
We gratefully thank both reviewers for their thorough effort in reading the manuscript 

and providing valuable comments. Point-by-point responses to the reviewers’ questions 

are given below, color-coded for ease of reading. Text in black constitutes the original 

comments by the reviewers, whereas our responses are marked red, and suggested 

changes to the manuscript indicated in blue. When page, section, figure, and line 

numbers are referenced, we refer to the original, old version of the manuscript. 

In addition to the changes suggested by the reviewers, we noticed we had used a 

shorter size range than intended when forming the accumulation subrange from the 

SALSA bins. The upper limit of the SALSA bin 2a3 is 362 nm, not 700 nm, which would 

instead correspond to bin 2a4 (see Table 1 in Bergman et al. (2012)). We extended the 

range to include bins 2a4 and 2b4, which only had a minor effect on the ECHAM metrics 

in Figure 3 (in parentheses), as well as the green lines in Figures 2 and 3 (though the 

difference is too small to notice). This is because only a small fraction of the simulated 

accumulation subrange particles reside in the 362 – 700 nm range, compared to the 50 

– 362 nm range. The main downscaling results were not affected, as the subranges 

formed from SALSA bins were only used for comparison and not for model training. 

Additionally, we have made a few minor changes to the wording of some sentences in 

the manuscript, as well as some technical corrections to the list of references. 

Reply to Anonymous referee #1 

 

This work explores the potential of machine learning techniques in enhancing the 

accuracy of a global aerosol-climate model’s outputs through statistical downscaling. 

The study focuses on the particle number size distributions from ECHAM-HAMMOZ and 

data from three European measurement stations were used for downscaling. The 

results show an improvement in prediction accuracy compared to the original global 

model outputs. It is a complex and extended study and the results fit within the scope 

of AMT, being of interest for the international research community. However, I would 

suggest some aspects to be considered in order to improve the manuscript and/or 

strengthen its impact before it is published in AMT. 

We thank the reviewer for these positive comments regarding our manuscript, and for 

the suggestions given for improvement. 

General – The authors state that the ML methods would certainly improve the spatial 

accuracy of PNSD derived from models. However, in this study, the ML methods are 

only applied to specific measurement sites. The models are trained using 



measurements and global model data, but the horizontal resolution of the climate 

model is 1.9° × 1.9°, which corresponds to approximately 150 km. So the question is: 

how would the methods perform at other locations within the same grid cell where no 

measurement data are available for training? For example, in both Helsinki and Leipzig, 

there are at least two stations measuring PNSD (urban and traffic). I suggest comparing 

the model performance at two nearby sites, or at least clarifying the intended utility and 

applicability of the methods and results presented. From the reviewer's perspective, 

based on the results shown in this manuscript, these methods do not necessarily 

improve the spatial accuracy of the model but rather enhance the model’s ability to 

reproduce observations at specific measurement locations. 

We are thankful to the reviewer for pointing out to us that the wording of the 

manuscript could indicate to the reader that our downscaling models increase the 

resolution of the global-scale model on a more general level; it would be reasonable to 

assume so, as this is what downscaling methods often aim to do. In our study, 

corrections to the predicted PNC were indeed only done for each site separately, which 

we have considered a form of downscaling from the large grid cell area to the point 

represented by a measurement site. As opposed to a large-scale resolution 

improvement, the intent of our study is to demonstrate the ML-based statistical 

downscaling methodology on single stations, which could be extended on in the future 

by training on more stations and e.g. interpolating between them. This is not to say that 

the results cannot be valuable without future extension – our methodology can be 

applied to any site of interest (given sufficient PNSD data) to study the evolution of UFP 

concentrations in e.g. different climate change scenarios or in the past when 

observations were not yet available. To clarify the applicability of our results, we have 

done the following modifications to the manuscript: 
L5: changed the sentence to “This study explores the potential of machine learning (ML) 

techniques in enhancing the accuracy of a global aerosol-climate model's outputs 

through statistical downscaling to better represent observed data at specific sites”. 
L9: added sentence “A separate ML model was trained for each of the sites and size 

ranges.” 
L536: changed the sentence to “This study provides a proof of concept for using ML 

methods to improve the site-specific accuracy of aerosol particle number size 

distributions derived from global-scale climate models.” 

Furthermore, the reviewer raised concerns over the generalizability of our ML models to 

other sites than the ones they have been trained on. We agree it is unlikely that the 

models would work very well at other sites without further training, as even relatively 

nearby sites could differ greatly in terms of the features affecting the local air quality 

(e.g., direction of emission sources, topography of buildings, etc.). However, it was not 



our intention to apply the trained ML models to a larger area surrounding the stations, 

but rather apply the correction station-wise, as explained above. Therefore, we deemed 

further analysis of spatial generalizability not relevant for our intended application. 

L130 – The authors defined the nucleation, Aitken, and accumulation mode size ranges 

using uncommon values (<7.7 nm, 7.7–50 nm, and 50–700 nm). This choice appears to 

be driven by the bin structure of the SALSA model. If that is the case, I would suggest 

either avoiding the use of the terms "nucleation," "Aitken," and "accumulation" 

throughout the manuscript, OR adjusting the size ranges to align with the commonly 

accepted definitions associated with different aerosol processes (e.g., <25 nm, 25–100 

nm, and 100–1000 nm). I would also suggest rephrasing: “These size ranges correspond 

to the SALSA bins...” by “These size ranges were selected to correspond to the SALSA 

bins…” 

We thank the reviewer for the suggestion; the reviewer is right that the size ranges here 

differ slightly from the typical size ranges used in the aerosol measurement community. 

We decided to alter the current naming of the size modes, and in addition, clarify the 

definition as suggested by the reviewer. We have altered the text starting from line 131 

to 
“These size ranges were selected to correspond to the SALSA bins 1a1 for nucleation, 

1a2–1a3 for Aitken, and 2a1–2a4 for accumulation" 

In terms of the naming scheme, we have now aimed to avoid the word “mode” in order 

to ensure that our definition does not get as easily confused with the conventional 

definition of the modes. Instead, we have opted to use the term “subrange” (or, in some 

cases, other similar words, such as “range”, “sizes”, or “size range”). This change has 

been applied to all instances of the word “mode” in the manuscript. The only exception 

is when other studies dealing with modes are referenced. Additionally, when the term is 

first used on L88, we have added the following clarification: 
“We have opted to avoid calling these subranges “modes”, as the subranges do not 

exactly match the conventional mode definitions due to limitations in the size resolution 

of the climate model representation.” 
 

Introduction – The first paragraph of the introduction is unclear regarding the 

distinction between particle number concentrations and mass concentrations. The two 

terms appear to be used interchangeably or without clear differentiation. I recommend 

that the authors clarify when they are referring to number concentrations versus mass 

concentrations and ensure consistent use of these terms throughout the paragraph. It 

is important to remain that while UFPs mainly control ambient particle concentrations 

in terms of number, coarser particles control particle concentrations in terms of mass 



(PM10 and PM2.5). 
We agree with the reviewer that discussing both UFPs and PM2.5 (as well as PM10) in 

the same paragraph can be misleading, as UFPs are much less relevant when 

considering the mass concentration. Following the reviewer's suggestion, we have 

added the following disclaimer on L25: 
“Different sized particles contribute to different aspects of the ambient particle 

concentration – UFPs mainly control the concentrations in terms of number, while 

coarser particles control the concentrations in terms of mass (PM2.5).” 
Additionally, we have specified in the introduction whenever we are speaking about 

number concentrations. 

L123-129 – Are the PNSDs measured in Germany obtained using a DMPS or a scanning 

instrument? 
We had used an older reference (Hamed et al., 2010) for the Melpitz station, which still 

listed a DMPS as the measurement instrument. The reviewer is correct in questioning 

this – a newer publication (Birmili et al., 2016), already used as reference for the Leipzig 

station, also mentions that the Melpitz station utilizes an SMPS instrument. We have 

therefore modified the manuscript as follows: 
L126: changed “DMPS device” to “DMPS/SMPS (Differential/Scanning Mobility Particle 

Sizer) instruments” 
L143: added the sentence “Particle number size distribution is measured with SMPS 

(TSI) with size range of 5 nm to 800 nm.” 

What size ranges does each instrument cover? The comparison with the model would 

be site-dependent if the size distributions differ in their lower and upper diameter 

limits. Uncertainties of the measurements are not considered? 
We have added information concerning the size ranges and names of the instruments 

used at each site. Melpitz was already mentioned in response to the above comment; 

for Helsinki and Leipzig, the following changes were made: 
L139: added the sentence “In Helsinki, the particle number size distribution is measured 

with DMPS (TSI), with size range of 3 nm to 1 µm.” 
L146: modified “At the Leipzig station, the particle size distribution started at 10 nm, ...” 
to 
“The measured particle size range was between 10 nm and 800 nm (using DMPS)” 

As the reviewer mentioned, the differences in size distributions might affect the results 

of the fitting process. This, besides other factors, such as the representativeness of the 

model grid cell for the measuring station, suggests that the modeling process should be 

done separately for each site, i.e. the process is site-dependent. In this study, the focus 

was on verifying how accurate estimates of the number concentrations of different UFP 

size ranges can be obtained with current data from climate model runs. We didn’t 



consider the uncertainty related to the measurement data, i.e. the number 

concentrations reported from the sites were used as “the ground truth” concentrations 

in training, validation, and test datasets. 

Structure – I suggest reconsidering the structure of the sections. For example, the 

results of the best-performing method are presented in Section 5.1 before the 

performance of all methods is discussed in Section 5.2. It may be more logical to first 

present the comparison across all methods, followed by a deeper look at the best-

performing one. 

Both reviewers suggested this change, and we agree that the revised order is more 

logical. Accordingly, we have reordered the sections in question. 

Additionally, the title of Section 2, "Climate simulation," may not be the most 

appropriate for the modelling setup. I would suggest something more descriptive, such 

as "Global model simulations”. 
We thank the reviewer for the suggestion. On further thought, we realize that “Climate 

simulation” may be misunderstood e.g. as a longer simulation than the three years we 

have used. We have renamed the section “Global aerosol-climate model simulation” to 

make the title more specific. 

Nucleation range differences – In several instances, the authors suggest or conclude 

that “the nucleation mode proved more challenging to downscale due to high spatial 

variability and limitations in the underlying large-scale climate model output”. From the 

reviewer’s perspective, the Aitken mode could also exhibit substantial variability, 

particularly due to urban emissions. Therefore, a more plausible explanation for the 

difficulty in downscaling the nucleation mode may lie in the limitations of global models 

in representing new particle formation (such as the treatment of organics, nitrates, 

sulfuric acid, or nucleation schemes) rather than primarily in the spatial variability of the 

sources. 
This is an important point.  We agree that global climate models do not always 

represent new particle formation sufficiently. In addition, as Figure 3 indicates, ECHAM-

SALSA may potentially have too strong NPF under certain atmospheric conditions, 

which can lead to overestimation of the number of nucleation subrange particles. We 

have therefore added to line 380 the following: 
“The representation of new particle formation and nucleation–sized particles is, on 

many occasions, not sufficient in global climate models (Williamson et al., 2019). This 

can be due to, for instance, errors in estimating nucleation rates. As a study by Laakso et 

al. (2022) shows, ECHAM-SALSA tends to favor partitioning of sulfuric acid to the particle 

phase due to nucleation over condensation, which may lead to overestimation of 

nucleation subrange particles. Kokkola et al. (2018) compared ECHAM-SALSA number 



size distributions to observation data, and their results revealed that at some 

measurement stations, ECHAM-SALSA overestimates the nucleation mode number 

concentrations. Furthermore, ECHAM-SALSA does not model new particle formation 

due to nitrates, which may cause differences between modelled and measured 

nucleation subrange number concentrations. The representation of nucleation-sized 

aerosols could be enhanced by including a volatility basis set (VBS) scheme (Donahue et 

al., 2011), which can improve the representation of secondary organic aerosols." 

Technical corrections 

L275 – what means the “-“ at the end of the reference? 
We removed the dash (which was included in the citation given on the GitHub page) and 

also added the date of last access. 

L130-131 – change “These size ranges correspond to the SALSA bins...” by “These size 

ranges were selected to correspond to the SALSA bins…” 
As mentioned previously, we have now made this change. 

L280 - should σ(·) and µ(·) be σ(x) and µ(x)? Actually “x” (eq. 1) is not defined. 
We thank the reviewer for noticing this discrepancy. We have removed the placeholder 

dots and defined the argument “x” of the UCB function on L280: 
“...where κ controls how much weight should be given to the posterior’s standard 

deviation σ(x) relative to its mean μ(x) at some point x of the hyperparameter space” 

 

Reply to Anonymous referee #2 

 

This manuscript presents an interesting application of machine learning (ML) methods 

for downscaling particle number size distributions from a global climate model. The 

topic is relevant for improving exposure estimates in air quality studies and refining 

global climate model outputs. The authors provide a detailed description of the 

methods and an extensive discussion of the results. However, the manuscript would 

benefit from significant revisions to improve its clarity in the methodology and results. 

In particular, several aspects of the study design, including the choice and justification 

of ML methods, the feature selection strategy and the interpretation of SHAP results, 

require clearer explanations and additional justification. In its current form, I believe the 

manuscript requires major revisions before it can be considered for publication. 



We thank the reviewer for the positive comments and constructive feedback regarding 

our manuscript.  

General comments: 

1. In Section 2, the description of the climate simulation with the global climate model 

would benefit from a clearer explanation of which model outputs are compared with 

aerosol measurements. The text mentions that the SALSA 2.0 module discretizes the 

aerosol size distribution into ten size classes, but it is not entirely clear how these 

classes are defined and whether any conversions or postprocessing steps are applied 

before comparison with the measurements. While some of this information is briefly 

introduced later in Section 3 (lines 130–132), it would improve clarity to include this 

explanation earlier in Section 2, when the SALSA module is first introduced. 

 

We agree with the reviewer that explaining the purpose of the model outputs would 

clarify the manuscript. Therefore, we have added the following sentences on line 109: 

“The size classes range from 3 nm to 10 µm, from which we have selected the seven 

smallest classes (3 nm to 700 nm) as a basis of the nucleation, Aitken, and accumulation 

subranges that will constitute the target variables of our study, which are compared 

against measurements (see Section 3 for more details). Additionally, all ten size classes 

are included as input variables in the ML models, along with the other simulated 

variables on which the downscaling is based (see Table S1)” 

 

Additionally, this comment helped us notice that in Section 3, we had not explicitly 

mentioned that the SALSA bins are summed to form the three subranges (modes). We 

did so by adding a sentence on line 131: 

“The three subranges that constitute the target variables of the study were formed by 

summation over the relevant bins.” 

 

As for the reviewers comment about conversions and postprocessing steps, we wanted 

to clarify this by adding the following sentence on line 135: 

“No other conversions or postprocessing steps were performed.” 

 

2. The selected Machine Learning (ML) algorithms are often used for regression and 

classification tasks, but it would be valuable for the authors to clarify whether they 

considered alternative models specifically designed for time series prediction, such as 

Long Short-Term Memory (LSTM) networks or Recurrent Neural Networks (RNNs). These 

models are well-suited for capturing temporal dependencies and trends, which may be 

relevant for predicting daily Particle Number Concentration (PNC). A brief discussion or 



justification of the model’s selection, particularly regarding the temporal structure of 

the data, would strengthen the manuscript. 

 

This is an important point, as the reviewer is correct in noting that deep learning 
methods such as RNNs and LSTMs can be well-suited for predicting PNC time series.  
However, given the broad range of methods already included in our comparison, we 
ultimately decided to limit the scope of this study to non-deep learning methods. 
LSTMs, and RNNs in general, require uninterrupted data sequences, which in our case 
would either necessitate some method of imputation or significantly reduce the usable 
data. However, as deep learning would be a promising approach for future studies, we 
have added a mention of this on line 548: 
“Additionally, deep learning methods specialized for time series regression, such as 
Long Short-Term Memory NNs (Hochreiter and Schmidhuber, 1997), might further 
improve the downscaling performance by accounting for temporal dependencies in the 
observed and simulated data (if training data with no missing values were available).” 
 

3. The feature selection procedure described in Section 4.3, based on iterative removal 

of features with the highest number of correlations above a threshold (red_thresh), is 

not a standard approach in the literature. It would be helpful if the authors could clarify 

the reasons for choosing this specific method over more standard approaches, such as 

filtering correlated pairs directly or using model-based feature importance metrics. 

Additionally, a brief discussion on the potential risks of this approach, such as removing 

features that may provide complementary information, would strengthen the 

methodology. 

 

We thank the reviewer for raising these concerns and agree that it is important to justify 

the selected methodology. This decision to use a custom procedure was driven by the 

aim of having a flexible, entirely data-driven workflow, in which feature selection would 

also be optimized on a case-by-case basis. We were inspired by the mRMR method, 

which works in a very similar way. At an earlier point of the study, we compared our 

approach to both mRMR and a purely redundancy-based approach (referred to by the 

reviewer as filtering correlated pairs). Our approach generally resulted in the best 

models compared to the alternatives. The comparison, which was part of a master’s 

thesis project, was considered slightly out of scope to be presented in our study and 

therefore, the results were not included in the manuscript. 

To clarify our objectives, we have made the following modifications to the manuscript: 
L207: added the sentences “Each criterion alone, however, provides only a partial view 

and could result either in an ineffective selection or the removal of important 

information. In addition, as feature selection is still often performed manually rather 



than in a data-driven manner, these issues could be further exacerbated by human 

error.” 

L208: changed the sentence to “In this study, these ideas were combined to take both 

redundancy and relevance into account through a data-driven approach.” 

L215: added the sentences “Our approach was inspired by the more commonly used 

minimum redundancy — maximum relevance (mRMR) method (Ding and Peng, 2005), 

which we also initially compared to both our approach and a more typical correlation-

based selection procedure (not presented here). As further motivation for our 

approach, it is worth noting that mRMR does not offer a mechanism to adjust the 

relative weighting of relevance and redundancy, which could be beneficial in certain 

cases” 

 

To briefly comment on the model-based feature importances as a basis of feature 

selection, we thought that they might cause bias towards a particular model, e.g. a 

Random Forest-based approach could select features that work better for Random 

Forests. Permutation-based approaches could be applied to any model but are also 

slower to compute (especially for large models) and sensitive to the presence of 

correlating features. Finally, the reviewer mentioned that a discussion of potential risks 

might be helpful. We have now done this on line 215: 

“Naturally, removing any feature during selection entails a trade-off: the model loses 

some amount of information, even if that information appears redundant or 

insignificant in the training data. While feature selection is based on observed 

correlations and redundancy, it is still possible that a removed feature could improve 

predictions in future scenarios—particularly for out-of-distribution data. To mitigate this 

risk, we combined feature selection and model-specific hyperparameter optimization 

using cross-validation on a holdout validation set, allowing the process to account for 

generalization performance. Additionally, as a robustness check, we repeated the model 

training using all available input features (i.e., without applying feature selection), to 

compare performance and ensure that potentially valuable information was not 

systematically excluded.” 

 

4. While the authors provide an extensive description of the Bayesian Optimization (BO) 

framework, the methodology for hyperparameter tuning (Section 4.5.1) appears 

excessively complex for the problem and the size of the data. The reasoning for using 

kernel modifications for integer and categorical hyperparameters, rather than more 

standard methods such as grid or random search, could be better explained. It would 

be helpful for the authors to explain why such a sophisticated method was necessary, 

and whether it led to substantial improvements in model performance. Additionally, a 

workflow diagram summarizing the hyperparameter tuning process could improve 

clarity and reproducibility. 



 

We agree with the reviewer that the BO framework was likely more complex than was 

needed for our application, and we can see from the results that, in many cases, 

random search performed better (possibly indicating that, in these cases, pure chance 

had more impact on the results than the choice of the optimization method). The 

reason we used Bayesian optimization in the first place was not because we thought it 

necessary for the problem, but because we were interested in seeing whether or not it 

would outperform random search. Thus, in this kind of technical paper we do not see 

using a potentially more complex method as a problem. Additionally, future studies 

might utilize more complex models or larger datasets (particularly if a single model is 

trained for multiple stations), in which case it might help that a case study already exists 

using BO. In any case, we feel that a quantitative comparison of different optimization 

approaches is outside the scope and intention of this study. To briefly motivate the 

usage of BO also in the manuscript, we have added the following sentence on line 306: 

While the models and datasets of this study are relatively small and thus a complex 

method like BO may not lead to major computational gains, the same methodology 

could be applied in future studies with more computationally intensive problems. These 

could be, for example, downscaling of a longer or higher resolution time series, training 

a single model on data from a large number of sites, or using large deep learning 

models. 

 

We also thank the reviewer for the suggestion of the workflow diagram. We re-

considered whether we could make one that clarifies the process, as we would also like 

to include one, but ultimately, we think it might complicate it even further. This is 

because the hyperparameter tuning process involves a complicated nested loop – using 

BO (or random search) to explore the parameter space, training and validating the ML 

models for each candidate point, and repeating this all for each ML method, site, size 

range, and optimization approach – which is ambiguous to visualize clearly. We hope 

that the other modifications we have made to the text on this topic can help clarify the 

process. 

 

5. The logical flow of the results section could be improved. Currently, the downscaling 

performance (Section 5.1) is presented before the comparison of ML models (Section 

5.2). However, it seems more logical to first compare the models, justify the selection of 

the best performing one, and then present the downscaling results. Reorganizing the 

sections accordingly would help readers follow the reasoning behind model selection 

and evaluation. 

 

Both reviewers have brought up this same point. We have made changes accordingly 

and agree with the reviewers that this has made the manuscript clearer to understand. 



 

Specific comments: 

Abstract: 

1. The abstract would benefit from a clearer explanation of the data used as ground 

truth for training and validation of the ML models. It is important to specify which 

datasets were used as reference for the predictions. 

We have added the names of the stations and the years which the data cover. We thank 

the reviewer for pointing out this and other things missing from the abstract. 

 

2. The six ML models tested should be mentioned in the abstract. 

This has now also been added. 

 

3. Line 11: It would be desirable to provide a value of the “highest fit indices” mentioned. 

We decided to remove the sentence “, which achieved the highest fit indices”, as we 

agree that, if mentioned, numerical values should be provided. We feel that giving 

metrics in the abstract would worsen its readability, as we would then have to also 

provide pre-downscaling values as comparison; also, due to the differing scales of the 

target variables, common metrics like MAE or RMSE would not be informative, and ρ2 

has not yet been defined. 

 

4. Lines 11-13: The abstract suggests that challenges in downscaling were observed only 

for the nucleation mode. Could the authors clarify why these challenges were specific to 

this mode and not evident in the others? A more detailed explanation in the relevant 

section would be beneficial. 

This was a good remark; the abstract text might give an unbalanced view of the 

challenges. We have tried to improve the text by slightly adjusting  the wording, and by 

adding a paragraph to Section 5.2 discussing the particular difficulties of the nucleation 

subrange (this was brought up by both reviewers). 

L6: modified to “Challenges remained particularly in downscaling the nucleation 

subrange” 

L380: added “The representation of new particle formation and nucleation–sized 

 particles is, on many occasions, not sufficient in global climate models 

(Williamson et al., 2019). This can be due to, for instance, errors in estimating nucleation 

rates. As a study by Laakso et al. (2022) shows, ECHAM-SALSA tends to favor partitioning 

of sulfuric acid to the particle phase due to nucleation over condensation, which may 

lead to overestimation of nucleation subrange particles. Kokkola et al. (2018) compared 

ECHAM-SALSA number size distributions to observation data, and their results revealed 

that at some measurement stations, ECHAM-SALSA overestimates the nucleation mode 

number concentrations. Furthermore, ECHAM-SALSA does not model new particle 



formation due to nitrates, which may cause differences between modelled and 

measured nucleation subrange number concentrations. The representation of 

nucleation-sized aerosols could be enhanced by including a volatility basis set (VBS) 

scheme (Donahue et al., 2011), which can improve the representation of secondary 

organic aerosols." 

 

Sect. 2: 

1. Line 112-113: Could the authors clarify whether the layer nearest to the surface was 

used for the analysis? Please, specify. 

The ECHAM-HAMMOZ data is mostly from the lowest model layer, i.e. the layer close to 

the surface. However, for some stations, the station is located at such altitude that it 

corresponds to the second lowest layer. The ECHAM-HAMMOZ data is postprocessed to 

correspond to the station altitude by interpolating the data on the vertical axis. 

We modified the sentence in L181 from 

“For each station, we used ECHAM-HAMMOZ data from only one ECHAM grid cell, which 

contained the station coordinates and altitude. “ 

to  

“For each station, we used ECHAM-HAMMOZ data from only one ECHAM grid cell, which 

contained the station coordinates and altitude. The ECHAM-HAMMOZ data with a 

vertical dimension were interpolated to correspond to the station altitude. This was 

done by utilizing the CDO command line tool (Schulzweida, 2023), and by using the 

nearest layer to the surface as well as the second lowest layer.” 

 

 

Sect. 4.1: 

1. The inputs to the ML models in Section 4.1 are not clearly described. Please clarify 

which ECHAM-HAMMOZ outputs were used, and whether the models were trained 

separately for each station or using combined data. This is explained later but it would 

be beneficial to include that information also earlier in this section. 

We thank the reviewer for these suggestions that help improve the clarity of the 

manuscript. We have made the following addition to Section 4.1, line 156: 

“The inputs are properly introduced in Section 4.2 and listed exhaustively in Table S1. 

The downscaling is site-specific, that is, the ML models are trained separately for each 

station and size subrange.” 

Additionally, in response to reviewer #1’s comment of similar nature, we have 

mentioned the site-specificity of the models in the abstract on line 9: 

 “A separate ML model was trained for each of the sites and size ranges.” 



2. Line 167-168: Was k-fold cross-validation used in any stage of the analysis? Please, 

provide details. 

To make the wording of this part clearer and more exact, we have altered it as follows:  

L168: modified the sentence to “Rolling variants of k-fold cross-validation that retain the 

ordering of the data were considered...” 

L170: added “Thus, k-fold cross-validation was not used in this study.” 

 

Sect. 4.2: 

1. Lines 181-182: If two of the stations fall within the same ECHAM grid cell, does this 

mean the simulated data for these two stations is identical, while the observed data 

differs? If this is the case, how was this handled in the analysis? 

The reviewer is correct in stating that the simulated data from two stations located in 

the same grid cell are identical, and that the only difference is in the observations. This 

is part of the reason why we wanted to include both Melpitz and Leipzig stations, as this 

shows how the downscaling can be done using identical inputs as long as distinct 

measurements are available. We hope that specifying that separate models were 

trained for each site (see the first comment on Section 4.1) answers the reviewer’s 

question of how this was handled in the analysis. 

 

2. Lines 186-187: I suggest to explain better to which variable do the authors refer with 

“winter-summer variability” and “spring-summer variability”. 

We have made the following modifications to Section 4.2 to clarify how these variables, 

and also the other cyclic variables, work: 

L187: changed the sentence to “These were also formed cyclically (and thus vary 

between -1 and 1) to avoid a large difference between the value of the last day of the 

year and the first of the next year...” 

L188: added the sentence: “In practice, transforming a variable into two cyclic 

components was done by applying sinusoidal functions (sine and cosine) to the 

proportion of the variable's current value relative to its maximum (for example, time_ws 

= cos([day number]/[days in year]).” 

L189: changed the sentence to “In our naming convention for all four cyclic features, the 

positive direction is referenced first (i.e., wind_ns = 1 means northerly wind and 

time_ws = 1 means New Year)” 

3. Lines 193-198: The manuscript mentions splitting the dataset by year (one split per 

year). Is this a common practice in similar studies? Furthermore, how were missing 

values handled in the data? 

Splitting data by year preserves seasonality in the data (due to e.g. emissions and 

boundary layer dynamics) in an easily understandable way and thus it is commonly 

applied in these kinds of studies. An example of this is a study by Ivatt and Evans (2020), 



which additionally found considerable benefits from using at least 8 months of training 

data, although their study differs from ours in many aspects. 

Missing data was not imputed for three reasons: 1. There was not very much of it 2. The 

statistical methods do not depend on continuous time series 3. This would have caused 

another source of uncertainty in the results. 

The addition made on line 135 of the manuscript as a response to the reviewer’s first 

general comment accounts for all postprocessing steps, including imputation. Thus, we 

think no further clarifications are needed in the manuscript. 

 

4. Lines 199-200: Were any other data preprocessing techniques (apart from 

normalization) applied? If so, please specify. 

Clarified on line 200: “No other preprocessing techniques were applied.” 

 

Sect. 4.3: 

1. Lines 209-211: When two variables were found to be highly correlated, which one was 

dropped? Additionally, is there a risk that intercorrelations among other variables led to 

unintended feature removal? Including a correlation matrix for all variables would help 

clarify and visualize the feature selection process. 

We thank the reviewer for pointing out that we had not mentioned what is done when 

only two variables exceed the correlation threshold, as they correlate with each other 

and will thus both have the same count of high correlations and the same sum of 

correlations. In that case, we have arbitrarily removed one of them based on their order 

in the input data columns – the one that comes first is removed. Although simple, this 

seems to work well – and in case it doesn’t, we have the no-selection cases as an 

alternative. Another, more sophisticated option might be to e.g. choose the feature with 

the higher relevance of the two. We have added a mention of this behavior on line 212: 
“If only two highly correlated features remain and the sums are thus equal, we have 

removed the one that appears earlier in the column order of the input data.” 

 
As for the risks involved in feature selection, we hope that our response to the 

reviewer’s third general question already answers this. In addition, we have improved 

the clarity of the section through a few modifications, as unclear phrasing and a 

complicated sentence structure may have made the section difficult to understand: 

L209-210: modified the sentence as follows: “For each feature, the number of high-

correlation pairs (correlations larger than red_thresh) that included the feature 

was counted. The feature participating in the largest number of such pairs was then 

dropped.” 

L211: changed the sentence to “In case the number of high-correlation cases was 

equal for two or more features, the magnitudes of the correlations were compared, 

and the one with the larger sum of correlations was dropped.” 



 

The reviewer also suggested including a correlation matrix. While this would be 

interesting to show, the matrix would be 100 x 100 in size, and thus too large to be 

clearly visualized. Additionally, the correlation matrix is only half of the story, as the 

relevance vector (correlation with the target) also affects the selection. 

 

Sect. 4.6: 

1. In general, this section could benefit from a clearer and more concise organization of 

ideas. Please, revise it. 

We have re-formulated the entire section to improve its clarity and conciseness. For all 

the changes, see the manuscript document. 
One important change is that we had mistakenly written that we used Spearman’s 

correlation, while we actually used Pearson’s. As we are comparing predictions to 

measurements, a non-linear dependence is not wanted and should not be rated highly. 

 

Sect. 5.1: 

1. Figure 3: Please clarify in the caption and text that the figure corresponds to the test 

dataset. 

This is an important clarification. We have modified the caption and text accordingly. 

Caption of Fig. 3: changed to “Daily average particle number concentrations per 

subrange in 2018 (test set), for all three sites.” 

L356: changed the sentence to “Figure 4 shows the PNC results of the most successful 

downscaling methods for the test subset (2018) of each of the eight datasets.” 

 

Sect. 5.2: 

1. Figure 4: The overall performance of the ML models appears low. A comparison with 

previous studies or a discussion of whether a ρ² of ⁓3 represents a significant 

improvement would strengthen the interpretation of the results. 

We agree that discussion of similar studies is important, especially since purely 

comparing prediction metrics can make our models seem weak. We have written a new 

paragraph starting from line 399, discussing our results relative to previous studies: 

“We can compare our results to previous studies to place them in a broader context, 

although no directly comparable studies exist. For example, Ivatt and Evans (2020) 

trained an XGBoost model to improve the ozone predictions of a chemistry transport 

model, and achieved an improvement in Pearson's r of 0.36 (from 0.48 to 0.84). This is 

similar, though in most cases slighty higher, to the improvement achieved by our 

models. In addition to a different target variable, their higher time resolution and lower 

spatial resolution (mean of multiple sites) complicate the comparison. XGBoost was also 

the most successful model in the study by Venuta et al. (2024), which produced 

spatiotemporal UFP predictions (logarithm of PNC) with a daily time resolution. Their ρ2 



of about 0.72 was significantly higher than ours, though a direct comparison is again 

difficult due to the smoothing effect of the log-transform combined with data trimming 

they performed. Additionally, they used observational weather data instead of climate 

simulations to train the models. As our models can in theory be used to predict far into 

the future and produce non-transformed estimates of UFP concentrations, the 

seemingly lower metrics are still competitive, especially considering the substantial 

improvement over the ECHAM predictions.” 

 

2. Lines 422-423: The text suggests that the particle number size distribution in Helsinki 

is the sole factor affecting modeling complexity. Could the authors consider that the 

input data and variable selection might also contribute to this issue? Focusing solely on 

a single factor may oversimplify the problem. 

In addition to the new paragraph on line 380 that discusses the modeling complexity of 

nucleation mode, it is a good idea to also mention that the size distribution is likely not 

the only contributing factor. We have added the following sentence at the end of the 

aforementioned paragraph: 

“In addition to limitations in representing the nucleation mode, other input variables 

can also contribute to challenges in downscaling. The coarse spatial resolution of global-

scale models naturally limits their ability to accurately capture processes other than just 

new particle formation.” 

It is technically possible that feature selection removed information useful for predicting 

the test set – information that seemed irrelevant in terms of the training and validation 

sets. However, this would rather be due to a lack of representativeness of one or more 

of the subsets than directly due to feature selection. 

 

3. Line 425: The text mentions feature selection, but this is not clearly indicated in 

Tables S2–S8. Please revise. 

To make it clearer to the reader how feature selection relates to hyperparameter 

optimization, we have modified a sentence in the tables’ caption from 

“The number of features after selection (controlled by the thresholds rel_thresh and 

red_thresh) are also reported in parentheses.” 

to 

“Model-specific feature selection was performed during hyperparameter optimization 

through two additional parameters, rel_thresh and red_thresh. The number of features 

after selection, controlled by the threshold parameters, is also reported in 

parentheses.” 

4. Lines 423-432: It is unclear how the number of features selected for each model were 

determined. Please clarify. 



To clarify this and make the relevant information easier to find, we modified a 

parenthetical expression on line 425 from  

“(see Tables S2–S8)” 

to 

“(see Section 4.3 for a description of feature selection, and Tables S2–S8 for 

optimization results)” 

 

Sect. 5.3: 

1. The section would benefit from a more structured presentation, perhaps 

summarizing the main conclusions at the end. Clarifying how the feature selection 

approach interacts with the optimization process and providing a clearer link to the 

main results of the study would improve the clarity and relevance of this discussion. 

We thank the reviewer for pointing out that the structure of this section was not as clear 

as we had thought. We have restructured the section so that 1. The first paragraph 

discusses the colors of the table and their interpretations (which were originally split 

between two paragraphs). 2. The second paragraph compares BO and RS and discusses 

potential shortcomings. 3. The third paragraph addresses feature selection, and 4. 

Some conclusions are made in the fourth paragraph, which has not changed since the 

previous version. 

Additionally, to clarify the feature selection / optimization process to the reader and 

direct them to the relevant sections of the manuscript, we have added the following 

sentence on line 447: 

“Simultaneously with the model hyperparameters, feature selection was also optimized 

through two threshold parameters for redundancy and relevance (see Sections 4.3 and 

4.5.2).” 

This also helps the structure of the section, making it clear that the third paragraph 

focuses particularly on feature selection. 

 

2. Lines 439-441: Could the authors clarify whether these hyperparameters were 

intended to be the final optimized values? 

We assume that by “these hyperparameters”, the reviewer refers to the Bayesian 

optimizer parameters kappa, alpha, and nu mentioned on line 440. As mentioned in 

Section 4.5.2, a few alternative parameter values were compared, but they were not 

explicitly optimized. It should not be necessary to optimize an optimizer. 

We also added the following clarification to the caption of Figure 3 (now Figure 4) to 

better connect the two figures: 

“Measurements are shown in blue, ECHAM-HAMMOZ outputs in green, and the results 

of downscaling by the best model for each dataset (i.e., the bolded cells in Figure 3) in 

purple” 



Sect. 5.4: 

1. Line 496-498: It would be helpful if the authors could specify which features were 

selected for each model. 

For the SVM model of Helsinki’s accumulation subrange, all 100 features were used. As 

for the NN2 model, we have added Table S9 to the Supplementary material to list the 18 

features used by it. We have not listed features for other models, as even just showing 

the best models’ features for all datasets would result in 56 of such lists, which would 

take up too much space. The top 9 features of each model are still shown in the SHAP 

plots in the Supplementary material. 

L498: modified the sentence to “It is interesting to note that NN2 has almost the same 

ρ2 as SVM, despite using far fewer features (18 and 100, respectively; see Table S9).” 

 

2. Line 504-508: While the authors use SHAP analysis to indicate feature importance, it 

is important to note that SHAP values reflect each feature’s contribution to the model’s 

predictions, not necessarily a causal relationship with the predicted quantity (PNC in this 

case). For example, the importance of sea salt may result from correlations with other 

variables (e.g., num_2a6, num_2a7, WAT_2a6, WAT_2a7) more directly linked to PNC. 

The authors should clarify this distinction and discuss the implications of such proxy 

features in interpreting the model outputs. 

We have modified this part to further clarify that SHAP explains models, not “real” 

cause-and-effect relationships. This is an important distinction, and was the reason why 

we mentioned the sea salt example in the first place, though we did not explicitly state 

our intentions. 

L504: changed to “Likely, some (or even most) of the features shown in the SHAP plots 

are only deemed important in terms of their contribution to the downscaling 

because they correlate with some physically relevant quantity, ...” 

L508: added sentence “Hence, when employing SHAP values to assess feature 

importance, it is important to note that SHAP explains how specific models operate and 

is not to be interpreted as a tool for causal inference of physical systems.” 

 

Supplementary Material: 

1. The hyperparameter values reported in Tables S2-S8 raise questions. For example, in 

Table S4, learning rates such as 0.547 (Leipzig Acc) or 0.189 (Helsinki Nuc) are atypically 

high compared to standard practices in XGBoost modeling, where learning rates are 

typically in the range of 0.01 to 0.1. Similarly, the large values for regularization 

parameters (e.g., reg_alpha = 708 for Leipzig Acc) seem unusual and potentially 

indicative of overfitting or instability. The authors should discuss the implications of 

these unusual values and whether they align with expected behavior in aerosol-climate 

model downscaling. 



We sincerely appreciate the reviewer’s detailed feedback on the manuscript as well as 

the Supplementary material. The XGBoost for Helsinki Nuc is a very weak model in the 

first place (ρ2 = 0.047), so it’s not unexpected that its hyperparameters can look atypical 

(notice also that only 5 features are used by the model). In the case of the XGBoost for 

Leipzig Acc, the model seems to perform quite well, so we hypothesize that the high 

learning rate might be connected to the smaller size of the trees in this model (small 

max_depth and large min_child_weight), and/or the strong regularization due to the 

high reg_alpha. We have made the following addition to the manuscript to connect the 

hyperparameters of the weak XGBoost model to its performance: 

L406: changed the sentence to “It only failed in the nucleation dataset of Helsinki, where 

it had a lower ρ2 than any other model (see also Table S4 for hyperparameters, some 

of which are atypical).” 

  

Minor comments: 

Lines 43-44: This sentence looks incomplete. 
We have moved the word “however” from the end of the sentence to the start. 

Line 91: “were” instead of “was”. 

In this case, “was” refers to the word “selection”, which is singular. 

Line 145-147: Please, revise this sentence. 

We have changed the wording to reduce the repeated use of the words “Leipzig” and 

“station”. We also made similar changes to the other paragraphs of this section. 

 

Line 164: “a” instead of “an”. 

According to grammar guides (e.g. Merriam-Webster), “an” is correct here. However, this 

comment helped us notice that we had written “a ML” on line 267. This was corrected to 

“an ML”. 

 

Line 393-394: Where is this comparison? 

This was done for a master’s thesis project, and is outside the scope of our study. 

Therefore, we have not presented this comparison in the manuscript, and have clarified 

that in the text: 

L393: modified to “The eight datasets were further examined through statistical tests 

comparing the means of the training, validation and testing subsets of the measured 

PNC (not shown).” 

 

Caption of Figure 3: Is it orange? 

Corrected to purple. This was a leftover from before we improved the accessibility of 
the figures. 
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