10

15

20

https://doi.org/10.5194/egusphere-2025-765
Preprint. Discussion started: 7 April 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Further Evaluating the Generalized Ito Correction for Accelerating
Convergence of Stochastic Parameterizations with Colored Noise

William Johns!, Lidong Fang?, Huan Lei*?, and Panos Stinis*

'AT and Data Analytics Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, USA

2Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan,
48824, USA

3Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, 48824, USA

4 Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, Richland, Washington,
99354

Correspondence: William Johns (william.johns @pnnl.gov)

Abstract. Stochastic parameterizations are increasingly used in numerical weather prediction to capture statistical proper-
ties of unresolved processes and model uncertainties. However, numerical methods developed for deterministic systems may
fail to converge to physically meaningful solutions when applied to stochastic systems without modification. A recent study
demonstrated the effectiveness of the generalized Itd correction in improving convergence and solution accuracy for a one-
dimensional linear test problem with various noise spectra. In this work, we extend the analysis to two nonlinear systems:
a modified one-dimensional Korteweg—de Vries equation and a two-dimensional nonlinear shear layer simulation relevant to
numerical weather prediction. Both systems are subjected to stochastic advection with varying noise colors and magnitudes.
We compare the convergence and solution accuracy of the Itd-corrected scheme to an uncorrected scheme, as well as its com-
putational efficiency relative to a second-order Runge—Kutta method. Our results highlight the effectiveness of the generalized

It correction in enhancing solution accuracy and convergence while maintaining computational efficiency.

1 Introduction

The multi-scale nature of chemical and physical processes in the atmosphere presents significant challenges in numerical sim-
ulation. Processes which are not resolved in the temporal or spatial scale but are still important to the time evolution of a model
need to be represented with parameterizations Majda et al. (1999). Some unresolved processes cannot be fully described at
any instant in time via the resolved processes. Recent studies have focused on addressing this indeterminacy by introducing
a stochastic element into parameterizations Berner et al. (2017); Leutbecher et al. (2017). Numerical methods developed for
deterministic systems may produce non-physically relevant solutions when naively applied to stochastic systems. The most
common discretizations in stochastic analysis are the Itd and Stratonovich interpretation. The Stratonovich interpretation leads

to ordinary calculus where the Itd interpretation does not. As climate prediction and weather forecasting rely on fundamentally
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continuous processes, which therefore obey the ordinary rules of calculus, the Stratonovich solution is often the more phys-
ically relevant interpretation Oksendal (2013). For a thorough discussion of the difference between the Itd6 and Stratonovich
solutions, see chapter 7 in Kloeden and Platen (1992), the review paper by Mannella and McClintock (2012), and Moon and
Wettlaufer (2014). Many deterministic numerical schemes converge to the It6 interpretation when applied to stochastic sys-
tems. Throughout this work we will be considering convergence only in the sense of strong convergence, for brevity, we will
simply refer to it as convergence. For a detailed discussion of strong convergence and other convergence metrics, see Kloeden
and Platen (1992). Fortunately, the It6 and Stratonovich interpretations are related. The convergence of a numerical scheme
under the Itd interpretation can be changed to the Stratonovich interpretation with the introduction of a correction term called
the It6 Correction Oksendal (2013). We note that the addition of the It6 correction can change the order of convergence of
the resulting scheme. Although colored noise can be temporally resolved by using small enough time steps to allow the use
of deterministic schemes, the required value is often not feasible in practice. A recent work by some of the co-authors intro-
duced a generalized It6 correction (GIC) term which is suitable for colored noise Stinis et al. (2020). It was demonstrated
that the GIC both improves the final time error and convergence of deterministic numerical schemes with colored noise on a
one-dimensional advection-diffusion equation with stochastic forced advection, even for large time steps.

In this work, we demonstrate that the GIC can improve convergence and accuracy on more complicated non-linear systems
arising from the numerical weather prediction models. Since analytical solutions for these non-linear systems are not available,
we test the convergence of the schemes to a reference solution computed with a very small time step with Heun’s second-order
Runge-Kutta (RK2) scheme, which converges to the Stratonovich interpretation Hodyss et al. (2013). Additionally, we test
that the reference solution has “self converged”, that is, taking smaller time steps does not result in significant changes to
the solution. Furthermore, we show that the GIC performs well with increasing magnitudes of colored noise. To demonstrate
the flexibility of the GIC we add it to two higher-order schemes and demonstrate its effectiveness at reducing the final error
and improving convergence with a 1D homogenous drift-free stochastic differential equation (SDE). We use these examples
to highlight how the introduction of the GIC may alter the convergence rate of the scheme. Lastly, we compare the running
time of a first-order deterministic numerical scheme (forward Euler) with the GIC to that of the second-order RK2 scheme,
which itself converges to the Stratonovich interpretation. The introdution of the GIC proves to be efficient with negligible
computational overhead, providing a scheme with a similar computational cost to the forward Euler (for colored noise) while
converging to the Stratonovich solution as desired. For applications where computational cost poses a fundamental constraint
and stochastic parameterizations with colored noise are desirable, the addition of the GIC can improve the final error even with

large step sizes, and guarantee the convergence to physically relevant solutions as the step size is decreased.
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2 Models
2.1 Time evolution equation and the Generalized It6 Correction

Following the derivation in Stinis et al. (2020) we consider the stochastic differential equation

e (@.t) = Dlul + Pful, m

where u = u(z,t) is a function of spatial and temporal variables. The term D]u] contains only deterministic terms and all of

the stochastic terms are in Ps[u]. R(t) is a colored noise term which is spatially homogeneous. Without loss of generality, we

assume E[R(¢)] = 0. If P;[u] has the form
Pylu) = glul R(t), )

the GIC at the jth time step in differential form is given by I; with

| _ 19gfu)

i=5 5, U E[(AR))*], 3)

tj
where t; is the time at the j-th time step and AR} is the j-th increment of R. The GIC is applied to a numerical integration
scheme converging to the It solution as follows. At each time step of the numerical integration, I; is computed and added to
the numerical solution of the right-hand-side of Equation (1) for that timestep. The only term in I; that needs to be computed
at each time step is % g[u]. We note that in the white noise case, where E[(AR]‘>2] = At, the GIC is equal to the Itd

u

correction (see Stinis et al. (2020) for more details).
2.2 Noise approximation

We use the following approximation n(t) of the noise process R(t) from Hodyss et al. (2013).

Ny
1 bo -
n(t) = N At C(wo) 7 + m§:1 C(wim) [am sin(wmt) + by, cos(wmt)] |,
—ow? _ 2mm . B
Cw)=e , wm_i(N—l)At’ Ny=(N-1)/2, 4)

where N is the number of discrete time levels per unit of time, including the starting and ending time levels. The parameter
« controls the color of the Fourier spectrum of n(t) (o =0 corresponds to white noise while « # 0 to colored noise). To
construct different realizations of the noise process, we sample, for m = 0,..., N, the coefficients a,, and b,,, independently,
from the normal distribution A(0,1) for different initial seeds of a random number generator. It should be noted that n(t) is an
approximate random noise. The true noise term R(t) would contain an infinite number of Fourier modes while n(t) only has a
finite number of modes. Nevertheless, in numerical modeling, we can use n(t) to approximate R(t).

For the first two cases investigated in this work, the coefficient function g[u] in Equation (2) will take the form g[u] = %.
For this choice of g[u|, we have

2

298 gy = 4.
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With the true noise process n(t) represented by an infinite number of Fourier modes, the GIC in differential form is given by

N
1 0%u 1 [ C(wp)? !
L==2% fim — D2
IT 2 0a%|, NS Ny | 2 +";C(” ) ©)

We note that I; — 0 as N — oo for any colored noise (a 7 0), but not for the white noise (o = 0). This is again because
any colored noise can be resolved by taking sufficiently small time steps, at which point the system can be understood as a
deterministic one, and the GIC is no longer necessary. As we can only use a finite number of modes numerically as in Equation
(4), the GIC in differential form we use in this work is

N
18%u| 1 |Clw)? & )

L=-—5| ~—|=52=+Y Clwm)?|. 7

o g, Ny | T2 T2 Clem) @

2.3 1D KdV Model

Following Equation 2.7 and the boundary conditions specified in Hodyss and Nathan (2002), we study the following modified

Korteweg-de Vries (KdV) equation for the amplitude A = A(x,t) of low frequency atmospheric waves:

0A 9%A 0A
e —(md% + (mp(z) + mnA)% +mg(x)A). (8

The above equation is modified from the traditional KdV equation with the addition of the linear growth term m,(x)A. The
dispersion and nonlinear coefficients, my and m,,, are constant, whereas the linear, long-wave phase speed and growth/decay
coefficients, m,(z) and m,(z), are functions of the zonally varying background flow.

We introduce the stochastic perturbation n(t) on the linear advection term of Equation (8) as

0A 0*A 0A
O == i + (o) +ma+n)) 52 )] ©)

Here the coefficient function g in Equation (2) is g[A] = 0A/0x and the GIC correction at each time step ¢; is given by

ja_ 104

1| Clw)? &
i T2 9.2, Ny (L;O) +ZC’(""m)2 . (10)

t; Ny

m=1

2.4 2D Model

Following Hodyss et al. (2013), we study a nonrotating, stably stratified, nonhydrostatic Boussinesq fluid bounded above and
below (in z direction) by rigid, horizontal boundaries, but periodic in the horizontal (x) direction. The governing equations
along an z-z cross-section may be combined into two equations in two unknowns, the vorticity ¢ and the potential temperature

0, as

o 0C I godb
FTAR CF R S
@7_( %‘F @+ %
ot~ ar Yo Tz

)+ F, (1)

)+ H, (12)
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along with the relations

_% __% _ 2
u= o w=—ar =V, (13)

where V2 is the Laplacian operator in the z-z plane, and u, w, ¥, F', H, g, and 8 are the zonal wind, vertical wind, geostrophic
pressure (stream function) field, vorticity source, heat source, standard acceleration due to gravity, and reference temperature,
respectively (see Appendix D of Hodyss et al. (2013) for more details about the sub-grid parameterizations F' and H, linear
advection, the eddy viscosity, the thermal diffusion, initial conditions, and boundary conditions etc.).

For this study we do not include stochastic perturbations of F' or H as in Hodyss et al. (2013) and introduce a stochastic

perturbation n(t) on the zonal wind « in Equations (11) and (12) as,

o __ 9,06 999
or ~ (g g o) T (1
20 00 00 99
Here, the function g in Equation (2) is ¢[¢] = 9(/0x in Equation (14) and ¢[f] = 90/0x in Equation (15), and the GICs are
given by
Lo 1| Cw)? & ]
c_ - Y51 & 0 2
=552 LN | T2 +m§::10(wm) ; (16)
- N Z
10%] 1 |Clw)?® &
o_ -7 - | X\ 2
Ij =35 5.2 LN |2 +m§::10(wm) (17)

respectively. We make one additional change to the model: where Hodyss et al. (2013) used a At dependent hyper-diffusion

parameter we set this parameter to be constant; this is necessary for convergence analysis.
2.5 Model and schemes for testing higher order methods

To demonstrate the effect of the GIC on higher order schemes, we consider, for simplicity, a homogeneous differential equation
driven purely by stochastic terms (drift-free) given by

dX (1)
dt

= X(t)n(t), (18)

with initial condition X (0) = X|. For this choice of ¢ and the noise process n(t), the GIC is given by

2 Ny
I]- i C(‘;O) + Z C(wm)2 (19)
m=1

1
27|, Ny

J

Numerical results are presented later in the paper for the three time integration schemes summarized below.

The order 1.0 Milstein (MS) scheme for (18) with colored noise can be written as

Vi1 =Y + Yon(tn) At + %Yn {(n(t.) A1) — E[(AR;))]}, (20)
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with the approximation Y, ~ X (t,,). In the case of white noise, where E[(AR;)?)] = At, (20) reduces to the traditional MS
scheme. This scheme was chosen to demonstrate the effects of adding GIC to a scheme which converges to the Itd solution
with order 1.0 where the forward Euler scheme previously used converges with order .5.

Schemes for strong and weak approximation with colored noise are discussed in detail in Milshtein and Tret’yakov (1994).
It will sometimes be the case that the order of convergence of a scheme is changed by the addition of the GIC. To demonstrate
this, we consider the order 1.5 Strong Taylor Scheme detailed in Kloeden and Platen (1992) section 10.4.1; for brevity we shall
call this the KP scheme. We will demonstrate that while this scheme converges to the It6 solution with order 1.5 the addition of
the GIC results in a scheme converging to the Stratonovich solution with order 1. The KP scheme for (18) with colored noise

can be written as
1
Y1 = Yo+ Yon(t,) At + §Yn {(n(tn)At)? — E[(AR;)*)]} (21)

#5370 { (6807 = BRI it

We note that for both of these schemes, there is a term equivalent to the GIC with a minus sign. It is therefore more efficient to
remove this term and the GIC, rather than redundantly subtracting and adding it.

The third higher order scheme we consider is the Milstein scheme with the highest order derivative approximated with a
forward difference as described in Kloeden and Platen (1992) section 11.1.3, we will call this scheme KP2. This scheme was
chosen to demonstrate how the GIC cam be applied to multi-step methods. The KP2 scheme for (18) with colored noise can

be written as

_ L (v _ 2_ )2
Va1 = Yo+ Yan(ta)At+ e (¥ = ¥a) {(n(tn) A0 = EI(AR;))]} (22)
with supporting value
Y, =Y, +Y,VAL (23)

When adding the GIC to KP2 we add it only to (22). Unlike the previous two schemes, there is no term equivalent to the
subtraction of the GIC, so the GIC must be added explicitly to (22).

3 Numerical Results

In this section, we present numerical results demonstrating the effects of including the GIC on the error and rate of convergence
of a numerical scheme. For simplicity, we add the generalized Itd correction to the forward Euler scheme which is known to
converge to the It6 interpretation with order .5 (Kloeden and Platen, 1992). Our results show that the inclusion of the generalized
1t6 correction both improves the final error and increases the critical time step for which the scheme begins to converge to the
Stratonovich interpretation. As exact solutions for Equations (9), (14), (15) are not available, we compare the forward Euler

results, with and without the GIC, to a high fidelity reference solution obtained using Heun’s second-order Runge-Kutta (RK?2)
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scheme, which is known to converge to the Stratonovich interpretation Hodyss et al. (2013). All errors are computed relative

to the norm of the reference solution via

€m = |[tm — Urer|| /|| ret| (24)

where u,, denotes the solution computed with a chosen method, u.t denotes the reference solution computed with RK2 and
|| ]| is the standard l5 norm. To ensure that the RK2 reference solution is sufficiently converged to the true solution, we
compute a sequence of RK2 solutions with decreasing time steps and check that the error in Equation (24) becomes very
small. For example, Figure 1 shows the convergence of RK2 solutions for Equation (14) to the reference solution obtained
with At =107°, averaged over 100 realizations of the noise for each color (o = [0,1071°,1078,1076,107%,1072]). As the
mean error is very small and changes very little for time steps less than 10>, we consider the reference solution sufficiently
converged to the true solution. The figure will also show the relation between « and the critical time step after which the
convergence reaches its maximal theoretical rate (order of convergence). For alpha closer to O (closer to white noise) the

smaller the critical times step will be. Each realization of the noise is characterized by the two sequences {a,, } and {b,, } used

N—-1

in its computation. For different values of At, the number of terms Ny = === changes in Equation (4) since N is determined

by At . This provides a consistent sampling of the same noise realization as the time steps are varied.
3.1 Convergence by Noise Spectrum

In this experiment, we compare the convergence and final error for forward Euler with and without the GIC for varying
colors of the noise. For the 1D KdV model, we use RK2 with At, = 1075 for the reference solution. In Figure 2, we
integrate for 5 units of time and compare results over 100 realizations of the noise for each of the chosen colors o =
1073,1074,107°,107%,1077,1078,1072,107 19,10~ 1,10~ 12]. As expected, for a = 0, forward Euler never begins converg-
ing as it converges to the It interpretation instead of that of Stratonovich. The addition of the generalized Itd correction, in
this case, equals the classical It correction and results in convergence of order 0.5 in accordance with the theory of Kloeden
and Platen (1992). For all non-zero «, we see that for sufficiently small At forward Euler will begin to converge with order
1.0 as the noise is sufficiently resolved in time that the system can be understood as purely deterministic. For non-zero «, the
addition of the GIC reduces the final error and increases the critical time step after which the scheme achieves the theoretic

best convergence rate of 1.0.

For the 2D fluid model Equations (14) and (15), we use RK2 with a time step At,. = 107> as the reference solution. We
evolve the model deterministically until t=1000 with the initial conditions prescribed in Hodyss et al. (2013) to guarantee that
the fluid is sufficiently evolved from the initial condition. In Figure 3, we compare results for forward Euler with and without
the GIC over 100 different realizations of the noise for different colors o = [0,107%,107,10~4,10~2] integrated to t=1001
with time steps ranging from 0.5 to 1075, Again o = 0 demonstrates the well-known classical Itd correction for white noise
and for non-zero « addition of the GIC results in a lower final error and increased maximal time steps for which the scheme

achieves the maximal convergence of order 1.0.
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Figure 1. Error in the RK2 solution (compared to the reference solution computed with At = 10~°) of the 2D vorticity Equation (14) and
the dependency on time step size (horizontal axis) and the characteristics of the noise o = [0,10’10,10’87 1075,107%, 10’2] shown in
different colors. Simulations were performed for 100 realizations of the noise process and the solution error was calculated separately for
each realization according to Equation (24). The circles are the mean error of the 100 realizations; the vertical bars denote the standard

deviation around the mean.

3.2 Convergence by Noise Magnitude

In this experiment, we scale the magnitude (equivalently the variance) of the noise with a multiplicative factor v creating a new

noise term

g [u] = vgluln(t). (25)

Figure 4 shows results averaged over 100 realizations of the colored noise term for the 2D fluid model with o = 10719,
~+=10.01,0.1,0.2,0.5,1,2,5,10] integrated over 1 unit of time with the same initial condition as in Section 3.1. We see that
for all choices of v, the critical At for convergence remains the same At, = 10~%. Although the critical At is unchanged, we
see that the relative error increases with increasing ~y. This is exactly as expected as the leading error term between RK2 and
forward Euler with the GIC is O(+?). For brevity, we omit this proof. Although the GIC improves the convergence of forward
Euler over the range of magnitudes demonstrated in Figure 4, there is of course a maximal « such that for any larger ~y the

scheme becomes unstable.
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Figure 2. Error in the numerical solution (compared to the RK2 reference solution computed at At =10"%) of the 1D
KdV Equation (8) and the dependency on time step size (horizontal axis) and characteristics of the noise term o =
[1073,1074,1075,1076,1077,1078,1079,10710,10711,10712] shown in different colors. Results obtained using the forward Euler
scheme without (left) and with (right) the generalized Itd correction, respectively, are shown. Simulations were performed for 100 real-
izations of the noise process and the relative solution error was calculated separately for each realization using Equation (24). The circles are
the mean error of the 100 realizations; the vertical bars denote the standard deviation around the mean. The straight black lines are reference

lines indicating convergence rates of 0.5 (upper) and 1.0 (lower), respectively.
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Figure 3. Error in the numerical solution (compared to the RK2 reference solution computed with At = 10~° of the 2D fluid Equation
(14) and the dependency on time step size (horizontal axis) and characteristics of the noise term a = [0, 1078,107%,1074, 1()_2] shown in
different colors. Results obtained using the forward Euler scheme (left) without and (right) with the generalized It correction, respectively,
are shown. Simulations were performed for 100 realizations of the noise process and the relative solution error was calculated separately for
each realization using Equation (24). The circles are the mean error of the 100 realizations; the vertical bars denote the standard deviation

around the mean. The two lines are reference lines indicating convergence rates of 0.5 (upper) and 1.0 (lower), respectively.
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Figure 4. Error in the numerical solution of the 2D fluid Equation (14) and the dependency on time step size (horizontal axis) with v = 107¢
and scaling factors v =[0.01,0.1,0.2,0.5,1,2,5,10] shown in different colors. Results obtained using the forward Euler scheme (left)
without and (right) with the generalized It correction, respectively, are shown. Simulations were performed for 100 realizations of the noise
process and the relative solution error was calculated separately for each realization using Equation (24). The circles are the mean error of the
100 realizations; the vertical bars denote the standard deviation around the mean. The black lines are reference lines indicating convergence

rates of 0.5 (upper) and 1.0 (lower), respectively.

3.3 Adding the GIC to Higher Order Schemes

As forward Euler is a very simple scheme and not a commonly used we next demonstrate how the GIC may be applied to
higher order methods. We use the analytic Stratonovich solution to (18) for computing errors in this section in place of the
reference solutions used in previous sections.

Figure 5 shows the convergence rate of scheme (20) to the Stratonovich solution with and without the GIC for different
colors of noise. Similar to the previous results for forward Euler, the Millstein scheme converges to the Stratonovich solution
for all colors of noise and does not converge in the case of white noise, where it converges to the Itd solution. The addition of
the GIC decreases the final error for all colors of noise and changes the convergence in the white noise case to the Stratonovich
solution. In this case, we see that with the addition of the GIC, the convergence in the white noise case remains order 1.0.

Figure 6 shows the convergence rate of the KP scheme (21) to the Stratonovich solution with and without the GIC for
different colors of noise. Again we see that the addition of the GIC reduces the final error and improves the convergence rate
for colored noise and changes the convergence of the white noise case to the Stratonovich solution. Note that in the white
noise case, the order 1.5 convergence of the KP scheme to the It6 solution has been changed to order 1.0 convergence to the
Stratonovich solution. The GIC is an order At correction term and does not “correct” the higher order terms. Higher order
corrections would be necessary to construct an order 1.5 scheme in this manner.

Figure 7 shows the convergence rate of the KP2 scheme (22) to the Stratonovich solution with and without the GIC for

different colors of noise. Again we see that the addition of the GIC reduces the final error and improves the convergence rate

10
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Figure 5. Error in the numerical solution of the drift-free SDE (18) and the dependency on time step size (horizontal axis) with a =
[0, 1078,107%, 1072] shown in different colors. Results obtained using the Milstein scheme (left) without and (right) with the generalized
1td correction, respectively, are shown. Simulations were performed for 100 realizations of the noise process and the relative solution error

was calculated separately for each realization using Equation (24). The circles are the mean error of the 100 realizations; the vertical bars
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Figure 6. Error in the numerical solution of the drift-free SDE (18) and the dependency on time step size (horizontal axis) with
a=10, 1078,107%, 10_2] shown in different colors. Results obtained using KP scheme (left) without and (right) with the generalized 1t
correction, respectively, are shown. Simulations were performed for 100 realizations of the noise process and the relative solution error was
calculated separately for each realization using Equation (24). The circles are the mean error of the 100 realizations; the vertical bars denote

the standard deviation around the mean. The black line is a reference line indicating convergence rate 1.0.

for colored noise and changes the convergence of the white noise case to the Stratonovich solution. We note again that although

two separate calculations are performed, one for the supporting value (23) and one for the next time step (23), the GIC is only

added to the computation of (23).
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Figure 7. Error in the numerical solution of the drift-free SDE (18) and the dependency on time step size (horizontal axis) with a =
[0, 1078, 1074,1072] shown in different colors. Results obtained using KP2 scheme (left) without and (right) with the generalized Itd
correction, respectively, are shown. Simulations were performed for 100 realizations of the noise process and the relative solution error was
calculated separately for each realization using Equation (24). The circles are the mean error of the 100 realizations; the vertical bars denote

the standard deviation around the mean. The black line is a reference line indicating convergence rate 1.0.

3.4 Run Time

In this final experiment, we demonstrate the computational efficiency of the GIC. We average the run time of all three schemes
considered on the 2D model Equations (14)—(15) over 100 realizations of white noise (v = 1) integrated over 50 units of time
with At = [1,1071,1072,103]. Figure 8 shows the ratio of the run time of RK2/Euler and Euler-GIC/Euler. As forward Euler
is a first-order scheme (in time) and RK2 is a second-order scheme the ratio of RK2/Euler should be around 2 once enough time
steps are taken, this is shown in the orange curve. The ratio of Euler+GIC/Euler remains below 1.1 (blue curve), demonstrating
that Euler+GIC remains similar in computational cost. We note that we are solving this model with a pseudo-spectral technique,
therefore the additional computation for the GIC at each time step consists of two additional multiplications to compute %
and g—iﬁ in frequency space. In general, the efficiency of computing the GIC for a given model is determined by the difficulty

of computing ag—gf] glu] at each time step compared with the computation of the right hand side of Equation (1).

4 Conclusions

This work presents a generalization of the GIC method for non-linear problems from the numerical weather prediction lit-
erature, including the modified 1D Korteweg-de Vries (KdV) equation from Hodyss and Nathan (2002) and the 2D (x-y)
nonrotating, stably stratified, nonhydrostatic Boussinesq equations from Hodyss et al. (2013). Furthermore, the effect of the
GIC is demonstrated for higher-order time integration methods used for solving the 1D drift-free homogeneous stochastic

differential equation.
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Figure 8. Ratio of the running time of RK2/Euler and Euler-GIC/Euler for 2D model Equation (14) averaged over 100 realizations of the
noise (y = 1) integrated for 50 units of time with At = [1,5 x 107, 1071,5%1072,1072,5 x 1072, 1073].

Our numerical experiments demonstrate that when added to a numerical scheme converging to the It6 solution, the GIC
alters the convergence of the scheme to the Stratonovich solution, which is the preferred solution for many applications. The
GIC proves effective for any color of noise and a large range of magnitudes (or variances) of noise, even in more complex
non-linear models. The additional computation of the GIC can be substantially less than using a higher-order scheme and
can even be negligible when compared with the run time of the numerical integration of the discretized model. This makes
the GIC an attractive option for cheaply computing many potential trajectories of a system for an ensemble and capturing
statistical properties about a system. This can be helpful in data assimilation contexts (Van Leeuwen et al., 2019). In addition,
the GIC-enhanced solver could be implemented as part of multifidelity approaches (see e.g., Howard et al. (2022) for a recent
multifidelity neural operator framework) to provide an efficient low-fidelity estimator. As part of a multifidelity approach, the
low-fidelity estimate can then be corrected through the use of only a few expensive high fidelity simulations. Finally, while
offering computational efficiency, the GIC is also easy to implement and integrate into existing models.

While the model equations used here are still simple compared with the full-fledged weather prediction models, the eval-
uation presented in this work is a necessary second step following Stinis et al. (2020), which provides the justification and

motivation for further exploring the GIC for numerical weather prediction and climate modeling.

Code availability. Code for reproducing the experiments and figures in this publication can be found at

https://doi.org/10.5281/zenodo.14918193, Johns (2025).
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