Model Development, 11, 3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, 2018.

Kreyling, W., Semmler, M., and Möller, W.: Dosimetry and Toxicology of Ultrafine Particles, Journal of aerosol medicine : the official journal

of the International Society for Aerosols in Medicine, 17, 140–52, https://doi.org/10.1089/0894268041457147, 2004.

Laakso, A., Niemeier, U., Visioni, D., Tilmes, S., and Kokkola, H.: Dependency of the impacts of geoengineering on the stratospheric sulfur

injection strategy – Part 1: Intercomparison of modal and sectional aerosol modules, Atmospheric Chemistry and Physics, 22, 93–118,855

https://doi.org/10.5194/acp-22-93-2022, 2022.

Leinonen, V., Kokkola, H., Yli-Juuti, T., Mielonen, T., Kühn, T., Nieminen, T., Heikkinen, S., Miinalainen, T., Bergman, T., Carslaw, K.,

Decesari, S., Fiebig, M., Hussein, T., Kivekäs, N., Krejci, R., Kulmala, M., Leskinen, A., Massling, A., Mihalopoulos, N., Mulcahy, J. P.,

Noe, S. M., van Noije, T., O’Connor, F. M., O’Dowd, C., Olivie, D., Pernov, J. B., Petäjä, T., Seland, Ø., Schulz, M., Scott, C. E., Skov,

H., Swietlicki, E., Tuch, T., Wiedensohler, A., Virtanen, A., and Mikkonen, S.: Comparison of particle number size distribution trends860

in ground measurements and climate models, Atmospheric Chemistry and Physics, 22, 12 873–12 905, https://doi.org/10.5194/acp-22-

12873-2022, 2022.

Li, X., Li, Z., Huang, W., and Zhou, P.: Performance of statistical and machine learning ensembles for daily temperature downscaling,

Theoretical and Applied Climatology, 140, 571–588, https://doi.org/10.1007/s00704-020-03098-3, 2020.

Li, Y., Lane, K. J., Corlin, L., Patton, A. P., Durant, J. L., Thanikachalam, M., Woodin, M., Wang, M., and Brugge, D.: Association of Long-865

Term Near-Highway Exposure to Ultrafine Particles with Cardiovascular Diseases, Diabetes and Hypertension, International Journal of

Environmental Research and Public Health, 14, https://doi.org/10.3390/ijerph14050461, 2017.

Lin, S., Ryan, I., Paul, S., Deng, X., Zhang, W., Luo, G., Dong, G.-H., Nair, A., and Yu, F.: Particle surface area, ultrafine particle number

concentration, and cardiovascular hospitalizations, Environmental Pollution, 310, 119 795, https://doi.org/10.1016/j.envpol.2022.119795,

2022.870

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Ruhkopf, T., Sass, R., and Hutter, F.: SMAC3:

A Versatile Bayesian Optimization Package for Hyperparameter Optimization, Journal of Machine Learning Research, 23, 1–9, http:

//jmlr.org/papers/v23/21-0888.html, 2022.

Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model predictions, in: Proceedings of the 31st International Conference on

Neural Information Processing Systems, NIPS’17, p. 4768–4777, Curran Associates Inc., Red Hook, NY, USA, ISBN 9781510860964,875

2017.

Maraun, D. and Widmann, M.: Statistical Downscaling and Bias Correction for Climate Research, Cambridge University Press,

https://doi.org/10.1017/9781107588783, 2018.

30

https://doi.org/10.1002/joc.8436
https://doi.org/10.5194/acp-23-13191-2023
https://doi.org/10.5194/gmd-11-3833-2018
https://doi.org/10.1089/0894268041457147
https://doi.org/10.5194/acp-22-93-2022
https://doi.org/10.5194/acp-22-12873-2022
https://doi.org/10.5194/acp-22-12873-2022
https://doi.org/10.5194/acp-22-12873-2022
https://doi.org/10.1007/s00704-020-03098-3
https://doi.org/10.3390/ijerph14050461
https://doi.org/10.1016/j.envpol.2022.119795
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html
https://doi.org/10.1017/9781107588783


McCullagh, P. and Nelder, J.: Generalized Linear Models, Second Edition, Taylor & Francis, ISBN 9780412317606, https://books.google.fi/

books?id=h9kFH2_FfBkC, 1989.880

McDuffie, E., Martin, R., Yin, H., and Brauer, M.: Global Burden of Disease from Major Air Pollution Sources (GBD MAPS): A Global

Approach, Research report (Health Effects Institute), 2021, 1–45, 2021.

Miinalainen, T., Kokkola, H., Lipponen, A., Hyvärinen, A.-P., Soni, V. K., Lehtinen, K. E. J., and Kühn, T.: Assessing the climate and air

quality effects of future aerosol mitigation in India using a global climate model combined with statistical downscaling, Atmospheric

Chemistry and Physics, 23, 3471–3491, https://doi.org/10.5194/acp-23-3471-2023, 2023.885

Mikkonen, S., Németh, Z., Varga, V., Weidinger, T., Leinonen, V., Yli-Juuti, T., and Salma, I.: Decennial time trends and diurnal patterns

of particle number concentrations in a central European city between 2008 and 2018, Atmospheric Chemistry and Physics, 20, 12 247–

12 263, https://doi.org/10.5194/acp-20-12247-2020, 2020.

Molnar, C.: Interpretable Machine Learning, 2 edn., https://christophm.github.io/interpretable-ml-book, 2022.

Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Stier, P., Partridge, D. G., Tegen, I., Bey, I., Stanelle, T., Kokkola, H., and Lohmann,890

U.: The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 2: Cloud evaluation, aerosol radiative forcing, and climate sensitivity,

Geoscientific Model Development, 12, 3609–3639, https://doi.org/10.5194/gmd-12-3609-2019, 2019.

Nguyen, D., Gupta, S., Rana, S., Shilton, A., and Venkatesh, S.: Bayesian Optimization for Categorical and Category-Specific Continuous

Inputs, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020.

Nogueira, F.: Bayesian Optimization: Open source constrained global optimization tool for Python, https://github.com/895

bayesian-optimization/BayesianOptimization, last access 24 June 2025, 2014.

Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L., and Kleeman, M.: Associations of Mortality with Long-Term Ex-

posures to Fine and Ultrafine Particles, Species and Sources: Results from the California Teachers Study Cohort, Environmental health

perspectives, 123, https://doi.org/10.1289/ehp.1408565, 2015.

Pagano, P., De Zaiacomo, T., Scarcella, E., Bruni, S., and Calamosca, M.: Mutagenic Activity of Total and Particle-Sized Fractions of Urban900

Particulate Matter, Environmental Science & Technology, 30, 3512–3516, https://doi.org/10.1021/es960182q, 1996.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in Python, Journal

of Machine Learning Research, 12, 2825–2830, 2011.

Pepe, N., Pirovano, G., Lonati, G., Balzarini, A., Toppetti, A., Riva, G., and Bedogni, M.: Development and application of905

a high resolution hybrid modelling system for the evaluation of urban air quality, Atmospheric Environment, 141, 297–311,

https://doi.org/10.1016/j.atmosenv.2016.06.071, 2016.

Petäjä, T., Tabakova, K., Manninen, A., Ezhova, E., O’Connor, E., Moisseev, D., Sinclair, V. A., Backman, J., Levula, J., Luoma, K., Virkkula,

A., Paramonov, M., Räty, M., Äijälä, M., Heikkinen, L., Ehn, M., Sipilä, M., Yli-Juuti, T., Virtanen, A., Ritsche, M., Hickmon, N., Pulik,

G., Rosenfeld, D., Worsnop, D. R., Bäck, J., Kulmala, M., and Kerminen, V.-M.: Influence of biogenic emissions from boreal forests on910

aerosol–cloud interactions, Nature Geoscience, 15, 42–47, https://doi.org/10.1038/s41561-021-00876-0, 2022.

Rasmussen, C. E. and Williams, C. K. I.: Gaussian Processes for Machine Learning, The MIT Press, ISBN 9780262256834,

https://doi.org/10.7551/mitpress/3206.001.0001, 2005.

Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo, R., Niemi, J. V., Pirjola, L., Timonen, H. J., Saarikoski, S.,

Saukko, E., Järvinen, A., Silvennoinen, H., Rostedt, A., Olin, M., Yli-Ojanperä, J., Nousiainen, P., Kousa, A., and Maso, M. D.:915

31

https://books.google.fi/books?id=h9kFH2_FfBkC
https://books.google.fi/books?id=h9kFH2_FfBkC
https://books.google.fi/books?id=h9kFH2_FfBkC
https://doi.org/10.5194/acp-23-3471-2023
https://doi.org/10.5194/acp-20-12247-2020
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.5194/gmd-12-3609-2019
https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization
https://doi.org/10.1289/ehp.1408565
https://doi.org/10.1021/es960182q
https://doi.org/10.1016/j.atmosenv.2016.06.071
https://doi.org/10.1038/s41561-021-00876-0
https://doi.org/10.7551/mitpress/3206.001.0001


Traffic is a major source of atmospheric nanocluster aerosol, Proceedings of the National Academy of Sciences, 114, 7549–7554,

https://doi.org/10.1073/pnas.1700830114, 2017.

Sachindra, D., Ahmed, K., Rashid, M. M., Shahid, S., and Perera, B.: Statistical downscaling of precipitation using machine learning tech-

niques, Atmospheric Research, 212, 240–258, https://doi.org/10.1016/j.atmosres.2018.05.022, 2018.

Schraufnagel, D.: The health effects of ultrafine particles, Experimental & Molecular Medicine, 52, 311–317, https://doi.org/10.1038/s12276-920

020-0403-3, 2020.

Schultz, M. G., Stadtler, S., Schröder, S., Taraborrelli, D., Franco, B., Krefting, J., Henrot, A., Ferrachat, S., Lohmann, U., Neubauer,

D., Siegenthaler-Le Drian, C., Wahl, S., Kokkola, H., Kühn, T., Rast, S., Schmidt, H., Stier, P., Kinnison, D., Tyndall, G. S., Orlando,

J. J., and Wespes, C.: The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0, Geoscientific Model Development, 11, 1695–1723,

https://doi.org/10.5194/gmd-11-1695-2018, 2018.925

Schulzweida, U.: CDO User Guide, https://doi.org/10.5281/zenodo.10020800, 2023.

Shapley, L. S.: 17. A Value for n-Person Games, in: Contributions to the Theory of Games, Volume II, edited by Kuhn, H. W. and Tucker,

A. W., pp. 307–318, Princeton University Press, Princeton, ISBN 9781400881970, https://doi.org/10.1515/9781400881970-018, 1953.

Sharma, S., Sharma, P., and Khare, M.: Hybrid modelling approach for effective simulation of reactive pollutants like Ozone, Atmospheric

Environment, 80, 408–414, https://doi.org/10.1016/j.atmosenv.2013.08.021, 2013.930

SmartSMEAR: SmartSMEAR database, https://smear.avaa.csc.fi/, last access 24 January 2025, 2025.

Snoek, J., Larochelle, H., and Adams, R. P.: Practical Bayesian Optimization of Machine Learning Algorithms, in: Advances in Neural

Information Processing Systems, edited by Pereira, F., Burges, C., Bottou, L., and Weinberger, K., vol. 25, Curran Associates, Inc.,

https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf, 2012.

Sofiev, M., Siljamo, P., Valkama, I., Ilvonen, M., and Kukkonen, J.: A dispersion modelling system SILAM and its evaluation against ETEX935

data, Atmospheric Environment, 40, 674–685, https://doi.org/10.1016/j.atmosenv.2005.09.069, 2006.

Stafoggia, M., Bellander, T., Bucci, S., Davoli, M., de Hoogh, K., de’ Donato, F., Gariazzo, C., Lyapustin, A., Michelozzi, P.,

Renzi, M., Scortichini, M., Shtein, A., Viegi, G., Kloog, I., and Schwartz, J.: Estimation of daily PM10 and PM2.5 concen-

trations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model, Environment International, 124, 170–179,

https://doi.org/10.1016/j.envint.2019.01.016, 2019.940

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R.,

Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric component of the MPI-M Earth

System Model: ECHAM6, Journal of Advances in Modeling Earth Systems, 5, 146–172, https://doi.org/10.1002/jame.20015, 2013.

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher,

O., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmospheric Chemistry and Physics, 5, 1125–1156,945

https://doi.org/10.5194/acp-5-1125-2005, 2005.

Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K., Boucher, O., Cherian, R., Collins, W., Daskalakis, N., Dusin-

ska, M., Eckhardt, S., Fuglestvedt, J. S., Harju, M., Heyes, C., Hodnebrog, Ø., Hao, J., Im, U., Kanakidou, M., Klimont, Z., Kupiainen, K.,

Law, K. S., Lund, M. T., Maas, R., MacIntosh, C. R., Myhre, G., Myriokefalitakis, S., Olivié, D., Quaas, J., Quennehen, B., Raut, J.-C.,

Rumbold, S. T., Samset, B. H., Schulz, M., Seland, Ø., Shine, K. P., Skeie, R. B., Wang, S., Yttri, K. E., and Zhu, T.: Evaluating the climate950

and air quality impacts of short-lived pollutants, Atmospheric Chemistry and Physics, 15, 10 529–10 566, https://doi.org/10.5194/acp-15-

10529-2015, 2015.

32

https://doi.org/10.1073/pnas.1700830114
https://doi.org/10.1016/j.atmosres.2018.05.022
https://doi.org/10.1038/s12276-020-0403-3
https://doi.org/10.1038/s12276-020-0403-3
https://doi.org/10.1038/s12276-020-0403-3
https://doi.org/10.5194/gmd-11-1695-2018
https://doi.org/10.5281/zenodo.10020800
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1016/j.atmosenv.2013.08.021
https://smear.avaa.csc.fi/
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://doi.org/10.1016/j.atmosenv.2005.09.069
https://doi.org/10.1016/j.envint.2019.01.016
https://doi.org/10.1002/jame.20015
https://doi.org/10.5194/acp-5-1125-2005
https://doi.org/10.5194/acp-15-10529-2015
https://doi.org/10.5194/acp-15-10529-2015
https://doi.org/10.5194/acp-15-10529-2015


Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, Bulletin of the American Meteorological

Society, 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.

Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T.,955

Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U.: The

global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation, Geoscientific Model Development, 12, 1643–1677,

https://doi.org/10.5194/gmd-12-1643-2019, 2019.

Turnock, S. T., Allen, R. J., Andrews, M., Bauer, S. E., Deushi, M., Emmons, L., Good, P., Horowitz, L., John, J. G., Michou, M., Nabat, P.,

Naik, V., Neubauer, D., O’Connor, F. M., Olivié, D., Oshima, N., Schulz, M., Sellar, A., Shim, S., Takemura, T., Tilmes, S., Tsigaridis,960

K., Wu, T., and Zhang, J.: Historical and future changes in air pollutants from CMIP6 models, Atmospheric Chemistry and Physics, 20,

14 547–14 579, https://doi.org/10.5194/acp-20-14547-2020, 2020.

Vachon, J., Buteau, S., Liu, Y., Van Ryswyk, K., Hatzopoulou, M., and Smargiassi, A.: Spatial and spatiotemporal modelling of intra-urban

ultrafine particles: A comparison of linear, nonlinear, regularized, and machine learning methods, Science of The Total Environment, 954,

176 523, https://doi.org/10.1016/j.scitotenv.2024.176523, 2024a.965

Vachon, J., Kerckhoffs, J., Buteau, S., and Smargiassi, A.: Do machine learning methods improve prediction of ambient air pollutants with

high spatial contrast? A systematic review, Environmental Research, 262, 119 751, https://doi.org/10.1016/j.envres.2024.119751, 2024b.

Vandal, T. J., Kodra, E., and Ganguly, A. R.: Intercomparison of machine learning methods for statistical downscaling: the case of daily and

extreme precipitation, Theoretical and Applied Climatology, 137, 557–570, https://api.semanticscholar.org/CorpusID:88514923, 2017.

Venuta, A., Lloyd, M., Ganji, A., Xu, J., Simon, L., Zhang, M., Saeedi, M., Yamanouchi, S., Lavigne, E., Hatzopoulou, M., and Weichenthal,970

S.: Predicting within-city spatiotemporal variations in daily median outdoor ultrafine particle number concentrations and size in Montreal

and Toronto, Canada, Environmental Epidemiology, 8, e323, https://doi.org/10.1097/EE9.0000000000000323, 2024.

Vogli, M., Peters, A., Wolf, K., Thorand, B., Herder, C., Koenig, W., Cyrys, J., Maestri, E., Marmiroli, N., Karrasch, S., Zhang, S., and Pick-

ford, R.: Long-term exposure to ambient air pollution and inflammatory response in the KORA study, Science of The Total Environment,

912, 169 416, https://doi.org/10.1016/j.scitotenv.2023.169416, 2023.975

Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T., Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez,

J. L., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A., Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R.,

and Brock, C. A.: A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399–403,

https://doi.org/10.1038/s41586-019-1638-9, 2019.

Wolf, K., Cyrys, J., Harciníková, T., Gu, J., Kusch, T., Hampel, R., Schneider, A., and Peters, A.: Land use regression modeling of ultrafine980

particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany, Science of The Total Environment,

579, 1531–1540, https://doi.org/10.1016/j.scitotenv.2016.11.160, 2017.

World Health Organization: WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide

and carbon monoxide, licence: CC BY-NC-SA 3.0 IGO, 2010.

Xu, R., Chen, N., Chen, Y., and Chen, Z.: Downscaling and Projection of Multi-CMIP5 Precipitation Using Machine Learning Methods in985

the Upper Han River Basin, Advances in Meteorology, 2020, 8680 436, https://doi.org/10.1155/2020/8680436, 2020.

Zani, N. B., Lonati, G., Mead, M. I., Latif, M. T., and Crippa, P.: Long-term satellite-based estimates of air quality and premature mortality in

Equatorial Asia through deep neural networks, Environmental Research Letters, 15, 104 088, https://doi.org/10.1088/1748-9326/abb733,

2020.

33

https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.5194/gmd-12-1643-2019
https://doi.org/10.5194/acp-20-14547-2020
https://doi.org/10.1016/j.scitotenv.2024.176523
https://doi.org/10.1016/j.envres.2024.119751
https://api.semanticscholar.org/CorpusID:88514923
https://doi.org/10.1097/EE9.0000000000000323
https://doi.org/10.1016/j.scitotenv.2023.169416
https://doi.org/10.1038/s41586-019-1638-9
https://doi.org/10.1016/j.scitotenv.2016.11.160
https://doi.org/10.1155/2020/8680436
https://doi.org/10.1088/1748-9326/abb733


Zhang, K., Wan, H., Liu, X., Ghan, S. J., Kooperman, G. J., Ma, P.-L., Rasch, P. J., Neubauer, D., and Lohmann, U.: Technical Note:990

On the use of nudging for aerosol–climate model intercomparison studies, Atmospheric Chemistry and Physics, 14, 8631–8645,

https://doi.org/10.5194/acp-14-8631-2014, 2014.

34

https://doi.org/10.5194/acp-14-8631-2014

