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ABSTRACT

Dust provides iron, essential for marine phytoplankton growth, altering their
carbon uptake capacity and affecting the global carbon cycle. However, due to the
limited availability of observational parameters applied in evaluation models, there
remains uncertainty in the contribution of marine dust deposition to carbon uptake.
Here, we quantified the separate contributions of eleven major dust sources to dust
deposition and marine ecological response to dust-borne iron in eight ocean regions
based on a series of simulations constrained by multiple global observation datasets of
iron solubility and total iron concentration in the oceans as well as iron content in the
dust. Our simulations indicate that dust deposition could supply 11.1 Tg yr! of total

iron and 0.4 Tg yr'! of dissolved iron to the oceans.

Keywords: Dust deposition; Carbon uptake; Fe supply; Source apportionment
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1 Introduction

Dust aerosol, the main component of atmospheric aerosols from arid and semi-
arid areas, is the dominant exogenous input of Iron (Fe) to the surface of the ocean
(Raiswell et al., 2012; Tagliabue et al., 2017). Dust carries various micronutrients can
be transported thousands of kilometers and be deposited in remote ocean regions,
ultimately resulting in the redistribution of nutrient elements (Jickells et al., 2005;
Hamilton et al., 2022). Fe is an essential micronutrient for phytoplankton growth and
can limit primary productivity in regions termed high nutrient, low chlorophyll (HNLC)
regions, which comprise ~30% of the global ocean>. Several sources of Fe in the ocean
have been identified, primarily including atmospheric dust, coastal inputs, and
hydrothermal fluids (Tagliabue et al., 2017; Tagliabue et al., 2015; Boyd et al., 2010).
When Fe enters the upper ocean, dFe is absorbed by marine organisms, such as
phytoplankton and bacteria. After the organisms die, Fe is returned to the sediment, or,
through physical processes, may be resuspended and re-enter the water column,
completing the cycle (Boyd et al., 2010). However, Large amounts of fluvial and glacial
particulate Fe are trapped in coastal areas (Poulton et al., 2002), and hydrothermal
inputs are promptly precipitated at depth in the ocean. Therefore, dust is a major
external source and dust deposition carrying Fe can promote photosynthesis and
plankton growth, thereby impacting the carbon cycle and atmospheric carbon dioxide
(CO2) (Mahowald et al., 2011; Johnson et al., 2013; Kanakidou et al., 2018; Pavia et
al., 2020; Westberry et al., 2023). Nevertheless, quantitative assessments of the linkage

between dust sources and their effects on marine biogeochemical cycles in various

2
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oceanic regions are still lacking (Shoenfelt et al., 2019; Hamilton et al., 2023).

One key reason current studies struggle to estimate marine phytoplankton carbon
uptake to dust-borne Fe is the uncertainties in assessing the dissolved Fe (dFe)
(Hamilton et al., 2023). Changes in the supply of dFe within its range of uncertainty
can lead to substantial differences in phytoplankton carbon uptake (Dietze et al., 2017;
Watson et al., 2000; Spolaor et al., 2013), since only dFe can be utilized by
phytoplankton instead of all Fe in deposited dust (Mahowald et al., 2005; Shaked et al.,
2005). Thus, accurately evaluating the dFe supply from dust deposition over the ocean
is vital to assessing the marine phytoplankton carbon uptake caused by dust. The Fe
content in dust and solubility of dust-borne Fe vary among different dust source regions
(Struve et al., 2022). Therefore, determining the contributions of dust source regions to
various oceans separately is essential for accurately assessing the dust-borne dFe.
Previous studies have predominantly focused on investigating the spatiotemporal
variations of global or regional dust emissions (Choobari et al., 2014; Wang et al., 2014;
Ginoux et al., 2001; Mahowald et al., 2003; Tegen et al., 2004), as well as the dust
deposition fluxes to oceans (Zheng et al., 2016; Kok et al., 2021). Some studies
evaluated global Fe cycle and Fe deposition using models (Myriokefalitakis et al., 2015;
Zhang et al., 2015). However, the specific dust and Fe contributions of the various dust
sources to the distinct oceans remain insufficiently understood, hindering a systematic
understanding of the Fe supply relationships between sources and oceans, as well as
their seasonal variations and underlying mechanisms. Moreover, dust usually

undergoes complex atmospheric chemical processes during long distance transport,
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resulting in enhanced solubility of Fe within the dust particles (Longo et al., 2016; Li
et al., 2017; Félix-Bermudez et al., 2020; Kurisu et al., 2024). Consequently, the dFe
content in dust transported to remote oceanic regions is typically higher than that in
dust from the sources (Shi et al., 2012). The content of total Fe in aerosols can vary by
a factor of 2 (Mahowald et al., 2005; Mahowald et al., 2011). Due to the complexity
and uncertainty of atmospheric chemical processes including acidic reactions and
photoreduction, accurately simulating the dFe content in dust deposited in remote
oceanic regions is challenging. In previous studies, the Fe content of deposited dust is
usually assumed to be 3.5%, while its solubility is assumed to be 2% (Jickells et al.,
2005; Hamilton et al., 2022; Mahowald et al., 2005; Mahowald et al., 2017),
overlooking their variability in different sources and chemical processes during
transport. This assumption may lead to uncertainties in evaluating the Fe deposition
from dust sources and the input of Fe to the oceans.

The struggle to accurately quantify the relationship between Fe availability and
marine phytoplankton carbon uptake is a key problem limiting the evaluation of the
marine phytoplankton carbon uptake to dust-borne input of Fe. Previous studies have
verified that dust-borne inputs of Fe can enhance the carbon uptake, thereby impacting
the carbon cycle (Bishop et al., 2002; Patra et al., 2007; Ziegler et al., 2013; Kobayashi
etal.,2021). The large decline in atmospheric CO2 during past glacial periods coincided
with an increase in observed Southern Ocean marine productivity and substantial dust
deposition as recorded in marine sediments and ice cores (Ziegler et al., 2013; Lambert

et al., 2008; Wolff et al., 2010). Model simulations also indicate that the Fe fertilization
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from glaciogenic dust played an important role in enhancing carbon storage and
declining atmospheric CO2 concentration (pCOz) (Kobayashi et al., 2021). However,
quantifying the marine phytoplankton carbon uptake caused by dust-borne inputs of Fe
remains highly uncertain due to the complex processes during dust transport and the
difficulty in quantifying phytoplankton growth induced by Fe supply from dust
deposition. Several studies have tried to quantify the responses of marine
biogeochemistry to dust deposition on large scales based on model simulations and
observations (Mahowald et al., 2009; Mahowald et al., 2010; Ito et al., 2020), but the
results vary largely due to the different global parameterization models. Given the
complex and dynamic environmental conditions experienced by phytoplankton growth
in the ocean, the ratios of carbon to nutrients in exported organic matter have long been
used to simplify biogeochemical cycles (Twining et al., 2015; Wiseman et al., 2023).
Ratios, such as Fe to carbon (Fe: C) ratios in phytoplankton cells, help determine the
efficiency of the biological export of carbon (Wiseman et al., 2023). In HNLC regions,
Fe is the main limiting factor inducing phytoplankton blooms, and consequently
influencing phytoplankton carbon uptake (Matrin et al., 1990; Boyd et al., 2007). In
low nutrient, low chlorophyll (LNLC) regions, Fe can also alleviate nutrient-limiting
pressure, and dust addition can stimulate nitrogen fixation, thereby promote
phytoplankton growth and impact the carbon cycle (Zhang et al., 2019; Okin et al.,
2011; Mills et al., 2004). Therefore, Fe is a significant limiting nutrient over global
oceans, and Fe: C ratios in phytoplankton cells could be considered as a bridge to

estimate the global carbon uptake by phytoplankton to dust deposition. In this study,
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marine phytoplankton carbon uptake specifically refers to the amount of carbon uptake
by phytoplankton as a result of dust-derived dFe input, estimated using the Fe: C ratio
in phytoplankton cells under the assumption of Fe-limited marine conditions. Wiseman
et al (2023) proposed a clearly dynamic relationship between phytoplankton Fe: C
ratios and ambient dFe concentrations, making it possible to quantify the variations of
marine phytoplankton carbon uptake caused by dust-borne inputs of dFe which could
provides integrated insights into past climatic events and aids future marine-based CO2
removal initiatives for climate mitigation.

In this study, we conducted a series of sensitivity experiments using the
Community Earth System Model (CESM) to apportion the contributions of various dust
sources to dust deposition and Fe supply in different marine areas globally. By
incorporating the Fe content of dust from diverse source as well as observations of
oceanic Fe solubility and content from numerous sites, we calculated the carbon uptake
by phytoplankton resulting from dust deposition in various marine areas. This research
employs an observation-driven approach, providing a new perspective for assessing the
impact of dust on the global carbon cycle and attempting to establish a more accurate
and detailed link between different dust sources and carbon uptake by phytoplankton

in various marine areas.

2  Methods

2.1 Community Earth System Model

CESM version 1.2.2 (Hurrell et al., 2013) is employed in this study, which is a
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community tool to figure out the behavior of Earth’s climate. In the model, atmospheric
dust is emitted from the land by wind in the Community Land Model (CLM)
(Mahowald et al., 2006) and then transported and processed in the atmosphere by the
Community Atmosphere Model (CAM) (Neale et al., 2012). The wind friction speed,
vegetation cover, and soil moisture are key factors which could determine the soil
erodibility and dust emission. The dust emission scheme employed into CLM based on
the Dust Entrainment and Deposition (DEAD) model of Zender et al (2003). More
details could be found in Technical Description of CLM v4.0 (Oleson et al., 2010) and
CAMS Scientific Guide (Neale et al., 2012).

In dust model, the total vertical dust mass flux (Fj, kg m? s!), from the ground

into transport bin j is calculated by the following function:

I
F = TSfmaQSZMU (1)
i=1

Where T is a tuning factor that compensates for the DEAD model's sensitivity to
horizontal and temporal resolution and equals 5 x 10, S is the source erodibility
factor set to 1 and serves as a place holder, f,,, is a dimensionless fraction representing
the exposed bare soil, a is the sandblasting mass efficiency (m™), Qg is the total
horizontally saltating mass flux (kg m™ s'), and M;; is the dimensionless mass
fraction of each source mode i carried in different bin ;.

2.2 Regions classification and sensitivity experiments

To identify the contributions of dust source regions to the oceans, eleven main dust
source regions and eight ocean regions were classified. Most dust is emitted from the

so-called “dust belt”, which includes northern Africa, the Middle East, central Asia, and
7
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the northwest of China and the Mongolian deserts. Small amounts of dust are emitted
from Australia, southern Africa, and North and South America. In addition to
considering the primary dust sources, the varying iron content of the dust is also a factor
in defining the dust source regions. Ultimately, we divided dust sources over the world
into eleven source regions that together account for the overwhelming total of desert
dust emissions identified in models. Eleven dust source regions are Northwest Africa
(NWAYf), Northeast Africa (NEAf), Middle Africa (MAf), South Africa (SAf), North
America (NAm), South America (SAm), West Asia (WAs), Middle-North Asia (MNAs),
East Asia (EAs), South Asia (SAs), and Australia (AU), respectively. The
apportionment of the source regions partially follows the definition provided by Kok et
al (2021), with the main difference being that we divided Asia into more regions due to
variations in iron content.

30°S and 30°N are the boundaries for dividing the difference ocean regions. The
north of 30°N is North Pacific Ocean (NP), North Atlantic Ocean (NA), Mediterranean
Sea (MS), respectively. The south of 30°S is Southern Ocean (SO), In addition, between
the 30°N and 30°S is Equatorial Pacific Ocean (EP), Equatorial Atlantic Ocean (EA),
Equatorial Indian Ocean (EI), respectively. In total, eleven dust source regions
corresponding with eight deposit ocean regions are classified in this study as shown in
Fig. | and Tablel.

Three main HNLC regions as selected and defined by Aumont et al (2006) include
the Southern Ocean (SO) south of 40°S, the equatorial Pacific (EP) between 5°S - 5°N

and 180°W - 80°W, and the subarctic North Pacific (NP) north of 40°N and spanning
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140°E - 120°W (Fig. 1 and Tablel).

We conducted five-year simulations with a spatial resolution of 1.9° x 2.5°, a 30-
min time step, and monthly output frequency to investigate the characteristics of global
dust emission and deposition. Each simulation was preceded by a one-year spin-up and
used a 30-minute model time step. A baseline simulation including global dust
emissions was performed. In each experimental case, emissions from a specific dust
source region were turned off, and the difference between this scenario and the baseline
case was considered as the dust emission and deposition from that particular dust source
region. The model configuration included 30 vertical layers. We employed prescribed
aerosol emissions that repeat annually, based on emission inventories representative of
the year 2000. The configuration imposes a climatological forcing by applying an
identical annual emission cycle throughout the simulation period. Prescribed
climatological sea ice and sea surface temperature from Hadley Centre were used to
drive the climate. Environmental boundary conditions were derived from the default
CESM surface dataset for the year 2000, which includes land cover, soil properties,
vegetation distribution, and dust source regions. Atmospheric initial conditions were
specified using the standard initialization file provided for CAM.

2.3 Fe Solubility and dissolved Fe concentration data

To accurately estimating the Fe supply to the ocean from dust deposition, we used
varying Fe content data for different dust source regions based on ten-year-averaged
percentages of elements over desert regions provided in Zhang et al (2015). The Fe

contents in NWAT, MAf, NEAf, SAf, NAm, SAm, WAs, MNAs, EAs, SAs and AU are
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2.00%, 2.65%, 1.91%, 2.47%, 2.38%, 2.28%, 2.20%, 1.76%, 2.08%, 2.17% and 2.70%,
respectively.

Fe solubility is also a key factor to estimate the carbon uptake of phytoplankton to
dust deposition. Since the complex particle-aging processes during dust transport would
influence the solubility of dust-born Fe (Longo et al., 2016), the observed Fe solubility
in different oceans were used to constrain the Fe solubility in specific marine areas. The
observation data, introduced in [to et al (2019), included 774 sites of Fe solubility across
various oceans. To mitigate the risk of overestimating the contribution of dust-borne Fe,
Fe solubility data were filtered to retain only values below 6.0%, based on the studies
by Shi et al (2011a), Shi et al (2009), Shi et al (2011b), Journet et al (2008), Tapp et al
(2010) and Scanza et al (2018). Shi et al (2011) found that Fe solubility ranged from
approximately 0.1% to 0.8% in various size fractions of Saharan soil samples. After
cloud processing, Fe solubility of Saharan soil sample could increase to 3.5% (Shi et
al., 2009). Shi et al (2011b) measured potential Fe solubility of Saharan soil dust
samples approaching 6%. However, Fe solubility of dust could increase during
transport, which is attributed to the complex atmospheric chemical processes, including
acidic reactions and photoreduction (Longo et al., 2016; Li et al., 2017). Journet et al
(2008) and Trapp et al (2010) found maximum solubility values of 5.25% and 5.8%,
respectively, by measuring African dust collected over the Atlantic Ocean,
Mediterranean Sea, and Barbados, which had experienced atmospheric transport.
Consequently, we filtered the Fe solubility data to retain only values below 6.0%. Since

the Fe solubility data used in this study are derived from multiple sources, not solely

10
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from dust, there is a possibility that the filtered-out Fe solubility data may be
overestimated if regarded as representative of dust, as these data could originate from
other sources, such as combustion. Scanza et al (2018) showed that the global Fe
solubility from both dust and combustion sources, as simulated, ranged from 0% to
20%. Ultimately, 514 data points were retained and interpolated to a resolution of 1.9°
x2.5° for this study. The mean Fe solubility interpolated from observations is 2.8%,
which is comparable to the assumed value of dust Fe solubility (2%) by previous studies
(Jickells et al., 2005), but incorporates spatial distribution (Fig. S1).

The dFe concentration data is a necessary factor for calculating the Fe: C ratio in
phytoplankton cells. The dFe concentration data used in this study is from the
GEOTRACES Intermediate Data Product 2021 Version 2

(https://www.bodc.ac.uk/geotraces/data/idp2021/). GEOTRACES is an international

study of the marine biogeochemical cycles of trace elements and isotopes, and provides
a broad coverage of observational data on aerosol nutrients (Schlitzer et al., 2018). A
total of 15970 data of dFe concentration across 3304 sites over ocean were obtained.
Data overlapping on the same sites were averaged, and the resulting observed dFe
concentration over ocean were interpolated into a resolution of 1.9°x2.5° for this study
(Fig. S2).

2.4 Inverse distance weighting interpolation

We employed the inverse distance weighting (IDW) method, a widely used spatial
interpolation technique, to interpolate observation data on Fe solubility and dFe

concentration to a resolution of 1.9°x2.5°. The globe was divided into a grid matrix of
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144x96 cells based on simulation results from CESM. Observations were matched to
the grid matrix using spatial coordinates and subsequently interpolated using the IDW
method. Spatial distances between each interpolation grid and observation locations
were calculated iteratively. Weight functions were then applied to these distances to
compute a weighted average, yielding the interpolated results.

The function to calculate the weight is as follows:

1
Wi =5 (2)
l

Here, w; represents the weight of the i-th observation, d; is the distance
between the observation location and the interpolation point, and P is a tuning factor
set to 3 for this interpolation.

The weights are applied to calculate a weighted average, yielding the interpolated
results. The formula for calculating the weighted average is expressed as follows:

N w.z:
2(x,y) = ——— 3)

i=1 Wi

Here, z(x,y) is the interpolated result, N is the number of the observations,
(x,y) denotes the coordinates of the i-th observation, w; is its weight, and z; is the
observed data.

To prevent data from a single site from affecting oceanic regions on both sides of
a landmass, we delineated land—sea boundaries during interpolation. However, the
uneven global distribution and limited number of observations and complex land-sea
boundaries could lead to interpolation uncertainty. Refining interpolation methods may
reduce the uncertainty and improve estimates the impact of Fe on phytoplankton carbon

uptake.
12
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2.5 Calculation of marine phytoplankton carbon uptake

The contribution of each dust source region to the dissolved Fe deposition in
various marine areas can be calculated based on dust deposition rates and Fe solubility.
Then, Fe: C ratios in phytoplankton cells are employed to calculate marine

phytoplankton carbon uptake caused by dust deposition with the function as follows:

CZD*Fecon*Fesol (4)
gQfe

where C is the amount of marine phytoplankton carbon uptake driven by dust

deposition, D (Tg) is the amount of dust from source regions and deposit to oceans,
Fe.on (%) is the Fe content for different dust source region, and Feg, (%) is the
solubility of Fe over various oceans.

Fe: C ratio in phytoplankton cells (gQfe) is defined to be a linear function of the
dFe concentration in seawater (Sunda et al, 1995), which is a vital link for estimating
the marine phytoplankton carbon uptake to variations of dust-borne inputs of Fe. The
following is the function to calculate Fe: C ratio in phytoplankton cells used in this

study (Wiseman et al., 2023):

e
) (5)

gQfe = min (gQfe_max, max(gQfe_min, gQfe_max X FeOpt

where gQfe is the Fe: C ratio in phytoplankton cells, gQfe max is the prescribed
maximum Fe: C, gQfe min is the prescribed minimum Fe: C, dFe is the local
concentration of dissolved Fe (nmol/L), and FeOpt refers to the Fe concentration at
which Fe: C ratio in phytoplankton cells reaches its maximum value. In this study, we
used a broad Fe: C ratio range in phytoplankton cells (3-90 pmol Fe mol! C) and an

FeOpt of 1.75 nM for all phytoplankton groups, as proposed by Wiseman et al (2023),

13



301 to estimate phytoplankton carbon uptake driven by Fe from dust. Given that Fe is the
302  primary limiting nutrient in HNLC regions, we also calculated phytoplankton carbon
303  uptake attributable to dust deposition in these regions. However, using the Fe: C ratio
304  in phytoplankton cells to estimate the response of phytoplankton carbon uptake to dust
305 deposition may introduce some uncertainty, because this method does not fully account
306  for potential co-limiting factors such as light availability and the interactive effects of
307 multiple micronutrients. The results, especially in non-HNLC regions, is only a
308  hypothetical research results, and the uncertainty needs to be further reduced after being

309 enriched with experimental and observational data.

310 3 Results

311 3.1 Spatial and temporal characteristics of global dust emission and deposition over the
312 oceans

313 Our simulations indicate a global annual average dust emission of 2071.5 Tg (Fig.
314  2). The highest dust emission concentrated in North Africa (i.e. NEAf and NWAT),
315  surrounding the Sahara Desert. Dust emission from NEAf and NWAf accounts for 58.0%
316  of global dust emission, with NEAf exhibiting a stronger intensity of dust emission
317  compared to NWAT. Dust emitted from WAs (317.7 Tg yr'!) is also a key contributor to
318  global dust emission, accounting for 15.3% of global dust emission. The northeastern
319  region of the Arabian Desert, located on the Arabian Peninsula, is the primary area of
320  dustemission within WAs, while the east of the Caspian Sea is also notable for its strong
321  dust emissions, attributed to the presence of the Kyzylkum Desert and Karakum Desert

322  (Fig. 2). Furthermore, the SAs and EAs regions are also high emission sources,

14



323  including the Taklamakan Desert, Gobi Desert, and several small deserts such as the
324  Badain Jaran Desert, Tengger Desert, Ulan Buh Desert, and Kubuchi Desert. Dust
325 emissions from SAf, America (NAm, SAm), and MNAs are minor contributors to
326  global dust emissions, each accounting for ~1% of the total dust emission. The
327  contributions of the main dust sources to global dust emissions in this study are
328  comparable with the results presented by Jickells et al (2005) and Wang et al (2024).
329 Global dust emissions exhibit large seasonal variations, with emissions during
330  spring and summer (663.0 and 667.1 Tg season’') being approximately 70-90% higher
331  than those in autumn and winter (349.3 and 392.2 Tg season™") (Fig. S3). This is largely
332 attributed to the pronounced seasonal variations in dust emissions from the Asian region
333  (Fig. S3 and 3). Dust emissions in EAs and SAs during spring (67.2 and 94.7 Tg) are
334  813.6% and 436.2% higher than those in winter (7.4 and 17.7 Tg) in EAs and SAs,
335  respectively. During winter, surface temperatures in SAs and EAs can drop to below -
336 30°C, leading to soil freezing and reduced dust emissions (Fig. S4). The seasonal
337  variations of dust emission in the Southern Hemisphere, such as SAf, SAm and AU, are
338  similar. In these areas, dust emissions peak in autumn with SAf, SAm, and AU emitting
339  10.0, 3.6 and 26.6 Tg, respectively. In comparison, spring is the season with low dust
340  emission season in these regions (3.21, 1.38 and 11.2 Tg) (Fig.3).

341 There are 560.2 Tg dust deposited into ocean every year (Fig. 4), representing 27.0%
342  of the annual global dust emission. Wet deposition dominates the dust deposition,
343  accounting for 77.4% of the total dust deposition to the ocean. As shown in Fig. 4, the
344  dust deposition over EA (235.0 Tg yr'!) and EI (132.9 Tg yr!) is highest among oceans

15
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around the world. Dust depositions in the EP, NP, MS, RS and SO regions show a
decreasing trend, with annual dust deposition of 53.8, 46.0, 28.2, 26.2 and 19.1 and
18.9 Tg, respectively. NA has the lowest dust deposition of 18.9 Tg yr'!, indicating that
northwestward transport is not the primary direction for dust from Africa. In addition,
the contributions of dry deposition to dust deposition in all oceans are generally less
than 30%, much lower than that of wet deposition, except in the RS and MS. The
proportions of dry deposition in RS and MS are 52.0% and 46.4%, respectively, due to
their relatively small areas with low precipitation and proximity to dust sources.
Global marine dust deposition in summer (209.4 Tg season™') is higher than other
seasons (Fig. S5) (147.5 Tg season’! in spring, 96.8 Tg season™ in autumn and 106.5
Tg season™! in winter). In summer, dust deposition in EI increases sharply, rising by
337.6% compared to spring, primarily due to the increase of wet deposition (Fig. S6
and S7). The large reduction in dust deposition in EA during autumn, which is ~60 Tg
lower than in other seasons, is the primary reason for the lowest global dust deposition
during this period. As EA is a key source of marine dust deposition, this sharp decline
in autumn emissions is a major contributor to the global decrease in dust deposition.
(Fig. 3). Generally, high dust deposition occurs in spring and summer, while low dust
deposition occurs in autumn and winter in all oceans except for SO and MS. (Fig. 3).
Dust deposition in SO peaks in autumn, while it is lowest in the spring (Fig. 3). The
MS experiences its lowest dust deposition in summer, with 3.3 Tg, a pattern that
contrasts with the higher summer deposition seen in other oceanic regions. Moreover,

seasonal variations of dust deposition are drastic in RS, EI and NP with changes of
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626.1%, 600.4% and 550.0%, respectively.

3.2 Annual and seasonal contributions of dust sources to deposition over ocean

The source apportionment of dust deposition over eight oceans were conducted
through a series of sensitivity experiments. Dust from NWAf and NEAf are the major
contributors to dust deposition over EA, NA, MS and EP, accounting for more than 50%
of dust deposition in each of these oceans (Fig. 5). Dust from NEAf is also the dominant
contributor to dust deposition over RS, while dust from NWAf makes only a minor
contribution due to a small portion of dust from NWATf being transported eastward (Fig.
5). EA is the ocean with the highest dust deposition over the world, which is primarily
attributed to the dust transported westward from NWAf and NEAf. Dust from NWAf
(46.0%) contributes slightly more to deposition over EA than dust from NEAf (44.2%),
as a greater amount of dust from NWATf can be westward transported to EA than from
NEAf (Fig. 5).

EI is the ocean with the second highest dust deposition, primarily due to the
overwhelming southward transport of dust from WAs, accounting for 59.1% (Fig. 5).
The second largest contributor to dust deposition over El is dust from NEAf, accounting
for 22.7%, mainly owing to the primary eastward transport from NEAf. The following
contributor to EI’s dust deposition is dust from SAs, accounting for 10.0% (Fig. 5).
Dust deposition in other oceans is comparatively lower than that in the EA and EI
regions, but each with distinct source characteristics. EP and NP have similar dust
deposition, accounting for 9.6% and 8.2% of total dust deposition over global oceans,

respectively, but their major contributors are quite different. The major contributors to
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dust deposition over EP are NWAf and NEAf, while they are EAs and SAs for NP (Fig.
5). Moreover, dust deposition over NP is mainly from Asia except for MNAs, while
dust from MNAs is primarily deposited over EP (Fig. 5). Dust deposition over MS and
RS is similar (29.5 and 26.2 Tg yr'!), accounting for 5.3% and 4.7% of total dust
deposition over the ocean, respectively. Dust from NEAf and NWAf dominate the dust
deposition over MS, accounting for 98.6%. However, NEAT is the primary contributor
to dust deposition over RS, while dust from NWAT contributes little (Fig. 5).
Additionally, dust deposition over SO is mainly from dust sources in the Southern
Hemisphere (i.e. AU, SAf, and SAm).

As mentioned above, the largest global marine dust deposition occurs in summer
dominated by the large dust deposition over EI in summer (Fig. S5). The seasonal
variations in contributions from dust sources to oceans further explain this increase in
summer. The primary contributor to dust deposition over EI is dust from WAs, which
primarily transports southward and deposits over EI through the year (Fig. S8). In
summer, dust emission from WAs peaks with the highest ratio of deposition to emission
in WAs, which is 20% higher (up to 47.4%) than in other seasons (Fig. 3 and S3). The
proportion of dust from WAs deposited over EI in summer (85.3%) is 10-30% higher
than in other seasons (Fig. S8). In addition, dust from NEAf is predominantly
transported eastward in summer, leading to an increase of ~30% compared to other
seasons in the amount of dust from NEAT deposited over EI (Fig. S&). Dust emission
from NEAf is also highest in summer, with the ratio of deposition to emission slightly
higher by ~7% than in other seasons. Therefore, dust deposition over EI in summer is

18



411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

six times higher than in other seasons.

The dust deposition over EA in autumn is 29.4% lower than that in other seasons
(Fig. 3). Dust from NWATf and NEAT are consistent major sources of dust deposition
over EA, contributing ~90% of the dust deposition to EA through the year (Fig. S8).
Dust emissions from NWAfand NEAfare 59.1% and 45.7% lower in autumn compared
to their peak seasons (spring for NWAf and summer for NEAf) (Fig. 3). Therefore, the
decrease in dust deposition over EA in autumn is primarily due to reduced dust
emissions from these two key contributors.

The lowest amount of dust deposition over oceans typically occurs in autumn and
winter, except for MS, where it occurs in summer (Fig. 3). Dust from NWAf and NEAf
are consistently accounts for more than 98% of total dust deposition over MS as major
contributors (Fig. S8). However, in summer, less dust from NWAf and NEAT is
transported and deposited over MS, decreasing by ~10% and ~6%, respectively,
compared to other seasons.

Dust deposition over RS, EI, NP and EP exhibits the largest seasonal variations
among ocean areas, with variations of 626.3%, 600.4%, 550.0% and 424.9%,
respectively. NEAf and WAs have consistently been the primary sources of dust
deposition in the RS region, contributing over 90% of the total, though their respective
contributions show noticeable seasonal variations (Fig. S8). During the summer, the
eastward transport of dust from NEAf increases, leading to a 15-21% rise in its
contribution to dust deposition in the RS region compared to other seasons (Fig. S8).

The contribution of dust from NEAf shows a significant increase only in summer,
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further widening the gap with seasons of lower dust deposition. This is a key factor in
the 626.3% increase in dust deposition over the RS in summer compared to winter (Fig.
3). The seasonal variation in dust deposition over the NP region is driven by the large
seasonal variations in Asian dust emissions as its primary source (Fig. S8). Dust from
EAs and SAs consistently contributing over 80% of the dust deposition over the NP
area with emission peak in spring (Fig. S8). As a result, dust deposition over NP is much
higher in spring than in other seasons, with an increase of 550.0% compared to winter.
The primary sources of dust deposition over EP are also dust sources in Asian, except
during summer (Fig. S8). The primary contributors to dust deposition over EP in
summer are NWAf and NEAf, accounting for 73.0% (41.6% for NWAf and 31.4% for
NEA(f). Dust from NWATf and NEAf leads to 2 to 26 times more dust deposition over
the EP during the summer compared to other seasons, resulting in a large seasonal
disparity in dust deposition. Therefore, dust deposition over EP in summer is 424.9%
higher than that in winter.

3.3 Spatiotemporal patterns in phytoplankton carbon uptake driven by dust-borne iron
supply

According to the function (4), the Fe: C ratio in phytoplankton cells is a crucial
factor in calculating phytoplankton carbon uptake induced by dust deposition into the
ocean. We utilize a dataset of Fe: C ratios in phytoplankton cells derived from
observations (Ito et al., 2019; GEOTRACES Intermediate Data Product Group, 2023)
to the same grid as our simulations. An Fe: C ratio in phytoplankton cells lower than
the optimal value indicates large marine phytoplankton carbon uptake driven by the

same amount of Fe supply. Increased Fe supply usually can enhance carbon uptake by
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phytoplankton, but only soluble Fe is bioavailable and Fe: C ratio is lower the optimal
value, making the solubility of Fe key to the phytoplankton’s carbon uptake to dust
deposition. The interpolated result of Fe solubility showed high Fe solubility was
primarily occurred in EA and NA, particularly in north-central EA. Relatively high Fe
solubility was also found in the regions spanning 105°W-130°W and 45°E-75°E in the
SO (Fig. S1). We estimated global phytoplankton carbon uptake induced by dust
deposition using the Fe: C ratio in phytoplankton cells. Because Fe is the primary
limiting nutrient in HNLC regions, we additionally provided a separate estimate for
these regions.

Our simulations indicate that annual dust deposition supplies 11.1 Tg of Fe to the
global ocean, of which 0.4 Tg is dFe, driving a carbon uptake of 5.6 Pg C yr!' by
phytoplankton. High dust-borne dFe primarily occurs in EI (1.1 x 10 Tgyr™), EA (1.7
x 10" Tg yr'), and MS (1.7 x 102 Tg yr") (Fig. S9). The high Fe: C ratio in
phytoplankton cells is primarily occurred in EA, particularly in the north-central of EA
(Fig. S10). The mean Fe: C ratio in phytoplankton cells in EA is the highest, which is
62.5 umol Fe mol™! C. The NP and EP near America, as well as NA, exhibit relatively
high Fe: C ratios in phytoplankton cells (Fig. S10). The average Fe: C ratios in
phytoplankton cells in NP, EP, and NA are 19.6, 27.6, and 28.0 pmol Fe mol! C,
respectively. Large marine phytoplankton carbon uptake driven by dust deposition
occurs primarily in EA, EI and RS (Fig. 6), which exhibit positive ecological responses
to dust deposition, with uptake values of 2.2, 1.8 and 0.5 Pg C yr’!, respectively. The
following areas are NP (0.3 Pg C yr'!), EP (0.3 Pg C yr'!"), NA (0.2 Pg C yr'!) and MS
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(0.2 Pg C yr'!). The marine phytoplankton carbon uptake driven by dust deposition is
minimal in the SO (0.1 Pg C yr!), accounting for only ~3% of the total marine
phytoplankton carbon uptake driven by global dust deposition. The spatial distribution
of marine phytoplankton carbon uptake driven by dust deposition closely mirrors that
of dust deposition. In EA, marine phytoplankton carbon uptake driven by dust
deposition decreases from east to west, while in EI, the northwestward region exhibits
high values (Fig. 6). Despite the large Fe: C ratio in phytoplankton cells in EA, which
means the carbon uptake by phytoplankton is not sensitive to dust-born Fe supply, it
remains the region with the largest marine phytoplankton carbon uptake to dust
deposition, accounting for 41.3% of the marine phytoplankton carbon uptake induced
by dust deposition (Fig. 6 and S10). This strong response is supported by the highest
Fe supply from dust deposition (4.7 Tg yr'!) and Fe solubility (6.7% in average) in EA.
The intensity of marine phytoplankton carbon uptake driven by dust deposition in RS
is much higher than that in other oceans, mainly because of the lowest Fe: C ratio in
phytoplankton cells in RS (7.0 umol Fe mol™! C) (Fig. 6 and S10). In addition, compared
to the role in global dust deposition over the oceans, the contributions of marine
phytoplankton carbon uptake driven by dust deposition in EP is smaller due to low Fe
solubility (1.9%) and high Fe: C (27.6 umol Fe mol™! C).

The global phytoplankton marine carbon uptake driven by dust deposition in
summer is 2.1 Pg C season’! while that is ~1.0 Pg C in other seasons (1.4 Pg C season’
lin spring, 0.9 Pg C season™ in autumn and 1.2 Pg C season’'in winter) (Fig. S11).
During summer, phytoplankton in EI, EA and RS contribute most to the global marine
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carbon uptake induced by dust deposition, with EI at 0.9 Pg C, EA at 0.5 Pg C and RS
at 0.3 Pg C, in addition, the marine phytoplankton carbon uptake over EI and RS are
much higher in summer than other seasons (Fig. 7). Except for summer, EA has the
largest marine phytoplankton carbon uptake driven by dust deposition among all ocean
areas (Fig. 7). Generally, high marine phytoplankton carbon uptake usually occurred in
spring and summer, and low marine phytoplankton carbon uptake occurred in autumn
and winter, in addition to SO, MS and EA (Fig. 7). The seasonal variations of marine
phytoplankton carbon uptake in SO and MS are dominated by the seasonal variation in
dust deposition. Nevertheless, the seasonal changes in marine phytoplankton carbon
uptake in EA differ from the seasonal pattern of its dust deposition. High marine
phytoplankton carbon uptake in EA occurs in winter (0.7 Pg C) and spring (0.7 Pg C),
while low marine phytoplankton carbon uptake occurs in autumn (0.4 Pg C) and
summer (0.5 Pg C) (Fig. 7). In comparison, high dust deposition in EA occurs in spring
(65.67 Tg), winter (61.8 Tg) and summer (61.2 Tg), the lowest dust deposition occurs
in autumn (46.4 Tg) (Fig. 3). These differences are mainly due to the difference in the
seasonal pattern between Fe: C ratio in phytoplankton cells and dust deposition in EA.
The seasonal variations and spatial distribution of carbon uptake for new growth in the
EA region are largely influenced by the Fe: C ratio in phytoplankton cells, in addition
to the impact of dust deposition. High marine phytoplankton carbon uptake in EA
during winter and spring is mainly distributed in the middle region, where Fe: C ratios
in phytoplankton cells are relatively low (Fig. S10). In contrast, during autumn and
summer, high marine phytoplankton carbon uptake is centered in the northern EA,
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where Fe: C ratios in phytoplankton cells are high (Fig. S10).

Recognizing Fe as the primary limiting nutrient in HNLC regions, we provided a
separate estimate for these regions. The results show that annual dust deposition
provides 0.8 Tg Fe to HNLC regions, of which 2.2x102 Tg is dFe, causing a marine
phytoplankton carbon uptake of 0.2 Pg C yr'!. The marine phytoplankton carbon uptake
driven by dust deposition occurred in the HNLC region over NP, SO and EP is 1.6x10"
1,7.2x10% and 9.3 x10° Pg C yr'!, respectively. The estimation of global marine
phytoplankton carbon uptake attributed to dust deposition is 5.6 Pg C yr'!, which may
be overestimated due to the assumption that every grid where dust deposition occurs
over the ocean responds to its Fe supply. Therefore, the actual annual marine
phytoplankton carbon uptake due to dust deposition worldwide is likely between 0.2
Pg C yr'! and 5.6 Pg C yr'!. In addition, phytoplankton carbon uptake driven by dust
deposition in HNLC regions is the highest in spring (9.6x1072 Pg C season™"), compared
with summer (6.5%x102 Pg C season™!), autumn (6.3x102 Pg C season'), and winter
(2.1x1072 Pg C season'). Dust-driven phytoplankton carbon uptake is the highest in
HNLC regions of the NP across all seasons, accounting for 86.1% in spring, except in
winter. In winter, phytoplankton in the SO contribute the most to dust-driven marine
carbon uptake in HNLC regions, with 1.1x1072 Pg C (~50.2%), while the NP accounts
for ~45.6%.

3.4 Source apportionments of marine phytoplankton carbon uptake induced by dust
deposition

Dust from NEAf (1.7 Pg C yr'!), NWAf (1.5 Pg C yr'!), and WAs (1.3 Pg C yr'))

are the primary drivers of marine phytoplankton carbon uptake induced by dust
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deposition (Fig. 7). NEAf, NWAf and WAs make their largest contributions to marine
phytoplankton carbon uptake during the summer, contributing 0.7, 0.4 and 0.7 Pg C yr’
! respectively (Fig. 7). They (NEAf, NWAf and WAs) all contribute least in autumn
with contributions of 0.2, 0.2, and 0.1 Pg C yr'!, respectively (Fig. 7). Examining the
seasonal variation in contributions from dust sources to global dust-driven carbon
uptake of marine phytoplankton, contribution from EAs exhibits the largest seasonal
variation. In spring, marine phytoplankton carbon uptake induced by dust from EAs is
about ten times higher than in winter (Fig. 7). Dust from MAf and MNAs also shows a
5-6 fold difference in their contributions to global marine phytoplankton carbon uptake
across different seasons, but their overall contributions remain only ~2% (Fig. 7 and 8).

The heterogeneity in Fe solubility and Fe: C ratios in phytoplankton cells across
global oceans leads to difference in the contributions of dust sources to marine dust
deposition and phytoplankton carbon uptake. The greatest contributors to marine
phytoplankton carbon uptake in EP differ from those that contribute most to dust
deposition in the region (Fig. 5 and 8). The dust from AU is the dominant contributor
to marine phytoplankton carbon uptake driven by dust deposition over EP, accounting
for 30.4%, while the dust from NWAf and NEAf, the major contributors to dust
deposition over EP, only accounts for 17.2% and 15.6%, respectively (Fig. 5 and 8).
Dust from AU is the third largest supplier of Fe to dust deposition over EP, following
NWATf and NEACf. This is primarily because dust deposition over EP from NWAf and
NEATf is mainly concentrated in the northeast, near the southwest coast of NAm, where

Fe: C ratios in phytoplankton cells are relatively higher compared to the areas dust from
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AU is deposited over EP (Fig. S10). The contribution (33.4%) of dust from AU to
marine phytoplankton carbon uptake in SO is lower compared to its contribution
(51.5%) to dust deposition over SO (compare Fig. 5 and 8), mainly due to high Fe: C
ratio in phytoplankton cells in the southeast of AU, which is the primary area of dust
from AU deposit over SO (Fig. S10). On the contrary, the contributions of the dust from
SAf to carbon uptake for new growth in SO is larger compared to its contributions to
dust deposition owing to low Fe: C ratio in phytoplankton cells in the southeast of SAf,
where is the main regions of SAf’s dust deposit over SO (Fig. S10). Therefore, spatial
variations in Fe solubility and the Fe: C ratio in phytoplankton cells will to some extent
lead to differences between the spatial distribution characteristics of dust deposition
and the resulting spatial distribution characteristics of marine phytoplankton carbon
uptake. Globally, dust from NEAf is the largest contributor to the marine phytoplankton
carbon uptake driven by dust deposition which accounts for 30.0% (1.7 Pg C yr'!) (Fig.
8), followed by NWAT (1.5 Pg C yr'!), accounting for 26.2%. WAs (1.3 Pg C yr'!') and
SAs (0.4 Pg C yr'!) are also important sources to annual total marine carbon uptake
induced by dust deposition, accounting for 24.0% and 6.4%. Dust from AU and EAs
account for 4.3% and 3.4% of the global marine carbon uptake for new growth driven
by dust deposition, dust from SAf and MAf account for 3.4% and 3.2%, respectively.
Dust from SAm, MNAs and NAm contribute relatively lower to the marine carbon
uptake driven by dust deposition, less than 1%, respectively.

The seasonal variation in marine phytoplankton carbon uptake is most pronounced
in RS (Fig. 7). The highest marine phytoplankton carbon uptake in RS occurred in
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summer at 0.3 Pg C, which is about ten times higher than in winter, resulting in a drastic
seasonal fluctuation occurred in RS (Fig. 7). During summer, dust deposition over RS
increases from almost all dust sources, particularly NEAf and WAs (Fig. S12).
Specifically, dust from NEAf contributes 0.2 Pg C, and dust from WAs contributes 0.1
Pg C to marine phytoplankton carbon uptake driven by dust deposition in RS.
Additionally, the lowest Fe: C ratio in phytoplankton cells in RS further enhances the
marine carbon uptake for new growth driven by dust deposition during summer. During
winter, dust deposition in RS primarily from NEAf and WAs, could leading to 1.2x 10"
2Pg Cand 2.1x102 Pg C of marine phytoplankton carbon uptake(Fig. S12). The carbon
uptake for new growth induced by dust deposition over NP and EI also exhibits large
seasonal variations, with differences between seasons reaching 542.1% and 438.8%,
respectively (Fig. 7). The highest marine phytoplankton carbon uptake driven by dust
deposition in NP occurred in spring at 0.2 Pg C, while the lowest occurred in winter at
2.9x102 Pg C. The marine phytoplankton carbon uptake in NP throughout the year is
predominantly attributed to the dust from Asia, particularly from EAs and SAs (Fig.
S12). The pronounced seasonal variations in dust emissions from EAs and SAs are the
primary reasons for the large seasonal changes in carbon uptake induced by dust
deposition in the NP (Fig. 3). During summer, marine phytoplankton carbon uptake
driven by dust deposition in EI peaks at 0.9 Pg C, contrasting with its lowest uptake in
autumn at 0.2 Pg C (Fig. 7). This fluctuation is primarily driven by changes in dust
deposition over EI (Fig. 3). Substantial dust from NEAf and WAs deposits in EI during
summer, sharply diminishing in autumn (Fig. S8).
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4 Discussion and conclusions

Identifying the contribution of dust sources to deposition over oceans is key to
quantify the dust-borne input of dFe to the ocean, which is critical for understanding its
impact on marine ecosystems, the carbon cycle, and climate. In this study, CESM was
employed to identify the contributions of various dust source regions to dust deposition,
revealing that EA and EI are the major contributors to global dust deposition over the
ocean, with contributions of 41.6% and 23.7%, respectively. These contributions are
primarily due to the westward transport of dust from NEAf and NWAT, the largest dust
emission sources, to the EA region, and the dominant southward transport of dust from
WAs to EI. Additionally, dust deposition over the RS exhibits the largest seasonal
variations among ocean areas, with fluctuations of 626.3%, primarily due to a sudden
large increase in deposited dust from NEAf over RS occurring exclusively in summer.

Based on the contribution relationship, we quantified the total Fe and dFe supplied
to the ocean due to dust deposition and used the Fe: C ratio in phytoplankton cells to
identify its effect on carbon uptake by phytoplankton in various oceans, we found that
dust deposition onto the ocean supplies 11.1 Tg yr'! of Fe and 0.4 Tg yr! of dFe, leading
to a marine phytoplankton carbon uptake of 5.6 Pg C yr''. Large marine phytoplankton
carbon uptake driven by dust deposition occurs primarily in EA and EI, leading to 2.3
and 1.7 Pg C yr'!, respectively, because large amount of dust deposition over EA and
EI. Marine phytoplankton carbon uptake driven by dust deposition is highest in summer
(2.1 Pg C season™), followed by spring (1.4 Pg C season™') and winter (1.2 Pg C season’

1), with the lowest uptake occurred in autumn (0.9 Pg C season’'). Marine
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633  phytoplankton carbon uptake caused by dust deposition in summer over the RS is 843.0%
634  higher than in other seasons, representing the largest seasonal variation among ocean
635 areas. This significant variation is primarily due to the sharp increase in dust deposition
636  from NEAf during summer and the lowest Fe: C ratio in phytoplankton cells in RS.
637  Compared with previous studies, Myriokefalitakis et al (2018) reported that total Fe
638  emissions from dust sources in various models (CAM4, IMPACT, GEOS-Chem, and
639 TM4-ECPL) ranged from 38 to 134 Tg total Fe yr'!, with a mean value of 71.5 + 43
640 Tg total Fe yr!, which is comparable with our result of 42.5 Tg Fe yr'. Their
641  simulations of soluble Fe from mineral dust ranged from 0.3 to 1.0 Tg dFe yr'!, with a
642  mean value of approximately 0.7 + 0.3 Tg dFe yr'. The amount of Fe supplied to the
643  ocean from dust deposition in our study (11.1 Tg yr'!) is close to the lower end of other

644  global estimates (12.94 + 0.31 Tg yr'!) presented by Myriokefalitakis et al (2022).

645 The amount of dust deposition is fundamental in determining the marine carbon
646  uptake for new growth to Fe supply from dust. Consequently, the relationship between
647  dust deposition in various oceans and their respective dust sources elucidates the link
648  between carbon uptake for new growth in each marine region and its dust sources.
649  Currently, few studies have quantified the large-scale response of the carbon cycle to
650  dust deposition. Mahowald et al (2010) demonstrated that dust deposition trends
651  increase ocean productivity by 6% over the 20th century, leading to marine carbon
652  uptake of 8 Pg C (equivalent to 4ppm in atmospheric COz2). They combined the
653  ecosystem component of the Biogeochemical Elemental Cycling (BEC) ocean model

654  and a carbonate chemistry module to calculate pCO: and air-sea CO: flux to estimate
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the variation of carbon. Although their carbon uptake estimate differs in magnitude and
approach from ours, it offers a valuable point of reference. The air-sea CO: flux reflects
the net oceanic uptake of atmospheric CO-, which is determined by the ultimate fate of
fixed carbon (e.g., export, remineralization, or trophic transfer). In contrast, the Fe: C
ratio in phytoplankton cells reflects their physiological response to iron enrichment,
directly influencing their capacity for photosynthetic carbon fixation. As a portion of
the fixed carbon is later released through respiration, remineralization, or physical
mixing, estimates based on Fe: C ratios in phytoplankton cells generally exceed the
amount of carbon that is ultimately sequestered and captured in net air-sea CO: fluxes.
Although our carbon uptake estimates, based on Fe: C ratios in phytoplankton, may not
be directly comparable to the air-sea CO: flux estimates presented by Mahowald et al.
(2010), the two approaches represent different yet complementary stages of the oceanic
carbon cycle. Our study focuses on the initial carbon fixation response triggered by
dust-borne iron inputs, while Mahowald et al. (2010) evaluated the net carbon
sequestration resulting from ocean-atmosphere CO: exchange. Additionally, their
estimate of the influence on marine biogeochemistry was based on the increase of
anthropogenic inorganic nitrogen and soluble Fe from atmospheric processing of dust
and combustion sources, rather than from dust alone. Westberry et al (2023) estimated
that 2.55x102 Pg C yr of primary production was supported by dust deposition onto
the ocean. The primary reason for the discrepancies between their results and us
depends on the differing methodologies employed. Westberry et al. (2023) employed
an observation-based empirical approach, utilizing the Carbon-based Production Model

30



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

(CbPM) to estimate the net primary production response to dust deposition by
comparing ocean color properties during 4-day periods before and after dust events. In
contrast, our study aimed to quantify phytoplankton carbon uptake by identifying the
contributions of dFe from various dust source regions to the ocean and applying Fe: C
ratios in phytoplankton cells. Additionally, the approach used by Westberry et al. (2023)
primarily captures short-term biological responses through changes in chlorophyll and
phytoplankton carbon biomass, but it does not account for delayed ecosystem feedbacks.
As a result, CbPM-based analyses may underestimate longer-term or region-specific
productivity enhancements driven by dFe, particularly in HNLC regions where
phytoplankton growth is strongly Fe-limited. In such regions, the biological response
to atmospheric Fe deposition may be delayed or only weakly evident in short-term
changes in ocean color properties. Consequently, empirical models such as CbPM,
which rely on brief pre- and post-event comparisons of satellite-derived chlorophyll
and phytoplankton carbon, may difficult to fully capture the longer-term or more subtle
productivity enhancements induced by dust-borne Fe inputs. Moreover, satellite data
are susceptible to atmospheric conditions and cloud cover, and satellite-derived ocean
color products often rely on empirical inversion models, which may also contribute to
the underestimation of their results. Furthermore, they provided limited insights into
the evaluation of dust-induced marine phytoplankton carbon uptake, lacking a detailed
analysis of the spatiotemporal variations and sources of this carbon up on a global scale.
Our evaluation of marine phytoplankton carbon uptake was based on simulated dust
deposition combined with multiple observation datasets, including global distribution
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of marine Fe solubility, total Fe concentration in the oceans, which would provide
diverse perspectives and comprehensive view of marine ecological response to dust
emission over the world.

The uncertainty of annual marine phytoplankton carbon uptake due to dust
deposition (5.6 = 0.2 Pg C yr') was estimated by interannual variations. The primary
uncertainty is the interannual variability in the magnitude of marine dust deposition
(approximately 550-600 Tg yr') and its spatial distribution. We also utilized dFe
concentration data from the Coupled Model Intercomparison Project Phase 6 (CMIP6)
to estimate marine phytoplankton carbon uptake driven by dust deposition. Based on
dFe concentration data from CESM2 (2000-2014) historical simulations, the estimated
marine phytoplankton carbon uptake driven by dust deposition was 2.2 Pg C yr™!, while
that from Geophysical Fluid Dynamics Laboratory Earth System Model version 4
(GFDL-ESM4) (2010-2014) was 3.2 Pg C yr! (Fig. S13). It is important to note that
Equation (4) is based on dissolved iron (dFe) concentrations. Some studies, such as
Hamilton et al. (2020) and Bergas-Massé et al. (2023), report data for soluble Fe,
which differs substantially from dFe. Specifically, colloidal Fe and complexing
capacity—ranging from >200 kDa to <0.2 um—are inferred from the difference
between the dissolved and soluble fractions (Boye et al., 2010). Compared to the
estimates derived from observational data, the spatial distributions of marine
phytoplankton carbon uptake from CMIP6 models (CESM2 and GFDL-ESM4) show
similar global patterns, with high uptake mainly observed in the EA and EI, particularly
in the northwestern EI. The use of CESM2 and GFDL-ESM4 dFe data resulted in

32



721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

approximately 61% and 43% reductions, respectively, in estimated marine
phytoplankton carbon uptake relative to observation-based estimates. For CESM2-
based results, the reduction was particularly pronounced in the southern RS, where
uptake decreased from 0.4 to 0.1 Pg C yr'; the western Arabian Sea (in the EI), from
1.8 to 0.5 Pg C yr'; and the north-central EA, from 2.2 to 0.7 Pg C yr' (compare Fig.
6 and Fig. S13). For GFDL-ESM4-based results, notable reductions were also observed
in the north-central EA (from 2.2 to 0.9 Pg C yr') and the western Arabian Sea (from
1.8 to 0.7 Pg C yr'), whereas an evident increase occurred in the EP, from 0.3 to 0.7
Pg C yr! (compare Fig. 6 and Fig. S13). Additionally, the uncertainties of the observed
dFe data were assessed by comparing the observations with model data from CESM2
and GFDL-ESM4, extracted at the specific grid cells corresponding to the geographic
locations of the observations. The results indicate that simulated values are often
substantially lower than the observed data. Approximately 7% of the CESM2-simulated
dissolved Fe data are at least ten times lower than the observed values, and about 1%
are more than one hundred times lower. Similarly, about 4% of the GFDL-ESM4-
simulated dFe data are at least ten times lower than the observed values. On average,
the dissolved Fe concentrations simulated by CESM2 and GFDL-ESM4 are ~ 4-5 times
lower than the observed values. The discrepancies between observed and simulated dFe
can reach up to two orders of magnitude. As an inverse distance weighted interpolation
method is used to estimate both Fe solubility and dFe concentrations, the spatial
distribution and density of observational sites exert a significant influence on the

interpolation results. For Fe solubility, observational data are dense in the EA, which
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may result in low interpolation uncertainty. In contrast, the central and southern EI are
characterized by sparse observations, potentially leading to high interpolation
uncertainty. For dFe, observational data are dense in both the EA and NA, supporting
relatively accurate interpolation in these regions. In contrast, data scarcity in the
southern EI may contribute to increased uncertainty. However, in the EA, where
interpolation uncertainty is relatively low due to dense observational coverage, the
modeled dFe concentrations significantly underestimate the dust-driven carbon uptake
by marine phytoplankton compared to estimates based on observations. Specifically,
the estimates based on CESM2 and GFDL-ESM4 are approximately 68% and 59%
lower, respectively, than those derived from observed dFe data. These findings further
underscore the importance of incorporating observational data in the estimation of the
contribution of iron deposition to marine phytoplankton carbon uptake. Despite data
scarcity and interpolation uncertainties, observation-based constraints substantially
correct the underestimation of totally simulations, demonstrably lowering uncertainties
in data-rich areas—with critical implications for optimizing future observing systems
and observation-based methodologies. Compared with the results obtained using
spatially variable parameters, the estimate of marine phytoplankton carbon uptake
based on constant values for Fe content in dust (3.5%), Fe solubility (2%), and a mean
Fe: C ratio of 19.4 umol Fe mol™' C in phytoplankton cells is approximately 21% lower.
Using constant values also reduces the spatial variability of the results, leading to a
distribution pattern that largely reflects the spatial intensity of dust deposition (Fig.
S14). Compared the result with that obtained using unfiltered Fe solubility data, the
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marine carbon uptake for new growth attributed to dust deposition decreased by 54.1%,
as the largest range of Fe solubility shifted from 50.0% to 6.0%. Although uncertainty
remains in estimating the marine phytoplankton carbon uptake for new growth
attributed to dust deposition, it can still provide a meaningful reflection of potential
requirements of phytoplankton, it does provide an observation-based quantification for
the specific contributions of dust depositions to marine phytoplankton carbon uptakes.

We incorporated monthly dFe concentration data from CESM2 (2000-2014) and
GFDL-ESM4 (2010-2014) historical simulations provided by CMIP6 to complement
the sparse observational data, thereby attempting to better capture seasonal variations
in marine phytoplankton carbon uptake. The monthly dFe data from CESM2 indicate
that the total amount of global marine phytoplankton carbon uptake driven by dust
deposition is 0.7 Pg C in summer, followed by 0.6 Pg C in spring, and 0.4 Pg C in both
autumn and winter. The monthly dFe data from GFDL-ESM4 show that marine
phytoplankton carbon uptake driven by dust deposition is 1.0 Pg C in both spring and
summer, and 0.6 Pg C in both autumn and winter. Although the carbon uptake by marine
phytoplankton due to dust deposition assessed using CESM2 and GFDL-ESM4 dFe
data differed in value across four seasons, the spatial distribution remained relatively
consistent. (compare Fig. S15 and Fig. S16).

In this study, we used data from 514 sites of Fe solubility and 3340 sites of dFe
concentration across various oceans to interpolate and calculate the Fe: C ratio in
phytoplankton cells. However, the somewhat nonuniform distribution of marine

observations across the vast spatial span of the study increases uncertainties in the
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interpolation of Fe solubility and dFe concentrations. Compared to dFe concentration,
there is substantially less data available on the distribution of Fe solubility. More
measurements and consistent measurement techniques would aid in the assessment of
Fe solubility in the future. We adopt a parameterization scheme from previous studies,
assuming a linear relationship between cellular Fe: C ratios and dFe concentrations and
using a piecewise linear formula to describe this dependency. However, using this
approach to assess global marine phytoplankton carbon uptake in response to Fe
supplied by dust deposition has certain limitations. The linear relationship reported in
the original experiments was derived from a limited number of phytoplankton species
under controlled conditions, and it is uncertain whether it applies universally to all
phytoplankton groups across diverse oceanic regions, given the physiological and
ecological differences among species. Moreover, the approach we used does not
explicitly account for luxury uptake of Fe, in which cells may continue to accumulate
intracellular Fe beyond what is required for immediate growth. Ignoring this process
introduces uncertainty in the assessment of phytoplankton carbon uptake, particularly
during transient high-iron events such as dust deposition, riverine input, or upwelling.
We assumed that phytoplankton in both HNLC and LNLC regions might respond to
dust deposition as a maximum estimate, considering Fe is particularly important for
nitrogen fixing phytoplankton in LNLC regions. However, the phytoplankton growth
by dust addition in LNLC regions relies not only on Fe, but also on phosphorus.
Therefore, future estimations in LNLC regions should account for other nutrients to

achieve more accurate results. The approach used to estimate Fe: C ratios in
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phytoplankton cells considers not only dust-borne Fe, but also other aerosol sources,
such as pyrogenic and anthropogenic emissions, which often contain Fe with high
solubility. As a result, applying such ratios to estimate marine phytoplankton carbon
uptake driven solely by dust-derived Fe may lead to some degree of overestimation,
particularly in remote ocean regions where dust is the predominant or only Fe source.
We assumed that every grid where dust deposition occurred over the ocean all
responded to its Fe supply to estimate its impact on marine phytoplankton carbon
uptake, but this response also depends on phytoplankton distribution and species,
potentially leading to an overestimation of the marine ecological response to carbon
uptake. Phytoplankton growth is not unlimited with an increase in Fe, which heightens
the risk of overestimating the marine ecological response to carbon uptake in high dust
regions. Therefore, a reasonable growth threshold should be considered based on

further observations and experiments.
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Table 1 List of abbreviations and full terms for dust source regions and oceans

Dust source regions/ oceans Full terms Abbreviations
Dust source regions Northwest Africa NWATF
Northeast Africa NEAf
Middle Africa MAf
South Africa SAf
North America NAm
South America SAm
West Asia WAs
Middle-North Asia MNAs
East Asia EAs
South Asia SAs
Australia AU
Oceans North Pacific Ocean NP
North Atlantic Ocean NA
Mediterranean Sea MS
Southern Ocean SO
Equatorial Pacific Ocean EP
Equatorial Atlantic Ocean EA
Equatorial Indian Ocean EI
Red Sea RS
high nutrient, low chlorophyll HNLC EP
regions in Equatorial Pacific
Ocean
high nutrient, low chlorophyll HNLC NP

regions in North Pacific Ocean

57



1218

1219

1220

1221

1222

1223

Figures

K- . SO . |
60°S [ 5‘{(‘\‘; /WMWWWH\;)‘

—

90°W 0 90°E
Fig. 1 The classification of global main dust source regions and oceans
(Dust source regions: NWAT - Northwest Africa; NEAT - Northeast Africa; MAT -
Middle Africa; SAf - South Africa; NAm - North America; SAm - South America;
WASs - West Asia; MNASs - Middle-North Asia; EAs - East Asia; SAs - South Asia;
AU - Australia.)

(Oceans: NP - North Pacific Ocean; NA - North Atlantic Ocean; MS -
Mediterranean Sea; RS - Red Sea; SO - Southern Ocean; EP - Equatorial Pacific
Ocean; EA - Equatorial Atlantic Ocean; EI - Equatorial Indian Ocean; HNLC EP -
high nutrient, low chlorophyll regions in Equatorial Pacific Ocean; HNLC NP -
high nutrient, low chlorophyll regions in North Pacific Ocean.)

58



)
MNAs

1%  EAs<

SAs 7%

30°N %
\’ A 12%,\

30°N

7N

60°S_

90°E

EEEREERERRRNE

005 02 04 06 08 1 12 14 16 18 2 22 24 kgm?

Fig. 2 The spatial distribution and proportion of the global five-year average dust
emission, and percentages show the proportions of annual dust emission of each
dust source to global (Dust source regions: NWAf - Northwest Africa; NEAT -
Northeast Africa; MAf - Middle Africa; SAf - South Africa; NAm - North America;
SAm - South America; WAs - West Asia; MNAs - Middle-North Asia; EAs - East
Asia; SAs - South Asia; AU - Australia.)
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Fig. 4 The spatial distribution and proportion of the global five-year average dust
deposition. Blue lines together with land-sea boundaries indicate different ocean
regions. The percentages express the proportions of annual dust deposition in each
ocean to global ocean (Oceans: NP - North Pacific Ocean; NA - North Atlantic
Ocean; MS - Mediterranean Sea; RS - Red Sea; SO - Southern Ocean; EP -
Equatorial Pacific Ocean; EA - Equatorial Atlantic Ocean; EI - Equatorial Indian
Ocean.)
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Fig. 5 The annual contributions of various dust source regions to oceanic dust
deposition

Each column on the left represents the fraction of dust emitted from a given source
region that is ultimately deposited in individual oceans, with different colors
indicating the respective oceans. Each column on the right shows the contributions of
various dust source regions to dust deposition over each ocean, with different colors
corresponding to different dust source regions. The longitudinal columns depict the
proportions of dust emission or deposition relative to global marine dust deposition.
The lines in the middle illustrate the transport direction and intensity.
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Fig. 6 The annual phytoplankton carbon uptake induced by dust deposition. The
percentages represent the proportion of annual dust-driven phytoplankton carbon
uptake in each ocean to global ocean
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Fig. 7 (a) Seasonal variations of marine phytoplankton carbon uptake caused by
dust deposition over each ocean area;
(b) Seasonal contribution of dust source regions to marine phytoplankton carbon
uptake driven by dust deposition
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Fig. 8 The annual contribution of various dust source regions to the marine carbon
uptake
Each column on the left represents the fraction of dust emitted from a given source
region that ultimately induces phytoplankton carbon uptake in individual oceans,
with different colors indicating the corresponding oceans. Each column on the right
shows the contributions of various dust source regions to phytoplankton carbon
uptake driven by dust deposition over each ocean, with different colors representing
the respective dust sources. The longitudinal columns display the contribution ratios
of dust sources or oceans to the total marine phytoplankton carbon uptake driven by
dust deposition. The lines in the middle illustrate the transport direction and
intensity.
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