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Abstract

Soil moisture plays a critical role in the land—atmosphere coupling system. It is
replenished by precipitation and transported back to the atmosphere through land
surface evaporation and vegetation transpiration. Soil moisture is, therefore, influenced
by both precipitation and evapotranspiration, with spatial heterogeneities and seasonal
variations across different ecological zones. The relationship between soil moisture and
precipitation was found to be nonlinear and negative in Northern Hemisphere
ecosystems. However, the driving mechanisms of these negative correlations,
especially how soil moisture is influenced by precipitation and evapotranspiration, still
remain unclear. This study quantified the spatiotemporal distribution of the nonlinear
dependence of soil moisture to precipitation, and identify the dominant factors in
different ecoregions to explore the driving mechanisms and regional patterns. The joint
distributions of precipitation and soil moisture were analyzed at monthly and annual
scales, using soil moisture and precipitation data from ERAS5S-Land and Global
Precipitation Climatology Project, respectively. The nonlinear negative dependencies
reached to 19.2%, 0.7%, and 2.3% at monthly scale, while were 3.0%, 4.0%, and 8.6%
at annual scale, respectively, for the three soil layers. These negative dependencies were
shown to be most prominent in temperate grasslands, savannas, shrublands, deserts,
xeric shrublands, and tundra regions, where driven by the land surface temperature and
by the air temperature—gross primary production relationship at the monthly scale based
on Ridge regression models and Bayesian models. Additionally, the negative
dependence is also linked to freeze—thaw cycles, precipitation seasonality, and
temperature fluctuations, which lead to asynchronous changes between soil moisture
and precipitation at the seasonal scale. At the annual scale, the negative dependence
was associated with long-term changes in precipitation and temperature that affect
vegetation and surface properties, by altering soil water capacity. These findings
enhance the understanding of land—atmosphere interactions providing a valuable basis
for future research on drought, hydrometeorology, and ecological conservation.

Keywords: climate change, precipitation, soil moisture, ecoregions
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1. Introduction

Soil moisture is a critical source of water for vegetation growth, replenished by
precipitation and groundwater, and returned to the atmosphere through
evapotranspiration. It plays a key role in weather conditions, vegetation dynamics, and
groundwater storage (Li et al., 2022; Qiao et al., 2023; Vereecken et al., 2008; Zhou et
al., 2021), with significant implications for the global climate. Surface soil moisture
regulates the distribution of available energy at the land surface and exchanges energy
with the near-surface atmosphere through sensible and latent heat fluxes, thereby
controlling the surface energy balance (Haghighi et al., 2018; McColl et al., 2017). In
contrast, deep soil moisture is more directly influenced by vegetation growth,
particularly by the development of plant roots, which play a crucial role in the vertical
infiltration of precipitation into deeper soil layers (Szutu and Papuga, 2019; Xiao et al.,
2024; Xue and Wu, 2024).

Precipitation variability, which refers to the amplitude of precipitation fluctuations
over different times, influences soil moisture and thereby land surface coupling (Koster
et al., 2009; Taylor et al., 2012). Precipitation patterns are reported to have undergone
significant changes in recent decades (Lv et al., 2023; Mao et al., 2022; Wuet al., 2021),
mainly manifested as anthropogenic amplification of precipitation variability (Zhang et
al., 2024). The increase in the frequency of extreme precipitation events (Myhre et al.,
2019; Wang et al., 2022) and decrease in the frequency of smaller precipitation events
(Ma et al., 2015) amplify soil moisture fluctuations and prolong the moisture stress
periods between consecutive precipitation events (Knapp et al., 2008). This can directly
affect vegetation growth and soil moisture responses (Feldman et al., 2024; He et al.,
2023), particularly through changes in the duration and intensity of soil evaporation and
plant transpiration (Gu et al., 2021; Wullschleger and Hanson, 2006). Soil moisture has
been shown to be negatively correlated with precipitation in certain regions, based on
Pearson correlation analyses (Cook et al., 2006; Yang et al., 2018). The changes in soil
moisture at different depths also show notable discrepancies (Shen et al., 2016; Zhu et

al., 2014). Surface soil moisture has been shown to respond to precipitation
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approximately a month earlier than deeper soil moisture, with a more pronounced
positive correlation between precipitation and soil moisture occurring at depths greater
than 50 cm (Zhang et al., 2020).

Most current analyses of the relationship between soil moisture and precipitation
assume a linear relationship (Sehler et al., 2019; Yang et al., 2018). In reality, the
response of soil moisture to precipitation is extremely complex and often nonlinear
(Drager et al., 2022). This kind of nonlinear and asymmetric correlation is generally
referred to as “dependence”. Existing studies have not fully addressed some issues in
the nonlinear dependence of soil moisture to precipitation, including the heterogeneity
in different ecoregions and soil layers, as well as inadequate identification of tail
dependence. Moreover, the factors driving this negative dependence between soil
moisture and precipitation remain poorly understood due to the complicated land
atmosphere coupling processes, particularly in the Northern Hemisphere where
different types of vegetation coverage are present. Among the methods used to explore
nonlinear relationships, the copula function is one of the most widely applied
approaches for modeling the joint distributions of precipitation and soil moisture
(Cammalleri et al., 2024). The copula is a stochastic model that can reveal nonlinear
and asymmetric dependence structures, which are difficult to capture using traditional
linear methods. It provides a flexible framework for modeling joint distributions of
multiple variables, allowing for a more precise understanding of the evolving
dependence of soil moisture on precipitation than that offered by traditional linear
regression and correlation methods.

In terms of the water cycle, soil moisture is replenished by precipitation and
groundwater, while also being absorbed by plant roots and lost through
evapotranspiration. Therefore, the change of soil moisture is actually simultaneously
influenced by precipitation volume, frequency, and evapotranspiration. However, the
response of soil moisture to precipitation and evapotranspiration varies across different
time scales, presented as nonlinear and asymmetric. The long-term effects of changes

in evapotranspiration and precipitation on soil moisture are further shaped by seasonal
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transitions, with significant differences observed at different soil depths (Szutu and
Papuga, 2019). These differences are influenced by factors such as soil freeze—thaw
processes and vegetation community structure. Therefore, the relative contributions of
evapotranspiration, precipitation volume, and frequency to soil moisture changes
should be quantified at different time scales.

Although previous studies have identified the mechanisms of soil moisture
variation across different time scales (Shen et al., 2018; Vidana Gamage et al., 2020),
the interaction among precipitation, evapotranspiration and soil water under climate
change may have changed over different time scales. In particular, although the
negative dependence has been reported, its dominant drivers and their relative
contributions across different timescales and soil layers still remain unclear. The
dependence of soil moisture to precipitation and its interactions with evapotranspiration
under conditions of climate change require further investigation. Accordingly, the ridge
regression models for precipitation amount, precipitation frequency, evapotranspiration,
and soil moisture can be used to quantify the relative influence of precipitation and
evapotranspiration on soil moisture. As an improvement of the least squares estimation
method, it can handle the multi-collinearity problems of the covariates, although it is
usually biased.

This study targets the nonlinear dependence of soil moisture to precipitation across
Northern Hemisphere at monthly and annual scales from 2000 to 2019. A copula
function was applied to describe the joint distribution of precipitation and soil moisture.
It can capture the asymmetric and tail-dependent relationship, as well as the varying
influences of precipitation volume, frequency, and evapotranspiration on soil moisture
at monthly and seasonal scales. A Bayesian attribution framework involved gross
primary productivity (GPP), land surface temperature (LST), and near-surface air
temperature (T,) were selected to identify the key driving factors, since the dependence
between precipitation and soil moisture is influenced by factors such as vegetation
growth, temperature, and soil properties. The driving factors and regional

characteristics of the negative correlation observed between precipitation and soil
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moisture in different ecoregions were also compared. This study enhances the
understanding of complex interactions between key meteorological factors such as
precipitation, evapotranspiration, and soil moisture under climate change, and provides

a basis for future land—atmosphere coupling system modeling.

2. Material and Method

2.1 Material

2.1.1 Soil moisture

The soil moisture data used in this study were obtained from the fifth generation
of reanalysis from the European Centre for Medium-Range Weather Forecasts
(ECMWF), using atmospheric forcing to control the simulated land field variables and
provide the land components (ERAS5-Land) (Mufoz Sabater, 2019). ERAS5-Land
provides a consistent description of the evolution of the energy and water cycles over
land, and therefore, has been widely used in various land surface applications such as
flood or drought forecasting (Joaquin Munoz-Sabater, 2021). The ERA5-Land soil
moisture data are available for four layers, 0 to 7, 7 to 28, 28 to 100, and 100 to 289 cm,
at a 0.1° x 0.1° spatial and hourly temporal resolution from 1950 to present. The soil
moisture from the first three soil layers during 2000 to 2019 were used. They were
resampled to a 0.25° x (0.25° spatial resolution and averaged to daily, monthly, and

yearly scales to be consistent with other variables in this study.

2.1.2 Precipitation

The Global Precipitation Climatology Project (GPCP) is a global precipitation
project that integrates infrared and microwave data from multiple geostationary and
polar-orbiting satellites, and corrected by many meteorological station observations
(Adler et al., 2003; Huffman and Bolvin, 2013). It is an important component of the
Global Energy and Water Cycle Experiment (GEWEX) in the World Climate Research
Programme (WCRP). A daily precipitation field with a 1° x 1° resolution since 1996

was generated by integrating the satellite products and then adjusting the daily
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precipitation by monthly data observed from the ground to make it consistent with the
meteorological observations. Daily precipitation was resampled to a 0.25° x 0.25°
spatial resolution and then used to calculate the total precipitation volume and

precipitation frequency at the monthly, seasonal, and annual scale from 2000 to 2019.

2.1.3 Covariate variables

2.1.3.1 Gross primary production

The gross primary production (GPP) dataset was from the Vegetation Optical
Depth Climate Archive v2, which used microwave remote sensing estimates of
vegetation optical depth to estimate the GPP at the global scale for the period 1988 to
2020 (Wild et al., 2022). These GPP data were trained and evaluated against FLUXNET
in-situ observations and compared with largely independent state-of-the-art GPP
datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS). The
Vegetation Optical Depth Climate Archive v2 GPP dataset has a 0.25° x 0.25° spatial
and half-monthly temporal resolution, covered from 2000 to 2019.
2.1.3.2 Near surface air temperature

The air temperature data (T.) were obtained from the Climatic Research Unit
gridded Time Series (CRU TS), which is one of the most widely used climate datasets
and is produced by the National Centre for Atmospheric Sciences in the United
Kingdom. CRU TS v4.07 was derived by the interpolation of monthly climate
anomalies from extensive networks of weather station observations (Harris et al., 2020).
It provides monthly land surface data from 1901 to 2020 at a 0.5° % 0.5° resolution
worldwide. The mean temperatures at the monthly, seasonal, and annual scales during
2000 to 2019 were calculated and resampled to a 0.25° x 0.25° spatial resolution.
2.1.3.3 Land surface temperature

Land surface temperature (LST) data were accessed from the European Space
Agency Climate Change Initiative (CCI), which is funded by the European Space
Agency as part of the Agency’s CCI Program. It aims to significantly improve current
satellite LST data records to meet the challenging Global Climate Observing System

requirements for climate applications and realize the full potential of long-term LST
7
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data for climate science (Hollmann et al., 2013). These data were the first global LST
climate data records of over 25 years at a 0.25° x 0.25° resolution and with an expected
error within 1 K. The LST dataset included ascending and descending orbit data, which
were used to calculate the mean value of separate annual and monthly averages during
2000 to 2019.

2.1.3.4 Evapotranspiration

Evapotranspiration data were accessed from the Global Land Evaporation
Amsterdam Model (GLEAM) v3.8a, which provides data of the different components
of land evapotranspiration, including transpiration, bare-soil evaporation, interception
loss, open-water evaporation, and sublimation, in addition to other related variables
such as surface and root-zone soil moisture, sensible heat flux, potential evaporation,
and evaporative stress conditions (Miralles et al., 2011). The monthly, seasonal, and
annual averages during 2000 to 2019 were calculated based on a 0.25° x 0.25° spatial
resolution.
2.1.3.5 Terrestrial ecoregions

Data on terrestrial ecoregions around the globe were accessed from the
Conservation Biology Institute (Olson et al., 2001). These ecoregions are relatively
large units of land containing distinct assemblages of natural communities and species,
with boundaries that approximate the original extent of natural communities prior to
major land-use changes. The delineations were completed based on hundreds of
previous biogeographical studies and were refined and synthesized using existing
information in regional workshops over the course of 10 years to assemble the global
dataset (Olson et al., 2001). An ecological layer file encompassing 16 major categories
was downloaded.

Although the Koppen climate classification provides a standardized framework
based on temperature and precipitation, it may perform not well in accounting for
critical biophysical factors, particularly for vegetation. Alternatively, the ecoregion
divisions integrate both climatic and ecological factors, offering a more comprehensive

understanding of the spatial heterogeneity in vegetation types and hydrological
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processes (Gerken et al., 2019; Olson et al., 2001). This makes it particularly
advantageous for studying land—atmosphere interactions, since vegetation plays a
central role in regulating energy and water fluxes. Therefore, this study adopts
ecoregion boundaries to better capture the vegetation related variability in
precipitation—soil moisture relationship. Since soil moisture dynamics and their
feedbacks with precipitation are strongly influenced by vegetation structure, root
systems, and edaphic properties, the ecoregions can provide a more mechanistic and
spatially relevant framework for our analysis. All of the T., LST, GPP, soil moisture,
and precipitation datasets were masked by these 16 terrestrial ecoregions (Fig. 1) in a

0.25° grid, and monthly, seasonal, or annual mean values in the regions were calculated

separately.
180° 0° 180°
60°N 60°N
30°N 30°N
X ¥ ) At
! ’ N\ » ® Esii, FAO, NOAA, USGS
180° 0° 180°
Terrestrial Ecoregions of the World
Tropical and Temperate Tropical and Flooded Mediterranean
Subtropical Moist Broadleaf and subtropical Grasslands and Forests,
Broadleaf Forests Mixed Forests grasslands, Savannas Woodlands, and
Tropical and Temperate savannas, and Montane Scrub
Subtropical Dry Coniferous Forests shrublands Grasslands and Deserts and Xeric
Broadleaf Forests Boreal Forests/ Temperate Shrublands Shrublands
Tropical and Taiga (.;“‘SSI“"’JS‘ Tundra Il Mangroves
Subtropical 2?"“3;1“5(; and Lakes
ST S— hrublands
Coniferous Forests Rk Toe
Fig. 1 The 16 Terrestrial Ecoregions of the Northern Hemisphere.
2.2 Method

2.2.1 Joint distribution

In this study, the joint distribution between precipitation and soil moisture from
depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, using the copula function at both the
monthly and annual scales was established. A copula function links multivariate
distribution functions with their one-dimensional marginal distributions, and is used for

the examination of dependencies between multiple variables. It captures nonlinear
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dependence structures through joint and marginal probabilities of a pair of variables in
complex multivariate systems (Nelsen, 2005). In this study, the copula function was
used to explore the nonlinear dependence between precipitation and soil moisture

(Equation 1):

FP,SM(xr y) = C(Fp(x):FSM(}’))' (1)

where Fp(x) and Fsm(y) denote the marginal distribution of precipitation and soil
moisture, respectively, and C(u,v) is the copula function linking these two variables.
The process for establishing the joint distribution was as follows: (1) The marginal
distributions of precipitation and soil moisture were fitted using an automatic
optimization function. (2) The most suitable copula function was selected based on the
Akaike Information Criterion (AIC) values at the grid level, including Gaussian copula,
Student’s t copula, Clayton copula, and 37 other copula functions. Different copula
functions may be selected for different grid cells. (3) The chosen copula function was
then used to compute the corresponding Kendall’s tau (1), upper tail dependence (Av),
and lower tail dependence (Ar).

The statistic T measures the correlation between two variables to determine the
presence of a monotonic relationship. Ay and AL represent the likelihood that, when one
variable reaches extreme high or low values, the other variable also reaches extreme
values. The calculations of 1, Ay, and AL are based on the dependence parameters of the
joint distribution of precipitation and soil moisture, and depends on the selected copula
function using the AIC method. Taking the Tawn copula function as an example, the

calculation of 1, Au, and AL are based on the following equations.

r=1-2 4+ 22 )
w=(1-28)- (22", 3)

and
AL = 5-(2-2179), (4)

where 0 is the dependence parameter of the Tawn copula, and 6 represents the
asymmetry parameter. For some copula functions, such as Clayton copula, the

Kendall’s t values get the priority over the upper and lower tail dependencies in the
10
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estimation process. All the calculations were performed using R v4.3.3 with the
VineCopula and copula packages, for which detailed calculation methods for t, Au, and
A for all copulas are provided. To address the potential delayed response of soil
moisture to precipitation, lagged correlation analysis was conducted. For each grid cell,
the AIC value was calculated to select copula function (Fig. S1), as shown in the
supplementary file. Then the Kendall‘s tau correlation was calculated between
precipitation and soil moisture with time lags ranging from 0 to 12 months (Fig. S2).
The lag corresponding to the maximum absolute correlation was identified as the

optimal lag.

2.2.2 Ridge regression

Ridge regression is designed to address collinear data, although it is a biased
estimation method. It is an improved least squares estimation used to generate more
reliable regression coefficients at the cost of unbiasedness. Ridge regression
outperforms the traditional least squares method when fitting ill-conditioned data
(McDonald, 2009). Due to the large uncertainty in precipitation and soil moisture data,
ridge regression models were applied for three soil layers, and for both monthly and
seasonal scales. Spring was defined as from March to May, summer from June to
August, autumn from September to November, and winter from December to February
of the following year. Precipitation frequency, volume, and evapotranspiration were
treated as predictor variables, with T, as a control variable and soil moisture as the
response variable.

To clearly differentiate the influence of variables, the regression coefficients for
precipitation volume, frequency, and evapotranspiration were normalized using
Equation (5) and then assigned to the three primary colors. This approach resulted in a

gridded ternary phase diagram.

Vi

3
Z i=1 'Ui’

where v; (vq,V,,V3) represent precipitation frequency, precipitation volume, and

W, =1- (5)

evapotranspiration (ET), respectively, and W; refers to the adjusted weight of v;.
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2.2.3 Bayesian generalized non-linear multivariate multilevel models

The Bayesian generalized non-linear multivariate multilevel model integrates
Bayesian inference, generalized linear models, non-linear modeling, multivariate
analysis, and hierarchical structures, making it well-suited for complex hierarchical
data. It can effectively capture non-linear dependencies among multiple response
variables (Browne and Draper, 2006; Biirkner, 2017). The model parameters are treated
as random variables with prior distributions under the Bayesian framework. Posterior
distributions of the parameters are obtained by combining the likelihood function and
prior distributions. The Markov Chain Monte Carlo (MCMC) algorithm is then used to
resample from the posterior distribution and estimate the posterior means of the
parameters to represent the optimal results. Given the hierarchical and multivariate
nature of the data, a multilevel structure and multivariate analysis was introduced to
model the mixed effects of variables and to capture the relationships among multiple
related response variables. Random effects were also incorporated to account for
heterogeneity among individuals and reflect the varying effects of univariate or
multivariate mixtures on the response variables, thereby improving the accuracy of
estimates.

Since the impact approaches of GPP, LST, and T. on precipitation (P) and soil
moisture (SM) are often unknown, the Gaussian distribution was specified as the prior
distribution for these variables in the Bayesian model. To investigate how GPP, LST,
and T. influence the precipitation—soil moisture coupling relationship, both
precipitation and soil moisture were treated as response variables. Bayesian non-linear
multivariate multilevel models were developed at both the monthly and seasonal scales,
with independent models for 16 ecological zones (Equation 6):

Posterior estimates = bf(P ~ T, + GPP + LST + Ta:GPP + To:LST + GPP:LST + T..GPP:LST) +
bf(SM ~ T, + GPP + LST + To:GPP + To:LST + GPP:LST + T.:GPP:LST),  (6)

where the colon represents multivariate mixed effects of different variables; bf stands

for Bayesian formula, used to specify each part of the model for P and SM separately;

and the “+” combines P and SM into a multivariate model. The model was implemented
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in R 4.3.3 using the brms package, which performs diagnostic checks on the sampling
results using indicators such as the Gelman—Rubin diagnostic (Rhat statistic) and the
effective sample size (ESS). To ensure stability and convergence, four MCMC chains
were used for iterative sampling, with each chain running 4,000 iterations, including
2,000 warm-up iterations. A maximum tree depth of 10 was set. Estimate values of all

ecoregions were classified into different clusters using the K-means method in R 4.3.3.

3. Results

3.1 Estimation from the copula function

(a1) Layer 1, lower tail dependence (b1) Layer 2, lower tail dependence (c1) Layer 3, lower tail dependence 1
60°N - ; e Faldacieton = L oo
40°N ’ i gt Vel o st Mt 06
20°N 58 e P ci
Ya e Ya P - s 3 2 — A a 0.4
(a2) Layer 1, Kendall's tau (b2) Layer 2, Kendall's tau (c2) Layer 3, Kendall's tau
80°N | - ” T : 0.2
O 60°N - S 5% : ' 5
= 40°N + pA~ A2 2= i T
T N | & w X A% £ W 0.2
. Y y Sat N Y4t , & RPN
(a3) Layer 1, upper tail dependence (b3) Layer 2, upper tail dependence (c3) Layer 3, upper tail dependence 0.4
80°N - 5 . - -
BO°N 1 e, , & » safes -0.6
40°N 2 o 08
20°N 4 o %
T : i T T T L|
100°W 0° 100°E 100°W 0°
Longitude

Fig. 2 Spatial distribution of Kendall’s tau (z), the upper tail dependence (Au), and the lower tail
dependence (AL) on the 0.25° x 0.25° grids between monthly precipitation volume and soil moisture
during 2000 to 2019. The three columns are for the soil moisture from depths of 0 to 7 cm, 7 to 28 cm,

and 28 to 100 cm, respectively.

The copula analysis of monthly average soil moisture and total monthly
precipitation volume revealed a clear negative dependence at all three soil depths (Fig.
2(a2, b2, c2)). The percentages of grid cells exhibiting negative dependence at these
depths were 19.2%, 0.7%, and 2.3%, respectively. The negative dependence between
precipitation and soil moisture is more prevalent in the surface soil layer, where the grid
cells exhibiting are more widespread. In contrast, at the middle and deep soil layers,
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these negative dependence patterns are primarily confined to the margins of the Sahara
desert, the montane grasslands and shrublands, and parts of the deserts and xeric
shrublands regions. In the surface layer, the negatively dependent grid patches are more
spatially scattered, mainly distributed across the tundra, montane grasslands and
shrublands, deserts and xeric shrublands, as well as the tropical and subtropical moist
broadleaf forests.

Regions exhibiting high AL values were primarily located in the deserts and xeric
Shrublands, as well as in parts of India, where AL reached values as high as 0.99 (Fig.
2(al, bl, cl)). With increasing soil depth, A. values gradually increased across the
Eurasian continent. Similarly, Ay exhibited a clear reduction in spatial extent with
increasing soil depth, with the majority of these regions located in the temperate
broadleaf and mixed forests and the southern margin of the Sahara desert. With
increasing soil depth, Ay values consistently decreased, resulting in a lack of clear
correspondence between these regions and specific ecological zones (Fig. 2(a3, b3, c3)).
This decreasing trend likely reflects the weakening of extreme precipitation—soil
moisture coupling in deeper soil layers, except for arid regions where vegetation is
sparse or absent.

From the annual scale copula results (Fig. 3), precipitation and soil moisture
generally exhibited positive dependencies across the entire soil profile. However,
negative dependencies were observed in regions such as the southern Sahara Desert,
Mongolia, and the Elizabeth Islands, reaching 3.0%, 4.0%, and 8.6%, respectively (Fig.
3(a2, b2, c2)). It revealed that the negative correlation was kept between precipitation
and soil moisture in long-term scale over arid regions. The negative dependencies in
these areas expanded outward, primarily concentrated in the montane grasslands and
shrublands region. Both the A1 and the Ay displayed scattered, patchy distributions, with

average values for each soil layer ranging from 0.4 to 0.6.
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Fig. 3 Spatial distributions of the 7z, Ay, and AL on the 0.25° x 0.25° grids between annual

precipitation volume and soil moisture during 2000 to 2019. The three columns are for the soil moisture

from depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, respectively.

3.2 Control of soil moisture by precipitation and evapotranspiration

(a) Layer 1
80°N{ I
soen ™ TR
40°N+

0% X g
20°N+ zf\.hl TR
L= i

(c) Layer 3

Latitude

(b) Layer 2

80°N+

Longitude

Frequency Volume

Fig. 4 Ternary map of factors controlling soil moisture, monthly, for the period 2000 to 2019. The

bottom-left histogram in the subgraph represents the proportion of grid cells where one variable exerts

strong univariate control (with a regression coefficient greater than 75% of the total sum of the three

variables), suggesting that soil moisture was predominantly controlled by that specific variable.

On the monthly scale, precipitation exerted the strongest control over soil moisture

(Fig. 4), with regions most influenced by precipitation accounting for more than 40%

of the variation. These areas were primarily located in the boreal forest/taiga, temperate

grasslands, savannas, shrublands, and the eastern part of North America. In contrast,
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regions where evapotranspiration predominated were found in Alaska—Northwest
Canada, the western United States, the Sahara Desert, and the Middle East. High-
latitude regions, especially northern Canada, were primarily influenced by precipitation
frequency. Areas where precipitation volume, frequency, and evapotranspiration had
similar levels of control were mainly found in Eastern Europe and Russia.

The results from ridge regression revealed more distinct patterns at the seasonal
scale compared to the monthly scale (Fig. 5). Soil moisture in spring and summer was
mainly controlled by evapotranspiration, which influenced over 40% of grid cells,
particularly in the middle soil layers, where it dominated nearly 80%. In contrast,
precipitation volume had a greater influence during autumn and winter, particularly in
the continental United States, southern Sahara Desert, coastal India, and eastern China.
Additionally, as soil depth increased, the influence of evapotranspiration and
precipitation frequency gradually intensified. However, in summer, as soil depth
increased, the area primarily controlled by precipitation volume expanded (indicated
by an increase in the intensity of magenta color in the figures) especially in the eastern
United States, Europe, and South Asia. These regions remained strongly influenced by
precipitation volume even as evapotranspiration control increased with increasing soil
depth during autumn. Northern Russia, Canada, Greenland, and northern Alaska were
notably influenced by both precipitation frequency and precipitation volume, with this
effect being more pronounced during the non-growing season. In winter, the area

controlled by precipitation frequency was larger than that in spring.
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Fig. 5 Ternary map of factors controlling soil moisture, seasonally, for the period 2000 to 2019. The
bottom-left histogram in the subgraph represents the proportion of the grid cells where one variable exerts
strong univariate control (with a regression coefficient greater than 75% of the total sum of the three

variables), suggesting that soil moisture was predominantly controlled by that specific variable.

At the annual scale, precipitation amount exerts a dominant influence across all
three soil depth layers, accounting for more than 40% of the total area (Fig. 6). The
spatial extent of areas dominated by precipitation amount, precipitation frequency, and
evapotranspiration remains largely consistent with that observed at the monthly scale.
The regions dominated by precipitation frequency are still primarily located in high-
latitude areas, particularly in Greenland and the northern parts of Canada, although no
distinct ecological zone patterns are observed in these areas. Regions dominated by
precipitation amount are mainly distributed across boreal forests, temperate grasslands,
savannas and shrublands, temperate broadleaf and mixed forests, as well as tropical and
subtropical moist broadleaf forests. In temperate regions, soil moisture is primarily
controlled by precipitation amount due to moderate temperatures and limited rainfall,
making substantial precipitation is essential for soil moisture replenishment. In contrast,
tropical and subtropical regions experience high temperatures and intense

evapotranspiration, requiring substantial precipitation to maintain a water balance.
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Fig. 6 Ternary map of factors controlling soil moisture at annual scale, for the period 2000 to 2019.
The bottom-left histogram in the subgraph represents the proportion of grid cells where one variable
exerts strong univariate control (with a regression coefficient greater than 75% of the total sum of the

three variables), suggesting that soil moisture was predominantly controlled by that specific variable.

3.3 Drivers of negative dependencies between soil moisture and
precipitation

For each model in this study, four MCMC chains were used for iterative sampling.
The sampling results demonstrated that the chains for both the monthly and annual
scales were well-distributed in the parameter space, with no noticeable trends or drifts,
indicating convergence to the target posterior distribution. The convergence was

considered satisfactory, with all models yielding a Rhat value below 1.05 (Figs. S3, S4).
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Fig. 7 Posterior estimates of the covariate variables of the Bayesian generalized non-linear
multivariate multilevel model, built using monthly data. The columns represent soil depths of 0 to 7 cm,
7 to 28 cm, and 28 to 100 cm. Red lines indicate linear regressions of precipitation and soil moisture
across all ecoregions, with cluster groups represented by three circles. The data point of each ecoregion

belongs to a single and non-overlapping cluster.

The negative dependence in the surface layer across the Northern Hemisphere was
primarily driven by the interactions between GPP:LST and T.:GPP (Fig. 7). It shows
that the regression trend line crosses quadrants II and IV. The negative relationship
driven by GPP:LST was predominantly concentrated in quadrant IV, where increased
precipitation lead to decreased soil moisture in the boreal forest, tundra, temperate

coniferous forest, and temperate broadleaf mixed forest. The negative dependence
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driven by Ta.:GPP was mainly found in quadrant II, with distributions in deserts and
xeric shrublands, boreal forests, montane grasslands and shrublands, temperate
broadleaf mixed forests, and tundra. For the middle soil layer, GPP:LST drove a
negative dependence in tropical and subtropical grasslands, savannas, shrublands, and
tropical and subtropical coniferous forests. Ta and Ta:GPP drove in Mediterranean
forests, woodlands, and scrub, as well as in temperate grasslands, savannas, and
shrublands. The mixed effects of Ta:GPP:LST and Ta.:LST had minimal impact across
all ecological zones, with all estimates concentrated near the origin and only two

clusters observed.
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Fig. 8 Posterior estimates of the covariate variables of the Bayesian generalized non-linear

multivariate multilevel model, built using annual data. The columns represent soil depths of 0 to 7 cm, 7
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to 28 cm, and 28 to 100 cm. Red lines indicate linear regression of precipitation and soil moisture across
all ecoregions, with cluster groups represented by three circles. The data point of each ecoregion belongs

to a single and non-overlapping cluster.

Interannual negative dependence was primarily observed in the montane
grasslands and shrublands region, where GPP:LST drove this pattern across all three
soil layers. All other variables lead to positive dependence (Fig. 8). The long-term trend
in the annual-scale Bayesian model revealed strong patterns, with the most significant
difference compared to the monthly scale being the influence of T.:GPP:LST and
Ta:LST, where different ecological zones exhibited substantial variation. Among the
multiple variables, T, drove the most negative dependence, with the greatest differences
observed between ecological zones. In the surface layer, LST alone drove the negative
dependence in the mangrove, rock, and ice regions. T, drove the negative dependence
in tropical and subtropical coniferous forests, lakes, and rock and ice regions. In the
middle soil layers, the negative dependence driven by T, was in temperate forests, arid
shrublands, and flooded grasslands and savannas, while it driven by T.:GPP was in
tropical and subtropical moist broadleaf forests. The negative dependence driven by
Ta:LST was fully distributed in quadrant IV. This pattern was observed in regions such
as the montane grasslands and shrublands, tropical and subtropical coniferous forests,
tropical and subtropical grasslands, savannas, and shrublands; and rock and ice regions.
The strongest drivers of negative dependence in the deep layers were GPP:LST and T..
The negative dependence driven by GPP:LST was found in the rock and ice regions,
Mediterranean forests, woodlands, and scrub, as well as tundra and temperate
coniferous forests in quadrant II. The negative dependence driven by T. was observed
in rock and ice regions, lakes, and temperate coniferous forests in quadrant II, and

flooded grasslands and savannas in quadrant IV.
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4. Discussion

4.1 Characteristics of negative dependence areas

In this study, joint distributions of precipitation and soil moisture were constructed
using Kendall’s t to characterize the nonlinear relationship. Consistent with previous
findings, we observed a negative dependence between precipitation and soil moisture,
particularly in arid and semi-arid regions (Qing et al., 2023; Yang et al., 2018). At the
monthly scale, t values in surface layer were stronger, indicating that seasonal
dynamics—such as intermittent rainfall events followed by rapid soil moisture loss
through evapotranspiration—likely drive the observed negative correlation. While
negative dependence generally decreases with depth, the middle layer shows an
unexpectedly low percentage. This layer often corresponds to the main root zone, where
stable plant water uptake reduces soil moisture variability and weakens the feedback
signal, leading to a few grid cells with significant negative dependence (Thompson et
al., 2010). In contrast, the deep soil layers may retain some long-term memory of
moisture deficits, especially under prolonged dry conditions, which could contribute to
stronger negative dependence than in the more buffered middle layer. On the annual
scale, the negative dependence may instead reflect long-term climate feedbacks. In
high-latitude regions, for example, Arctic amplification and permafrost thawing can
decouple precipitation inputs from effective soil moisture retention, leading to
persistent moisture deficits despite increasing precipitation trends. Regions showing
negative dependence between precipitation and soil moisture are primarily distributed
in arid, semi-arid and cold high-latitude climates. Representative ecosystems include
deserts and xeric shrublands, montane grasslands and shrublands, and Arctic tundra.
Despite their climatic differences, these ecosystems share key ecohydrological traits,
including limited precipitation input, strong evapotranspiration demand, sparse
vegetation cover, and low soil moisture retention capacity.

Different from monthly scale, the negative dependence at annual scale is primarily

generated in regions such as deserts, xeric shrublands, montane grasslands and
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shrublands. These ecosystems are specifically characterized by arid conditions, and
particularly sensitive to environmental changes, making them much responsive to long-
term climatic variability. In deserts and xeric shrublands, annual precipitation typically
falls below 250 mm, while evaporation consistently exceeds rainfall (Lockwood et al.,
2006). Vegetation in these regions is dominated by shallow-rooted shrubs, which offer
minimal resistance to post-rainfall moisture loss. As a result, soil moisture often
declines rapidly following precipitation events, leading to a counterintuitive negative
relationship between rainfall and moisture storage. Montane grasslands and shrublands,
despite occurring in more topographically complex terrains, also experience dry
climatic conditions characterized by low precipitation, high temperatures, and elevated
VPD (Olson and Dinerstein, 1998). These factors enhance evapotranspiration, limiting
the effectiveness of rainfall in replenishing soil moisture. Consequently, increases in
precipitation may coincide with soil moisture decline due to enhanced moisture loss. In
contrast, Arctic tundra ecosystems—such as those found in northern North America and
Eurasia—are defined by cold temperatures, continuous permafrost, and moderate but
ineffective precipitation. Frozen soils impede infiltration, causing much of the
precipitation to be lost as surface runoff rather than retained in the soil profile.
Dominant vegetation includes mosses, sedges, and dwarf shrubs with shallow root
systems, further limiting water uptake and storage (Olson and Dinerstein, 1998; Xue et

al., 2021).

4.2 Mechanism of negative dependence between precipitation and soil
moisture

4.2.1 Energy-Driven Mechanism: LST and Ta-Driven ET Dominance

Negative dependence between precipitation and soil moisture was observed across
several dry and cold ecoregions, including deserts and xeric shrublands, montane
grasslands and shrublands, tundra. These regions are generally characterized by low
precipitation and GPP, limiting vegetation’s ability to retain or utilize moisture

effectively (Olson and Dinerstein, 1998; Xue and Wu, 2023). In arid ecosystems,
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shallow-rooted vegetation and high temperatures result in rapid soil moisture loss
following rainfall. In montane environments, stronger warming trends (Pepin et al.,
2022) and shallow-rooted vegetation (Stocker et al., 2023) further limit precipitation
use, despite increased GPP under warming. Besides, the surface soil induced upward
movement of soil water from the middle layer due to the osmotic and matric potential,
further contributing to moisture depletion. In semi-arid grasslands, the interaction
between soil texture and precipitation patterns further reinforces negative dependence.
Brief rainfall events primarily moisten upper clay layers where grass roots concentrate
(Sala and Lauenroth, 1985), while well-developed clay horizons restrict deep water
percolation and shrub root expansion (Buxbaum and Vanderbilt, 2007). This physical
confinement exacerbates water loss when increased GPP and LST enhance
evapotranspiration from the shallow moistened zone, intensifying the precipitation-soil
moisture decoupling. High temperatures can lead to surface soil sealing, preventing
rainfall from effectively entering the root zone. Model simulations confirm that in flat
arid regions (Koukoula et al., 2021), such soil barriers promote the “dry soil
advantage”—where precipitation triggers runoff rather than infiltration.

The boreal forest and tundra ecosystems, often with permafrost, are temperature-
limited systems. Precipitation often falls as snow, which accumulates on the surface.
Then, a low LST can cause soil freezing, and the presence of surface withered litter
may further insulate the soil, preventing timely moisture replenishment. Permafrost in
these regions can lead to surface runoff of some precipitation, preventing effective
infiltration into the soil. The geological conditions, such as Karst landforms can also
influence the relationship between precipitation and soil moisture.

4.2.2 Biotic-Driven Mechanism: Vegetation Water Use and GPP Dominance

High-altitude ecosystems, especially in the Arctic and Qinghai—Tibetan Plateau,
are increasingly affected by warming and variable precipitation (Lamprecht et al., 2018).
These changes lead to reduced species abundance and increased GPP (Berauer et al.,
2019). In montane grasslands and shrublands, species abundance negatively correlates

with soil nutrients and microbial functions (Graham Emily et al., 2024). Rising LST
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and extreme precipitation reduce microbial biomass and release soil minerals (Siebielec
et al., 2020), intensifying light competition and lowering ecosystem stability.
Biodiversity loss decreases soil water capacity, with some of these regions at high risk
of water erosion (Straffelini et al., 2024).

Soil moisture reduction in the surface and middle layer is mainly driven by root
water uptake under high LST and GPP. Roots shift absorption to deeper layers during
droughts (Yadav Brijesh et al., 2009). In dry seasons, plants in grasslands and
shrublands retain leaves to support evaporative cooling (Prior et al., 1997), this strategy
also seen in deserts and xeric shrublands, where winter precipitation and freezing
reduce surface moisture. Even during rainfall, soil moisture may decline due to
evapotranspiration, runoff, and plant uptake (Tomlinson et al., 2013), creating a
negative precipitation—soil moisture relationship. Canopy interception also limits
infiltration (Zhong et al., 2022). However, in high-latitude ecosystems like boreal
forests and tundra, warming mitigates cold limitations, allowing precipitation to
increase soil moisture, shifting the relationship to positive.

Negative dependence in mid-to-deep soil layers can occur when a single factor
dominates, limiting ecosystem compensation (Jarvis, 2011; Taylor and Klepper, 1979).
In contrast, positive dependence may arise from synergistic interactions between GPP
and LST. Higher GPP can reflect deeper root systems or improved water-use efficiency,
while increased LST may enhance soil moisture release and promote water availability
together (Wang et al., 2008). This interaction may strengthen ecosystem feedbacks—
e.g., higher GPP can improve soil structure through biomass and organic matter,
boosting water retention (Chen et al., 2025). Such synergy can offset LST-driven
evapotranspiration and enhance ecosystem resilience, particularly through freeze—thaw

processes in cold regions.

4.3 Data reliability

In this study, multiple observational datasets were employed to reduce model-
driven uncertainty and enhance data reliability. CRU TS, ESA CCI, and GPCP were

selected due to their direct reliance on ground-based or satellite observations, in contrast
25
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to the model-based ERAS5-Land product. Although ERAS does offer a wide range of
meteorological variables, it can introduce model uncertainties. Therefore, the datasets
used in this study have independent source, which can avoid the potential false
relationships between soil moisture and precipitation that may be caused by the same
model architecture and input parameters. To investigate spatial heterogeneity, all data
were spatially aggregated by ecoregion boundaries from the Conservation Biology
Institute. These boundaries may introduce regional biases, which should be considered
when interpreting the results.

The copula method can access the dependence between different time series, after
removing influences of the conditional means and variances as well as marginal
distributions (Durante et al., 2025; Neumeyer et al., 2019). In this study, although
precipitation—soil moisture dependence was assessed across different time scales, the
monthly series were not de-seasonalized. As a result, the residual seasonal signals may
influence short-term dependence structures. This limitation will be addressed in future
work through seasonal adjustment. In the Bayesian modeling, GPP, LST, and air
temperature were examined as drivers of negative dependence. Evapotranspiration was
excluded due to its dependence on both soil moisture and temperature. We acknowledge
that additional factors—such as wind, topography, and soil physical properties—may
also modulate precipitation—soil moisture coupling but were not in the scope of this
analysis. Future research incorporating these variables would provide a more

comprehensive understanding of the underlying mechanisms.

5. Conclusion

This study explored the dependence relationships between precipitation and soil
moisture at depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm from 2000 to 2019, by
examining the control effect of precipitation volume, precipitation frequency, and
evapotranspiration on soil moisture. Bayesian models were used to analyze the driving
factors and relative contribution in the dependence of soil moisture to precipitation in
different time scales and ecoregions of the Northern Hemisphere. The results suggest

that, the negative dependence proportion reached 19.2%, 0.7%, and 2.3% at monthly
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scale, while it was 3.0%, 4.0%, and 8.6% at annual scale, respectively, for the three soil
layers. Precipitation volume predominantly controlled soil moisture in the Boreal
forest/taiga, temperate grasslands, savannas, and shrublands, while precipitation
frequency primarily controlled soil moisture in the high-latitude regions of the Northern
Hemisphere. The combined influence of evapotranspiration and precipitation exhibited
clear seasonal patterns. Evapotranspiration was the dominant driver of soil moisture
dynamics during the growing season, with a regression coefficient proportion greater
than 75%. In contrast, precipitation volume played a more significant role in the surface
and middle layer of non-growing season, with areas under strong univariate control
accounting for over 40% of the total area. Additionally, the influence of precipitation
frequency on soil moisture increased with latitude, the proportion of the regression
coefficient averaging from 36.5% to 91.3%, highlighting a shift in controlling factors
across climatic gradients.

In regions such as temperate grasslands, savannas, shrublands, deserts, xeric
shrublands, and tundra, negative dependencies between precipitation and soil moisture,
driven by LST and T.:GPP interactions, were observed. These negative dependencies
were mainly attributed to the seasonality of precipitation in arid and semi-arid areas and
the freeze—thaw processes in the soil, which hinder effective moisture replenishment,
especially during winter when soil freezing prevents rainwater infiltration. In the
intermediate and deep soil layers, negative dependencies were primarily driven by
single variables, whereas positive dependencies resulted from multivariate interactions,
likely due to the lack of compensatory mechanisms when a single variable dominated,
or the enhancement of ecosystem feedbacks when both GPP and LST interacted.
Additionally, when the ecosystem is simultaneously driven by GPP and LST, greater
resilience may be exhibited.

At the annual scale, the area of negative dependence increased with soil depth,
with the most pronounced negative dependencies occurring in the montane grasslands
and shrublands region. In this region, negative dependencies at all three soil depths

were driven by the GPP:LST interaction. A possible explanation is the long-term
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variability in precipitation and temperature, which may have influenced

geomorphology, vegetation structure, and soil water retention capacity.

Data availability
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GPCP precipitation dataset (https://doi:10.7289/V5SRX998Z.) was obtained from the
NOAA National Centers for Environmental Information (accessed on 11 March
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