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Abstract. With the acceleration of urbanization, the disaster of urban flooding has had a serious impact on urban16

socio-economic activities and has become one of the important factors restricting social development in China. Accurate and17

timely identification of urban flooding extents is crucial for decision-making. Traditional remote sensing technologies are18

often limited by environmental factors, making them less suitable for application in complex urban terrains. With the19

increase in urbanization and the development of emerging technologies, video imagery has become a significant data source20

with great potential for urban flood identification. However, existing research has primarily focused on flood extent21

identification in daytime scenarios, often neglecting the nighttime, a period of high flood occurrence. In this study, we22

propose an efficient model (NWseg) to identify flood extents in nighttime scenes.The development of emerging technologies23

and the increase in urbanisation have led to a significant increase in the number of surveillance devices within cities, while24

the development of deep learning techniques has led to their widespread application in various fields. Deep learning methods25

using video images as a data source provide a new technical methods for intra-urban waterlogging recognition. However,26

current research mainly focuses on waterlogging recognition in daytime scenes, often ignoring nighttime, a time of high27

waterlogging incidence.To address these challenges faced by flooding recognition in the nighttime, this study proposes a28

deep learning model—NWseg—to achieve the recognition of the extent of waterlogging at night. Initially, we constructed a29

nighttime flood inundation dataset consisting of 4,000 images.a dataset of 4,000 images of nighttime urban flooding.30

Subsequently, MobilenetV2 and ResNet101 networks were used to replace the DeepLabv3+ backbone network and31

compared with the NWseg model. Next, the NWseg model was compared with ResNet50-FCN, LRASPP and U-Net models32

to evaluate the performance of different models in nighttime urban flooding extent identification. Finally, we verified the33

applicability and performance differences of each model in specific environments. Overall, this study successfully34
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demonstrates the effectiveness of the NWseg model for nighttime urban flooding extent identification, providing new35

insights for nighttime flood monitoring in cities.the applicability and performance differences of each model in specific36

environments were verified. In conclusion, this study successfully demonstrates the effectiveness of the NWseg model for37

nighttime urban flooding identification and provides new insights for nighttime urban flooding identification.38

Keywords: Deep learning, Nighttime flooding extent identification, Urban flooding, NWseg39

1 Introduction40

In recent years, extreme rainfall events have been occurring frequently in the context of complex climate change (Burn and41

Whitfield, 2023; Kim et al., 2024). Concurrently, with the acceleration of urbanization processes, the proportion of42

impervious surfaces has been continuously expanding, resulting in serious urban flooding issues in many cities worldwide43

(Ghosh et al., 2024; Liu et al., 2023; Kundzewicz et al., 2019)(Xue et al., 2023). Urban flooding often coincides with44

multiple compounded disasters and may even trigger secondary calamities, posing serious threats to the safety of urban45

residents, the normal operation of city functions, and sustainable development. This exacerbates the vulnerability of urban46

socio-economic system (Gu et al., 2025; Visser, 2014; Zheng et al., 2014)(Luo et al., 2020). Therefore, achieving real-time47

and effective identification monitoring of urban flooding extent has become a critical issue that urgently needs to be48

addressed.49

Remote sensing technology has made significant advancements in the field of urban flood identificationmonitoring,50

providing new perspectives for flood disasters identification through high spatial, temporal and spectral resolution data51

(Bofana et al., 2022)(Hao., 2022). However, despite its excellent performance at the macro scale, remote sensing technology52

has limitations in urban area monitoring. Due to the limitations in temporal resolution and the impact of cloud cover and53

atmospheric variations, remote sensing technology struggles to capture the dynamic changes of urban flooding, making54

real-time identification of rapidly evolving flood events challenging (Mason et al., 2012).Due to insufficient temporal55

resolution as well as the influence of cloud cover and changing atmospheric conditions, remote sensing techniques have56

difficulty in capturing subtle topographic changes within cities, and are unable to monitor fast-changing flooding events in57

real time (Gao., 2023). In addition, the complexity of the urban environment, especially the dynamic changes of small-scale58

water bodies and localized waterlogging, further increases the difficulty of remote sensing technology in urban flooding59

flood extent identificationmonitoring. Therefore, an intelligent and real-time urban flood monitoring method is urgently60

needed to achieve more precise flood identification.61

With technological advancements, the emerging fields of deep learning and computer vision have matured and engaged in62

interdisciplinary collaborations, achieving significant performanceremarkable results that offer new technical approaches for63

urban flood identification (Choi and Yoo, 2023). Particularly in image segmentationrecognition, deep learning's advantages64



3

in extracting global features and contextual information make it highly promising for inundation detection (Liu et al.,65

2020)(Liao., 2023). Simultaneously, the increasing level of urbanization has led to the widespread deployment of video66

surveillance devices across urban areas, particularly in highly urbanized areas (Muhadi et al., 2024; Hao et al., 2022)along67

city roads, where they are ubiquitous. During rainfall, these cameras can fully record the flooding process, providing68

real-time reflections of road inundation changes (Wang et al., 2024)(Wang et al., 2024; Yang et al., 2022; Cheng et al., 2018).69

Therefore, combining deep learning with traffic cameras can effectively achieve the identification of urban flooding extent.70

Existing research has demonstrated that deep learning excels in segmenting inundated areas. Sarp et al. (2020) (Bai et al.,71

2021) utilized the YOLOv2 object detection model to extract water accumulation features from images collected by Xi'an72

University of Science and Technology, achieving an average recognition accuracy of over 85% through multiple model73

training sessions, demonstrating the precision of this method for inundation area extraction. (Wang et al., 2021) classified74

road images into four categories—background, dry surface, inundated area, and slippery surface—and used the Res-UNet+75

semantic segmentation network to handle different lighting and scene conditions, achieving an Mean Intersection over Union76

(MIoU) of 90.07%, outperforming traditional classification methods. (Sarp et al., 2020) applied the Mask R-CNN model to77

automatically detect and segment floodwaters in urban, suburban, and natural scenes, achieving 99% accuracy in the78

detection phase and 93% in the segmentation phase. (Sazara et al., 2019)Sazara et al. (2019) used a deep learning approach79

to detect standing water on urban roads, in which a pre-trained VGG-16 network was used in the classification phase and a80

full convolutional neural network was used in the segmentation task, and compared it with the traditional classifier and81

extraction algorithms with manually-designed features, and the results showed that the deep learning approach has a more82

obvious advantage in both the recognition and segmentation of standing water. Wang et al. (2024) used a deep convolutional83

neural network (DCNN) for urban flood extent recognition based on video images acquired from surveillance cameras. Zeng84

et al. (2024) proposed a DeepLabv3+ based flood image recognition method, which effectively improves the model85

performance through image enhancement and the introduction of the super-resolution generative adversarial network.86

However, current research focuses on daytime scenes, and the existing datasets lack diversity to cover flooding scenes at87

night or under complex weather conditions. Meanwhile, some algorithms underperform when processing images in low-light88

or adverse conditions, making flood extent identification at night or in challenging weather a technical challenge. This89

limitation underscores the urgent need for accurate nighttime flood extent identificationmonitoring and the necessity for90

algorithm improvements and dataset expansion.91

To address the above challenges, this study proposes an efficient method for nighttime urban flood extent identification.92

First, an urban flood inundation dataset for nighttime scenes is constructed to provide sufficient sample support for model93

training. Subsequently, a NWseg model for nighttime image segmentation is proposed, which combines a Content-Light94

Splitter with a Dual-Feature Integrator to enhance the model's performance in identifying flooding extent in low-light95

environments. Meanwhile, given that the data are mainly sourced from urban road surveillance systems, the method is96

https://tw.dictionary.search.yahoo.com/search;_ylt=AwrtkRQG8hVobB4SKwJ9rolQ;_ylu=Y29sbwMEcG9zAzEEdnRpZAMEc2VjA3Ny?p=identifying&ei=UTF-8&context=gsmcontext::docid::ksa3CtfOd/rZEYGUnwjHVw|gsmcontext::source_lang::en|gsmcontext::target_lang::zh-hant&b=_UNSET_
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particularly suitable for street (Street) and local area (District) scale flood detection. Finally, the robustness and performance97

advantages of the NWseg model in nighttime urban flood recognition are verified through experimental comparison with98

mainstream segmentation models. This study not only promotes the development of nighttime urban flood recognition99

technology but also provides theoretical support and practical experience for future deep learning research in low-light100

environments using nighttime.For this specific scenario, we propose the NWseg model for waterlogging recognition in101

nighttime, inspired by the method introduced by (Wei et al., 2023). The problem of insufficient model recognition accuracy102

in nighttime scenes is effectively solved by two core components, Semantic-Oriented Disentanglement (SOD) and103

Illumination-Aware Parser (IAParser) (Wei et al., 2023). On this basis, this study constructs an urban flooding dataset for104

nighttime scenarios, based on which the model is trained to improve the model's ability to recognise the extent of urban105

flooding in nighttime environments.106

Totally, the main contributions of this paper are as follows:This study aims to enhance urban flood extent recognition in107

nighttime scenes by utilizing advanced semantic segmentation techniques and a comprehensive all-nighttime dataset,108

addressing the current limitations in both datasets and methodologies. More specific, our aims are as follows:109

(1) Contributed a method for nighttime urban flooding extent identificationassessing urban flooded areas based on urban110

surveillance cameras, aiming at realizing efficient assessment of nighttime urban flooding areas and filling the gaps of111

research in this field at this stage.in response to common challenges in the field of nighttime urban flooding identification.112

(2) To support the generalization ability of the model in complex nighttime environments, this study constructs a113

nighttime flood inundation dataset covering a variety of nighttime scenarios (e.g., different weather, illumination intensity,114

and urban structure), which provides diverse sample resources required for training and testing.A comprehensive and115

representative nighttime urban flooding dataset is constructed. It covers a wide range of nighttime scenes, including different116

weather conditions and city layouts, providing a rich resource for training and testing semantic segmentation models.117

(3) Replace the original DeepLabv3+ model network backbone with MobilenetV2 and ResNet101 networks and verify the118

effect of different network backbones on the performance of the Deeplabv3+ model.Replacement of the original119

DeepLabv3+ model network backbone with MobileNetV2 and Resnet101 networks is used to verify the performance impact120

of different network backbones on the DeeplavV3+ model through ablation experiments.121

(4) An urban flood identificationA waterlogging recognition model NWseg for nighttime scenarios is proposedcontributed,122

and the significant advantages of the model in terms of robustness, effectiveness and practicality are verified by comparing123

with other existing models, which advances the research and development of nighttime urban flooding extent124

identificationflood recognition.125
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2 Model126

2.1 Nighttime Urban Segmentation Model127

Flood segmentation faces significant challenges in nighttime scenes. Insufficient illumination and interference from complex128

artificial light sources such as streetlights and headlights result in blurring of texture, edge, and color information in flooded129

regions, further exacerbating the difficulty of the segmentation task and severely affecting the robustness and accuracy of the130

model. To address this challenge, this study proposed a flood extent recognition model specifically designed for low-light131

nighttime scenes - the NWseg model, which aims to alleviate the impact of low illumination and complex lighting conditions132

on segmentation performance. As shown in Figure 1, the NWseg model consists of two key modules: Content-Light Splitter133

(CLS) and Dual-Feature Integrator (DFI).134

The design of the CLS module is based on the Retinex theory, which states that an image can be decomposed into a135

pixel-by-pixel product between a light-independent reflectance component (reflectance) and a light-related illumination136

component (illumination) (Land. 1977). Based on this principle, the CLS module decomposes the night image into a137

"reflectance map" and an "illumination map," which represent the inherent semantic information of the flood area and the138

lighting distribution in the scene, respectively (Wei et al., 2023). Subsequently, a semantic guidance mechanism is139

introduced to optimize the semantic segmentation loss during training (i.e., the difference between predicted pixel-level class140

labels and true labels), enabling the reflectance map to learn clearer boundaries and stronger semantic expression, thereby141

achieving accurate identification of the true contours of the flood areas. In addition, to addressing the interference from142

artificial light sources (such as car headlights and traffic lights), NWseg further designs the DFI module to enhance143

segmentation performance by adaptively fusing reflectance and illumination features. The DFI module first encodes the144

reflectance and illumination features and then constructs an attention mechanism that learns the degree of dependency145

between each pixel and the two feature types, enabling adaptive feature-weighted fusion at the pixel level (Li et al., 2024).146

This process adopts a pixel-wise weighting strategy, effectively enhancing the model’s ability to recognize light-dominated147

categories. Finally, the DFI module introduces a dual semantic supervision mechanism: it not only applies semantic148

segmentation supervision to the fused output but also imposes semantic loss on the illumination channel separately, to149

enhance its independent discriminative ability and improve the model's overall generalization capability (Wei et al., 2023).150

In summary, NWseg, through the collaborative design of the CLS and DFI modules, demonstrates superior semantic151

understanding and segmentation ability in complex nighttime lighting scenarios. It shows significant robustness and152

recognition advantages, particularly in high-reflection, low-contrast, and locally overexposed areas.153

Nighttime scenes are typically characterized by low-temperature illumination and complex artificial light sources, which lead154

to changes in object appearance due to variations in lighting conditions. This reinforces the entanglement between light155

invariant reflectance and light-specific illumination, making it challenging to extract discriminative features for semantic156
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segmentation. Based on this background, proposed a nighttime waterlogging recognition model —NWseg, specifically157

designed to cope with the problem of degraded segmentation performance due to insufficient illumination and complexity in158

nighttime scenes (Wei et al., 2023).159

The paradigm consists of two core steps: decoupling and parsing. The inference is shown in Figure 1. In the decoupling160

phase, NWseg decomposes the input image into light-invariant reflectance and illumination-specific components. The161

designed SOD framework decomposes the image into illumination-independent reflectance components and light-specific162

components by semantically supervising the training of the de-entanglement module. It utilises Retinex theory to ensure that163

stable light-invariant reflectance is extracted under complex illumination conditions, which enhances the semantic164

recognition in the subsequent parsing phase. The parsing phase then extracts illumination features using an165

Illumination-Aware Parser (IAParser), which quantitatively evaluates the semantic information contained in the illumination166

by using a pyramid pooling module and a convolutional layer to construct an attention mask. The final segmentation result is167

obtained by combining reflectance and illumination features. The model effectively copes with the complex and variable168

lighting challenges in nighttime scenes through the dual mechanism of decoupling and parsing, and significantly improves169

the performance of semantic segmentation (Wei et al., 2023).170

171

172
Figure 1: NWseg model inference process173

2.2 Typical semantic segmentation model174

DeepLabv3+ is an advanced model in the field of image segmentation, which significantly improves the accuracy and detail175

processing ability of image segmentation by introducing an encoder-decoder structure (Bai et al., 2023; Peng et al., 2023).176

The encoder part is responsible for extracting the high-level features of the image, while the decoder focuses on recovering177
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the details of the image, thus realizing a more fine-grained segmentation effect (Fu et al., 2021). The model also employs the178

techniques of void convolution and Atrous Spatial Pyramid Pooling (ASPP), which can effectively capture the multi-scale179

information of the image and improve the processing capability of complex scenes and object boundaries (Wang et al., 2024;180

Peng et al., 2024). Cavity convolution enables the model to capture a larger range of image information without increasing181

the computational effort by introducing voids in the convolution kernel. It is particularly helpful in capturing the182

relationships between distant objects in an image (Yu et al., 2017). Atrous Spatial Pyramid Pooling (ASPP), on the other183

hand, enhances the recognition of objects of different sizes by using different scales of null convolution to extract multiple184

levels of image features, which helps the model to focus on both detailed and global information (He et al., 2014). In185

addition, DeepLabv3+ uses Xception as the backbone network, combined with depth-separable convolution to improve186

computational efficiency. Depth separable convolution divides the traditional convolution operation into two steps: first,187

each image feature is processed independently, and then the results are combined (Zhang et al., 2023). This approach188

effectively reduces computation and storage requirements, allowing the model to operate more efficiently while maintaining189

high accuracy. However, due to its relatively complex network structure, DeepLabv3+ is still slow in the inference stage.190

The DeepLab network series is an improved set of models based on fully convolutional neural networks (FCNs). These191

methods effectively enhance the receptive field of convolutional kernels to acquire multi-scale feature information, thereby192

optimizing the spatial accuracy of segmentation results (Feng et al., 2023; Chen et al., 2024). The network models mainly193

utilize techniques such as atrous convolution and atrous spatial pyramid pooling (ASPP) to extract multi-scale features and194

capture contextual information from images. The series includes DeepLabV1, DeepLabV2, DeepLabV3, and DeepLabV3+.195

DeepLabV3+ is the latest version in the DeepLab series (Li et al., 2024; Peng et al., 2024; Ma et al., 2024; Zhang er al.,196

2023); it introduces an encoder-decoder structure by adopting DeepLabV3 as the encoder and adding a decoder to form a197

new model. The Xception model is applied to the segmentation task, extensively using depthwise separable convolutions198

within the model. However, this network still has limitations in modeling long-range dependencies, insufficient handling of199

class-imbalanced data, and higher latency for real-time applications. While DeepLabV3+ combines the spatial pyramid200

pooling module and encoder-decoder structure in deep neural networks to achieve fine segmentation of object boundaries, it201

remains constrained in modeling long-range dependencies, dealing with class imbalance, and reducing latency for real-time202

applications (Li et al., 2023; Zhang et al., 2024; Tao et al., 2023).203

To enhance the segmentation performance of DeepLabv3+ in urban flood scenes, this study designs a series of controlled204

experiments, systematically modifying or removing network components to verify the effectiveness of different backbone205

networks (i.e., ablation studies) and compares the results with the NWseg model.designed ablation experiments to verify the206

effectiveness of different backbone networks and compared them with the NWseg model. First, experiments were conducted207

on the original, unmodified DeepLabv3+ network as a baseline model. Then, we replaced the original DeepLabv3+208

backbone network with the lightweight MobilenetV2, constructing an improved model (denoted as209
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MobilenetV2-DeepLabv3+). MobilenetV2 is structurally optimized to compress the feature information while retaining the210

key information as much as possible, thus achieving a lightweight model while maintaining high accuracy (Jin et al.,211

2023).MobileNetV2 optimizes the number of model parameters by introducing a linear bottleneck layer and inverted residual212

structures, ensuring a lightweight model while maintaining high accuracy (Jin et al., 2023). Finally, we replaced the213

backbone network of DeepLabv3+ with the residual neural network ResNet101 to form another improved model (denoted as214

ResNet101-DeepLabv3+). ResNet101 adopts the residual connection mechanism so that part of the feature information can215

bypass the intermediate layer and be transmitted directly, which avoids the problems of “learning stagnation” or “training216

instability” during the training process ResNet101 leverages a residual learning mechanism, allowing input information to217

bypass certain layers, addressing gradient vanishing and explosion issues during deep network training. This enhances the218

model’s ability to capture spatial depth and details, ultimately improving the accuracy and robustness of flood area219

recognition (Wang et al., 2024)(Yang et al., 2023; Wang et al., 2024).220

The Fully Convolutional Network (FCN) is a deep learning model that divides images into different regions by assigning a221

specific label to each pixel. Traditional deep learning models typically provide only an overall classification result for an222

entire image. In contrast, FCNs improve upon these models by replacing the fully connected layers with convolutional223

operations, enabling the network to handle input images of any size and produce detailed, pixel-level predictions (Yang et al.,224

2017). FCNs progressively compress the spatial dimensions of the image to extract essential information and then restore the225

original size to achieve precise localization of different regions ( Zhao et al., 2018). Additionally, FCNs combine information226

from both shallow and deep layers, further enhancing segmentation accuracy in complex areas, such as flood boundaries. In227

this study, ResNet50 was selected as the backbone network for FCN, referred to as ResNet50-FCN. ResNet50 is a deep228

neural network that effectively alleviates the gradient vanishing problem during training, improving stability and efficiency.229

By combining the depth of ResNet50 with the flexibility of FCN, the proposed model enhances the accurate detection of230

inundated areas in complex environments.231

The Fully Convolutional Network (FCN) is an architecture specifically designed for semantic segmentation by replacing232

the fully connected layers of traditional Convolutional Neural Networks (CNNs) with convolutional layers. This allows233

FCNs to process input images of arbitrary sizes and perform accurate pixel-wise classification. FCNs extract features234

through convolutional layers, reduce feature dimensionality via pooling layers, and restore feature map sizes using235

upsampling layers, achieving precise pixel-level segmentation. Techniques such as bilinear interpolation are employed to236

preserve image details ( Zhao et al., 2018). Additionally, skip connections in FCNs effectively fuse shallow and deep feature237

information, improving segmentation accuracy. In this study, ResNet50 is adopted as the backbone network for FCN,238

denoted as ResNet50-FCN. ResNet50 utilizes a residual learning mechanism to address gradient vanishing issues during239

deep model training, maintaining training stability and efficiency while enabling greater depth. The multiple residual blocks240

in ResNet50 capture rich multi-scale features, adapting to structures from coarse to fine. Its skip connections preserve the241
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detailed information that can be lost during upsampling, ensuring high-precision semantic segmentation. Combining the242

depth of ResNet50 with the flexibility of FCN, this model enhances the accurate detection of inundated areas in complex243

environments.244

LRASPP (Lightweight Refine Atrous Spatial Pyramid Pooling) is a lightweight model designed for image segmentation245

tasks. The model adopts MobileNetV3 as the backbone network for extracting the base features of an image and fuses246

shallow features to enhance the retention of detailed information. To further enhance the inference efficiency, LRASPP247

reduces the number of convolutional operations in the structural design and streamlines the feature channels to effectively248

reduce the computational complexity. Ultimately, the model restores the feature map to the same size as the input image249

through the upsampling operation to achieve accurate prediction of each pixel category The LRASPP network is a250

lightweight semantic segmentation model designed for efficient operation on resource-constrained devices such as mobile251

and embedded systems. It simplifies the classic ASPP (Atrous Spatial Pyramid Pooling) module, retaining its ability to252

capture multi-scale contextual information while significantly reducing computational complexity and memory usage. By253

leveraging depthwise separable convolutions to reduce the number of parameters and incorporating detailed information254

from lower-level features, LRASPP achieves a balance between model efficiency and accuracy. The model employs255

MobileNetV3 as the lightweight backbone to extract image features and generate multi-scale feature maps. It also simplifies256

the original ASPP module by capturing multi-scale contextual information through atrous convolutions and fusing low-level257

detailed features to improve segmentation accuracy. By reducing convolutional layers and the number of channels, the258

network significantly lowers computational complexity. The final output is upsampled to match the input image size,259

ensuring both efficiency and accuracy in segmentation tasks (Tang et al., 2024).260

U-Net is a deep learning model commonly used for image segmentation tasks, and its structure is mainly composed of two261

parts: encoder and decoder (Siddique et al., 2021). The encoder is responsible for gradually reducing the image size and262

extracting key features, while the decoder recovers the detailed information by gradually enlarging the feature map, thus263

realizing the accurate classification of each pixel. In addition, to compensate for the information lost during the process of264

reducing the image size, U-Net introduces a jump-join mechanism, which passes the features extracted at different stages in265

the encoder directly to the corresponding decoder stage (Sengupta et al., 2025). This design enables the model to better266

preserve the detailed features in the image while maintaining overall semantic understandingU-Net is a classic network267

architecture for image segmentation, built on fully convolutional networks (FCNs). It utilizes skip connections to directly268

concatenate features from downsampling and upsampling layers along the channel dimension, effectively integrating269

information from different layers. U-Net features a symmetrical encoder-decoder structure, with a left downsampling path, a270

right upsampling path, and intermediate skip connections. The downsampling path resembles traditional CNN architectures,271

consisting of alternately stacked convolutional and pooling layers, while the upsampling path uses transposed convolution to272

progressively restore the feature maps to the original image resolution (Zhang et al., 2023). Shallow features primarily273
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capture fine-grained information such as flood area edges, texture, and pixel position distribution, while deeper features274

extract more abstract, coarse-grained semantic information, helping solve the final pixel-level classification problem.275

U-Net’s structural characteristics enable it to effectively handle detailed information in low-light environments, making it276

particularly suitable for nighttime flood detection and other low-light image segmentation tasks (Yadabendra et al., 2022).277

We conducted comparative experiments on the FCN, LRASPP, U-Net, and NWseg models, evaluating their performance278

using metrics such as Precision, Recall, Mean Intersection over Union (MIoU), and F1 Score. All models were initialized279

with pretrained weights for their backbone networks and trained on the nighttime urban flooding dataset. The models were280

then evaluated on the test set, with relevant metrics calculated to determine the most suitable model for nighttime urban281

flood recognition.282

3 Design of experiments283

3.1 Construction of dataset284

In this study, we employed web crawler technology using Google Chrome to construct a comprehensive nighttime urban285

waterlogging dataset by searching with the keyword "nighttime urban flooding." This dataset contains 4,000 images that286

capture a wide range of nighttime waterlogging scenes, varying in extent and shape. To enhance the dataset's robustness and287

comprehensiveness, we included images of complex scenes, such as strong lighting conditions and splashes caused by288

vehicles, ensuring its applicability to diverse nighttime flooding situations. During the data selection process, careful289

attention was given to the representativeness and balance of waterlogged areas across different scales, ranging from localized290

ponding to large-scale flood events, to ensure broad coverage of possible urban flooding conditions (Du et al., 2025).291

In addition, we employed Labelme, an open-source image annotation tool widely used in the field of computer vision, to292

manually annotate the flooded regions in the images. Through its graphical interface, annotators can polygonally map the293

inundated areas in an image and assign corresponding category labels to each area, thus generating high-quality semantic294

segmentation data that can be used for deep learning model training (Zhang et al., 2023). Using this tool, we precisely295

labeled the inundated areas in a total of 4,000 images. To ensure the accuracy and consistency of the annotations, three296

graduate students with research backgrounds in urban flooding were recruited to independently perform the annotation work.297

Specifically, each flood image was annotated separately by all three annotators, followed by a cross-review process to298

identify potential discrepancies in the flood boundaries. In cases of inconsistency, the annotators engaged in multiple rounds299

of collaborative discussion and iterative refinement, optimizing the boundaries based on image details. This process ensured300

the overall quality and reliability of the dataset.performed the labeling work on the 4000 images in the dataset using the301

Labelme tool, which accurately extracted the waterlogged regions in each image. To further improve the accuracy of the302

annotations, we specifically assigned three graduate students to rigorously review and calibrate the boundary annotations for303
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quality assurance. The annotation results are saved as labeled images. Figure 2 presents a comparison between the original304

images and the labeled images, where the inundated waterlogged areas are marked in white and the non-inundated305

waterlogged areas are marked in black.306

307

308
Figure 2: Samples and the flood area labels in the dataset, the white marked range is the flood extent.Data Samples309

3.2 Evaluation metrics310

In validation and testing, mean Intersection over Union (MIoU), F1score, precision and recall were used to assess the311

performance of the semantic segmentation models (Munawar et al., 2021)(Jin et al., 2024).312

The MIoU value is defined as the ratio of the intersection area of the predicted bounding box and the real bounding box to313

the concatenation area, and is calculated by averaging the results for each category. It is used to evaluate the accuracy of the314

location information of the predicted results of the target detection task. The larger the overlap area between the real and the315

presumed area of the object, the larger the calculated value of MIoU, and the more accurate the presumed target area. The316

calculation of the MIoU value follows the following formula:317


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Precision, which is the proportion of samples predicted to be positive that are actually positive, is also known as the check319

rate, and can be expressed by the following formula:320

FPTP
TPcisionP


re

(2)321

Recall, which is the proportion of actual positive samples that are predicted to be positive, is also known as the check all322

rate, and is given by the following formula:323
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F1 score is the reconciled mean of precision and recall. The formula for each precision evaluation metric is as follows:325
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In the above formula, TP is the number of actual situations that are true and predicted to be true; FP is the number of327

actual situations that are false and predicted to be true; FN is the number of actual situations that are true and predicted to be328

false; and TN is the number of actual situations that are false and predicted to be false.329

3.3 Experimental configuration330

All experiments were conducted using an operating system of Windows 10, a CPU model of331

Intel(R)Core(TM)i712700F@2.10GHz, a GPU model of NVIDIA GeForce RTX 3080NVIDIAGeForceRTX3080, 32GB of332

operating memory,, a programming language of Python 3.13, and a deep learning framework of PyTorch1.13, GPU333

acceleration is enabled during model training with CUDA 11.7 and cuDNN 8.4.1 to improve training efficiency.GPU334

acceleration libraries are CUDA11.7, CUDNN8.4.1. the The input image resolution is 512*512 pixels, the training optimizer335

type is Adam, the weight decay index is 0.0001, and the initialized learning rate is 0.005. Parameters are shown in Table 1.336

Table 1. Configuration table of the experiment337

Project Model

Operating System Windows 10

Programming Language Python3.13

GPU NVIDIA GeForce RTX3080

GPU memory 32GB

4 Result338

4.1 Ablation study339

Table 2. NWseg and DeepLabv3+ series model training results340
Models P/% R/% F1 score/% MIoU/% Params/M

Mobilenetv2-DeepLabv3+ 67.46 50.64 57.85 46.15 5.81

ResNet101-DeepLabv3+ 67.74 57.24 62.05 51.98 59.34

DeepLabv3+ 53.34 50.61 51.94 46.07 54.70

NWseg 95.99 94.8 95.39 91.46 122.6
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341

342
Figure 3. Comparison of experimental results between NWseg and DeepLabv3+ series of models343

In this section, we present a comparative analysis of the DeepLabv3+ model with different backbone networks and compare344

it with the NWseg model. As shown in Table 2 and Figure 3, all evaluation metrics are improved after replacing the original345

backbone network of DeepLabv3+ with Mobilenetv2 and ResNet101, respectively. Notably, replacing the original backbone346

of DeepLabV3+ with MobileNetV2 resulted in improvements across all evaluation metrics. Precision and F1score increased347

significantly by 14.12% and 5.91%, respectively, while Recall and MIoU saw marginal improvements of 0.03% and 0.08%.348

When when ResNet101 was used as the backbone, the model's performance improved even more, with Precision, F1 score,349

Recall, and MIoU increasing by 14.4%, 10.11%, 6.63%, and 5.91%, respectively, compared to the baseline model. However,350

all DeepLabv3+ variants still exhibited a significant performance gap when compared to NWseg. The NWseg model351

achieved 95.99% in Precision, 94.80% in Recall, 95.39% in F1 score, and 91.46% in MIoU, demonstrating its superior352

capability in nighttime urban flood extent recognition. Although NWseg has a relatively large number of parameters, it353

delivers outstanding accuracy and robustness.. Despite these improvements, all three DeepLabV3+ models still exhibited a354

noticeable performance gap compared to the NWseg model. The NWseg model significantly outperforms the other models355

by achieving 95.99%, 94.8%, 95.39%, and 91.46% in Precision, Recall, F1 score, and MIoU, respectively.356
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4.2 Model performance experiments357

Table 3. NWseg and other segmentation model training results358
Models P/% R/% F1 score/% MIoU/% Params/M

NWseg 95.99 94.8 95.39 91.46 122.6

ResNet50-FCN 85 77.23 80.93 82.7 35.31

LRASPP 80.17 25.39 38.57 59.21 3.22

U-Net 94.7% 83.57 88.24% 80.5% 43.93

359

360

361
Figure 4. Comparison of experimental results between NWseg and other segmentation models362

In this section, we present a comparative analysis of the experimental results of the NWseg model against other363

segmentation models. As shown in Table 3 and Figure 4, the NWseg model achieved optimal results on the test set of the364

nighttime flood inundationsocial inundation dataset, with a Precision of 95.99%, Recall of 94.8%, F1- score of 95.39%, and365

MIoU of 91.46%. These metrics are significantly higher than those of the other models, demonstrating superior exceptional366

accuracy and recall rates. Compared to the ResNet50-FCN model, the NWseg model exhibits superior performance across367

all indicators, with increases of 10.99% in Precision, 17.57% in Recall, 14.46% in F1 -score, and an 8.76% improvement in368

MIoU. When compared with the U-Net model, while the NWseg's Precision is similar, it outperforms in other metrics, with369

Recall, F1- score, and MIoU higher by 11.23%, 7.15%, and 10.96% respectively. Additionally, compared to the lightweight370

LRASPP model, the NWseg model shows more pronounced advantages, with Precision increased by 15.82%, Recall371
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significantly increased by 69.41%, F1 -score improved by 56.82%, and MIoU enhanced by 32.25%. Although NWseg is372

higher in the number of model parameters than the other comparative models, it still demonstrates significant advantages in373

several evaluation metrics. Future research will aim to further optimize the structure of the model while maintaining its374

performance to achieve a higher degree of lightweighting.The lightweight design of LRASPP limits its ability to precisely375

capture details and edges, resulting in lower overall recognition accuracy.376

Overall, the NWseg model demonstrates superior performance across all evaluation metrics and also shows strong377

performance in real scenario tests. In contrast, although the ResNet50-FCN model performs well in precision and detail378

processing, it lacks efficacy in handling edge regions, leading to slightly insufficient performance in complex scenes. While379

LRASPP offers advantages in computational efficiency due to its lightweight design, it has limitations in the precise capture380

of details and boundaries. The U-Net model is comparable to NWseg in accurately detecting target areas but is somewhat381

less robust and consistent when processing complex scenes.382

4.3 Real-world scenes prediction comparison383

To validate the effectiveness and stability of each model under challenging scenes, we conducted tests on seven models384

using nighttime rainfall scenes and nighttime strong illumination scenes (Wan et al., 2025)(Liang et al., 2023). As shown in385

Figure 5(a) presents the original scene where streetlights at night generate strong reflections and halos on the water surface.386

Additionally, the intense lighting affects the detailed features of the ground. By comparing the recognition results of each387

model, it is evident that the NWseg, ResNet50-FCN, and U-Net models accurately detected the flooding conditions in the388

scene. Notably, the NWseg model exhibited a more refined recognition ability in identifying water accumulation in road389

depressions. However, both ResNet50-FCN and U-Net showed certain false detections when recognizing the overall flooded390

areas. In contrast, the Mobilenetv2-DeepLabv3+, DeepLab, and LRASPP models could only sporadically identify small391

flooded regions and exhibited varying degrees of false detections. Although the ResNet101-DeepLabv3+ model recognized a392

larger flooded area, a comparison with the original image reveals a relatively high false detection rate, indicating deviations393

in prediction accuracy. Overall, the NWseg model outperformed the others in this scene recognition task, demonstrating394

superior capability in recognizing flooded areas under complex lighting conditions.395

396
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(A) The Original image (B) Segmentation of Mobilenetv2-DeepLabv3+397

398

(C) Segmentation of ResNet101-DeepLabv3+ (D) Segmentation of DeepLabv3+399

400

(E) Segmentation of LRASPP (F) Segmentation of U-Net401

402

(G) Segmentation of ResNet50-FCN (H) Segmentation of NWseg403

404

(a) Original image (b) Mobilenetv2-DeepLabv3+(c) ResNet101-DeepLabv3+ (d) Deeplab405

406

(a) Original image (b) Mobilenetv2-DeepLabv3+ (c) ResNet101-DeepLabv3+ (d) Deeplab407

408
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(e)NWseg (f) ResNet50-FCN (g) LRASPP (h) U-Net409
Figure 5. Scene with nighttime strong illumination: (A) the original scene; (B) the segmentation result of Mobilenetv2-DeepLabv3+;410
(C) the segmentation result of ResNet101-DeepLabv3+; (D) the segmentation result of DeepLabv3+; (E) the segmentation result of411
LRASPP; (F) the segmentation result of U-Net; (G) the segmentation result of ResNet50-FCN; (H) the segmentation result of412
NWseg;Examination of nighttime strong illumination scenes413

Furthermore, in the nighttime rainfall scene tests, we evaluated each model's performance to simulate urban flood414

recognition under real-world conditions (Tan et al., 2021). In such scenes, reflections from rainwater, slippery road surfaces,415

and interference from raindrops on the camera lens can adversely affect image clarity and the models' recognition accuracy416

(Zhao et al., 2025). As shown clearly in Figure 6, the NWseg, ResNet50-FCN, and U-Net models were able to correctly417

identify the flooded areas in the images, with the NWseg model providing the most detailed performance by accurately418

capturing the edges of the flooded regions. While ResNet50-FCN and U-Net also identified the extent of flooding relatively419

well, they were somewhat insufficient in recognizing the flood boundaries and exhibited some false detections.420

In contrast, the other four models performed relatively poorly. Specifically, the LRASPP and Mobilenetv2-DeepLabv3+421

models were almost unable to detect the flooding, indicating weaker recognition capabilities in nighttime rainfall scenes.422

Although ResNet101-DeepLabv3+ and DeepLab could detect some flooded areas, comparison with the original images423

revealed that the regions identified did not accurately reflect the actual flooding conditions and had high false detection rates.424

Through comparative analysis, we further confirmed the challenges posed by nighttime rainfall environments for urban flood425

recognition and demonstrated the superior performance of the NWseg model in handling complex conditions such as426

nighttime rainfall.427

428

(A) The Original image (B) Segmentation of Mobilenetv2-DeepLabv3+429

430
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(C) Segmentation of ResNet101-DeepLabv3+ (D) Segmentation of DeepLabv3+431

432

(E) Segmentation of LRASPP (F) Segmentation of U-Net433

434

(G) Segmentation of ResNet50-FCN (H) Segmentation of NWseg435

436
(a) Original image (b) Mobilenetv2-DeepLabv3+ (c) ResNet101-DeepLabv3+ (d) Deeplab437

438

439
(e) NWseg (f) ResNet50-FCN (g) LRASPP (h) U-Net440

Figure 6. Scene with nighttime rainfall: (A) the original scene; (B) the segmentation result of Mobilenetv2-DeepLabv3+; (C) the441
segmentation result of ResNet101-DeepLabv3+; (D) the segmentation result of DeepLabv3+; (E) the segmentation result of442
LRASPP; (F) the segmentation result of U-Net; (G) the segmentation result of ResNet50-FCN; (H) the segmentation result of443
NWseg;444

Figure 6. Examination of nighttime rainfall scenes445

5 Discuss446

In this study, a state-of-the-art model named NWseg is proposed to address the challenges of nighttime urban flood extent447

identification. Through a series of experimental validations, the NWseg model demonstrates superior performance with448
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95.99%, 94.8%, 95.39%, and 91.46% in Precision, Recall, F1 score, and MIoU, respectively. In the prediction comparison of449

real scenarios, the model also shows high accuracy and robustness, and effectively recognizes flooded areas in complex450

nighttime environments. In addition, NWseg achieves an inference speed of 37.8 FPS (i.e., approximately 26.5 milliseconds451

per image) under the NVIDIA GeForce RTX 3080 environment, demonstrating its potential for real-time applications in452

high-performance computing platforms. This study bridges the current research gap in flood extent recognition in nighttime453

scenarios, providing a technical reference for flood monitoring and emergency response.454

Nevertheless, this study still has some limitations. First, the overall structure of NWseg is relatively complex, and the455

model parameters are large in scale, which limits its deployment capability on resource-constrained edge devices. On the456

other hand, in nighttime scenarios with extremely low illumination or even complete power outage (e.g., the case of city457

blackout triggered by heavy rainfall), the model has difficulty in extracting effective edge and texture information, which458

leads to a significant degradation of the recognition performance. In the future, we will further optimize the network459

structure to reduce the computational complexity of the model and improve deployment flexibility. In addition, we consider460

combining infrared thermal imaging, low-light image enhancement, or multimodal fusion methods to improve the robustness461

and generalization ability of the model under extreme low-light conditions.462

56 Conclusions463

This study successfully verified the excellent performance of the NWseg model in nighttime urban flood monitoring (Wan et464

al., 2024), which provides a new idea for multi-scene flood extent identification and helps to promote the flood monitoring465

system towards all-weather and all-scene intelligent identification.addresses the technical challenges of nighttime urban466

flood detection by evaluating the performance of seven different models (Wan et al., 2024). First, we constructed a467

representative dataset comprising 4,000 images of nighttime urban flooding scenes, covering various nighttime environments468

and diverse urban backgrounds. Second, a model for nighttime waterlogging recognition, NWseg, is proposed to address the469

limitations in nighttime waterlogging recognition due to insufficient lighting and complex lighting conditions. Furthermore,470

we replaced the backbone networks of the DeepLabv3+ model with MobilenetV2 and ResNet101 and conducted ablation471

experiments to validate the performance of DeepLabv3+ with different backbones in nighttime flood recognition. We also472

performed a comparative analysis between these DeepLabv3+ models and the NWseg model, as well as systematically473

analyzed the NWseg, ResNet50-FCN, U-Net, and LRASPP models. Based on this, we reached the following empirical474

findings:475

(1) Within the DeepLab series, the DeepLabv3+ model using ResNet101 as the backbone outperformed other variants in476

capturing water surface edges and shadow details. However, when compared to the NWseg model, there remains a477

considerable performance gap.478
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(2) The NWseg, U-Net, and ResNet50-FCN models demonstrated excellent performance in recognizing large-scale479

flooded areas, effectively capturing the overall contours of flood zones and exhibiting strong generalization capabilities.480

Specifically, NWseg shows higher accuracy and robustness in complex scene tests, while ResNet50-FCN and U-Net have481

some deficiencies and false detections in detecting edge details. In contrast, the lightweight LRASPP model showed limited482

ability to recognize flooded areas in nighttime scenes, resulting in relatively poor performance.483

(3) Through examining each model in complex scenes, we validated the NWseg model's effectiveness and stability in484

diverse environments and conditions.485

This study successfully demonstrates the superior performance of the NWseg model in nighttime urban flood486

detection, filling the research gap in nighttime flood range identification. Our work not only promotes the development of487

the field of nighttime urban flood identification but also provides a reference for future deep learning applications under488

extreme lighting conditions (Wan et al., 2024). However, the model's decoupling and parsing process involves complex489

decomposition of lighting components and adaptive fusion, leading to high computational resource demands, which490

may impact its practical usability. Future work will focus on reducing the model’s parameters and computational costs491

while maintaining accuracy. Additionally, further optimization of the dataset and model improvements will be pursued492

to enhance the overall performance of the NWseg model, broadening its potential applications.493
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