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Abstract 13 

Soil moisture plays a critical role in the land–atmosphere coupling system. It is 14 

replenished by precipitation and transported back to the atmosphere through land 15 

surface evaporation and vegetation transpiration. Soil moisture is, therefore, 16 

influenced by both precipitation and evapotranspiration, with spatial heterogeneities 17 

and seasonal variations across different ecological zones. Recently, negative 18 

correlations between soil moisture and precipitation have been observed in Northern 19 

Hemisphere ecosystems. However, the driving mechanisms of these negative 20 

correlations, especially how soil moisture is influenced by precipitation and 21 

evapotranspiration, still remain unclear. This study analyzes the dependence between 22 

soil moisture and precipitation in different ecoregions to explore the driving 23 

mechanisms and regional patterns. The joint distributions of precipitation and soil 24 

moisture were analyzed at monthly and annual scales, using soil moisture and 25 

precipitation data from ERA5-Land and Global Precipitation Climatology Project, 26 

respectively. The nonlinear negative dependencies reached to 19.2%, 0.7%, and 2.3% 27 

at monthly scale, while were 3.0%, 4.0%, and 8.6% at annual scale, respectively, for 28 

the three soil layers. These negative dependencies were shown to be most prominent 29 

in temperate grasslands, savannas, shrublands, deserts, xeric shrublands, and tundra 30 

regions, where driven by the land surface temperature and by the air temperature–31 

gross primary production relationship at the monthly scale based on Ridge regression 32 

models and Bayesian models. Additionally, the negative dependence is also linked to 33 

freeze–thaw cycles, precipitation seasonality, and temperature fluctuations, which 34 

lead to asynchronous changes between soil moisture and precipitation at the seasonal 35 

scale. At the annual scale, the negative dependence was associated with long-term 36 

changes in precipitation and temperature that affect vegetation and surface properties, 37 

by altering soil water capacity. These findings enhance the understanding of land–38 

atmosphere interactions providing a valuable basis for future research on drought, 39 

hydrometeorology, and ecological conservation. 40 

Keywords: climate change, precipitation, soil moisture, ecoregions  41 
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1. Introduction 42 

Soil moisture is a critical source of water for vegetation growth, replenished by 43 

precipitation and groundwater, and returned to the atmosphere through 44 

evapotranspiration. It plays a key role in weather conditions, vegetation dynamics, 45 

and groundwater storage (Li et al. 2022; Qiao et al. 2023; Vereecken et al. 2008; Zhou 46 

et al. 2021), with significant implications for the global climate. Surface soil moisture 47 

regulates the distribution of available energy at the land surface and exchanges energy 48 

with the near-surface atmosphere through sensible and latent heat fluxes, thereby 49 

controlling the surface energy balance (Haghighi et al. 2018; McColl et al. 2017). In 50 

contrast, deep soil moisture is more directly influenced by vegetation growth, 51 

particularly by the development of plant roots, which play a crucial role in the vertical 52 

infiltration of precipitation into deeper soil layers (Szutu and Papuga 2019; Xiao et al. 53 

2024; Xue and Wu 2024). 54 

Precipitation variability, which refers to the amplitude of precipitation 55 

fluctuations over different times, influences soil moisture and thereby land surface 56 

coupling (Koster et al. 2009; Taylor et al. 2012). Precipitation patterns are reported to 57 

have undergone significant changes in recent decades (Lv et al. 2023; Mao et al. 58 

2022; Wu et al. 2021), mainly manifested as anthropogenic amplification of 59 

precipitation variability (Zhang et al. 2024). The increase in the frequency of extreme 60 

precipitation events (Myhre et al. 2019; Wang et al. 2022) and decrease in the 61 

frequency of smaller precipitation events (Ma et al. 2015) amplify soil moisture 62 

fluctuations and prolong the moisture stress periods between consecutive precipitation 63 

events (Knapp et al. 2008). This can directly affect vegetation growth and soil 64 

moisture responses (Feldman et al. 2024; He et al. 2023), particularly through changes 65 

in the duration and intensity of soil evaporation and plant transpiration (Gu et al. 66 

2021; Wullschleger and Hanson 2006). Soil moisture has been shown to be negatively 67 

correlated with precipitation in certain regions, based on Pearson correlation analyses 68 

(Cook et al. 2006; Yang et al. 2018). The changes in soil moisture at different depths 69 

also show notable discrepancies (Shen et al. 2016; Zhu et al. 2014). Surface soil 70 
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moisture has been shown to respond to precipitation approximately a month earlier 71 

than deeper soil moisture, with a more pronounced positive correlation between 72 

precipitation and soil moisture occurring at depths greater than 50 cm (Zhang et al. 73 

2020). 74 

Most current analyses of the relationship between soil moisture and precipitation 75 

assume a linear relationship. In reality, the response of soil moisture to precipitation is 76 

extremely complex and often nonlinear (Drager et al. 2022). This kind of nonlinear 77 

and asymmetric correlation is generally referred to as ―dependence‖. The nonlinear 78 

dependence of soil moisture to precipitation is currently not well understood. 79 

Moreover, the factors driving this negative dependence between soil moisture and 80 

precipitation remain poorly understood due to the complicated land atmosphere 81 

coupling processes, particularly in the Northern Hemisphere where different types of 82 

vegetation coverage are present. Among the methods used to explore nonlinear 83 

relationships, the copula function is one of the most widely applied approaches for 84 

modeling the joint distributions of precipitation and soil moisture (Cammalleri et al. 85 

2024). The copula is a stochastic model that can reveal nonlinear and asymmetric 86 

dependence structures, which are difficult to capture using traditional linear methods. 87 

It provides a flexible framework for modeling joint distributions of multiple variables, 88 

allowing for a more precise understanding of the evolving dependence of soil 89 

moisture on precipitation than that offered by traditional linear regression and 90 

correlation methods. 91 

In terms of the water cycle, soil moisture is replenished by precipitation and 92 

groundwater, while also being absorbed by plant roots and lost through 93 

evapotranspiration. Therefore, the change of soil moisture is actually simultaneously 94 

influenced by precipitation volume, frequency, and evapotranspiration. However, the 95 

response of soil moisture to precipitation and evapotranspiration varies across 96 

different time scales. The long-term effects of changes in evapotranspiration and 97 

precipitation on soil moisture are further shaped by seasonal transitions, with 98 

significant differences observed at different soil depths (Szutu and Papuga 2019). 99 
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These differences are influenced by factors such as soil freeze–thaw processes and 100 

vegetation community structure. Therefore, the relative contributions of 101 

evapotranspiration, precipitation volume, and frequency to soil moisture changes 102 

should be quantified at different time scales. 103 

Although previous studies have identified the mechanisms of soil moisture 104 

variation across different time scales (Shen et al. 2018; Vidana Gamage et al. 2020), 105 

the interaction among precipitation, evapotranspiration and soil water under climate 106 

change may have changed over different time scales. The dependence of soil moisture 107 

to precipitation and its interactions with evapotranspiration under conditions of 108 

climate change require further investigation. Accordingly, the ridge regression models 109 

for precipitation amount, precipitation frequency, evapotranspiration, and soil 110 

moisture can be used to quantify the relative influence of precipitation and 111 

evapotranspiration on soil moisture. As an improvement of the least squares 112 

estimation method, it can handle the multi-collinearity problems of the covariates, 113 

although it is usually biased. 114 

The aim of this study was to explore the nonlinear responses of soil moisture to 115 

precipitation at monthly and annual scales from 2000 to 2019, with a focus on the 116 

Northern Hemisphere where vegetation coverage is abundant. The joint distribution of 117 

precipitation and soil moisture was established to examine differences in soil moisture 118 

responses to precipitation and the varying influences of precipitation volume, 119 

frequency, and evapotranspiration on soil moisture at monthly and seasonal scales. 120 

The gross primary productivity (GPP), land surface temperature (LST), and near-121 

surface air temperature (Ta) were selected as key driving factors in a Bayesian model, 122 

since the dependence between precipitation and soil moisture is influenced by factors 123 

such as vegetation growth, temperature, and soil properties. The driving factors and 124 

regional characteristics of the negative correlation observed between precipitation and 125 

soil moisture in certain regions were identified. This study enhances the 126 

understanding of complex interactions between key meteorological factors such as 127 

precipitation, evapotranspiration, and soil moisture under climate change, and 128 
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provides a basis for future land–atmosphere coupling system modeling.  129 

2. Material and Method 130 

2.1 Material 131 

2.1.1 Soil moisture 132 

The soil moisture data used in this study were obtained from the fifth generation 133 

of reanalysis from the European Centre for Medium-Range Weather Forecasts 134 

(ECMWF), using atmospheric forcing to control the simulated land field variables and 135 

provide the land components (ERA5-Land) (Muñoz Sabater 2019). ERA5-Land 136 

provides a consistent description of the evolution of the energy and water cycles over 137 

land, and therefore, has been widely used in various land surface applications such as 138 

flood or drought forecasting (Joaquín Muñoz-Sabater 2021). The ERA5-Land soil 139 

moisture data are available for four layers, 0 to 7, 7 to 28, 28 to 100, and 100 to 289 140 

cm, at a 0.1° × 0.1° spatial and hourly temporal resolution from 1950 to present. The 141 

soil moisture from the first three soil layers during 2000 to 2019 were used. They 142 

were resampled to a 0.25° × 0.25° spatial resolution and averaged to daily, monthly, 143 

and yearly scales to be consistent with other variables in this study. 144 

2.1.2 Precipitation 145 

The Global Precipitation Climatology Project (GPCP) is a global precipitation 146 

project that integrates infrared and microwave data from multiple geostationary and 147 

polar-orbiting satellites, and corrected by many meteorological station observations 148 

(Adler et al. 2003; Huffman and Bolvin 2013). It is an important component of the 149 

Global Energy and Water Cycle Experiment in the World Climate Research 150 

Programme. A daily precipitation field with a 1° × 1° resolution since 1996 was 151 

generated by integrating the satellite products and then adjusting the daily 152 

precipitation by monthly data observed from the ground to make it consistent with the 153 

meteorological observations. Daily precipitation was resampled to a 0.25° × 0.25° 154 

spatial resolution and then used to calculate the total precipitation volume and 155 
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precipitation frequency at the monthly, seasonal, and annual scale from 2000 to 2019. 156 

2.1.3 Covariate variables 157 

2.1.3.1 Gross primary production  158 

The gross primary production (GPP) dataset was from the Vegetation Optical 159 

Depth Climate Archive v2, which used microwave remote sensing estimates of 160 

vegetation optical depth to estimate the GPP at the global scale for the period 1988 to 161 

2020 (Wild et al. 2022). These GPP data were trained and evaluated against 162 

FLUXNET in-situ observations and compared with largely independent state-of-the-163 

art GPP datasets from the Moderate Resolution Imaging Spectroradiometer (MODIS). 164 

The Vegetation Optical Depth Climate Archive v2 GPP dataset has a 0.25° × 0.25° 165 

spatial and half-monthly temporal resolution, covered from 2000 to 2019.  166 

2.1.3.2 Near surface air temperature 167 

The air temperature data (Ta) were obtained from the Climatic Research Unit 168 

gridded Time Series (CRU TS), which is one of the most widely used climate datasets 169 

and is produced by the National Centre for Atmospheric Sciences in the United 170 

Kingdom. CRU TS v4.07 was derived by the interpolation of monthly climate 171 

anomalies from extensive networks of weather station observations (Harris et al. 172 

2020). It provides monthly land surface data from 1901 to 2020 at a 0.5° × 0.5° 173 

resolution worldwide. The mean temperatures at the monthly, seasonal, and annual 174 

scales during 2000 to 2019 were calculated and resampled to a 0.25° × 0.25° spatial 175 

resolution.  176 

2.1.3.3 Land surface temperature 177 

Land surface temperature (LST) data were accessed from the European Space 178 

Agency Climate Change Initiative (CCI), which is funded by the European Space 179 

Agency as part of the Agency‘s CCI Program. It aims to significantly improve current 180 

satellite LST data records to meet the challenging Global Climate Observing System 181 

requirements for climate applications and realize the full potential of long-term LST 182 

data for climate science (Hollmann et al. 2013). These data were the first global LST 183 

climate data records of over 25 years at a 0.25° × 0.25° resolution and with an 184 
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expected error within 1 K. The LST dataset included ascending and descending orbit 185 

data, which were used to calculate the mean value of separate annual and monthly 186 

averages during 2000 to 2019.  187 

2.1.3.4 Evapotranspiration 188 

Evapotranspiration data were accessed from the Global Land Evaporation 189 

Amsterdam Model (GLEAM) v3.8a, which provides data of the different components 190 

of land evapotranspiration, including transpiration, bare-soil evaporation, interception 191 

loss, open-water evaporation, and sublimation, in addition to other related variables 192 

such as surface and root-zone soil moisture, sensible heat flux, potential evaporation, 193 

and evaporative stress conditions (Miralles et al. 2011). The monthly, seasonal, and 194 

annual averages during 2000 to 2019 were calculated based on a 0.25° × 0.25° spatial 195 

resolution. 196 

2.1.3.5 Terrestrial ecoregions 197 

Data on terrestrial ecoregions around the globe were accessed from the 198 

Conservation Biology Institute (Olson et al. 2001). These ecoregions are relatively 199 

large units of land containing distinct assemblages of natural communities and 200 

species, with boundaries that approximate the original extent of natural communities 201 

prior to major land-use changes. The delineations were completed based on hundreds 202 

of previous biogeographical studies and were refined and synthesized using existing 203 

information in regional workshops over the course of 10 years to assemble the global 204 

dataset (Olson et al., 2001). An ecological layer file encompassing 16 major 205 

categories was downloaded. 206 

In this study, the ecoregion boundaries rather than Köppen climate zones were 207 

used to investigate the spatial patterns of precipitation–soil moisture feedbacks. 208 

Ecoregions are divided based on a combination of factors including vegetation types, 209 

soil characteristics, substrate, and climate conditions. This multi-factor approach 210 

allows ecoregions to better reflect ecological and hydrological processes than 211 

classifications based solely on climate variables. Since soil moisture dynamics and 212 

their feedbacks with precipitation are strongly influenced by vegetation structure, root 213 
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systems, and edaphic properties, the ecoregions can provide a more mechanistic and 214 

spatially relevant framework for our analysis. All of the Ta, LST, GPP, soil moisture, 215 

and precipitation datasets were masked by these 16 terrestrial ecoregions (Fig. 1) in a 216 

0.25° grid, and monthly, seasonal, or annual mean values in the regions were 217 

calculated separately. 218 

 219 

Fig. 1 The 16 Terrestrial Ecoregions of the Northern Hemisphere. 220 

2.2 Method 221 

2.2.1 Joint distribution 222 

In this study, the joint distribution between precipitation and soil moisture from 223 

depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, using the copula function at both 224 

the monthly and annual scales was established. A copula function links multivariate 225 

distribution functions with their one-dimensional marginal distributions, and is used 226 

for the examination of dependencies between multiple variables. It captures nonlinear 227 

dependence structures through joint and marginal probabilities of a pair of variables in 228 

complex multivariate systems (Nelsen 2005). In this study, the copula function was 229 

used to explore the nonlinear dependence between precipitation and soil moisture 230 

(Equation 1): 231 

𝐹𝑃,𝑆𝑀(𝑥, 𝑦) = 𝐶(𝐹𝑃(𝑥), 𝐹𝑆𝑀(𝑦)),                                     (1) 232 

where FP(x) and FSM(y) denote the marginal distribution of precipitation and soil 233 
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moisture, respectively, and C(u,v) is the copula function linking these two variables. 234 

The process for establishing the joint distribution was as follows: (1) The marginal 235 

distributions of precipitation and soil moisture were fitted using an automatic 236 

optimization function. (2) The most suitable copula function was selected based on 237 

the Akaike Information Criterion (AIC) values at the grid level, including Gaussian 238 

copula, Student‘s t copula, Clayton copula, and 37 other copula functions. Different 239 

copula functions may be selected for different grid cells. (3) The chosen copula 240 

function was then used to compute the corresponding Kendall‘s tau (τ), upper tail 241 

dependence (λU), and lower tail dependence (λL). 242 

The statistic τ measures the correlation between two variables to determine the 243 

presence of a monotonic relationship. λU and λL represent the likelihood that, when 244 

one variable reaches extreme high or low values, the other variable also reaches 245 

extreme values. The calculations of τ, λU, and λL are based on the dependence 246 

parameters of the joint distribution of precipitation and soil moisture, and depends on 247 

the selected copula function using the AIC method. Taking the Tawn copula function 248 

as an example, the calculation of τ, λU, and λL are based on the following equations. 249 

𝜏 = 1 −
2𝛿

𝜃+1
+

2𝛿2

2𝜃+1
,                                                   (2) 250 

λU = (1 − δ) ⋅ (2−2
1/θ

),                                              (3) 251 

and  252 

λL = δ⋅(2−2
1/θ

),                                                  (4) 253 

where θ is the dependence parameter of the Tawn copula, and δ represents the 254 

asymmetry parameter. For some copula functions, such as Clayton copula, the 255 

Kendall‘s τ values get the priority over the upper and lower tail dependencies in the 256 

estimation process. All the calculations were performed using R v4.3.3 with the 257 

VineCopula and copula packages, for which detailed calculation methods for τ, λU, 258 

and λL for all copulas are provided. To address the potential delayed response of soil 259 

moisture to precipitation, lagged correlation analysis was conducted. For each grid 260 

cell, the AIC value was calculated to select copula function (Fig. S1), as shown in the 261 

supplementary file. Then the Kendall‗s tau correlation was calculated between 262 
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precipitation and soil moisture with time lags ranging from 0 to 12 months (Fig. S2). 263 

The lag corresponding to the maximum absolute correlation was identified as the 264 

optimal lag. 265 

2.2.2 Ridge regression 266 

Ridge regression is designed to address collinear data, although it is a biased 267 

estimation method. It is an improved least squares estimation used to generate more 268 

reliable regression coefficients at the cost of unbiasedness. Ridge regression 269 

outperforms the traditional least squares method when fitting ill-conditioned data 270 

(McDonald 2009). Due to the large uncertainty in precipitation and soil moisture data, 271 

ridge regression models were applied for three soil layers, and for both monthly and 272 

seasonal scales. Spring was defined as from March to May, summer from June to 273 

August, autumn from September to November, and winter from December to 274 

February of the following year. Precipitation frequency, volume, and 275 

evapotranspiration were treated as predictor variables, with Ta as a control variable 276 

and soil moisture as the response variable.  277 

To clearly differentiate the influence of variables, the regression coefficients for 278 

precipitation volume, frequency, and evapotranspiration were normalized using 279 

Equation (5) and then assigned to the three primary colors. This approach resulted in a 280 

gridded ternary phase diagram. 281 

𝑊𝑖 = 1 −
𝑣𝑖

∑ 𝑣𝑖
3

𝑖=1

,                                                      (5) 282 

where 𝑣𝑖 ( 𝑣1, 𝑣2, 𝑣3 ) represent precipitation frequency, precipitation volume, and 283 

evapotranspiration (ET), respectively, and 𝑊𝑖 refers to the adjusted weight of 𝑣𝑖. 284 

2.2.3 Bayesian generalized non-linear multivariate multilevel models 285 

The Bayesian generalized non-linear multivariate multilevel model integrates 286 

Bayesian inference, generalized linear models, non-linear modeling, multivariate 287 

analysis, and hierarchical structures, making it well-suited for complex hierarchical 288 

data. It can effectively capture non-linear dependencies among multiple response 289 
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variables (Browne and Draper 2006; Bürkner 2017). The model parameters are treated 290 

as random variables with prior distributions under the Bayesian framework. Posterior 291 

distributions of the parameters are obtained by combining the likelihood function and 292 

prior distributions. The Markov Chain Monte Carlo (MCMC) algorithm is then used 293 

to resample from the posterior distribution and estimate the posterior means of the 294 

parameters to represent the optimal results. Given the hierarchical and multivariate 295 

nature of the data, a multilevel structure and multivariate analysis was introduced to 296 

model the mixed effects of variables and to capture the relationships among multiple 297 

related response variables. Random effects were also incorporated to account for 298 

heterogeneity among individuals and reflect the varying effects of univariate or 299 

multivariate mixtures on the response variables, thereby improving the accuracy of 300 

estimates. 301 

Since the impact approaches of GPP, LST, and Ta on precipitation (P) and soil 302 

moisture (SM) are often unknown, the Gaussian distribution was specified as the prior 303 

distribution for these variables in the Bayesian model. To investigate how GPP, LST, 304 

and Ta influence the precipitation–soil moisture coupling relationship, both 305 

precipitation and soil moisture were treated as response variables. Bayesian non-linear 306 

multivariate multilevel models were developed at both the monthly and seasonal 307 

scales, with independent models for 16 ecological zones (Equation 6): 308 

Posterior estimates = bf(P ~ Ta + GPP + LST + Ta:GPP + Ta:LST + GPP:LST + Ta:GPP:LST) + 309 

 bf(SM ~ Ta + GPP + LST + Ta:GPP + Ta:LST + GPP:LST + Ta:GPP:LST),      (6) 310 

where the colon represents multivariate mixed effects of different variables; bf stands 311 

for Bayesian formula, used to specify each part of the model for P and SM separately; 312 

and the ―+‖ combines P and SM into a multivariate model. The model was 313 

implemented in R 4.3.3 using the brms package, which performs diagnostic checks on 314 

the sampling results using indicators such as the Gelman–Rubin diagnostic (Rhat 315 

statistic) and the effective sample size (ESS). To ensure stability and convergence, 316 

four MCMC chains were used for iterative sampling, with each chain running 4,000 317 

iterations, including 2,000 warm-up iterations. A maximum tree depth of 10 was set. 318 
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Estimate values of all ecoregions were classified into different clusters using the K-319 

means method in R 4.3.3. 320 

3. Results 321 

3.1 Estimation from the copula function 322 

 323 

Fig. 2 Spatial distribution of Kendall‘s tau (τ), the upper tail dependence (λU), and the lower tail 324 

dependence (λL) on the 0.25° × 0.25° grids between monthly precipitation volume and soil moisture 325 

during 2000 to 2019. The three columns are for the soil moisture from depths of 0 to 7 cm, 7 to 28 cm, 326 

and 28 to 100 cm, respectively. 327 

 328 

The copula analysis of monthly average soil moisture and total monthly 329 

precipitation volume revealed a clear negative dependence at all three soil depths 330 

(Fig. 2(a2, b2, c2)). The percentages of grid cells exhibiting negative dependence at 331 

these depths were 19.2%, 0.7%, and 2.3%, respectively. The negative dependence 332 

between precipitation and soil moisture is more prevalent in the surface soil layer, 333 

where the grid cells exhibiting are more widespread. In contrast, at the middle and 334 

deep soil layers, these negative dependence patterns are primarily confined to the 335 

margins of the Sahara desert, the montane grasslands and shrublands, and parts of the 336 

deserts and xeric shrublands regions. In the surface layer, the negatively dependent 337 

grid patches are more spatially scattered, mainly distributed across the tundra, 338 

montane grasslands and shrublands, deserts and xeric shrublands, as well as the 339 
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tropical and subtropical moist broadleaf forests. 340 

Regions exhibiting high λL values were primarily located in the deserts and xeric 341 

Shrublands, as well as in parts of India, where λL reached values as high as 0.99 (Fig. 342 

2(a1, b1, c1)). With increasing soil depth, λL values gradually increased across the 343 

Eurasian continent. Similarly, λU exhibited a clear reduction in spatial extent with 344 

increasing soil depth, with the majority of these regions located in the temperate 345 

broadleaf and mixed forests and the southern margin of the Sahara desert. With 346 

increasing soil depth, λU values consistently decreased, resulting in a lack of clear 347 

correspondence between these regions and specific ecological zones (Fig. 2(a3, b3, 348 

c3)). 349 

From the annual scale copula results (Fig. 3), precipitation and soil moisture 350 

generally exhibited positive dependencies across the entire soil profile. However, 351 

negative dependencies were observed in regions such as the southern Sahara Desert, 352 

Mongolia, and the Elizabeth Islands, reaching 3.0%, 4.0%, and 8.6%, respectively 353 

(Fig. 3(a2, b2, c2)). The negative dependencies in these areas expanded outward, 354 

primarily concentrated in the montane grasslands and shrublands region. Both the λL 355 

and the λU displayed scattered, patchy distributions, with average values for each soil 356 

layer ranging from 0.4 to 0.6. 357 

 358 

Fig. 3 Spatial distributions of the τ, λU, and λL on the 0.25° × 0.25° grids between annual 359 

precipitation volume and soil moisture during 2000 to 2019. The three columns are for the soil 360 

moisture from depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm, respectively. 361 
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3.2 Control of soil moisture by precipitation and evapotranspiration 362 

 363 

Fig. 4 Ternary map of factors controlling soil moisture, monthly, for the period 2000 to 2019. The 364 

bottom-left histogram in the subgraph represents the proportion of grid cells where one variable exerts 365 

strong univariate control (with a regression coefficient greater than 75% of the total sum of the three 366 

variables), suggesting that soil moisture was predominantly controlled by that specific variable. 367 

 368 

On the monthly scale, precipitation exerted the strongest control over soil 369 

moisture (Fig. 4), with regions most influenced by precipitation accounting for more 370 

than 40% of the variation. These areas were primarily located in the boreal 371 

forest/taiga, temperate grasslands, savannas, shrublands, and the eastern part of North 372 

America. In contrast, regions where evapotranspiration predominated were found in 373 

Alaska–Northwest Canada, the western United States, the Sahara Desert, and the 374 

Middle East. High-latitude regions, especially northern Canada, were primarily 375 

influenced by precipitation frequency. Areas where precipitation volume, frequency, 376 

and evapotranspiration had similar levels of control were mainly found in Eastern 377 

Europe and Russia. 378 

The results from ridge regression revealed more distinct patterns at the seasonal 379 

scale compared to the monthly scale (Fig. 5). Soil moisture in spring and summer was 380 

mainly controlled by evapotranspiration, which influenced over 40% of grid cells, 381 

particularly in the middle soil layers, where it dominated nearly 80%. In contrast, 382 

precipitation volume had a greater influence during autumn and winter, particularly in 383 
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the continental United States, southern Sahara Desert, coastal India, and eastern 384 

China. Additionally, as soil depth increased, the influence of evapotranspiration and 385 

precipitation frequency gradually intensified. However, in summer, as soil depth 386 

increased, the area primarily controlled by precipitation volume expanded (indicated 387 

by an increase in the intensity of magenta color in the figures) especially in the 388 

eastern United States, Europe, and South Asia. These regions remained strongly 389 

influenced by precipitation volume even as evapotranspiration control increased with 390 

increasing soil depth during autumn. Northern Russia, Canada, Greenland, and 391 

northern Alaska were notably influenced by both precipitation frequency and 392 

precipitation volume, with this effect being more pronounced during the non-growing 393 

season. In winter, the area controlled by precipitation frequency was larger than that 394 

in spring. 395 

 396 

Fig. 5 Ternary map of factors controlling soil moisture, seasonally, for the period 2000 to 2019. 397 

The bottom-left histogram in the subgraph represents the proportion of the grid cells where one 398 

variable exerts strong univariate control (with a regression coefficient greater than 75% of the total sum 399 

of the three variables), suggesting that soil moisture was predominantly controlled by that specific 400 

variable. 401 

 402 

At the annual scale, precipitation amount exerts a dominant influence across all 403 

three soil depth layers, accounting for more than 40% of the total area (Fig. 6). The 404 
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spatial extent of areas dominated by precipitation amount, precipitation frequency, 405 

and evapotranspiration remains largely consistent with that observed at the monthly 406 

scale. The regions dominated by precipitation frequency are still primarily located in 407 

high-latitude areas, particularly in Greenland and the northern parts of Canada, 408 

although no distinct ecological zone patterns are observed in these areas. Regions 409 

dominated by precipitation amount are mainly distributed across boreal forests, 410 

temperate grasslands, savannas and shrublands, temperate broadleaf and mixed 411 

forests, as well as tropical and subtropical moist broadleaf forests. In temperate 412 

regions, soil moisture is primarily controlled by precipitation amount due to moderate 413 

temperatures and limited rainfall, making substantial precipitation is essential for soil 414 

moisture replenishment. In contrast, tropical and subtropical regions experience high 415 

temperatures and intense evapotranspiration, requiring substantial precipitation to 416 

maintain a water balance. 417 

 418 

Fig. 6 Ternary map of factors controlling soil moisture at annual scale, for the period 2000 to 419 

2019. The bottom-left histogram in the subgraph represents the proportion of grid cells where one 420 

variable exerts strong univariate control (with a regression coefficient greater than 75% of the total sum 421 

of the three variables), suggesting that soil moisture was predominantly controlled by that specific 422 

variable. 423 

3.3 Drivers of negative dependencies between soil moisture and 424 

precipitation 425 

For each model in this study, four MCMC chains were used for iterative 426 

sampling. The sampling results demonstrated that the chains for both the monthly and 427 
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annual scales were well-distributed in the parameter space, with no noticeable trends 428 

or drifts, indicating convergence to the target posterior distribution. The convergence 429 

was considered satisfactory, with all models yielding a Rhat value below 1.05 (Figs. 430 

S3, S4). 431 

 432 

Fig. 7 Posterior estimates of the covariate variables of the Bayesian generalized non-linear 433 

multivariate multilevel model, built using monthly data. The columns represent soil depths of 0 to 7 434 

cm, 7 to 28 cm, and 28 to 100 cm. Red lines indicate linear regressions of precipitation and soil 435 

moisture across all ecoregions, with cluster groups represented by three circles. 436 

 437 

The negative dependence in the surface layer across the Northern Hemisphere 438 

was primarily driven by the interactions between GPP:LST and Ta:GPP (Fig. 7). It 439 
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shows that the regression trend line crosses quadrants II and IV. The negative 440 

relationship driven by GPP:LST was predominantly concentrated in quadrant IV, 441 

where increased precipitation lead to decreased soil moisture in the boreal forest, 442 

tundra, temperate coniferous forest, and temperate broadleaf mixed forest. The 443 

negative dependence driven by Ta:GPP was mainly found in quadrant II, with 444 

distributions in deserts and xeric shrublands, boreal forests, montane grasslands and 445 

shrublands, temperate broadleaf mixed forests, and tundra. For the middle soil layer, 446 

GPP:LST drove a negative dependence in tropical and subtropical grasslands, 447 

savannas, shrublands, and tropical and subtropical coniferous forests. Ta and Ta:GPP 448 

drove in Mediterranean forests, woodlands, and scrub, as well as in temperate 449 

grasslands, savannas, and shrublands. The mixed effects of Ta:GPP:LST and Ta:LST 450 

had minimal impact across all ecological zones, with all estimates concentrated near 451 

the origin and only two clusters observed. 452 

 453 
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Fig. 8 Posterior estimates of the covariate variables of the Bayesian generalized non-linear 454 

multivariate multilevel model, built using annual data. The columns represent soil depths of 0 to 7 cm, 455 

7 to 28 cm, and 28 to 100 cm. Red lines indicate linear regression of precipitation and soil moisture 456 

across all ecoregions, with cluster groups represented by three circles. 457 

 458 

Interannual negative dependence was primarily observed in the montane 459 

grasslands and shrublands region, where GPP:LST drove this pattern across all three 460 

soil layers. All other variables lead to positive dependence (Fig. 8). The long-term 461 

trend in the annual-scale Bayesian model revealed strong patterns, with the most 462 

significant difference compared to the monthly scale being the influence of 463 

Ta:GPP:LST and Ta:LST, where different ecological zones exhibited substantial 464 

variation. Among the multiple variables, Ta drove the most negative dependence, with 465 

the greatest differences observed between ecological zones. In the surface layer, LST 466 

alone drove the negative dependence in the mangrove, rock, and ice regions. Ta drove 467 

the negative dependence in tropical and subtropical coniferous forests, lakes, and rock 468 

and ice regions. In the middle soil layers, the negative dependence driven by Ta was in 469 

temperate forests, arid shrublands, and flooded grasslands and savannas, while it 470 

driven by Ta:GPP was in tropical and subtropical moist broadleaf forests. The 471 

negative dependence driven by Ta:LST was fully distributed in quadrant IV. This 472 

pattern was observed in regions such as the montane grasslands and shrublands, 473 

tropical and subtropical coniferous forests, tropical and subtropical grasslands, 474 

savannas, and shrublands; and rock and ice regions. The strongest drivers of negative 475 

dependence in the deep layers were GPP:LST and Ta. The negative dependence driven 476 

by GPP:LST was found in the rock and ice regions, Mediterranean forests, 477 

woodlands, and scrub, as well as tundra and temperate coniferous forests in quadrant 478 

II. The negative dependence driven by Ta was observed in rock and ice regions, lakes, 479 

and temperate coniferous forests in quadrant II, and flooded grasslands and savannas 480 

in quadrant IV. 481 
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4. Discussion 482 

4.1 Characteristics of negative dependence areas 483 

In this study, joint distributions of precipitation and soil moisture were 484 

constructed using Kendall‘s τ to characterize the nonlinear relationship. Consistent 485 

with previous findings, we observed a negative dependence between precipitation and 486 

soil moisture, particularly in arid and semi-arid regions (Qing et al. 2023; Yang et al. 487 

2018). At the monthly scale, τ values in surface layer were stronger, indicating that 488 

seasonal dynamics—such as intermittent rainfall events followed by rapid soil 489 

moisture loss through evapotranspiration—likely drive the observed negative 490 

correlation. On the annual scale, the negative dependence may instead reflect long-491 

term climate feedbacks. In high-latitude regions, for example, Arctic amplification 492 

and permafrost thawing can decouple precipitation inputs from effective soil moisture 493 

retention, leading to persistent moisture deficits despite increasing precipitation 494 

trends. Regions showing negative dependence between precipitation and soil moisture 495 

are primarily distributed in arid, semi-arid and cold high-latitude climates. 496 

Representative ecosystems include deserts and xeric shrublands, montane grasslands 497 

and shrublands, and Arctic tundra. Despite their climatic differences, these 498 

ecosystems share key ecohydrological traits, including limited precipitation input, 499 

strong evapotranspiration demand, sparse vegetation cover, and low soil moisture 500 

retention capacity. 501 

In deserts and xeric shrublands, annual precipitation typically falls below 250 502 

mm, while evaporation consistently exceeds rainfall (Lockwood et al. 2006). . 503 

Vegetation in these regions is dominated by shallow-rooted shrubs, which offer 504 

minimal resistance to post-rainfall moisture loss. As a result, soil moisture often 505 

declines rapidly following precipitation events, leading to a counterintuitive negative 506 

relationship between rainfall and moisture storage. Montane grasslands and 507 

shrublands, despite occurring in more topographically complex terrains, also 508 

experience dry climatic conditions characterized by low precipitation, high 509 
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temperatures, and elevated VPD (Olson and Dinerstein 1998). These factors enhance 510 

evapotranspiration, limiting the effectiveness of rainfall in replenishing soil moisture. 511 

Consequently, increases in precipitation may coincide with soil moisture decline due 512 

to enhanced moisture loss. In contrast, Arctic tundra ecosystems—such as those found 513 

in northern North America and Eurasia—are defined by cold temperatures, continuous 514 

permafrost, and moderate but ineffective precipitation. Frozen soils impede 515 

infiltration, causing much of the precipitation to be lost as surface runoff rather than 516 

retained in the soil profile. Dominant vegetation includes mosses, sedges, and dwarf 517 

shrubs with shallow root systems, further limiting water uptake and storage (Olson 518 

and Dinerstein 1998; Xue et al. 2021). 519 

 520 

4.2 Mechanism of negative dependence between precipitation and soil 521 

moisture 522 

4.2.1 Energy-Driven Mechanism: LST and Ta-Driven ET Dominance 523 

Negative dependence between precipitation and soil moisture was observed 524 

across several dry and cold ecoregions, including deserts and xeric shrublands, 525 

montane grasslands and shrublands, tundra. These regions are generally characterized 526 

by low precipitation and GPP, limiting vegetation‘s ability to retain or utilize moisture 527 

effectively (Olson and Dinerstein 1998; Xue and Wu 2023). In arid ecosystems, 528 

shallow-rooted vegetation and high temperatures result in rapid soil moisture loss 529 

following rainfall. In montane environments, stronger warming trends (Pepin et al. 530 

2022) and shallow-rooted vegetation (Stocker et al. 2023) further limit precipitation 531 

use, despite increased GPP under warming. Besides, the surface soil induced upward 532 

movement of soil water from the middle layer due to the osmotic and matric potential, 533 

further contributing to moisture depletion. In semi-arid grasslands, the interaction 534 

between soil texture and precipitation patterns further reinforces negative dependence. 535 

Brief rainfall events primarily moisten upper clay layers where grass roots concentrate 536 

(Sala and Lauenroth 1985), while well-developed clay horizons restrict deep water 537 
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percolation and shrub root expansion (Buxbaum and Vanderbilt 2007). This physical 538 

confinement exacerbates water loss when increased GPP and LST enhance 539 

evapotranspiration from the shallow moistened zone, intensifying the precipitation-540 

soil moisture decoupling. High temperatures can lead to surface soil sealing, 541 

preventing rainfall from effectively entering the root zone. Model simulations confirm 542 

that in flat arid regions (Koukoula et al. 2021), such soil barriers promote the ―dry soil 543 

advantage‖—where precipitation triggers runoff rather than infiltration. 544 

The boreal forest and tundra ecosystems, often with permafrost, are temperature-545 

limited systems. Precipitation often falls as snow, which accumulates on the surface. 546 

Then, a low LST can cause soil freezing, and the presence of surface withered litter 547 

may further insulate the soil, preventing timely moisture replenishment. Permafrost in 548 

these regions can lead to surface runoff of some precipitation, preventing effective 549 

infiltration into the soil. The geological conditions, such as Karst landforms can also 550 

influence the relationship between precipitation and soil moisture. 551 

4.2.2 Biotic-Driven Mechanism: Vegetation Water Use and GPP Dominance  552 

High-altitude ecosystems, especially in the Arctic and Qinghai–Tibetan Plateau, 553 

are increasingly affected by warming and variable precipitation (Lamprecht et al. 554 

2018). These changes lead to reduced species abundance and increased GPP (Berauer 555 

et al. 2019). In montane grasslands and shrublands, species abundance negatively 556 

correlates with soil nutrients and microbial functions (Graham Emily et al. 2024). 557 

Rising LST and extreme precipitation reduce microbial biomass and release soil 558 

minerals (Siebielec et al. 2020), intensifying light competition and lowering 559 

ecosystem stability. Biodiversity loss decreases soil water capacity, with some of 560 

these regions at high risk of water erosion (Straffelini et al. 2024).  561 

Soil moisture reduction in the surface and middle layer is mainly driven by root 562 

water uptake under high LST and GPP. Roots shift absorption to deeper layers during 563 

droughts (Yadav Brijesh et al. 2009). In dry seasons, plants in grasslands and 564 

shrublands retain leaves to support evaporative cooling (Prior et al. 1997), this 565 

strategy also seen in deserts and xeric shrublands, where winter precipitation and 566 
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freezing reduce surface moisture. Even during rainfall, soil moisture may decline due 567 

to evapotranspiration, runoff, and plant uptake (Tomlinson et al. 2013), creating a 568 

negative precipitation–soil moisture relationship. Canopy interception also limits 569 

infiltration (Zhong et al. 2022). However, in high-latitude ecosystems like boreal 570 

forests and tundra, warming mitigates cold limitations, allowing precipitation to 571 

increase soil moisture, shifting the relationship to positive. 572 

Negative dependence in mid-to-deep soil layers can occur when a single factor 573 

dominates, limiting ecosystem compensation (Jarvis 2011; Taylor and Klepper 1979). 574 

In contrast, positive dependence may arise from synergistic interactions between GPP 575 

and LST. Higher GPP can reflect deeper root systems or improved water-use 576 

efficiency, while increased LST may enhance soil moisture release and promote water 577 

availability together (Wang et al. 2008). This interaction may strengthen ecosystem 578 

feedbacks—e.g., higher GPP can improve soil structure through biomass and organic 579 

matter, boosting water retention (Chen et al. 2025). Such synergy can offset LST-580 

driven evapotranspiration and enhance ecosystem resilience, particularly through 581 

freeze–thaw processes in cold regions. 582 

4.3 Data reliability 583 

The CRU TS dataset used in this study is based on ground-based meteorological 584 

station observations, while the ESA CCI dataset is derived from satellite-based 585 

surface temperature measurements. The GPCP dataset combines both ground-based 586 

observations and satellite data, which are directly based on actual observational data. 587 

In contrast, the ERA5-Land dataset is generated using ERA5 as the forcing data. 588 

While ERA5 provides a comprehensive range of meteorological data and is widely 589 

used, it relies on numerical weather prediction models, which are based on principles 590 

of atmospheric physics. These models use observational data to calibrate their 591 

outputs, and using ERA5 meteorological data, uncertainties inherent in the model are 592 

introduced. Consequently, different sources of meteorological data were selected for 593 

this study. 594 

All data were clipped according to the boundaries of Terrestrial Ecoregions, 595 
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which were integrated from multiple studies by the Conservation Biology Institute. 596 

These ecoregions are based on different criteria across regions and are widely 597 

accepted, although they may be controversial in some areas. Therefore, discussing the 598 

driving factors of the negative dependence between precipitation and soil moisture in 599 

these regions may involve potential biases and uncertainties. 600 

In the Bayesian models, the discussion focused on GPP, temperature, and LST as 601 

driving factors. Since temperature and soil moisture are input variables for 602 

evapotranspiration calculations, evapotranspiration was excluded from the analysis as 603 

a negative dependence driver. Additionally, other variables such as wind patterns and 604 

topography may also influence the negative dependence between precipitation and 605 

soil moisture. Soil properties—such as texture, organic matter content, and hydraulic 606 

conductivity—represent another set of important controls that were not explicitly 607 

included in the current Bayesian models. While this study provides a foundational 608 

analysis of the negative dependencies across different ecoregions, future research 609 

should explore these additional environmental factors to gain a more comprehensive 610 

understanding of the mechanisms underlying precipitation–soil moisture interactions. 611 

5. Conclusion 612 

This study explored the dependence relationships between precipitation and soil 613 

moisture at depths of 0 to 7 cm, 7 to 28 cm, and 28 to 100 cm from 2000 to 2019, by 614 

examining the control effect of precipitation volume, precipitation frequency, and 615 

evapotranspiration on soil moisture. Bayesian models were used to analyze the 616 

driving factors in the dependence of soil moisture to precipitation in different 617 

ecoregions of the Northern Hemisphere. The results suggest that, the negative 618 

dependence proportion reached 19.2%, 0.7%, and 2.3% at monthly scale, while it was 619 

3.0%, 4.0%, and 8.6% at annual scale, respectively, for the three soil layers. 620 

Precipitation volume predominantly controlled soil moisture in the Boreal forest/taiga, 621 

temperate grasslands, savannas, and shrublands, while precipitation frequency 622 

primarily controlled soil moisture in the high-latitude regions of the Northern 623 

Hemisphere. The combined influence of evapotranspiration and precipitation 624 
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exhibited clear seasonal patterns. Evapotranspiration was the dominant driver of soil 625 

moisture dynamics during the growing season, with a regression coefficient 626 

proportion greater than 75%. In contrast, precipitation volume played a more 627 

significant role in the surface and middle layer of non-growing season, with areas 628 

under strong univariate control accounting for over 40% of the total area. 629 

Additionally, the influence of precipitation frequency on soil moisture increased with 630 

latitude, the proportion of the regression coefficient averaging from 36.5% to 91.3%, 631 

highlighting a shift in controlling factors across climatic gradients. 632 

In regions such as temperate grasslands, savannas, shrublands, deserts, xeric 633 

shrublands, and tundra, negative dependencies between precipitation and soil 634 

moisture, driven by LST and Ta:GPP interactions, were observed. These negative 635 

dependencies were mainly attributed to the seasonality of precipitation in arid and 636 

semi-arid areas and the freeze–thaw processes in the soil, which hinder effective 637 

moisture replenishment, especially during winter when soil freezing prevents 638 

rainwater infiltration. In the intermediate and deep soil layers, negative dependencies 639 

were primarily driven by single variables, whereas positive dependencies resulted 640 

from multivariate interactions, likely due to the lack of compensatory mechanisms 641 

when a single variable dominated, or the enhancement of ecosystem feedbacks when 642 

both GPP and LST interacted. Additionally, when the ecosystem is simultaneously 643 

driven by GPP and LST, greater resilience may be exhibited. 644 

At the annual scale, the area of negative dependence increased with soil depth, 645 

with the most pronounced negative dependencies occurring in the montane grasslands 646 

and shrublands region. In this region, negative dependencies at all three soil depths 647 

were driven by the GPP:LST interaction. A possible explanation is the long-term 648 

variability in precipitation and temperature, which may have influenced 649 

geomorphology, vegetation structure, and soil water retention capacity. 650 

 651 
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Data availability  652 

The ERA5-Land soil moisture dataset (DOI: https://doi.org/10.1175/1525-653 

7541(2001)002<0036:GPAODD>2.0.CO;2) was obtained from the Copernicus 654 

Climate Data Store (accessed on 18 March 2024). The GPCP precipitation dataset 655 

(DOI: https://doi.org/10.7289/V56971M6.) was obtained from the NOAA National 656 

Centers for Environmental Information (accessed on 11 March 2024). The Gross 657 

primary production dataset (https://doi.org/10.5194/essd-14-1063-2022) was obtained 658 

from TU Wien Research Data Repository (accessed on 23 October 2023). The CRU 659 

TS v4.07 air temperature dataset (https://doi.org/10.1038/s41597-020-0453-3) was 660 

obtained from the Climatic Research Unit (accessed on 20 August 2023). The ESA 661 

CCI Land Surface Temperature dataset 662 

(https://dx.doi.org/10.5285/a7e811fe11d34df5abac6f18c920bbeb) was obtained from 663 

the Centre for Environmental Data Analysis (accessed on 27 August 2024). GLEAM 664 

Evapotranspiration data (https://doi.org/10.5194/gmd-10-1903-2017) was obtained 665 

from the GLEAM project (accessed on 19 March 2024). Terrestrial Ecoregions 666 

dataset (https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2) was 667 

obtained from the World Wildlife Fund (accessed on 5 September 2024). 668 
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