
Report on
“Further Evaluating the Generalized Itô Correction for Accelerating
Convergence of Stochastic Parameterizations with Colored Noise”

The paper proposes and empirically evaluates a generalized Itô correction (GIC) term in
numerical schemes to solve PDEs with temporally colored stochastic forcing. The GIC is
intended to reduce discretization-induced bias under practical timesteps that may not resolve
the temporal scale.

Speccifically, consider numerical integration of the random PDE

∂tu(x, t) = D[u] + g[u]Ṙ(t),

where Ṙ(t) is a colored noise process and is approximated by
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, and am, bm ∼ N (0, 1) iid normal random variables. The GIC

term has the form
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where ∆R = R(t + ∆t) − R(t) is the noise increment over a timestep ∆t. This GIC term
resembles the Itô–Stratonovich correction 1

2
g(X)g′(X) used in SDEs driven by white noise

(Recall that Ito SDE
dXt = f(Xt) dt+ g(Xt) dWt

is equivalent to Stratonovich SDE

dXt = [f(Xt)−
1

2
g(Xt)g

′(Xt)] dt+ g(Xt) ◦ dWt,

where the additional drift term is the correction).
This work tests the GIC for non-linear problems from the numerical weather prediction

lit- erature, including the modified 1D Korteweg-de Vries (KdV) equation from Hodyss and
Nathan (2002) and the 2D nonrotatin nonhydrostatic Boussinesq equations from Hodyss
et al. (2013). The numerical experiments demonstrate that when added to a numerical
scheme converging to the Itô solution, the GIC alters the convergence of the scheme to the
Stratonovich solution, which is the preferred solution for many applications. The GIC proves
effective for a large range of colored noises.

Overall. The numerical tests are well designed and well-presented, and the numerical
convergece demonstrations are convincing in showing the effect of the GIC. I think the paper
is a useful contribution to the literature on numerical methods for SDEs with colored noise
in numerical weather prediction, and I recommend publication after addressing the following
comments.
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Major comments

• The noise Ṙ(t) and its approximation n(t) are confusing.
(1) Why it is the white noise when α = 0? Note that when α = 0,

n(t) =
1√
Nf∆t

(
b0 +

Nf∑
m=1

[am sin(ωmt) + bm cos(ωmt)]
)

is smooth in t (since Nf < ∞) and not a white noise.
(2) Why does it dependence on ∆t? When ∆t = T/Nf decreases, n(t) contains more
high-frequency components. In other words, the noise becomes “rougher” as ∆t de-
creases. This is opposite to the usual understanding of noise approximation, where one
takes ntj of the same noise process at different time resolutions {tj}.
(3) In what sense does the approximation n(t) converge to Ṙ(t) as ∆t → 0, partcularly
when α ̸= 0? Clarifying this point would help readers understand the colored-noise
model used in this work.
(4) Why the noice is constant in space? Is this assumption necessary for the GIC to
be effective? What if the noise is spatially varying?

• The ∂(g[u])
∂u

g[u] = uxx term in Eq. (5): it should be clarified that ∂(g[u])
∂u

is the Fréchet
derivative operator applied to g[u].

• How to compute (6)? In particular, how to approximate ∆R using n(t)?

• Numerical tests: clarify whether the convergence study holds the underlying continuous-
time noise path fixed (in an appropriate sense) as ∆t varies; if not, quantify the effect
of the ∆t-dependent noise approximation.
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