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1 Author’s response to Anonymous Referee 1 Comment 1

General comments

We thank the referee for their constructive comments. A point-by-point reply is reported below, with
referee comments in orange, our replies in black, and the revisions in light blue. References to figures,
tables, and sections in our replies (black) refer to the original manuscript, whereas those in the revisions
(light blue) correspond to the revised version.

[The VGS theory, while well-motivated, is adapted from oceanographic contexts and relies on assumptions
about pressure dependence that have not been directly tested under glacial conditions.]
and
[The study draws on seismic data from only five sites, which limits the spatial resolution and generalizability
of the inferred effective pressure fields. It is not surprising, at least to me, that PIG exhibits Coulomb-like
behavior as I’m not aware of any studies that contradict this. As a point of curiosity, I am interested to
see how this methodology performs in other environments where basal conditions are debated, such as the
interior of the Greenland Ice Sheet or alpine glaciers (obviously outside the scope of this study!)]
While we agree that the VGS theory needs further testing under glacial conditions, we did adjust the
compressional viscoelastic time constant τp to account for the difference in exerted overburden pressure.
We are currently working on applying the same methodology to Thwaites Glacier, the results of which
will be presented in a follow-up publication. We added However, future studies should further explore the
adaptation of the VGS theory from oceanographic to glacial contexts. and [...] applying BASLI–VGS in
regions characterized by higher basal heterogeneity (e.g., Thwaites Glacier), should be explored in future
studies.

Specific comments

[I would like to see more detail on the logic behind the formulation of the custom prior distributions.
While I appreciate the justification for the Cmax prior shown in the Supplement, the distributions for
porosity and grain size are less clear. Since these appear to be new compilations from the literature, it
would be helpful to include the underlying data (in the Supplement would be sufficient) and to show how
those priors were constructed from the compiled observations. Additionally, in cases where porosity was
estimated from active seismic data (e.g., Blankenship et al., 1987), it’s worth noting that those estimates
assumed no dependence on effective stress. This could introduce some circularity when those values are
used to constrain priors in a model that explicitly incorporates effective stress. Clarifying these points
would strengthen the study.]
A supplementary table outlining the grain size and porosity data was added to the revised manuscript
(Table S1). Furthermore, we added The porosity estimates from seismic experiments (Blankenship et al.,
1987; Atre and Bentley, 1993) assume no significant dependence on effective pressure and are employed as
an independent comparison rather than to directly inform the prior.
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[The use of independent prior distributions may oversimplify the relationships among subglacial sediment
properties, particularly where physical coupling through compaction or consolidation is expected.]
and
[Secondly, grain size, porosity, and effective stress are not independent in natural systems, but are phys-
ically coupled through compaction, consolidation, and sediment mechanics. If I understand the method-
ology correctly, parameter sets were sampled independently from their prior distributions, grain size and
porosity, for example, and then used to calculate effective stress via Buckingham’s VGS theory. However,
relationships between these variables have been described in the sediment mechanics literature and impose
constraints on what combinations are physically reasonable. I am concerned that treating them as statis-
tically independent in the prior sampling may lead to internally inconsistent sediment states. While the
Bayesian framework helps downweight poor-fitting combinations, would explicitly incorporating physically
based constraints or coupled priors could improve the robustness of the analysis in a meaningful way?]
In general, the porosity is inversely related to the mean (or median) grain size, but this relationship is
convoluted by other properties such as the particle size uniformity (e.g., Wang et al., 2017; Atapour and
Mortazavi, 2018; Gupta and Ramanathan, 2018; Dı́az-Curiel et al., 2024). While it is correct that the
parameter sets were sampled independently, and using coupled priors would improve the robustness of
the analysis for our most extreme parameter combinations (e.g., high porosity and large grain size), the
relationship between porosity and grain size outside these extreme parameter combinations, and therefore
the formulation of such a coupled prior, is less clear. As the Bayesian framework already downweights the
extreme parameter combinations through the chosen independent prior distributions (as correctly iden-
tified by the referee), and the minimum misfit and MAP parameters are generally consistent with the
porosity-grain size relationship described in the literature (e.g., Dı́az-Curiel et al., 2024), we do not expect
a significant change in the posterior probabilities. We added this discussion to the revised manuscript:
When constructing the parameter space Θi, the prior distributions of individual parameters are treated as
independent of one another. Although physical relationships among some of these parameters have been
described in the literature, the formulation of a coupled prior remains challenging, as these relationships
are often convoluted by other properties. For instance, the porosity is generally inversely related to the
mean (or median) grain size, but this relationship is convoluted by, e.g., the particle size uniformity (e.g.,
Wang et al., 2017; Atapour and Mortazavi, 2018; Gupta and Ramanathan, 2018; Dı́az-Curiel et al., 2024).
As the Bayesian model selection framework already downweights extreme parameter combinations (e.g.,
high porosity and large grain size) through the chosen independent prior distributions, and because the
minimum misfit and most probable parameters are generally consistent with, e.g., the porosity-grain size
relationship described in the literature (e.g., Dı́az-Curiel et al., 2024), we do not expect a significant change
in the posterior probabilities.

[Regarding ut, I respect the uncertainty that leads the authors to use a log-uniform prior, but as I recall,
the Zoet-Iverson slip law includes a prediction for ut based on sediment properties (most notably grain size)
which already has a relatively narrow range in this study. Given that, it doesn’t seem reasonable to expect
ut values near 104 m/yr as equally likely as, say 102? There are also at least two other studies I can recall
that provide calculated values of ut in different configurations: Helanow et al. (2020; DOI: 10.1126/sci-
adv.abe7798) for sliding over rough, rigid beds and Hansen et al. (2024; DOI/10.1029/2023GL107681) for
frozen sediments over till. Some discussion of this would be helpful, as it’s not clear whether the wide
prior range used here is physically justified.]
Zoet and Iverson (2020) report ut,noN values in the range 56.36 to 363.52 MPa−1 m yr−1. Because
Hansen et al. (2024) use the same bed material (Horicon till sourced from same location) but with
plowing clasts removed, they use the model parameters given in Table S1 in Zoet and Iverson (2020)
except for a smaller clast radius R = 0.0045 m (instead of R = 0.015 m or R = 0.030 m), leading to
ut,noN = 1120.17 MPa−1 m yr−1. Given these significant uncertainties and that ut,noN depends on several
other uncertain parameters, we argue that ut,noN is best represented by a log-uniform prior (currently cov-
ering the range 3.16 to 3155.76 MPa−1 m yr−1). Note that the regularised Coulomb law used in Helanow
et al. (2021) is not the same as in Zoet and Iverson (2020). We included these additional details in the
revised manuscript: The transition speed coefficient (CZI) values reported in the initial publication of the
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Zoet-Iverson sliding law range from 56.36 to 363.52 MPa−1 m yr−1 (Zoet and Iverson, 2020). A later
study using the same bed material (Horicon till sourced from the same location) but with plowing clasts
removed uses the same parameters (given in Table S1 of Zoet and Iverson, 2020) except for a smaller clast
radius R = 0.0045 m (instead of R = [0.015, 0.030] m), leading to CZI = 1120.17 MPa−1 m yr−1 (Fig. S4 in
Hansen et al., 2024). Given these significant uncertainties and that CZI depends on several other uncertain
parameters, a log-uniform prior covering the range 3.16 to 3155.76 MPa−1 m yr−1 was chosen (Fig. 3c).

[It would be helpful to emphasize more clearly in the introduction or discussion that the method presented
here is primarily applicable to soft-bedded glacier systems, since the acoustic impedance contrast relies
on wave propagation through a granular medium. This is an important distinction, especially consider-
ing that some of the tested sliding laws were originally formulated for rigid or mixed bed topographies. I
think an open question remains in glaciology regarding how these different sliding laws apply across regions
with spatially heterogeneous basal conditions (e.g., Maier et al., 2021, https://doi.org/10.5194/tc-15-1435-
2021). The result that a fast-flowing, soft-bedded glacier like Pine Island Glacier exhibits Coulomb-
style sliding is not surprising to me, given the preponderance of experimental and field evidence in
the literature. But in light of continued and recent discussion in the literature (e.g., Law et al., 2024,
https://doi.org/10.48550/arXiv.2407.13577) it would be worth emphasizing the both the utility and the
limitation of the geophysical datasets to constrain the slip law.]
The referee is correct that, strictly speaking, the Viscous Grain-Shearing theory only applies to granular
material. However, as outlined in detail in our response to the second referee, whenever we are using
a sliding law originally formulated for hard beds (e.g., Budd, Schoof), we assume a granular, relatively
undeformable material that cannot support tangential friction at its interface with the ice (here referred
to as rigid bed). We added Strictly speaking, the VGS theory used to predict acoustic impedance only
applies to granular material (Sec. 2.4). However, while the formation of cavities, for example, is most ap-
propriate for undeformable bed protrusions, larger rock fragments embedded in granular sediment or even
fine-grained deformable sediment might play a similar role (Schoof, 2007a,b; Fowler, 2009; Schoof et al.,
2012). Therefore, whenever we are using a sliding law initially developed for hard bedrock (Sec. 2.2.3 and
2.2.6), we assume a granular, relatively undeformable material that can not support tangential friction at
its interface with the ice (here referred to as rigid bed).

We agree with the referee that spatially heterogeneous basal conditions remain an open research ques-
tion and spatially variable parameters (grain size, porosity, as well as sliding law parameters) should thus
be explored in future studies. We added [...] incorporating spatially variable model parameters [...] should
be explored in future studies.
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2 Author’s response to Anonymous Referee 2 Comment 1

General comments

We thank the referee for their constructive comments. A point-by-point reply is reported below, with
referee comments in orange, our replies in black, and the revisions in light blue. We agree with the
specific referee comments not listed here and have revised the manuscript accordingly. Specific comments
that merely repeat points already addressed in the referee’s general comments are also not listed here.
References to figures, tables, and sections in our replies (black) refer to the original manuscript, whereas
those in the revisions (light blue) correspond to the revised version.

[Bayesian approaches are generally used to determine the posterior probability density function (PDF) of
model parameters, given prior information and constraining observations. For each sliding law, you thus
obtain a posterior PDF as a function of the three chosen varying parameters. To obtain a probability for a
sliding law, you integrate the posterior PDF over the three-dimensional parameter space (if I understand
correctly). This last step is not justified at all in the manuscript while it is critical as all conclusion are
based on this. It is not clear to me that a higher integrated probability over the whole parameter space
makes a sliding law more likely than another. For example, a model with high but localized maximum
PDF can have a lower score than smaller maximum PDF spread on a larger domain of the parameter space.
The way the sliding law probability is calculated clearly needs theoretical background. This is critical for
the paper as the data does not bring significant difference in misfit and thus data-based likelihood.]

The referee is correct to point out that Bayesian approaches are generally used to determine the
posterior probability density function (PDF) of model parameters, given prior information and constraining
observations. The situation that we consider here is slightly different, however, and is more akin to Bayesian
model selection than the routine application of Bayes’ rule for a single model. The main difference for
the model selection framework is that the probability space is extended to cover multiple models, each of
which has its own parameter space. Apart from that distinction, standard manipulations of probability
are used, including Bayes’ rule, marginalisation, and normalisation (e.g., Jaynes, 2003).

It is true that we do not justify these standard manipulations, but in the revised manuscript, we
emphasise that nothing unusual is happening beyond a straightforward extension of the probability space
to acknowledge the possibility of multiple different models.

The statement
∫
Θi

P (Θi|Mi) dΘi = 1 says that once a model has been chosen, the parameters of that
model must lie somewhere in its parameter space with certainty. This is self-evident. By performing this
normalisation for each model, we take advantage of the well-known capacity of Bayesian model selection to
automatically apply Occam’s Razor. Overly flexible models with a large range or dimension of parameter
space are penalised relative to simpler, less flexible models with fewer parameters or tighter bounds upon
parameters.

The referee questions the marginalisation over the model parameters Θi (as expressed by equation 16),
but this is standard because we wish to compare the posterior probabilies of models P (Mi|D), not the
joint posterior probability of models and parameters P (Θi,Mi|D). Note that P (Θi|Mi) is a conditional
probability like any other and can be manipulated using standard rules of probability (e.g., Equation 16).

Unlike the more standard application of Bayes’ rule, each model in the Bayesian model selection
framework has its own particular parameter space, and this parameter space can be of any dimension.
The two fixed effective pressure endmember scenarios have a 2D parameter space (grain size and porosity).
All other sliding laws have a 3D or 4D parameter space (one or two additional sliding law parameters). The
number of values examined for these additional sliding law parameters varies across different sliding laws.
Having an additional dimension or a larger number of values examined effectively increases the chance of
obtaining a good fit to the data, and this is compensated for appropriately in the Bayesian approach. The
key idea is that a balance between goodness of fit and model flexibility is desirable, but we emphasise that
no special manipulations are required to enforce this balance in the Bayesian approach, as it emerges quite
naturally. We added However, the situation here slightly differs from the routine application of Bayes’ rule
for inferring model parameters within a single model and is more akin to Bayesian model selection. The
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main difference for the model selection framework is that the probability space is extended to cover multiple
models, each of which has its own parameter space. Since the number of parameters differs between models
(e.g., two for the fixed effective pressure scenarios and four for the Zoet-Iverson sliding law) and we aim
to compare the posterior probabilies of models P (Mi|D, I), not the joint posterior probability of models
and parameters P (Θi,Mi|D, I), we marginalize over the model parameters Θi to retrieve P (D, I|Mi): and
This normalization reflects the fact that once a model has been chosen, the parameters of that model must
lie somewhere within its parameter space with certainty. This is self-evident and automatically applies
Occam’s Razor, penalizing models with a larger parameter space compared to less flexible models. The
key idea of Occam’s Razor is that a balance between goodness of fit and model flexibility is desirable, but
we emphasise that no special manipulations are required to enforce this balance in the Bayesian approach.

[I do not understand why you are limiting your parameter space to three varying parameters. I suspect
this is because you do an exhaustive grid search to build the posterior PDF. There are simple methods
such as the Monte Carlo algorithm, that can be used to efficiently calculate the posterior PDF in cases
where the parameter space is large. This would be easy to implement in your case where the forward model
is fast to compute. This limitation forces you to calculate two different probabilities for some sliding laws
(Schoof and Zoet-Iverson), where you arbitrarily fix one of the sliding parameters. This makes no sense to
me, especially when you assume µ = Cmax = 0.5 without justification (when varying ut or Cs). The PDF
should be built with varying all relevant parameters together.]
The referee is correct that we limited the parameter space to three dimensions due to the computational
cost of the grid search. Therefore, our previous results more precisely identified which of the models with
three or fewer dimensions best represent the measured acoustic impedance data. We have since expanded
the parameter space to four dimensions for all sliding laws with previously two different three-dimensional
representations (Tsai-Budd, Schoof, and Zoet-Iverson) and discuss these results in the revised manuscript
(see track-changes file for details). We agree that methods to simultaneously explore even more parameters,
e.g. different exponents, should be explored in future studies, and added Due to the computational cost of
the grid search, we currently limit the model parameter space Θi to 4D. For example, we do not consider
variations in the exponents m, q, and p (Sec. 2.2). However, computationally more efficient methods,
such as Monte Carlo algorithms, can be explored in future studies to simultaneously vary more than four
parameters.

[I do not agree with the claim you are testing the Weertman law. You are simply testing the hypothesis
of uniform effective pressure which as nothing to do with the Weertman law. If you want to say that the
Weertman law is not appropriate you should show that the inverted τb as a function of ub does not match
a power law. A figure showing the inverted τb as a function of ub is missing in the manuscript in any case.]
It is true that we can not directly test the Weertman sliding law or any sliding law, for that matter,
that has no effective pressure dependence. To clarify this, we refrain from using the term Weertman-
type endmember scenarios and instead refer to these experiments as fixed effective pressure endmember
scenarios. However, the effective pressure is only uniform in the N = 0 Pa case, as all other fractions
of the ice overburden pressure vary spatially due to the dependence on ice thickness. We added The
most straightforward approach for estimating the effective pressure (N) – one that does not require the
specification of a sliding law – is to assume it is at a fixed fraction of the ice overburden pressure (pi)
everywhere. To contextualize and constrain the results obtained using effective pressures derived from
various sliding laws (Sec. 2.2.3 to 2.2.7), we compute the acoustic impedance corresponding to different
fractions of the ice overburden pressure, including the two fixed effective pressure endmember scenarios; a
lower bound N = 0 Pa for which the ice is assumed to be at floatation everywhere, and b) an upper bound,
N = pi, for which the effective pressure is assumed equal to the ice overburden pressure everywhere. These
endmembers correspond, respectively, to situations where basal water pressure fully supports the weight of
overlying ice or does not support any weight at all. and As Eq. 2 does not depend on the effective pressure,
the Weertman-type power law can not be directly tested within this approach. Instead, we calculate the
acoustic impedance for the Budd sliding law.

The relation between the inverted τb and ub is the same for all sliding laws and, therefore, provides by
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itself no information on which sliding law is most appropriate. Therefore, we refrain from adding a figure
showing the inverted τb as a function of ub.

[I do not think you are able to distinguish which of the stress bounded sliding law perform better when the
result is so dependent of the design of the Bayesian approach. You also hide that the Schoof law is almost
the exact same law as the Zoet-Iverson law. You can indeed write the equation (7) of the manuscript in
this form:]

τb = CmaxN

 ub

ub +
(
Cmax

Cs
N

) 1
m


m

(1)

This is very similar to Zoet and Iverson with p = 1/m, µ = Cmax and ut = (Cmax/CsN)1/m. The only
difference is that ut is a function of N1/m in the Schoof formulation and a function of N in Zoet-Iverson.
We agree that it is difficult to select a single-best sliding law due to the small differences in posterior
probabilities between some of the sliding laws incorporating a Coulomb friction term (Coulomb, Tsai-
Budd, Schoof, Zoet-Iverson). For this reason, we focus on the distinction between the Coulomb-type and
non-Coulomb-type sliding laws (fixed N endmember scenarios and Budd). We added However, the Schoof
and Zoet-Iverson sliding laws show a similarly strong increase, hindering the determination of a single-best
sliding law.

Generally speaking, whenever we are using a sliding law originally formulated for hard beds (e.g., Budd,
Schoof), we assume a granular, relatively undeformable material that cannot support tangential friction
at its interface with the ice (here referred to as rigid bed). The formation of cavities, for example, is most
appropriate for undeformable bed protrusions, but larger rock fragments embedded in granular sediment
or even fine-grained deformable sediment might play a similar role (Schoof, 2007a,b; Fowler, 2009; Schoof
et al., 2012). The basal drag for rigid beds is dominated by the deformation of ice around bed obstacles
(form drag). In contrast, basal conditions dominated by skin drag are covered by the soft bed (deformable
sediment) sliding laws (e.g., Coulomb, Zoet-Iverson).

While the form of the Schoof and Zoet-Iverson sliding law is indeed very similar, the physical reasoning
and interpretation differ. As described above, the Schoof sliding law is most applicable for ice sliding over
a rigid bed (granular but relatively undeformable material). It allows for the formation of cavities and
incorporates Iken’s bound (Cmax = tan β; Iken, 1981; Schoof, 2005). β is the maximum up-slope angle
of the bed in flow direction. In contrast, the Zoet-Iverson sliding law aims to describe ice sliding over a
water-saturated till bed (deformable). µ = tan (Φ) is the Coulomb friction coefficient and Φ the till friction
angle. Thus, the two sliding laws represent different basal conditions, and µ and Cmax describe different
physical properties. We added While the mathematical form of the Schoof (Eq. 7) and Zoet-Iverson sliding
law (Eq. 10) is very similar, the physical reasoning and interpretation differ. The Schoof sliding law is
most applicable for ice sliding over a rigid bed (granular but relatively undeformable material), whereas the
Zoet-Iverson sliding law aims to describe ice sliding over a water-saturated till bed (deformable). Similarly,
the sliding-law-specific parameters µ and Cmax represent distinct physical properties, and, may therefore
differ significantly (Sec. 2.5).

[Posterior PDF are not shown, it would be usefull to have them in some figures to discuss the influence of
prior PDF.]
We examine the influence of the prior distribution by applying (log-)uniform priors to all parameters (Fig.
6 vs. S22). As showing 2D planes of the 3D or 4D posterior PDF might be misleading, and to keep the
manuscript concise (7 additional plots would be required), we refrain from adding additional map plots.

[Given the resolution of Bedmap-2, the estimation of Cmax based on basal topography observation does not
make any sense. Even if the inversion is performed at the kilometer scale, the relevant scale at which to
estimate Cmax is the meter scale, as this is the scale at which shear resistance is built. Also, the impedance
model is based on the assumption of a sediment layer, which is inconsistent with the estimation of Cmax

based on the hard-bed theory. I do not see why µ and Cmax should have different priors, given that they
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play the same role in the friction law. Doing so favours one sliding law based on unjustified choices.]
While we agree that shear resistance is most likely built at scales smaller than the resolution of Bedmap-2,
the bed roughness and therefore the actual relevant scale are less clear and likely vary spatially. How-
ever, these smaller scales will not be explicitly represented by the basal drag derived from the inversion.
Therefore, the Cmax prior is determined by a combination of the Bedmap-2 bed angles and autonomous
underwater vehicle data (2 m resolution), taking smaller resolutions into consideration. To clarify this,
we moved parts of the description of the Cmax prior from the supplement to the main manuscript and
added further details: While shear resistance is most likely built at scales smaller than the resolution of
Bedmap-2, the bed roughness and therefore the actual relevant scale are less clear and likely vary spatially.
As these smaller scales are not explicitly represented by the basal drag derived from our inversion, it is
not straightforward to determine the Cmax prior directly from the small-scale AUV data. Therefore, we
align the highest probability in the Cmax prior with the steepest Bedmap-2 bed angles and incorporate even
steeper bed angles at smaller scales through a more gradual decline towards higher Cmax values (Sec. S6.2).

The referee is correct that, strictly speaking, the Viscous Grain-Shearing theory only applies to granular
material. However, as outlined in detail above, this is consistent with our definition of rigid beds (granular
but relatively undeformable material). Furthermore, glacier beds, e.g. the bed beneath Thwaites glacier,
often do not support the clear differentiation between rigid beds and soft sediments assumed in the deriva-
tion of sliding laws. Instead, the bed might consist of a thin, deformable sediment layer draped over a
rigid bed or alternating patches of sediment and rigid bed. Ultimately, the goal of this study is to find the
basal sliding parameterisation that best captures the basal conditions identified by the acoustic impedance
measurements. As the referee pointed out, by assuming Cmax = µ, we would effectively be testing two very
similar sliding laws, which undermines this objective. Following this logic, and since µ and Cmax describe
different physical properties, there is no reason why the two parameters should have the same prior.

[The title is a too strong statement compared to what you are actually able to infer. Furthermore you
focus only on Pine Island glacier, not all Antarctica. I would propose instead: “Evidence of stress bounded
friction law at Pine Island Glacier (Antarctica) inferred from seismic observations.”]
We agree that the title is misleading and changed it to Inferring the ice sheet sliding law from seismic
observations: A Pine Island Glacier case study. However, while we only infer the sliding law for Pine
Island Glacier, the methodology developed here can be applied to acoustic impedance measurements from
any glacial environment with granular material at the bed.

Specific comments

[L123 - By doing this you are not testing the Tsai law anymore .... This is the Budd part which make
Tsai less likely in your result. I would remove the Tsai law as you cannot really test it.]
It is correct that we examine the Tsai-Budd instead of the Tsai sliding law itself and we clarified this in
the revised manuscript: As for the Weertman-type power law itself, Eq. 5 can not be tested in the context
discussed here because the Weertman part of the sliding law has no dependence on the effective pressure.
To overcome this issue, we replace the Weertman part of Eq. 5 with the Budd sliding law (Eq. 3): However,
due to its unique concept and mathematical form, the Tsai-Budd sliding law provides valuable insights,
and we, therefore, prefer to keep it as part of the analysis.

[L125 - why this value ?]
and
[L137 - you should mention that you fixed Cmax=0.5 when varying Cs and explain why]
and
[Fig. 5 - why 0.5 ?? The best µ is 0.23. I expect you would use the best value found when varying ut]
µ = 0.5 is the Coulomb friction coefficient with the highest prior probability. Following this logic, we
initially set Cmax = 0.2 (the value with the highest prior probability). However, this value led to a high
percentage of incompatible ub−τb pairs and we, therefore, increased it to Cmax = 0.5.

Using µ = 0.23 would favour the Zoet-Iverson sliding law compared to the other sliding laws, as this
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information only becomes available through running the experiments. For the Tsai-Budd sliding law when
varying µ, we previously relied on the referee’s suggested approach as our prior knowledge about CB is
limited (log-uniform prior). However, all of the above is no longer an issue, since we now vary all four
parameters simultaneously.

[L150 - you could call this parameter differently as it is not a speed anymore...something like ”transition
speed coefficient” and write it 1/Czi. this would be more consistent with the Schoof law where a similar
coefficient is equal to (Cmax/Cs). So you would have in the schoof law: ut = (Cmax/Cs ∗N)1/m and in the
Zoet-Iverson law: ut = (1/Czi)N .]
We agree that transition speed coefficient is a better description of ut,noN and revised the manuscript as
follows: ut,noN = CZI = ut/N .

[L217 - Based on what the prior values are chosen?]
Following the suggestion of the first referee, a table containing detailed information on the porosity and
grain size data as well as further details for the priors of the specific sliding law parameters (e.g., Cmax)
were added to the revised manuscript (see Table S1 and track-changes file for details).

[Fig. 6 - why Schoof(Cs) is not here ?]
Schoof(Cs) was not included here because of the large number of incompatible ub–τb pairs. We added
further information regarding this issue in Sec. S5 of the revised supplement and by explicitly including
the prior information from the inverted ub−τb in the Bayesian equations (Sec. 2.5, see track-changes file
for details).

[L266 - you should give the MAP parameters]
The MAP parameters are listed in Fig. S21 and S23. We added a reference to these figures here.

[L299 - this comes from the friction law, not directly the modeled impedance. It should be clear.]
The effective pressure is calculated using the friction law, but the friction law parameter used in this cal-
culation is inferred from the acoustic impedance misfit. We added Since the predicted acoustic impedance
depends on the effective pressure, an ice sheet sliding law and its parameters can be inferred, subsequently
enabling the derivation of an effective pressure map.
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