N W

(e BN e NV,

11
12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Identification of nighttime urban flood inundation extent using deep
learning

Jiaquan Wan'- %3, Xing Wang*, Yannian Cheng’, Cuiyan Zhang*, Fengchang Xue’, Tao Yang' % 3, Fei
Tong® and Quan J. Wang’

' College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China

2 The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China

3 Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China

4 School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China

5 School of Remote Sensing and Surveying Engineering, Nanjing University of Information Science & Technology, Nanjing
210044, China

© China Institute of Water Resources and Hydropower, Beijing, 100048, China

7 Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of
Melbourne, Victoria 3010, Australia

Correspondence to: Xing Wang (jwangxing0719@163.com)

Abstract. With the acceleration of urbanization, the disaster of urban flooding has had a serious impact on urban
socio-economic activities and has become one of the important factors restricting social development in China. Accurate and
timely identification of urban flooding extents is crucial for decision-making. Traditional remote sensing technologies are
often limited by environmental factors, making them less suitable for application in complex urban terrains. With the
increase in urbanization and the development of emerging technologies, video imagery has become a significant data source
with great potential for urban flood identification. However, existing research has primarily focused on flood extent
identification in daytime scenarios, often neglecting the nighttime, a period of high flood occurrence. In this study, we
propose an efficient model (NWseg) to identify flood extents in nighttime scenes. Initially, we constructed a nighttime flood
inundation dataset consisting of 4,000 images. Subsequently, MobilenetV2 and ResNetl01 networks were used to replace
the DeepLabv3+ backbone network and compared with the NWseg model. Next, the NWseg model was compared with
ResNet50-FCN, LRASPP and U-Net models to evaluate the performance of different models in nighttime urban flooding
extent identification. Finally, we verified the applicability and performance differences of each model in specific
environments. Overall, this study successfully demonstrates the effectiveness of the NWseg model for nighttime urban
flooding extent identification, providing new insights for nighttime flood monitoring in cities.

Keywords: Deep learning, Nighttime flooding extent identification, Urban flooding, NWseg

1 Introduction

In recent years, extreme rainfall events have been occurring frequently in the context of complex climate change (Burn and

Whitfield, 2023; Kim et al., 2024). Concurrently, with the acceleration of urbanization processes, the proportion of
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impervious surfaces has been continuously expanding, resulting in serious urban flooding issues in many cities worldwide
(Ghosh et al., 2024; Liu et al., 2023; Kundzewicz et al., 2019). Urban flooding often coincides with multiple compounded
disasters and may even trigger secondary calamities, posing serious threats to the safety of urban residents, the normal
operation of city functions, and sustainable development. This exacerbates the vulnerability of urban socio-economic system
(Gu et al., 2025; Visser, 2014; Zheng et al., 2014). Therefore, achieving real-time and effective identification of urban
flooding extent has become a critical issue that urgently needs to be addressed.

Remote sensing technology has made significant advancements in the field of urban flood identification, providing new
perspectives for flood disaster identification through high spatial, temporal and spectral resolution data (Bofana et al., 2022).
However, despite its excellent performance at the macro scale, remote sensing technology has limitations in urban area
monitoring. Due to the limitations in temporal resolution and the impact of cloud cover and atmospheric variations, remote
sensing technology struggles to capture the dynamic changes of urban flooding, making real-time identification of rapidly
evolving flood events challenging (Mason et al., 2012). In addition, the complexity of the urban environment, especially the
dynamic changes of small-scale water bodies and localized waterlogging, further increases the difficulty of remote sensing
technology in urban flooding extent identification. Therefore, an intelligent and real-time urban flood monitoring method is
urgently needed to achieve more precise flood identification.

With technological advancements, the emerging fields of deep learning and computer vision have matured and engaged in
interdisciplinary collaborations, achieving significant performance that offer new technical approaches for urban flood
identification (Choi and Yoo, 2023). Particularly in image segmentation, deep learning's advantages in extracting global
features and contextual information make it highly promising for inundation detection (Liu et al., 2020). Simultaneously, the
increasing level of urbanization has led to the widespread deployment of video surveillance devices across urban areas,
particularly in highly urbanized areas (Muhadi et al., 2024; Hao et al., 2022). During rainfall, these cameras can fully record
the flooding process, providing real-time reflections of road inundation changes (Wang et al., 2024). Therefore, combining
deep learning with traffic cameras can effectively achieve the identification of urban flooding extent.

Existing research has demonstrated that deep learning excels in segmenting inundated areas. Sarp et al. (2020) applied the
Mask R-CNN model to automatically detect and segment floodwaters in urban, suburban, and natural scenes, achieving 99%
accuracy in the detection phase and 93% in the segmentation phase. Sazara et al. (2019) used a deep learning approach to
detect standing water on urban roads, in which a pre-trained VGG-16 network was used in the classification phase and a full
convolutional neural network was used in the segmentation task, and compared it with the traditional classifier and
extraction algorithms with manually-designed features, and the results showed that the deep learning approach has a more
obvious advantage in both the recognition and segmentation of standing water. Wang et al. (2024) used a deep convolutional
neural network (DCNN) for urban flood extent recognition based on video images acquired from surveillance cameras. Zeng

et al. (2024) proposed a DeepLabv3+ based flood image recognition method, which effectively improves the model

2



65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

&3

&4

85

86

87

88

&9

90

91

performance through image enhancement and the introduction of the super-resolution generative adversarial network.
However, current research focuses on daytime scenes, and the existing datasets lack diversity to cover flooding scenes at
night or under complex weather conditions. Meanwhile, some algorithms underperform when processing images in low-light
or adverse conditions, making flood extent identification at night or in challenging weather a technical challenge. This
limitation underscores the urgent need for accurate nighttime flood extent identification and the necessity for algorithm
improvements and dataset expansion.

To address the above challenges, this study proposes an efficient method for nighttime urban flood extent identification.
First, an urban flood inundation dataset for nighttime scenes is constructed to provide sufficient sample support for model
training. Subsequently, a NWseg model for nighttime image segmentation is proposed, which combines a Content-Light
Splitter with a Dual-Feature Integrator to enhance the model's performance in identifying flooding extent in low-light
environments. Meanwhile, given that the data are mainly sourced from urban road surveillance systems, the method is
particularly suitable for street (Street) and local area (District) scale flood detection. Finally, the robustness and performance
advantages of the NWseg model in nighttime urban flood recognition are verified through experimental comparison with
mainstream segmentation models. This study not only promotes the development of nighttime urban flood recognition
technology but also provides theoretical support and practical experience for future deep learning research in low-light
environments using nighttime.

Totally, the main contributions of this paper are as follows:

(1) Contributed a method for nighttime urban flooding extent identification based on urban surveillance cameras, aiming
at realizing efficient assessment of nighttime urban flooding areas and filling the gaps of research in this field at this stage.

(2) To support the generalization ability of the model in complex nighttime environments, this study constructs a
nighttime flood inundation dataset covering a variety of nighttime scenarios (e.g., different weather, illumination intensity,
and urban structure), which provides diverse sample resources required for training and testing.

(3) Replace the original DeepLabv3+ model network backbone with MobilenetV2 and ResNet101 networks and verify
the effect of different network backbones on the performance of the Deeplabv3+ model.

(4) An urban flood identification model NWseg for nighttime scenarios is proposed, and the significant advantages of the
model in terms of robustness, effectiveness and practicality are verified by comparing with other existing models, which

advances the research and development of nighttime urban flooding extent identification.
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2 Model

2.1 Nighttime Urban Segmentation Model

Flood segmentation faces significant challenges in nighttime scenes. Insufficient illumination and interference from complex
artificial light sources such as streetlights and headlights result in blurring of texture, edge, and color information in flooded
regions, further exacerbating the difficulty of the segmentation task and severely affecting the robustness and accuracy of the
model. To address this challenge, this study proposed a flood extent recognition model specifically designed for low-light
nighttime scenes - the NWseg model, which aims to alleviate the impact of low illumination and complex lighting conditions
on segmentation performance. As shown in Figure 1, the NWseg model consists of two key modules: Content-Light Splitter
(CLS) and Dual-Feature Integrator (DFI).

The design of the CLS module is based on the Retinex theory, which states that an image can be decomposed into a
pixel-by-pixel product between a light-independent reflectance component (reflectance) and a light-related illumination
component (illumination) (Land. 1977). Based on this principle, the CLS module decomposes the night image into a
"reflectance map" and an "illumination map," which represent the inherent semantic information of the flood area and the
lighting distribution in the scene, respectively (Wei et al., 2023). Subsequently, a semantic guidance mechanism is
introduced to optimize the semantic segmentation loss during training (i.e., the difference between predicted pixel-level class
labels and true labels), enabling the reflectance map to learn clearer boundaries and stronger semantic expression, thereby
achieving accurate identification of the true contours of the flood areas. In addition, to addressing the interference from
artificial light sources (such as car headlights and traffic lights), NWseg further designs the DFI module to enhance
segmentation performance by adaptively fusing reflectance and illumination features. The DFI module first encodes the
reflectance and illumination features and then constructs an attention mechanism that learns the degree of dependency
between each pixel and the two feature types, enabling adaptive feature-weighted fusion at the pixel level (Li et al., 2024).
This process adopts a pixel-wise weighting strategy, effectively enhancing the model’ s ability to recognize light-dominated
categories. Finally, the DFI module introduces a dual semantic supervision mechanism: it not only applies semantic
segmentation supervision to the fused output but also imposes semantic loss on the illumination channel separately, to
enhance its independent discriminative ability and improve the model's overall generalization capability (Wei et al., 2023).

In summary, NWseg, through the collaborative design of the CLS and DFI modules, demonstrates superior semantic
understanding and segmentation ability in complex nighttime lighting scenarios. It shows significant robustness and

recognition advantages, particularly in high-reflection, low-contrast, and locally overexposed areas.
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Figure 1: NWseg model inference process

2.2 Typical semantic segmentation model

DeepLabv3+ is an advanced model in the field of image segmentation, which significantly improves the accuracy and detail
processing ability of image segmentation by introducing an encoder-decoder structure (Bai et al., 2023; Peng et al., 2023).
The encoder part is responsible for extracting the high-level features of the image, while the decoder focuses on recovering
the details of the image, thus realizing a more fine-grained segmentation effect (Fu et al., 2021). The model also employs the
techniques of void convolution and Atrous Spatial Pyramid Pooling (ASPP), which can effectively capture the multi-scale
information of the image and improve the processing capability of complex scenes and object boundaries (Wang et al., 2024,
Peng et al., 2024). Cavity convolution enables the model to capture a larger range of image information without increasing
the computational effort by introducing voids in the convolution kernel. It is particularly helpful in capturing the
relationships between distant objects in an image (Yu et al., 2017). Atrous Spatial Pyramid Pooling (ASPP), on the other
hand, enhances the recognition of objects of different sizes by using different scales of null convolution to extract multiple
levels of image features, which helps the model to focus on both detailed and global information (He et al., 2014). In
addition, DeepLabv3+ uses Xception as the backbone network, combined with depth-separable convolution to improve
computational efficiency. Depth separable convolution divides the traditional convolution operation into two steps: first,
each image feature is processed independently, and then the results are combined (Zhang et al., 2023). This approach
effectively reduces computation and storage requirements, allowing the model to operate more efficiently while maintaining
high accuracy. However, due to its relatively complex network structure, DeepLabv3+ is still slow in the inference stage.

To enhance the segmentation performance of DeepLabv3+ in urban flood scenes, this study designs a series of controlled
experiments, systematically modifying or removing network components to verify the effectiveness of different backbone
networks (i.e., ablation studies) and compares the results with the NWseg model. First, experiments were conducted on the
original, unmodified DeepLabv3+ network as a baseline model. Then, we replaced the original DeepLabv3+ backbone
network with the lightweight MobilenetV2, constructing an improved model (denoted as MobilenetV2-DeepLabv3+).
MobilenetV2 is structurally optimized to compress the feature information while retaining the key information as much as

possible, thus achieving a lightweight model while maintaining high accuracy (Jin et al., 2023). Finally, we replaced the
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backbone network of DeepLabv3+ with the residual neural network ResNet101 to form another improved model (denoted as
ResNet101-DeepLabv3+). ResNet101 adopts the residual connection mechanism so that part of the feature information can
bypass the intermediate layer and be transmitted directly, which avoids the problems of “learning stagnation” or “training
instability” during the training process (Wang et al., 2024).

The Fully Convolutional Network (FCN) is a deep learning model that divides images into different regions by assigning a
specific label to each pixel. Traditional deep learning models typically provide only an overall classification result for an
entire image. In contrast, FCNs improve upon these models by replacing the fully connected layers with convolutional
operations, enabling the network to handle input images of any size and produce detailed, pixel-level predictions (Yang et al.,
2017). FCNs progressively compress the spatial dimensions of the image to extract essential information and then restore the
original size to achieve precise localization of different regions ( Zhao et al., 2018). Additionally, FCNs combine information
from both shallow and deep layers, further enhancing segmentation accuracy in complex areas, such as flood boundaries. In
this study, ResNet50 was selected as the backbone network for FCN, referred to as ResNet5S0-FCN. ResNet50 is a deep
neural network that effectively alleviates the gradient vanishing problem during training, improving stability and efficiency.
By combining the depth of ResNet50 with the flexibility of FCN, the proposed model enhances the accurate detection of
inundated areas in complex environments.

LRASPP (Lightweight Refine Atrous Spatial Pyramid Pooling) is a lightweight model designed for image segmentation
tasks. The model adopts MobileNetV3 as the backbone network for extracting the base features of an image and fuses
shallow features to enhance the retention of detailed information. To further enhance the inference efficiency, LRASPP
reduces the number of convolutional operations in the structural design and streamlines the feature channels to effectively
reduce the computational complexity. Ultimately, the model restores the feature map to the same size as the input image
through the upsampling operation to achieve accurate prediction of each pixel category (Tang et al., 2024).

U-Net is a deep learning model commonly used for image segmentation tasks, and its structure is mainly composed of two
parts: encoder and decoder (Siddique et al., 2021). The encoder is responsible for gradually reducing the image size and
extracting key features, while the decoder recovers the detailed information by gradually enlarging the feature map, thus
realizing the accurate classification of each pixel. In addition, to compensate for the information lost during the process of
reducing the image size, U-Net introduces a jump-join mechanism, which passes the features extracted at different stages in
the encoder directly to the corresponding decoder stage (Sengupta et al., 2025). This design enables the model to better
preserve the detailed features in the image while maintaining overall semantic understanding (Yadabendra et al., 2022).

We conducted comparative experiments on the FCN, LRASPP, U-Net, and NWseg models, evaluating their performance
using metrics such as Precision, Recall, Mean Intersection over Union (MIoU), and F1 Score. All models were initialized

with pretrained weights for their backbone networks and trained on the nighttime urban flooding dataset. The models were
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then evaluated on the test set, with relevant metrics calculated to determine the most suitable model for nighttime urban

flood recognition.

3 Design of experiments

3.1 Construction of dataset

In this study, we employed web crawler technology using Google Chrome to construct a comprehensive nighttime urban
waterlogging dataset by searching with the keyword "nighttime urban flooding." This dataset contains 4,000 images that
capture a wide range of nighttime waterlogging scenes, varying in extent and shape. To enhance the dataset's robustness and
comprehensiveness, we included images of complex scenes, such as strong lighting conditions and splashes caused by
vehicles, ensuring its applicability to diverse nighttime flooding situations. During the data selection process, careful
attention was given to the representativeness and balance of waterlogged areas across different scales, ranging from localized
ponding to large-scale flood events, to ensure broad coverage of possible urban flooding conditions (Du et al., 2025).

In addition, we employed Labelme, an open-source image annotation tool widely used in the field of computer vision, to
manually annotate the flooded regions in the images. Through its graphical interface, annotators can polygonally map the
inundated areas in an image and assign corresponding category labels to each area, thus generating high-quality semantic
segmentation data that can be used for deep learning model training (Zhang et al., 2023). Using this tool, we precisely
labeled the inundated areas in a total of 4,000 images. To ensure the accuracy and consistency of the annotations, three
graduate students with research backgrounds in urban flooding were recruited to independently perform the annotation work.
Specifically, each flood image was annotated separately by all three annotators, followed by a cross-review process to
identify potential discrepancies in the flood boundaries. In cases of inconsistency, the annotators engaged in multiple rounds
of collaborative discussion and iterative refinement, optimizing the boundaries based on image details. This process ensured
the overall quality and reliability of the dataset. Figure 2 presents a comparison between the original images and the labeled

images, where the inundated areas are marked in white and the non-inundated areas are marked in black.
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Figure 2: Samples and the flood area labels in the dataset, the white marked range is the flood extent.

3.2 Evaluation metrics

In validation and testing, mean Intersection over Union (MIoU), Flscore, precision and recall were used to assess the
performance of the semantic segmentation models (Munawar et al., 2021).

The MIoU value is defined as the ratio of the intersection area of the predicted bounding box and the real bounding box to
the concatenation area, and is calculated by averaging the results for each category. It is used to evaluate the accuracy of the
location information of the predicted results of the target detection task. The larger the overlap area between the real and the
presumed area of the object, the larger the calculated value of MIoU, and the more accurate the presumed target area. The

calculation of the MIoU value follows the following formula:

k
MIoU = > L
k+1= TP+FP+FN

(1)
Precision, which is the proportion of samples predicted to be positive that are actually positive, is also known as the check

rate, and can be expressed by the following formula:

P

Precision = —
TP + FP

(2)
Recall, which is the proportion of actual positive samples that are predicted to be positive, is also known as the check all

rate, and is given by the following formula:

P

Recall=—
TP+ FN

(3)

F1 score is the reconciled mean of precision and recall. The formula for each precision evaluation metric is as follows:

2x PrecisonxRecall

Flscore =
Precison+Recall

(4)
In the above formula, TP is the number of actual situations that are true and predicted to be true; FP is the number of
actual situations that are false and predicted to be true; FN is the number of actual situations that are true and predicted to be

false; and TN is the number of actual situations that are false and predicted to be false.
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3.3 Experimental configuration

All experiments were conducted wusing an operating system of Windows 10, a CPU model of
Intel(R)Core(TM)i712700F@2.10GHz, a GPU model of NVIDIA GeForce RTX 3080, 32GB of operating memory, a
programming language of Python 3.13, and a deep learning framework of PyTorchl.13, GPU acceleration is enabled during
model training with CUDA 11.7 and cuDNN 8.4.1 to improve training efficiency. The input image resolution is 512*512
pixels, the training optimizer type is Adam, the weight decay index is 0.0001, and the initialized learning rate is 0.005.

Parameters are shown in Table 1.

Table 1. Configuration table of the experiment

Project Model
Operating System Windows 10
Programming Language Python3.13
GPU NVIDIA GeForce RTX3080
GPU memory 32GB

4 Result

4.1 Ablation study

Table 2. NWseg and DeepLabv3+ series model training results

Models P/% R/% F1 score/% MIoU/% Params/M
Mobilenetv2-DeepLabv3+ 67.46 50.64 57.85 46.15 5.81
ResNet101-DeepLabv3+ 67.74 57.24 62.05 51.98 59.34
DeepLabv3+ 53.34 50.61 51.94 46.07 54.70
NWseg 95.99 94.8 95.39 91.46 122.6
100%
— [ Precision
L 1 Recall
90% [ F1 score
[ MioU
80%
70%
60% - . ]
50% o —N
40%
30%
20% T . T T
NWseg Mobilenetv2-DeeplLabv3+ ResNetl01-Deeplabv3+ DeeplLabv3+
Models

Figure 3. Comparison of experimental results between NWseg and DeepLabv3+ series of models

In this section, we present a comparative analysis of the DeepLabv3+ model with different backbone networks and compare

it with the NWseg model. As shown in Table 2 and Figure 3, all evaluation metrics are improved after replacing the original
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backbone network of DeepLabv3+ with Mobilenetv2 and ResNetl01, respectively. Notably, when ResNet101 was used as
the backbone, the model's performance improved even more, with Precision, F1 score, Recall, and MIoU increasing by
14.4%, 10.11%, 6.63%, and 5.91%, respectively, compared to the baseline model. However, all DeepLabv3+ variants still
exhibited a significant performance gap when compared to NWseg. The NWseg model achieved 95.99% in Precision,
94.80% in Recall, 95.39% in F1 score, and 91.46% in MIoU, demonstrating its superior capability in nighttime urban flood
extent recognition. Although NWseg has a relatively large number of parameters, it delivers outstanding accuracy and

robustness.

4.2 Model performance experiments

Table 3. NWseg and other segmentation model training results

Models P/% R/% F1 score/% MIoU/% Params/M
NWseg 95.99 94.8 95.39 91.46 122.6
ResNet50-FCN 85 77.23 80.93 82.7 35.31
LRASPP 80.17 25.39 38.57 59.21 3.22
U-Net 94.7 83.57 88.24 80.5 43.93
100%
[ Precision
Recall
90% - = - C F1 score
1 MioU
80% B
70% -
60% —
50% A
40% -
30% -
20% T T T T | ‘
NWseg ResNet50-FCN U-NeT LRASPP
Models

Figure 4. Comparison of experimental results between NWseg and other segmentation models

In this section, we present a comparative analysis of the experimental results of the NWseg model against other
segmentation models. As shown in Table 3 and Figure 4, the NWseg model achieved optimal results on the test set of the
nighttime flood inundation dataset, with a Precision of 95.99%, Recall of 94.8%, F1 score of 95.39%, and MIoU of 91.46%.
These metrics are significantly higher than those of the other models, demonstrating superior accuracy and recall rates.
Compared to the ResNetS0-FCN model, the NWseg model exhibits superior performance across all indicators, with
increases of 10.99% in Precision, 17.57% in Recall, 14.46% in F1 score, and an 8.76% improvement in MIoU. When
compared with the U-Net model, while the NWseg's Precision is similar, it outperforms in other metrics, with Recall, F1
score, and MIoU higher by 11.23%, 7.15%, and 10.96% respectively. Additionally, compared to the lightweight LRASPP
model, the NWseg model shows more pronounced advantages, with Precision increased by 15.82%, Recall significantly
increased by 69.41%, F1 score improved by 56.82%, and MIoU enhanced by 32.25%. Although NWseg is higher in the
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number of model parameters than the other comparative models, it still demonstrates significant advantages in several
evaluation metrics. Future research will aim to further optimize the structure of the model while maintaining its performance
to achieve a higher degree of lightweighting.

Overall, the NWseg model demonstrates superior performance across all evaluation metrics and also shows strong
performance in real scenario tests. In contrast, although the ResNet50-FCN model performs well in precision and detail
processing, it lacks efficacy in handling edge regions, leading to slightly insufficient performance in complex scenes. While
LRASPP offers advantages in computational efficiency due to its lightweight design, it has limitations in the precise capture
of details and boundaries. The U-Net model is comparable to NWseg in accurately detecting target areas but is somewhat

less robust and consistent when processing complex scenes.
4.3 Real-world scenes prediction comparison

To validate the effectiveness and stability of each model under challenging scenes, we conducted tests on seven models
using nighttime rainfall scenes and nighttime strong illumination scenes (Wan et al., 2025). As shown in Figure 5(a) presents
the original scene where streetlights at night generate strong reflections and halos on the water surface. Additionally, the
intense lighting affects the detailed features of the ground. By comparing the recognition results of each model, it is evident
that the NWseg, ResNet50-FCN, and U-Net models accurately detected the flooding conditions in the scene. Notably, the
NWseg model exhibited a more refined recognition ability in identifying water accumulation in road depressions. However,
both ResNetS0-FCN and U-Net showed certain false detections when recognizing the overall flooded areas. In contrast, the
Mobilenetv2-DeepLabv3+, DeepLab, and LRASPP models could only sporadically identify small flooded regions and
exhibited varying degrees of false detections. Although the ResNet101-DeepLabv3+ model recognized a larger flooded area,
a comparison with the original image reveals a relatively high false detection rate, indicating deviations in prediction
accuracy. Overall, the NWseg model outperformed the others in this scene recognition task, demonstrating superior

capability in recognizing flooded areas under complex lighting conditions.

17:37:43

(A) The Original image (B) Segmentation of Mobilenetv2-DeepLabv3+
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(C) Segmentation of ResNet101-DeepLabv3+ (D) Segmentation of DeepLabv3+

(E) Segmentation of LRASPP (F) Segmentation of U-Net

|
(G) Segmentation of ResNet50-FCN (H) Segmentation of NWseg

Figure 5. Scene with nighttime strong illumination: (A) the original scene; (B) the segmentation result of Mobilenetv2-DeepLabv3+;
(C) the segmentation result of ResNet101-DeepLabv3+; (D) the segmentation result of DeepLabv3+; (E) the segmentation result of
LRASPP; (F) the segmentation result of U-Net; (G) the segmentation result of ResNet50-FCN; (H) the segmentation result of
NWseg;

Furthermore, in the nighttime rainfall scene tests, we evaluated each model's performance to simulate urban flood
recognition under real-world conditions. In such scenes, reflections from rainwater, slippery road surfaces, and interference
from raindrops on the camera lens can adversely affect image clarity and the models' recognition accuracy (Zhao et al.,
2025). As shown clearly in Figure 6, the NWseg, ResNet50-FCN, and U-Net models were able to correctly identify the
flooded areas in the images, with the NWseg model providing the most detailed performance by accurately capturing the

edges of the flooded regions. While ResNet50-FCN and U-Net also identified the extent of flooding relatively well, they

were somewhat insufficient in recognizing the flood boundaries and exhibited some false detections.
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In contrast, the other four models performed relatively poorly. Specifically, the LRASPP and Mobilenetv2-DeepLabv3+
models were almost unable to detect the flooding, indicating weaker recognition capabilities in nighttime rainfall scenes.
Although ResNetl01-DeepLabv3+ and DeepLab could detect some flooded areas, comparison with the original images
revealed that the regions identified did not accurately reflect the actual flooding conditions and had high false detection rates.
Through comparative analysis, we further confirmed the challenges posed by nighttime rainfall environments for urban flood

recognition and demonstrated the superior performance of the NWseg model in handling complex conditions such as

nighttime rainfall.
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(A) The Original image (B) Segmentation of Mobilenetv2-DeepLabv3+

(C) Segmentation of ResNet101-DeepLabv3+ (D) Segmentation of DeepLabv3+

(E) Segmentation of LRASPP (F) Segmentation of U-Net
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(G) Segmentation of ResNet50-FCN (H) Segmentation of NWseg

Figure 6. Scene with nighttime rainfall: (A) the original scene; (B) the segmentation result of Mobilenetv2-DeepLabv3+; (C) the
segmentation result of ResNetl01-DeepLabv3+; (D) the segmentation result of DeepLabv3+; (E) the segmentation result of
LRASPP; (F) the segmentation result of U-Net; (G) the segmentation result of ResNet50-FCN; (H) the segmentation result of
NWseg;

5 Discuss

In this study, a state-of-the-art model named NWseg is proposed to address the challenges of nighttime urban flood extent
identification. Through a series of experimental validations, the NWseg model demonstrates superior performance with
95.99%, 94.8%, 95.39%, and 91.46% in Precision, Recall, F1 score, and MloU, respectively. In the prediction comparison of
real scenarios, the model also shows high accuracy and robustness, and effectively recognizes flooded areas in complex
nighttime environments. In addition, NWseg achieves an inference speed of 37.8 FPS (i.e., approximately 26.5 milliseconds
per image) under the NVIDIA GeForce RTX 3080 environment, demonstrating its potential for real-time applications in
high-performance computing platforms. This study bridges the current research gap in flood extent recognition in nighttime
scenarios, providing a technical reference for flood monitoring and emergency response.

Nevertheless, this study still has some limitations. First, the overall structure of NWseg is relatively complex, and the
model parameters are large in scale, which limits its deployment capability on resource-constrained edge devices, and its
stability in complex scenarios needs to be further verified. Second, in nighttime scenarios with extremely low illumination or
even complete power outage (e.g., the case of city blackout triggered by heavy rainfall), the model has difficulty in
extracting effective edge and texture information, which leads to a significant degradation of the recognition performance. In
addition, the current model is primarily designed for nighttime flood extent recognition and is not yet capable of sensing or
estimating flood depth. It also lacks the ability to perform reliably under all-weather conditions. Furthermore, although the
NWseg model can identify flooded areas more accurately, it is still difficult to achieve accurate modeling and area
quantification of inundated areas. Finally, the dataset used in this study is mainly collected from some typical cities in China,
and although it has covered diverse nighttime environments and lighting conditions, the model's generalization ability may
be limited by the influence of geographic concentration and the dependence on surveillance cameras, and there is a certain

identification bias when facing areas with different urban structures and lighting conditions.
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In the future, the network structure will be further optimized to reduce the computational complexity of the model and
improve the flexibility and efficiency of deployment. Meanwhile, the training dataset will be continuously expanded to
enhance its diversity and representativeness in multiple dimensions, such as geographic distribution and urban structure. In
addition, it is planned to introduce depth estimation technology to realize the accurate perception and quantification of the
depth of the flood to meet more detailed flood monitoring needs. Finally, techniques such as infrared thermal imaging,
microlight enhancement, and multimodal fusion will be combined to improve the robustness and adaptability of the model
under extremely low light conditions. In subsequent practical applications, the NWseg model can be widely deployed in key
scenarios such as urban emergency management, intelligent transportation monitoring, and disaster prevention and
mitigation, especially for emergency response needs under extreme weather at night. By interfacing with existing traffic
monitoring systems or urban sensing platforms, the model can automatically extract flooding information from the
monitoring screen, and realize rapid identification and early warning push for waterlogged areas. Combined with the city
scheduling platform, NWseg can assist government departments in flood risk assessment, dynamic allocation of emergency
resources, and trend analysis of disaster evolution, which significantly improves the efficiency of urban response and risk

management capabilities in extreme weather events.

6 Conclusions

This study successfully verified the excellent performance of the NWseg model in nighttime urban flood monitoring (Wan et
al., 2024), which provides a new idea for multi-scene flood extent identification and helps to promote the flood monitoring
system towards all-weather and all-scene intelligent identification. First, we constructed a representative dataset comprising
4,000 images of nighttime urban flooding scenes, covering various nighttime environments and diverse urban backgrounds.
Second, a model for nighttime waterlogging recognition, NWseg, is proposed to address the limitations in nighttime
waterlogging recognition due to insufficient lighting and complex lighting conditions. Furthermore, we replaced the
backbone networks of the DeepLabv3+ model with MobilenetV2 and ResNetl01 and conducted ablation experiments to
validate the performance of DeepLabv3+ with different backbones in nighttime flood recognition. We also performed a
comparative analysis between these DeepLabv3+ models and the NWseg model, as well as systematically analyzed the
NWseg, ResNet50-FCN, U-Net, and LRASPP models. Based on this, we reached the following empirical findings:

(1) Within the DeepLab series, the DeepLabv3+ model using ResNet101 as the backbone outperformed other variants in
capturing water surface edges and shadow details. However, when compared to the NWseg model, there remains a
considerable performance gap.

(2) The NWseg, U-Net, and ResNet50-FCN models demonstrated excellent performance in recognizing large-scale

flooded areas, effectively capturing the overall contours of flood zones and exhibiting strong generalization capabilities.
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Specifically, NWseg shows higher accuracy and robustness in complex scene tests, while ResNet50-FCN and U-Net have
some deficiencies and false detections in detecting edge details. In contrast, the lightweight LRASPP model showed limited
ability to recognize flooded areas in nighttime scenes, resulting in relatively poor performance.

(3) Through examining each model in complex scenes, we validated the NWseg model's effectiveness and stability in
diverse environments and conditions.

This study successfully demonstrates the superior performance of the NWseg model in nighttime urban flood
detection, filling the research gap in nighttime flood range identification. Our work not only promotes the development of
the field of nighttime urban flood identification but also provides a reference for future deep learning applications under
extreme lighting conditions (Wan et al., 2024). However, the model's decoupling and parsing process involves complex
decomposition of lighting components and adaptive fusion, leading to high computational resource demands, which
may impact its practical usability. Future work will focus on reducing the model’s parameters and computational costs
while maintaining accuracy. Additionally, further optimization of the dataset and model improvements will be pursued

to enhance the overall performance of the NWseg model, broadening its potential applications.
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