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Abstract 13 

Soil moisture plays a critical role in the land–atmosphere coupling system. It is 14 

replenished by precipitation and transported back to the atmosphere through land 15 

surface evaporation and vegetation transpiration. Soil moisture is, therefore, influenced 16 

by both precipitation and evapotranspiration, with spatial heterogeneities and seasonal 17 

variations across different ecological zones. The relationship between soil moisture and 18 

precipitation was found to be nonlinear and negative in Northern Hemisphere 19 

ecosystems. However, the driving mechanisms of these negative correlations, 20 

especially how soil moisture is influenced by precipitation and evapotranspiration, still 21 

remain unclear. This study quantified the spatiotemporal distribution of the nonlinear 22 

dependence of soil moisture to precipitation, and identify the dominant factors in 23 

different ecoregions to explore the driving mechanisms and regional patterns. The joint 24 

distributions of precipitation and soil moisture were analyzed at monthly and annual 25 

scales, using soil moisture and precipitation data from ERA5-Land and Global 26 

Precipitation Climatology Project, respectively. The nonlinear negative dependences 27 

reached to 19.2%, 0.7%, and 2.3% at monthly scale, while were 3.0%, 4.0%, and 8.6% 28 

at annual scale, respectively, for the three soil layers. These negative dependences were 29 

shown to be most prominent in temperate grasslands, savannas, shrublands, deserts, 30 

xeric shrublands, and tundra regions, where driven by the land surface temperature and 31 

by the air temperature–gross primary production relationship at the monthly scale based 32 

on Ridge regression models and Bayesian models. Additionally, the negative 33 

dependence is also linked to freeze–thaw cycles, precipitation seasonality, and 34 

temperature fluctuations, which lead to asynchronous changes between soil moisture 35 

and precipitation at the seasonal scale. At the annual scale, the negative dependence 36 

was associated with long-term changes in precipitation and temperature that affect 37 

vegetation and surface properties, by altering soil water capacity. These findings 38 

enhance the understanding of land–atmosphere interactions providing a valuable basis 39 

for future research on drought, hydrometeorology, and ecological conservation. 40 

Keywords: climate change, precipitation, soil moisture, ecoregions  41 
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1. Introduction 42 

Soil moisture is a critical source of water for vegetation growth, replenished by 43 

precipitation and groundwater, and returned to the atmosphere through 44 

evapotranspiration. It plays a key role in weather conditions, vegetation dynamics, and 45 

groundwater storage (Li et al., 2022; Qiao et al., 2023; Vereecken et al., 2008; Zhou et 46 

al., 2021), with significant implications for the global climate. Surface soil moisture 47 

regulates the distribution of available energy at the land surface and exchanges energy 48 

with the near-surface atmosphere through sensible and latent heat fluxes, thereby 49 

controlling the surface energy balance (Haghighi et al., 2018; McColl et al., 2017). In 50 

contrast, deep soil moisture is more directly influenced by vegetation growth, 51 

particularly by the development of plant roots, which play a crucial role in the vertical 52 

infiltration of precipitation into deeper soil layers (Szutu and Papuga, 2019; Xiao et al., 53 

2024; Xue and Wu, 2024). 54 

Precipitation variability, which refers to the amplitude of precipitation fluctuations 55 

over different times, influences soil moisture and thereby land surface coupling (Koster 56 

et al., 2009; Taylor et al., 2012). Precipitation patterns are reported to have undergone 57 

significant changes in recent decades (Lv et al., 2023; Mao et al., 2022; Wu et al., 2021), 58 

mainly manifested as anthropogenic amplification of precipitation variability (Zhang et 59 

al., 2024). The increase in the frequency of extreme precipitation events (Myhre et al., 60 

2019; Wang et al., 2022) and decrease in the frequency of smaller precipitation events 61 

(Ma et al., 2015) amplify soil moisture fluctuations and prolong the moisture stress 62 

periods between consecutive precipitation events (Knapp et al., 2008). This can directly 63 

affect vegetation growth and soil moisture responses (Feldman et al., 2024; He et al., 64 

2023), particularly through changes in the duration and intensity of soil evaporation and 65 

plant transpiration (Gu et al., 2021; Wullschleger and Hanson, 2006). Soil moisture has 66 

been shown to be negatively correlated with precipitation in certain regions, based on 67 

Pearson correlation analyses (Cook et al., 2006; Yang et al., 2018). The changes in soil 68 

moisture at different depths also show notable discrepancies (Shen et al., 2016; Zhu et 69 

al., 2014). Surface soil moisture has been shown to respond to precipitation 70 
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approximately a month earlier than deeper soil moisture, with a more pronounced 71 

positive correlation between precipitation and soil moisture occurring at depths greater 72 

than 50 cm (Zhang et al., 2020). 73 

Most current analyses of the relationship between soil moisture and precipitation 74 

assume a linear relationship (Sehler et al., 2019; Yang et al., 2018). In reality, the 75 

response of soil moisture to precipitation is extremely complex and often nonlinear 76 

(Drager et al., 2022). This kind of nonlinear and asymmetric correlation is generally 77 

referred to as “dependence”. Existing studies have not fully addressed some issues in 78 

the nonlinear dependence of soil moisture to precipitation, including the heterogeneity 79 

in different ecoregions and soil layers, as well as inadequate identification of tail 80 

dependence. Moreover, the factors driving this negative dependence between soil 81 

moisture and precipitation remain poorly understood due to the complicated land 82 

atmosphere coupling processes, particularly in the Northern Hemisphere where 83 

different types of vegetation coverage are present. Among the methods used to explore 84 

nonlinear relationships, the copula function is one of the most widely applied 85 

approaches for modeling the joint distributions of precipitation and soil moisture 86 

(Cammalleri et al., 2024). The copula is a stochastic model that can reveal nonlinear 87 

and asymmetric dependence structures, which are difficult to capture using traditional 88 

linear methods. It provides a flexible framework for modeling joint distributions of 89 

multiple variables, allowing for a more precise understanding of the evolving 90 

dependence of soil moisture on precipitation than that offered by traditional linear 91 

regression and correlation methods. 92 

In terms of the water cycle, soil moisture is replenished by precipitation and 93 

groundwater, while also being absorbed by plant roots and lost through 94 

evapotranspiration. Therefore, the change of soil moisture is actually simultaneously 95 

influenced by precipitation volume, frequency, and evapotranspiration. However, the 96 

response of soil moisture to precipitation and evapotranspiration varies across different 97 

time scales, presented as nonlinear and asymmetric. The long-term effects of changes 98 

in evapotranspiration and precipitation on soil moisture are further shaped by seasonal 99 



5 
 

transitions, with significant differences observed at different soil depths (Szutu and 100 

Papuga, 2019). These differences are influenced by factors such as soil freeze–thaw 101 

processes and vegetation community structure. Therefore, the relative contributions of 102 

evapotranspiration, precipitation volume, and frequency to soil moisture changes 103 

should be quantified at different time scales. 104 

Although previous studies have identified the mechanisms of soil moisture 105 

variation across different time scales (Shen et al., 2018; Vidana Gamage et al., 2020), 106 

the interaction among precipitation, evapotranspiration and soil water under climate 107 

change may have changed over different time scales. In particular, although the 108 

negative dependence has been reported, its dominant drivers and their relative 109 

contributions across different timescales and soil layers still remain unclear. The 110 

dependence of soil moisture to precipitation and its interactions with evapotranspiration 111 

under conditions of climate change require further investigation. Accordingly, the ridge 112 

regression models for precipitation amount, precipitation frequency, evapotranspiration, 113 

and soil moisture can be used to quantify the relative influence of precipitation and 114 

evapotranspiration on soil moisture. As an improvement of the least squares estimation 115 

method, it can handle the multi-collinearity problems of the covariates, although it is 116 

usually biased. 117 

This study targets the nonlinear dependence of soil moisture to precipitation across 118 

Northern Hemisphere at monthly and annual scales from 2000 to 2019. A copula 119 

function was applied to describe the joint distribution of precipitation and soil moisture. 120 

It can capture the asymmetric and tail-dependent relationship, as well as the varying 121 

influences of precipitation volume, frequency, and evapotranspiration on soil moisture 122 

at monthly and seasonal scales. A Bayesian attribution framework involved gross 123 

primary productivity (GPP), land surface temperature (LST), and near-surface air 124 

temperature (Ta) were selected to identify the key driving factors, since the dependence 125 

between precipitation and soil moisture is influenced by factors such as vegetation 126 

growth, temperature, and soil properties. The driving factors and regional 127 

characteristics of the negative correlation observed between precipitation and soil 128 
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moisture in different ecoregions were also compared. This study enhances the 129 

understanding of complex interactions between key meteorological factors such as 130 

precipitation, evapotranspiration, and soil moisture under climate change, and provides 131 

a basis for future land–atmosphere coupling system modeling.  132 

2. Material and Method 133 

2.1 Material 134 

2.1.1 Soil moisture 135 

The soil moisture data used in this study were obtained from the fifth generation 136 

of reanalysis from the European Centre for Medium-Range Weather Forecasts 137 

(ECMWF), using atmospheric forcing to control the simulated land field variables and 138 

provide the land components (ERA5-Land) (Muñoz Sabater, 2019). ERA5-Land 139 

provides a consistent description of the evolution of the energy and water cycles over 140 

land, and therefore, has been widely used in various land surface applications such as 141 

flood or drought forecasting (Joaquín Muñoz-Sabater, 2021). The ERA5-Land soil 142 

moisture data are available for four layers, 0 to 7, 7 to 28, 28 to 100, and 100 to 289 cm, 143 

at a 0.1° × 0.1° spatial and hourly temporal resolution from 1950 to present. The soil 144 

moisture from the first three soil layers during 2000 to 2019 were used. They were 145 

resampled to a 0.25° × 0.25° spatial resolution and averaged to daily, monthly, and 146 

yearly scales to be consistent with other variables in this study. 147 

2.1.2 Precipitation 148 

The Global Precipitation Climatology Project (GPCP) is a global precipitation 149 

project that integrates infrared and microwave data from multiple geostationary and 150 

polar-orbiting satellites, and corrected by many meteorological station observations 151 

(Adler et al., 2003; Huffman and Bolvin, 2013). It is an important component of the 152 

Global Energy and Water Cycle Experiment (GEWEX) in the World Climate Research 153 

Programme (WCRP). A daily precipitation field with a 1° × 1° resolution since 1996 154 

was generated by integrating the satellite products and then adjusting the daily 155 
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precipitation by monthly data observed from the ground to make it consistent with the 156 

meteorological observations. Daily precipitation was resampled to a 0.25° × 0.25° 157 

spatial resolution and then used to calculate the total precipitation volume and 158 

precipitation frequency at the monthly, seasonal, and annual scale from 2000 to 2019. 159 

2.1.3 Covariate variables 160 

2.1.3.1 Gross primary production  161 

The gross primary production (GPP) dataset was from the Vegetation Optical 162 

Depth Climate Archive v2, which used microwave remote sensing estimates of 163 

vegetation optical depth to estimate the GPP at the global scale for the period 1988 to 164 

2020 (Wild et al., 2022). These GPP data were trained and evaluated against FLUXNET 165 

in-situ observations and compared with largely independent state-of-the-art GPP 166 

datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS). The 167 

Vegetation Optical Depth Climate Archive v2 GPP dataset has a 0.25° × 0.25° spatial 168 

and half-monthly temporal resolution, covered from 2000 to 2019.  169 

2.1.3.2 Near surface air temperature 170 

The air temperature data (Ta) were obtained from the Climatic Research Unit 171 

gridded Time Series (CRU TS), which is one of the most widely used climate datasets 172 

and is produced by the National Centre for Atmospheric Sciences in the United 173 

Kingdom. CRU TS v4.07 was derived by the interpolation of monthly climate 174 

anomalies from extensive networks of weather station observations (Harris et al., 2020). 175 

It provides monthly land surface data from 1901 to 2020 at a 0.5° × 0.5° resolution 176 

worldwide. The mean temperatures at the monthly, seasonal, and annual scales during 177 

2000 to 2019 were calculated and resampled to a 0.25° × 0.25° spatial resolution.  178 

2.1.3.3 Land surface temperature 179 

Land surface temperature (LST) data were accessed from the European Space 180 

Agency Climate Change Initiative (CCI), which is funded by the European Space 181 

Agency as part of the Agency’s CCI Program. It aims to significantly improve current 182 

satellite LST data records to meet the challenging Global Climate Observing System 183 

requirements for climate applications and realize the full potential of long-term LST 184 



8 
 

data for climate science (Hollmann et al., 2013). These data were the first global LST 185 

climate data records of over 25 years at a 0.25° × 0.25° resolution and with an expected 186 

error within 1 K. The LST dataset included ascending and descending orbit data, which 187 

were used to calculate the mean value of separate annual and monthly averages during 188 

2000 to 2019.  189 

2.1.3.4 Evapotranspiration 190 

Evapotranspiration data were accessed from the Global Land Evaporation 191 

Amsterdam Model (GLEAM) v3.8a, which provides data of the different components 192 

of land evapotranspiration, including transpiration, bare-soil evaporation, interception 193 

loss, open-water evaporation, and sublimation, in addition to other related variables 194 

such as surface and root-zone soil moisture, sensible heat flux, potential evaporation, 195 

and evaporative stress conditions (Miralles et al., 2011). The monthly, seasonal, and 196 

annual averages during 2000 to 2019 were calculated based on a 0.25° × 0.25° spatial 197 

resolution. 198 

2.1.3.5 Terrestrial ecoregions 199 

Data on terrestrial ecoregions around the globe were accessed from the 200 

Conservation Biology Institute (Olson et al., 2001). These ecoregions are relatively 201 

large units of land containing distinct assemblages of natural communities and species, 202 

with boundaries that approximate the original extent of natural communities prior to 203 

major land-use changes. The delineations were completed based on hundreds of 204 

previous biogeographical studies and were refined and synthesized using existing 205 

information in regional workshops over the course of 10 years to assemble the global 206 

dataset (Olson et al., 2001). An ecological layer file encompassing 16 major categories 207 

was downloaded. 208 

Although the Köppen climate classification provides a standardized framework 209 

based on temperature and precipitation, it may perform not well in accounting for 210 

critical biophysical factors, particularly for vegetation. Alternatively, the ecoregion 211 

divisions integrate both climatic and ecological factors, offering a more comprehensive 212 

understanding of the spatial heterogeneity in vegetation types and hydrological 213 
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processes (Gerken et al., 2019; Olson et al., 2001). This makes it particularly 214 

advantageous for studying land–atmosphere interactions, since vegetation plays a 215 

central role in regulating energy and water fluxes. Therefore, this study adopts 216 

ecoregion boundaries to better capture the vegetation related variability in 217 

precipitation–soil moisture relationship. Since soil moisture dynamics and their 218 

feedbacks with precipitation are strongly influenced by vegetation structure, root 219 

systems, and edaphic properties, the ecoregions can provide a more mechanistic and 220 

spatially relevant framework for our analysis. All of the Ta, LST, GPP, soil moisture, 221 

and precipitation datasets were masked by these 16 terrestrial ecoregions (Fig. 1) in a 222 

0.25° grid, and monthly, seasonal, or annual mean values in the regions were calculated 223 

separately. 224 

 225 

Fig. 1 The 16 Terrestrial Ecoregions of the Northern Hemisphere. 226 

2.2 Method 227 

2.2.1 Joint distribution 228 

In this study, the joint distribution between precipitation and soil moisture from 229 

depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, using the copula function at both the 230 

monthly and annual scales was established. A copula function links multivariate 231 

distribution functions with their one-dimensional marginal distributions, and is used for 232 

the examination of dependences between multiple variables. It captures nonlinear 233 
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dependence structures through joint and marginal probabilities of a pair of variables in 234 

complex multivariate systems (Nelsen, 2005). In this study, the copula function was 235 

used to explore the nonlinear dependence between precipitation and soil moisture 236 

(Equation 1): 237 

𝐹𝑃,𝑆𝑀(𝑥, 𝑦) = 𝐶(𝐹𝑃(𝑥), 𝐹𝑆𝑀(𝑦)),                                     (1) 238 

where FP(x) and FSM(y) denote the marginal distribution of precipitation and soil 239 

moisture, respectively, and C(u,v) is the copula function linking these two variables. 240 

The process for establishing the joint distribution was as follows: (1) The marginal 241 

distributions of precipitation and soil moisture were fitted using an automatic 242 

optimization function. (2) The most suitable copula function was selected based on the 243 

Akaike Information Criterion (AIC) values at the grid level, including Gaussian copula, 244 

Student’s t copula, Clayton copula, and 37 other copula functions. Different copula 245 

functions may be selected for different grid cells. (3) The chosen copula function was 246 

then used to compute the corresponding Kendall’s tau (τ), upper tail dependence (λU), 247 

and lower tail dependence (λL). 248 

The statistic τ measures the correlation between two variables to determine the 249 

presence of a monotonic relationship. λU and λL represent the likelihood that, when one 250 

variable reaches extreme high or low values, the other variable also reaches extreme 251 

values. The calculations of τ, λU, and λL are based on the dependence parameters of the 252 

joint distribution of precipitation and soil moisture, and depends on the selected copula 253 

function using the AIC method. Taking the Tawn copula function as an example, the 254 

calculation of τ, λU, and λL are based on the following equations. 255 

𝜏 = 1 −
2𝛿

𝜃+1
+

2𝛿2

2𝜃+1
,                                                   (2) 256 

λU = (1 − δ) ⋅ (2−21/θ),                                              (3) 257 

and  258 

λL = δ⋅(2−21/θ),                                                  (4) 259 

where θ is the dependence parameter of the Tawn copula, and δ represents the 260 

asymmetry parameter. For some copula functions, such as Clayton copula, the 261 

Kendall’s τ values get the priority over the upper and lower tail dependences in the 262 
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estimation process. All the calculations were performed using R v4.3.3 with the 263 

VineCopula and copula packages, for which detailed calculation methods for τ, λU, and 264 

λL for all copulas are provided. To address the potential delayed response of soil 265 

moisture to precipitation, lagged correlation analysis was conducted. For each grid cell, 266 

the AIC value was calculated to select copula function (Fig. S1), as shown in the 267 

supplementary file. Then the Kendall‘s tau correlation was calculated between 268 

precipitation and soil moisture with time lags ranging from 0 to 12 months (Fig. S2). 269 

The lag corresponding to the maximum absolute correlation was identified as the 270 

optimal lag. 271 

2.2.2 Ridge regression 272 

Ridge regression is designed to address collinear data, although it is a biased 273 

estimation method. It is an improved least squares estimation used to generate more 274 

reliable regression coefficients at the cost of unbiasedness. Ridge regression 275 

outperforms the traditional least squares method when fitting ill-conditioned data 276 

(McDonald, 2009). Due to the large uncertainty in precipitation and soil moisture data, 277 

ridge regression models were applied for three soil layers, and for both monthly and 278 

seasonal scales. Spring was defined as from March to May, summer from June to 279 

August, autumn from September to November, and winter from December to February 280 

of the following year. Precipitation frequency, volume, and evapotranspiration were 281 

treated as predictor variables, with Ta as a control variable and soil moisture as the 282 

response variable.  283 

To clearly differentiate the influence of variables, the regression coefficients for 284 

precipitation volume, frequency, and evapotranspiration were normalized using 285 

Equation (5) and then assigned to the three primary colors. This approach resulted in a 286 

gridded ternary phase diagram. 287 

𝑊𝑖 = 1 −
𝑣𝑖

∑ 𝑣𝑖
3

𝑖=1

,                                                      (5) 288 

where 𝑣𝑖 ( 𝑣1, 𝑣2, 𝑣3 ) represent precipitation frequency, precipitation volume, and 289 

evapotranspiration (ET), respectively, and 𝑊𝑖 refers to the adjusted weight of 𝑣𝑖. 290 
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2.2.3 Bayesian generalized non-linear multivariate multilevel models 291 

The Bayesian generalized non-linear multivariate multilevel model integrates 292 

Bayesian inference, generalized linear models, non-linear modeling, multivariate 293 

analysis, and hierarchical structures, making it well-suited for complex hierarchical 294 

data. It can effectively capture non-linear dependences among multiple response 295 

variables (Browne and Draper, 2006; Bürkner, 2017). The model parameters are treated 296 

as random variables with prior distributions under the Bayesian framework. Posterior 297 

distributions of the parameters are obtained by combining the likelihood function and 298 

prior distributions. The Markov Chain Monte Carlo (MCMC) algorithm is then used to 299 

resample from the posterior distribution and estimate the posterior means of the 300 

parameters to represent the optimal results. Given the hierarchical and multivariate 301 

nature of the data, a multilevel structure and multivariate analysis was introduced to 302 

model the mixed effects of variables and to capture the relationships among multiple 303 

related response variables. Random effects were also incorporated to account for 304 

heterogeneity among individuals and reflect the varying effects of univariate or 305 

multivariate mixtures on the response variables, thereby improving the accuracy of 306 

estimates. 307 

Since the impact approaches of GPP, LST, and Ta on precipitation (P) and soil 308 

moisture (SM) are often unknown, the Gaussian distribution was specified as the prior 309 

distribution for these variables in the Bayesian model. To investigate how GPP, LST, 310 

and Ta influence the precipitation–soil moisture coupling relationship, both 311 

precipitation and soil moisture were treated as response variables. Bayesian non-linear 312 

multivariate multilevel models were developed at both the monthly and seasonal scales, 313 

with independent models for 16 ecological zones (Equation 6): 314 

Posterior estimates = bf(P ~ Ta + GPP + LST + Ta:GPP + Ta:LST + GPP:LST + Ta:GPP:LST) + 315 

 bf(SM ~ Ta + GPP + LST + Ta:GPP + Ta:LST + GPP:LST + Ta:GPP:LST),      (6) 316 

where the colon represents multivariate mixed effects of different variables; bf stands 317 

for Bayesian formula, used to specify each part of the model for P and SM separately; 318 

and the “+” combines P and SM into a multivariate model. The model was implemented 319 
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in R 4.3.3 using the brms package, which performs diagnostic checks on the sampling 320 

results using indicators such as the Gelman–Rubin diagnostic (Rhat statistic) and the 321 

effective sample size (ESS). To ensure stability and convergence, four MCMC chains 322 

were used for iterative sampling, with each chain running 4,000 iterations, including 323 

2,000 warm-up iterations. A maximum tree depth of 10 was set. Estimate values of all 324 

ecoregions were classified into different clusters using the K-means method in R 4.3.3. 325 

3. Results 326 

3.1 Estimation from the copula function 327 

 328 

 329 

Fig. 2 Spatial distribution of Kendall’s tau (τ), the upper tail dependence (λU), and the lower tail 330 

dependence (λL) on the 0.25° × 0.25° grids between monthly precipitation volume and soil moisture 331 

during 2000 to 2019. The three columns are for the soil moisture from depths of 0 to 7 cm, 7 to 28 cm, 332 

and 28 to 100 cm, respectively. 333 

 334 

The copula analysis of monthly average soil moisture and total monthly 335 

precipitation volume revealed a clear negative dependence at all three soil depths (Fig. 336 

2(a2, b2, c2)). The percentages of grid cells exhibiting negative dependence at these 337 

depths were 19.2%, 0.7%, and 2.3%, respectively. The negative dependence between 338 

precipitation and soil moisture is more prevalent in the surface soil layer, where the grid 339 

cells exhibiting are more widespread. In contrast, at the middle and deep soil layers, 340 
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these negative dependence patterns are primarily confined to the margins of the Sahara 341 

desert, the montane grasslands and shrublands, and parts of the deserts and xeric 342 

shrublands regions. In the surface layer, the negatively dependent grid patches are more 343 

spatially scattered, mainly distributed across the tundra, montane grasslands and 344 

shrublands, deserts and xeric shrublands, as well as the tropical and subtropical moist 345 

broadleaf forests. 346 

Regions exhibiting high λL values were primarily located in the deserts and xeric 347 

Shrublands, as well as in parts of India, where λL reached values as high as 0.99 (Fig. 348 

2(a1, b1, c1)). With increasing soil depth, λL values gradually increased across the 349 

Eurasian continent. Similarly, λU exhibited a clear reduction in spatial extent with 350 

increasing soil depth, with the majority of these regions located in the temperate 351 

broadleaf and mixed forests and the southern margin of the Sahara desert. With 352 

increasing soil depth, λU values consistently decreased, resulting in a lack of clear 353 

correspondence between these regions and specific ecological zones (Fig. 2(a3, b3, c3)). 354 

This decreasing trend likely reflects the weakening of extreme precipitation–soil 355 

moisture coupling in deeper soil layers, except for arid regions where vegetation is 356 

sparse or absent. 357 

From the annual scale copula results (Fig. 3), precipitation and soil moisture 358 

generally exhibited positive dependences across the entire soil profile. However, 359 

negative dependences were observed in regions such as the southern Sahara Desert, 360 

Mongolia, and the Elizabeth Islands, reaching 3.0%, 4.0%, and 8.6%, respectively (Fig. 361 

3(a2, b2, c2)). It revealed that the negative correlation was kept between precipitation 362 

and soil moisture in long-term scale over arid regions. The negative dependences in 363 

these areas expanded outward, primarily concentrated in the montane grasslands and 364 

shrublands region. Both the λL and the λU displayed scattered, patchy distributions, with 365 

average values for each soil layer ranging from 0.4 to 0.6. 366 

 367 
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 368 

Fig. 3 Spatial distributions of the τ, λU, and λL on the 0.25° × 0.25° grids between annual 369 

precipitation volume and soil moisture during 2000 to 2019. The three columns are for the soil moisture 370 

from depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, respectively. 371 

3.2 Control of soil moisture by precipitation and evapotranspiration 372 

 373 

Fig. 4 Ternary map of factors controlling soil moisture, monthly, for the period 2000 to 2019. The 374 

bottom-left histogram in the subgraph represents the proportion of grid cells where one variable exerts 375 

strong univariate control (with a regression coefficient greater than 75% of the total sum of the three 376 

variables), suggesting that soil moisture was predominantly controlled by that specific variable. 377 

 378 

On the monthly scale, precipitation exerted the strongest control over soil moisture 379 

(Fig. 4), with regions most influenced by precipitation accounting for more than 40% 380 

of the variation. These areas were primarily located in the boreal forest/taiga, temperate 381 

grasslands, savannas, shrublands, and the eastern part of North America. In contrast, 382 
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regions where evapotranspiration predominated were found in Alaska–Northwest 383 

Canada, the western United States, the Sahara Desert, and the Middle East. High-384 

latitude regions, especially northern Canada, were primarily influenced by precipitation 385 

frequency. Areas where precipitation volume, frequency, and evapotranspiration had 386 

similar levels of control were mainly found in Eastern Europe and Russia. 387 

The results from ridge regression revealed more distinct patterns at the seasonal 388 

scale compared to the monthly scale (Fig. 5). Soil moisture in spring and summer was 389 

mainly controlled by evapotranspiration, which influenced over 40% of grid cells, 390 

particularly in the middle soil layers, where it dominated nearly 80%. In contrast, 391 

precipitation volume had a greater influence during autumn and winter, particularly in 392 

the continental United States, southern Sahara Desert, coastal India, and eastern China. 393 

Additionally, as soil depth increased, the influence of evapotranspiration and 394 

precipitation frequency gradually intensified. However, in summer, as soil depth 395 

increased, the area primarily controlled by precipitation volume expanded (indicated 396 

by an increase in the intensity of magenta color in the figures) especially in the eastern 397 

United States, Europe, and South Asia. These regions remained strongly influenced by 398 

precipitation volume even as evapotranspiration control increased with increasing soil 399 

depth during autumn. Northern Russia, Canada, Greenland, and northern Alaska were 400 

notably influenced by both precipitation frequency and precipitation volume, with this 401 

effect being more pronounced during the non-growing season. In winter, the area 402 

controlled by precipitation frequency was larger than that in spring. 403 

 404 
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 405 

Fig. 5 Ternary map of factors controlling soil moisture, seasonally, for the period 2000 to 2019. The 406 

bottom-left histogram in the subgraph represents the proportion of the grid cells where one variable exerts 407 

strong univariate control (with a regression coefficient greater than 75% of the total sum of the three 408 

variables), suggesting that soil moisture was predominantly controlled by that specific variable. 409 

 410 

At the annual scale, precipitation amount exerts a dominant influence across all 411 

three soil depth layers, accounting for more than 40% of the total area (Fig. 6). The 412 

spatial extent of areas dominated by precipitation amount, precipitation frequency, and 413 

evapotranspiration remains largely consistent with that observed at the monthly scale. 414 

The regions dominated by precipitation frequency are still primarily located in high-415 

latitude areas, particularly in Greenland and the northern parts of Canada, although no 416 

distinct ecological zone patterns are observed in these areas. Regions dominated by 417 

precipitation amount are mainly distributed across boreal forests, temperate grasslands, 418 

savannas and shrublands, temperate broadleaf and mixed forests, as well as tropical and 419 

subtropical moist broadleaf forests. In temperate regions, soil moisture is primarily 420 

controlled by precipitation amount due to moderate temperatures and limited rainfall, 421 

making substantial precipitation is essential for soil moisture replenishment. In contrast, 422 

tropical and subtropical regions experience high temperatures and intense 423 

evapotranspiration, requiring substantial precipitation to maintain a water balance. 424 

 425 
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 426 

Fig. 6 Ternary map of factors controlling soil moisture at annual scale, for the period 2000 to 2019. 427 

The bottom-left histogram in the subgraph represents the proportion of grid cells where one variable 428 

exerts strong univariate control (with a regression coefficient greater than 75% of the total sum of the 429 

three variables), suggesting that soil moisture was predominantly controlled by that specific variable. 430 

3.3 Drivers of negative dependences between soil moisture and 431 

precipitation 432 

For each model in this study, four MCMC chains were used for iterative sampling. 433 

The sampling results demonstrated that the chains for both the monthly and annual 434 

scales were well-distributed in the parameter space, with no noticeable trends or drifts, 435 

indicating convergence to the target posterior distribution. The convergence was 436 

considered satisfactory, with all models yielding a Rhat value below 1.05 (Figs. S3, S4). 437 

 438 
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 439 

Fig. 7 Posterior estimates of the covariate variables of the Bayesian generalized non-linear 440 

multivariate multilevel model, built using monthly data. The columns represent soil depths of 0 to 7 cm, 441 

7 to 28 cm, and 28 to 100 cm. Red lines indicate linear regressions of precipitation and soil moisture 442 

across all ecoregions, with cluster groups represented by three circles. The data point of each ecoregion 443 

belongs to a single and non-overlapping cluster. 444 

 445 

The negative dependence in the surface layer across the Northern Hemisphere was 446 

primarily driven by the interactions between GPP:LST and Ta:GPP (Fig. 7). It shows 447 

that the regression trend line crosses quadrants II and IV. The negative relationship 448 

driven by GPP:LST was predominantly concentrated in quadrant IV, where increased 449 

precipitation lead to decreased soil moisture in the boreal forest, tundra, temperate 450 

coniferous forest, and temperate broadleaf mixed forest. The negative dependence 451 
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driven by Ta:GPP was mainly found in quadrant II, with distributions in deserts and 452 

xeric shrublands, boreal forests, montane grasslands and shrublands, temperate 453 

broadleaf mixed forests, and tundra. For the middle soil layer, GPP:LST drove a 454 

negative dependence in tropical and subtropical grasslands, savannas, shrublands, and 455 

tropical and subtropical coniferous forests. Ta and Ta:GPP drove in Mediterranean 456 

forests, woodlands, and scrub, as well as in temperate grasslands, savannas, and 457 

shrublands. The mixed effects of Ta:GPP:LST and Ta:LST had minimal impact across 458 

all ecological zones, with all estimates concentrated near the origin and only two 459 

clusters observed. 460 

 461 

Fig. 8 Posterior estimates of the covariate variables of the Bayesian generalized non-linear 462 

multivariate multilevel model, built using annual data. The columns represent soil depths of 0 to 7 cm, 7 463 
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to 28 cm, and 28 to 100 cm. Red lines indicate linear regression of precipitation and soil moisture across 464 

all ecoregions, with cluster groups represented by three circles. The data point of each ecoregion belongs 465 

to a single and non-overlapping cluster. 466 

 467 

Interannual negative dependence was primarily observed in the montane 468 

grasslands and shrublands region, where GPP:LST drove this pattern across all three 469 

soil layers. All other variables lead to positive dependence (Fig. 8). The long-term trend 470 

in the annual-scale Bayesian model revealed strong patterns, with the most significant 471 

difference compared to the monthly scale being the influence of Ta:GPP:LST and 472 

Ta:LST, where different ecological zones exhibited substantial variation. Among the 473 

multiple variables, Ta drove the most negative dependence, with the greatest differences 474 

observed between ecological zones. In the surface layer, LST alone drove the negative 475 

dependence in the mangrove, rock, and ice regions. Ta drove the negative dependence 476 

in tropical and subtropical coniferous forests, lakes, and rock and ice regions. In the 477 

middle soil layers, the negative dependence driven by Ta was in temperate forests, arid 478 

shrublands, and flooded grasslands and savannas, while it driven by Ta:GPP was in 479 

tropical and subtropical moist broadleaf forests. The negative dependence driven by 480 

Ta:LST was fully distributed in quadrant IV. This pattern was observed in regions such 481 

as the montane grasslands and shrublands, tropical and subtropical coniferous forests, 482 

tropical and subtropical grasslands, savannas, and shrublands; and rock and ice regions. 483 

The strongest drivers of negative dependence in the deep layers were GPP:LST and Ta. 484 

The negative dependence driven by GPP:LST was found in the rock and ice regions, 485 

Mediterranean forests, woodlands, and scrub, as well as tundra and temperate 486 

coniferous forests in quadrant II. The negative dependence driven by Ta was observed 487 

in rock and ice regions, lakes, and temperate coniferous forests in quadrant II, and 488 

flooded grasslands and savannas in quadrant IV. 489 
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4. Discussion 490 

4.1 Characteristics of negative dependence areas 491 

In this study, joint distributions of precipitation and soil moisture were constructed 492 

using Kendall’s τ to characterize the nonlinear relationship. Consistent with previous 493 

findings, we observed a negative dependence between precipitation and soil moisture, 494 

particularly in arid and semi-arid regions (Qing et al., 2023; Yang et al., 2018). At the 495 

monthly scale, τ values in surface layer were stronger, indicating that seasonal 496 

dynamics—such as intermittent rainfall events followed by rapid soil moisture loss 497 

through evapotranspiration—likely drive the observed negative correlation. While 498 

negative dependence generally decreases with depth, the middle layer shows an 499 

unexpectedly low percentage. This layer often corresponds to the main root zone, where 500 

stable plant water uptake reduces soil moisture variability and weakens the feedback 501 

signal, leading to a few grid cells with significant negative dependence (Thompson et 502 

al., 2010). In contrast, the deep soil layers may retain some long-term memory of 503 

moisture deficits, especially under prolonged dry conditions, which could contribute to 504 

stronger negative dependence than in the more buffered middle layer. On the annual 505 

scale, the negative dependence may instead reflect long-term climate feedbacks. In 506 

high-latitude regions, for example, Arctic amplification and permafrost thawing can 507 

decouple precipitation inputs from effective soil moisture retention, leading to 508 

persistent moisture deficits despite increasing precipitation trends. Regions showing 509 

negative dependence between precipitation and soil moisture are primarily distributed 510 

in arid, semi-arid and cold high-latitude climates. Representative ecosystems include 511 

deserts and xeric shrublands, montane grasslands and shrublands, and Arctic tundra. 512 

Despite their climatic differences, these ecosystems share key ecohydrological traits, 513 

including limited precipitation input, strong evapotranspiration demand, sparse 514 

vegetation cover, and low soil moisture retention capacity. 515 

Different from monthly scale, the negative dependence at annual scale is primarily 516 

generated in regions such as deserts, xeric shrublands, montane grasslands and 517 
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shrublands. These ecosystems are specifically characterized by arid conditions, and 518 

particularly sensitive to environmental changes, making them much responsive to long-519 

term climatic variability. In deserts and xeric shrublands, annual precipitation typically 520 

falls below 250 mm, while evaporation consistently exceeds rainfall (Lockwood et al., 521 

2006). Vegetation in these regions is dominated by shallow-rooted shrubs, which offer 522 

minimal resistance to post-rainfall moisture loss. As a result, soil moisture often 523 

declines rapidly following precipitation events, leading to a counterintuitive negative 524 

relationship between rainfall and moisture storage. Montane grasslands and shrublands, 525 

despite occurring in more topographically complex terrains, also experience dry 526 

climatic conditions characterized by low precipitation, high temperatures, and elevated 527 

VPD (Olson and Dinerstein, 1998). These factors enhance evapotranspiration, limiting 528 

the effectiveness of rainfall in replenishing soil moisture. Consequently, increases in 529 

precipitation may coincide with soil moisture decline due to enhanced moisture loss. In 530 

contrast, Arctic tundra ecosystems—such as those found in northern North America and 531 

Eurasia—are defined by cold temperatures, continuous permafrost, and moderate but 532 

ineffective precipitation. Frozen soils impede infiltration, causing much of the 533 

precipitation to be lost as surface runoff rather than retained in the soil profile. 534 

Dominant vegetation includes mosses, sedges, and dwarf shrubs with shallow root 535 

systems, further limiting water uptake and storage (Olson and Dinerstein, 1998; Xue et 536 

al., 2021). 537 

4.2 Mechanism of negative dependence between precipitation and soil 538 

moisture 539 

4.2.1 Energy-Driven Mechanism: LST and Ta-Driven ET Dominance 540 

Negative dependence between precipitation and soil moisture was observed across 541 

several dry and cold ecoregions, including deserts and xeric shrublands, montane 542 

grasslands and shrublands, tundra. These regions are generally characterized by low 543 

precipitation and GPP, limiting vegetation’s ability to retain or utilize moisture 544 

effectively (Olson and Dinerstein, 1998; Xue and Wu, 2023). In arid ecosystems, 545 
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shallow-rooted vegetation and high temperatures result in rapid soil moisture loss 546 

following rainfall. In montane environments, stronger warming trends (Pepin et al., 547 

2022) and shallow-rooted vegetation (Stocker et al., 2023) further limit precipitation 548 

use, despite increased GPP under warming. Besides, the surface soil induced upward 549 

movement of soil water from the middle layer due to the osmotic and matric potential, 550 

further contributing to moisture depletion. In semi-arid grasslands, the interaction 551 

between soil texture and precipitation patterns further reinforces negative dependence. 552 

Brief rainfall events primarily moisten upper clay layers where grass roots concentrate 553 

(Sala and Lauenroth, 1985), while well-developed clay horizons restrict deep water 554 

percolation and shrub root expansion (Buxbaum and Vanderbilt, 2007). This physical 555 

confinement exacerbates water loss when increased GPP and LST enhance 556 

evapotranspiration from the shallow moistened zone, intensifying the precipitation-soil 557 

moisture decoupling. High temperatures can lead to surface soil sealing, preventing 558 

rainfall from effectively entering the root zone. Model simulations confirm that in flat 559 

arid regions (Koukoula et al., 2021), such soil barriers promote the “dry soil 560 

advantage”—where precipitation triggers runoff rather than infiltration. 561 

The boreal forest and tundra ecosystems, often with permafrost, are temperature-562 

limited systems. Precipitation often falls as snow, which accumulates on the surface. 563 

Then, a low LST can cause soil freezing, and the presence of surface withered litter 564 

may further insulate the soil, preventing timely moisture replenishment. Permafrost in 565 

these regions can lead to surface runoff of some precipitation, preventing effective 566 

infiltration into the soil. The geological conditions, such as Karst landforms can also 567 

influence the relationship between precipitation and soil moisture. 568 

4.2.2 Biotic-Driven Mechanism: Vegetation Water Use and GPP Dominance  569 

High-altitude ecosystems, especially in the Arctic and Qinghai–Tibetan Plateau, 570 

are increasingly affected by warming and variable precipitation (Lamprecht et al., 2018). 571 

These changes lead to reduced species abundance and increased GPP (Berauer et al., 572 

2019). In montane grasslands and shrublands, species abundance negatively correlates 573 

with soil nutrients and microbial functions (Graham Emily et al., 2024). Rising LST 574 
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and extreme precipitation reduce microbial biomass and release soil minerals (Siebielec 575 

et al., 2020), intensifying light competition and lowering ecosystem stability. 576 

Biodiversity loss decreases soil water capacity, with some of these regions at high risk 577 

of water erosion (Straffelini et al., 2024).  578 

Soil moisture reduction in the surface and middle layer is mainly driven by root 579 

water uptake under high LST and GPP. Roots shift absorption to deeper layers during 580 

droughts (Yadav Brijesh et al., 2009). In dry seasons, plants in grasslands and 581 

shrublands retain leaves to support evaporative cooling (Prior et al., 1997), this strategy 582 

also seen in deserts and xeric shrublands, where winter precipitation and freezing 583 

reduce surface moisture. Even during rainfall, soil moisture may decline due to 584 

evapotranspiration, runoff, and plant uptake (Tomlinson et al., 2013), creating a 585 

negative precipitation–soil moisture relationship. Canopy interception also limits 586 

infiltration (Zhong et al., 2022). However, in high-latitude ecosystems like boreal 587 

forests and tundra, warming mitigates cold limitations, allowing precipitation to 588 

increase soil moisture, shifting the relationship to positive. 589 

Negative dependence in mid-to-deep soil layers can occur when a single factor 590 

dominates, limiting ecosystem compensation (Jarvis, 2011; Taylor and Klepper, 1979). 591 

In contrast, positive dependence may arise from synergistic interactions between GPP 592 

and LST. Higher GPP can reflect deeper root systems or improved water-use efficiency, 593 

while increased LST may enhance soil moisture release and promote water availability 594 

together (Wang et al., 2008). This interaction may strengthen ecosystem feedbacks—595 

e.g., higher GPP can improve soil structure through biomass and organic matter, 596 

boosting water retention (Chen et al., 2025). Such synergy can offset LST-driven 597 

evapotranspiration and enhance ecosystem resilience, particularly through freeze–thaw 598 

processes in cold regions. 599 

4.3 Data reliability 600 

In this study, multiple observational datasets were employed to reduce model-601 

driven uncertainty and enhance data reliability. CRU TS, ESA CCI, and GPCP were 602 

selected due to their direct reliance on ground-based or satellite observations, in contrast 603 
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to the model-based ERA5-Land product. Although ERA5 does offer a wide range of 604 

meteorological variables, it can introduce model uncertainties. Therefore, the datasets 605 

used in this study have independent source, which can avoid the potential false 606 

relationships between soil moisture and precipitation that may be caused by the same 607 

model architecture and input parameters. To investigate spatial heterogeneity, all data 608 

were spatially aggregated by ecoregion boundaries from the Conservation Biology 609 

Institute. These boundaries may introduce regional biases, which should be considered 610 

when interpreting the results. 611 

The copula method can access the dependence between different time series, after 612 

removing influences of the conditional means and variances as well as marginal 613 

distributions (Durante et al., 2025; Neumeyer et al., 2019). In this study, although 614 

precipitation–soil moisture dependence was assessed across different time scales, the 615 

monthly series were not de-seasonalized. As a result, the residual seasonal signals may 616 

influence short-term dependence structures. This limitation will be addressed in future 617 

work through seasonal adjustment. In the Bayesian modeling, GPP, LST, and air 618 

temperature were examined as drivers of negative dependence. Evapotranspiration was 619 

excluded due to its dependence on both soil moisture and temperature. We acknowledge 620 

that additional factors—such as wind, topography, and soil physical properties—may 621 

also modulate precipitation–soil moisture coupling but were not in the scope of this 622 

analysis. Future research incorporating these variables would provide a more 623 

comprehensive understanding of the underlying mechanisms. 624 

5. Conclusion 625 

This study explored the dependence relationships between precipitation and soil 626 

moisture at depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm from 2000 to 2019, by 627 

examining the control effect of precipitation volume, precipitation frequency, and 628 

evapotranspiration on soil moisture. Bayesian models were used to analyze the driving 629 

factors and relative contribution in the dependence of soil moisture to precipitation in 630 

different time scales and ecoregions of the Northern Hemisphere. The results showed 631 

that, the negative dependence proportion reached 19.2%, 0.7%, and 2.3% at monthly 632 
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scale, while it was 3.0%, 4.0%, and 8.6% at annual scale, respectively, for the three soil 633 

layers. Our studies have new insight for the dependence of soil moisture to precipitation 634 

varying in different ecoregions. We concluded that, precipitation volume predominantly 635 

controlled soil moisture in the Boreal forest/taiga, temperate grasslands, savannas, and 636 

shrublands, while precipitation frequency primarily controlled soil moisture in the high-637 

latitude regions of the Northern Hemisphere. The combined influence of 638 

evapotranspiration and precipitation exhibited clear seasonal patterns. While 639 

evapotranspiration is known to dominate soil moisture dynamics during the growing 640 

season (Kozii et al., 2020), this study quantified that this dominance are with regression 641 

coefficients more than 75% of the total sum of the three covariates. In contrast, 642 

precipitation volume played a more significant role in the surface and middle layer of 643 

non-growing season, with areas under strong univariate control accounting for over 40% 644 

of the total area. Additionally, the influence of precipitation frequency on soil moisture 645 

increased with latitude, the proportion of the regression coefficient averaging from 36.5% 646 

to 91.3%, highlighting a shift in controlling factors across climatic gradients. 647 

For the factor driving the dependence of soil moisture to precipitation, this study 648 

found that the negative dependences were distributed across temperate grasslands, 649 

savannas, shrublands, deserts, xeric shrublands, and tundra, primarily driven by LST 650 

and Ta:GPP interactions. These negative dependences were mainly attributed to the 651 

seasonality of precipitation in arid and semi-arid areas and the freeze–thaw processes 652 

in the soil, which hinder effective moisture replenishment, especially during winter 653 

when soil freezing prevents rainwater infiltration. In the intermediate and deep soil 654 

layers, negative dependences were primarily driven by single variables, whereas 655 

positive dependences resulted from multivariate interactions, likely due to the lack of 656 

compensatory mechanisms when a single variable dominated, or the enhancement of 657 

ecosystem feedbacks when both GPP and LST interacted. Additionally, when the 658 

ecosystem is simultaneously driven by GPP and LST, greater resilience may be 659 

exhibited. 660 

At the annual scale, the negative dependences were mainly in the montane 661 
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grasslands and shrublands region (Wei et al., 2008). This study further revealed that this 662 

negative dependence increased with soil depth, and were driven by the GPP:LST 663 

interaction across all three soil layers. A possible explanation is the long-term 664 

variability in precipitation and temperature, which may have influenced 665 

geomorphology, vegetation structure, and soil water retention capacity. 666 
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